
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

6-2024 

Predicting mild cognitive impairment through ambient sensing Predicting mild cognitive impairment through ambient sensing 

and artificial intelligence and artificial intelligence 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Weng Yan YING 
Singapore Management University, wyying@smu.edu.sg 

Budhitama SUBAGDJA 
Singapore Management University, budhitamas@smu.edu.sg 

Anni HUANG 
Singapore Management University, annihuang@smu.edu.sg 

Shanthoshigaa D 
Singapore Management University, shanthod@smu.edu.sg 

See next page for additional authors 
Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, and the Health Information Technology 

Commons 

Citation Citation 
TAN, Ah-hwee; YING, Weng Yan; SUBAGDJA, Budhitama; HUANG, Anni; D, Shanthoshigaa; TAY, Tony Chin-
Ian; and RAWTAER, Iris. Predicting mild cognitive impairment through ambient sensing and artificial 
intelligence. (2024). 2024 2nd IEEE Conference on Artificial Intelligence (CAI): Singapore, June 25-27. 
1098-1104. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9277 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1239?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1239?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Ah-hwee TAN, Weng Yan YING, Budhitama SUBAGDJA, Anni HUANG, Shanthoshigaa D, Tony Chin-Ian TAY, 
and Iris RAWTAER 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/9277 

https://ink.library.smu.edu.sg/sis_research/9277


Predicting Mild Cognitive Impairment
through Ambient Sensing and Artificial Intelligence

Ah-Hwee Tan, Weng-Yan Ying, Budhitama Subagdja,
Anni Huang, Shanthoshigaa D

School of Computing and Information Systems
Singapore Management University

Singapore

{ahtan, wyying, budhitamas, annihuang, shanthod}@smu.edu.sg

Tony Chin-Ian Tay and Iris Rawtaer
Department of Psychiatry
Sengkang General Hospital

Singhealth Duke NUS Academic Medical Centre
Singapore

tony.tay.c.i@skh.com.sg, iris.rawtaer@singhealth.com.sg

Abstract—This paper reports an emerging application leveraging
ambient and artificial intelligence techniques for in-home sensing
and cognitive health assessment. The application involves a
prospective longitudinal study, wherein non-pervasive sensing
devices are installed in homes of over 63 real users undergoing
clinical cognitive assessment, and digital signals of the users’
activities and behaviour are transmitted to a central cloud-
based data server for further processing and analysis. Based
on the sensor readings, we identify a set of digital biomarkers
covering four key aspects of daily living, namely physical, activity,
cognitive, and sleep, and develop a suite of customized feature
extraction methods for deriving them from the sensor readings.
As sensor data captured from real world are inherently sparse
and noisy, we build predictive models using various machine
learning techniques and evaluate their sensitivity to missing and
noisy data. Validated with findings of clinical assessment, our
experiments show that machine learning-based predictive models
are able to identify mild cognitive impairment (MCI) cases based
on the extracted digital biomarkers with reasonably high F1
scores of more than 0.85. This shows that the sensor-based
digital biomarkers are indicative of the users’ cognitive health
status and could be further exploited for more general health
assessment applications. With a vision of massively deploying
such sensor-based AI systems, the paper discusses the challenges
we encountered and shares our lessons learned.

Index Terms—Predictive modelling, mild cognitive impairment,
biomarker extraction

I. INTRODUCTION

The use of sensor technology has been gaining traction for

healthcare and medical use in recent years [1]. They are

relatively simple to use and have promising applications for

detecting behavioral changes. In particular, initial studies have

shown that sensor systems and machine learning techniques

are a feasible solution for the early detection of cognitive

decline within the community setting and allows remote mon-

itoring of changes in activities of daily living [2]. However,

deployment of such sensors in a home-based environment

could present various challenges due to human factors and

hardware limitations in real world.

This research was supported by the Sengkang General Hospital, Singhealth
Foundation and National Medical Research Council Transition Award
(TA22jul-0012), the SMU-A*STAR Joint Lab in Social and Human-Centered
Computing (Grant No. SAJL-2022-HAS001) and the Jubilee Technology
Fellowship awarded to Ah-Hwee Tan by Singapore Management University.

Accordingly, though there have been studies in using digital

biomarkers for early detection of cognitive impairment [3],

most are done via specific cognitive tasks, such as game

playing [4], or in a controlled lab-based environment [5].

On the other hand, extensive work have investigated the use

of activity of daily living (ADL) to detect the changes in

cognitive abilities of elderly [6], [7] and anomaly in key

activities [8]. To overcome the anomalies arising from the

sensors, some employed hierarchical clustering to build ADL

clusters [9] and used the cluster variability to assess changes in

the activities and behaviour of the participants. Though these

work have obtained promising results on recognizing ADL

types and differentiating ADL log images between MCI and

healthy participants, they need the participants to provide their

activity logs with those sensor data in order to train the ADL

classification models, which is time-consuming and prone to

errors when transferring from lab to real life scenarios.

Different from previous work typically conducted in lab-

based platforms, this paper presents an application based

on a large-scale study called SINEW (in short for ”Sensors

IN-home for Elder Wellbeing”) [10], which combines non-

intrusive ambient sensing and AI technologies in a real
life home-based setting for health monitoring and wellness

analysis. Specifically, the application aims to determine the

utility of continuous activity monitoring for early detection

of mild cognitive impairment, a window of opportunity for

timely intervention, and whether behavioral change patterns

can be used to classify between normal cognition, mild cog-

nitive impairment, and dementia. SINEW is arguably the first

longitudinal study focusing on MCI detection through sensor

data automatically captured from a sizable number of real

homes. In comparison, a similar study made use of sensor

data collected from the homes of 49 subjects over a period of

just two months [11] and another only had 13 participants in

the reported longitudinal study [12].

SINEW is a prospective cohort study, wherein community-

dwelling seniors above 65 years were recruited from nationally

representative cohorts in the community. The longitudinal

study involves close to one hundred subjects over a period of

three years from 2020 to 2023. Each recruited senior is living

alone and functioning independently in the community with
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normal cognition (NC) or mild cognitive impairment (MCI).

Upon recruitment, a home-based sensor system was installed

in the participant’s home for non-intrusive monitoring of daily

activities. Concurrently, detailed neurocognitive assessments

and consensus panel diagnosis are repeated annually to de-

termine the cognitive status of the participants. The main

outcomes of this study are to detect cognitive decline and

transition of cognitive states, i.e., conversion from healthy

cognition to mild cognitive impairment/early dementia.

Based on the sensor readings, we identify a set of digital

biomarkers that capture four key aspects of daily living,

namely physical, activity, cognitive, and sleep. We further

develop a suite of customized feature extraction methods

for deriving them from the sensor readings. As sensor data

captured from real world are inherently sparse and noisy,

we build predictive models using various machine learning

techniques and evaluate their sensitivity to missing and noisy

data. Validated with findings of clinical assessment, our exper-

iments show that machine learning-based predictive models,

in particular fusion Adaptive Resonance Theory (fusion ART)

[13], are able to identify mild cognitive impairment (MCI)

cases based on the extracted biomarkers with a reasonably high

level of F1 scores. The results show that the non-intrusive

sensor-based digital biomarkers are indicative of the users’

cognitive health status and could be further exploited for

more general health assessment applications. This innovative

approach thus could pave the way toward a reliable, scalable

and effective home-based sensor system to facilitate the early

detection of cognitive decline, potentially revolutionizing the

way elderly care and interventions are delivered.

In summary, the key technical contributions of this work

include: (1) demonstrating the feasibility of using high level

digital biomarkers, automatically derived from raw sensor

data, for MCI detection; (2) evaluation of a suite of machine

learning models in handling noisy sensor data with a high

level of missing rate, an issue arising from real-time sensing

and human data collection in a real world environment; and

(3) the use of a class of self-organizing neural networks called

fusion ART which shows high resilience in learning from a

small number of training samples, with a high missing rate.

II. CLINICAL PROTOCOL AND METHODOLOGY

A. Participant Recruitment

One hundred participants were initially recruited from the

community. All potentially eligible participants were screened

using pre-defined eligibility criteria. Community-dwelling se-

niors above 65 years who can communicate and provide

written informed consent in English and/or Mandarin were

selected for the study. They should also be living alone and

functioning independently in a community with no history

of dementia or other psychiatric disorders. They would also

not be recruited if they have limitations in basic activities of

daily living, are unwilling to deploy sensors in their homes, or

are currently participating in any cognitive or motor training

intervention trial.

The potential participants were identified and referred to this

study by study members of existing cohort studies, by partners

from voluntary welfare organizations, hospitals memory and

psychogeriatric clinics and word of mouth recommendation.

The study would be explained in detail to potential participants

and ample time was provided for potential participants to

consider their participation and discuss with their family

members. Once the potential participant expressed interest in

taking part in the study, a baseline visit was arranged to obtain

informed consent and conduct screening procedures. The study

would be explained in detail to potential participants with

the participant information sheet before informed consent was

obtained.

B. Clinical Assessment

Trained research staff screened potential participants for eligi-

bility. A structured questionnaire was utilized to gather essen-

tial information, including socio-demographic data, medical

history, family background, and lifestyle habits. Mini Mental

State Examination (MMSE) [14], Montreal Cognitive Assess-

ment (MoCA) [15], Lawton’s Instrumental Activities of Daily

Living Scale (Lawton’s iADLs) [16], Clinical Dementia Rating

(CDR) [17], and neuropsychological assessment batteries were

administered at this stage. Eligible participants were enrolled

in the study and completed remaining baseline assessments.

Outcome and Health Measures: Participants completed com-

prehensive assessments using validated instruments to measure

various aspects of health including functional, psychosocial,

mental, and cognitive well-being. These validated assessments

were administered by trained research assistants. The instru-

ments used to understand function and social vulnerability

included the Lawton’s iADL scale [16], the Friendship Scale

[18], and the Lubben’s Social Network Scale [19]. Mental

health and sleep was assessed using the Zung Self-Rating

Depression Scale [20], the 15-item Geriatric Depression Scale

[21], Pittsburgh Sleep Quality Index (PSQI) [22], and the

Apathy Inventory [23]. Lastly, for cognitive health, a series

of neurocognitive tests adapted to local populations were

conducted. All clinical assessments were repeated annually for

three years.

Concurrently, home-based sensors were installed within 8

weeks from baseline assessment and removed 6-8 weeks be-

fore the end of the study. Participants may drop out at any point

in the study or exit the study when diagnosed with dementia.

Upon completion of the three-year study, participants provided

feedback through questionnaires about their experience with

the home-based sensor system. The information obtained will

be used to guide future iterations of this system.

III. SENSOR NETWORK AND DATA COLLECTION

Data collection in the SINEW project is conducted through an

Internet of Things (IOT) architecture, as shown in Figure 1,

which consists of a combination of wireless devices, an

intelligent gateway, and a cloud server that serves as the back-

end of the home-based sensor network systems. Each SINEW

sensor network system is designed to collect the raw sensor
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TABLE I
A SUMMARY OF THE SENSORS DEPLOYED AND THEIR CHARACTERISTICS.

Type of Sensors Sensor ID/ Value/Interpretation
Location

Motion Sensors M-01 (Living Room) No Motion: 0
M-02 (Kitchen) Motion: 255
M-03 (Bedroom) (updated every 5 mins)

Contact Sensors D-01 (Main Door) Closed : 0
D-02 Opened : 255
(Medication Box) Whenever triggered

Pressure Sensor D-03 (Bed) Pressure on: 0
Pressure off: 255
(whenever triggered)

Beacon Sensors B-01 (Key) Near Gateway: Timestamp
updated every 4 mins

B-02 (Wallet) Out of range: No update
Wearable Sensor Step Count Number of steps

Heart Rate (bpm) Beats per minute

readings data from the home of an individual participant and

transmit the data to the cloud-based database via in-house

gateway device. The raw sensor readings are then further

processed to extract the digital biomarker features.

Fig. 1. The architecture of the sensor network system piping the data collected
by the sensors to the back-end server.

Table I contains a list of the wireless sensors deployed,

consisting of three motion sensors for living room, kitchen,

and bedroom, two contact sensors for main door and medica-

tion box, one pressure-based bed sensor, two beacon sensors

attached to key and wallet, and one wearable device. As

illustrated in Figure 2, in each home, wireless contact and

motion sensing devices are strategically positioned in various

locations, encompassing the main door, medication box, living

room, kitchen, and bedroom. In addition, the wearable device

is to be worn by the participant at all times and the beacons

are tagged to his/her key and wallet. While the contact and

motion sensors make use of Z-Wave technology, the wearable

and beacons employ Bluetooth Low Energy (BLE) for com-

munication.

The home gateway device is based on Raspberry Pi and uses

a combination of portable Wi-Fi dongle and Z-Wave stick. The

sensors are set up in a way that they are able to periodically

sense the environmental cues and send the information to

the gateway device. The gateway device in turn aggregates

Fig. 2. An illustration of sensors’ placement in the participants’ homes.

the data sent by the sensors and transmit them to a cloud

server hosted by Amazon Web Service (AWS) via a secure

4G cellular communication. The sensors deployed at a home

are identified with a unique ID tagged to each participant. All

data are stored securely in the database and only accessible by

the research team. By ensuring that the participants’ identities

are not passed through the cloud services, the system is both

secure and dependable for our research while maintaining the

confidentiality of the individuals within our system.

Fig. 3. The SINEW Deployment Dashboard displaying the overall status of
the sensors deployed.

For monitoring the status of the sensor networks and pre-

liminary analysis of the data collected, the SINEW project

implementation further includes a dashboard designed for the

research team to monitor and visualize the collected data. The

SINEW Dashboard is organized into three sections. In the

main section, the SINEW Deployment Dashboard (Figure 3)

provides an overview of the status of the deployed sensors

and the number of existing participants. In the second section,

the SINEW Biomarker Dashboard provides an overview of

the biomarker values captured for a selected participant/cohort

over a chosen period of time. This dashboard is useful for

clinical staff to conduct their analytical investigations on the

participants. The third section of the SINEW Dashboard pro-

vides a list of alert messages informing any malfunction of the

sensors deployed at the homes of the participants. For example,

when a passive infrared motion sensor is turned off, an alert
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will be sent to inform the data engineers regarding the status.

The SINEW Dashboard enables the project team’s prompt

intervention to swiftly resolve the issues with a minimal down

time, thereby helping to ensure a reasonable quality of data

collection.

IV. DIGITAL BIOMARKER EXTRACTION

The data sent by the in-home sensors are raw sensor data

in the sense that each entry in the sensor database indicates

a single reading from a sensor at a particular time in one

participant’s home. As such, high level biomarker features

need to be extracted from the raw sensor readings to enable

further analysis and prediction.

A. Sensor Data and Digital Biomarkers

A record of the sensor data consists of four attributes, includ-

ing participant’s id as the unique identifier of the participant,

timestamp indicating the date and time of the sensor reading,

sensor id as the identifier of the sensor, and sensor value as the

reading of the sensor. The timestamp attribute is the date and

time at which the home gateway receives the sensor reading

message before submitting to the cloud server. The type of

sensors can also be derived from the sensor id attribute.

On the other hand, the digital biomarkers are designed to

capture the high level information relating to the daily routines

and activities of each participant. In this study, the biomarkers

are used to capture different aspects of daily living that include

physical, activity, memory, and sleep. Specifically, a daily

record of the digital biomarkers for a person captured in a

day consists of a total of 20 biomarker features organized

according to the four basic aspects of daily living as follows:

• Physical Biomarkers track bodily movement produced

by skeletal muscles that requires energy expenditure1

which can be monitored using wearable sensors like

smartwatches or body-worn sensors [10], [24]. Two basic

physical biomarkers are captured in this study, namely the

heart rate (beat per minute) and the step count.
• Activity Biomarkers track the person’s activity-

related behavior in relation to movement to spatial

zones/locations in daily lives. Five biomarkers are cap-

tured for zonal movement, including the number of

transitions to bedroom, transitions to kitchen, transition
to living room, outing (number of times going outside),

and the outing duration (total time spent outside) in a

day.

• Cognitive Biomarkers monitors the participant’s mem-

ory performance which may be indicative of cognitive de-

cline in daily activities. There are three biomarkers related

to forgetfulness, namely the number of times forgetting
wallet (situations wherein the participant forgets to bring

his/her wallet when going outdoor), forgetting keys (the

participant forgets to bring the door key), and forgetting
medication (forgetting to take medication according to

the prescribed frequency).

1https://www.who.int/news-room/fact-sheets/detail/physical-activity

• Sleep Biomarkers capture the statistics of sleep patterns

of the participant [10], [25]. There are two sets of features

for sleep in the day time and night time respectively, each

consisting of five features, namely sleep time, wake time,

sleep duration, number of sleep interruption, and sleep
interruption duration.

B. Daily Biomarker Extraction

To extract the daily digital biomarkers from the raw sensor

data, the following steps of operations are performed.

1) Data purging. In this operation, valid raw sensor data

are selected based on the periods of availability of

the participant for data collection and whether the in-

home sensor gateway system was functional. This step

is necessary to filter away unusable sensor data captured

when a gateway is down or a participant is away over a

certain period of time.

2) Intermediate features pre-processing. Based on the valid

sensor data of every participant, each day is divided

into intervals of δ minutes (currently we use δ = 5)

in sequential order. The number of sensor readings and

their values for every sensor type occurred within each

interval are then recorded.

3) Biomarker feature extraction. Based on the intervals

of sensor readings, each biomarker feature is extracted

following some predefined pattern matching rules to

detect the participant’s state of behavior. For example,

to obtain the number of forget medication, a rule is

used to detect the state that the participant does not take

the medication as prescribed based on the absence of

readings from medication box sensor (D-02) within a

range of time intervals.

Figure 4 shows the process of extracting digital biomarkers

from the raw sensor data. Each pattern matching rule cor-

responds to the detection of a participant’s behavior state.

Overall, there are eight behavior states to detect implying

eight different pattern matching rules. Since heart rate and

step count can be obtained directly from the readings of

the smartwatch sensor independent from the time intervals,

no state (and rule) is required to extract the two physical
biomarkers. The rules for extracting the other three classes

of biomarkers are described as follows.

• For activity biomarkers, four rules are required to detect

the behavior states related to the location/position of the

person within a time interval, namely in living room, in
kitchen, in bedroom, and outside (outing). The rules com-

bine sensor readings from motion sensors, door sensors,

and the absence of their readings to determine the states.

• For cognitive biomarkers, three rules are required to de-

tect the states related to forgetfulness of the participant in

different time intervals: forgetting key, forgetting wallet,
and forgetting prescribed medication. The rules combine

the state of outing, readings from beacons, readings from

medication box (D-02), and the participant’s medication

prescription to detect the states.
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Fig. 4. The biomarker feature extraction process wherein daily readings of in-home sensors are analysed and transformed into digital biomarker features.

• For sleep biomarkers, two rules are needed to detect

the states of sleeping and awake. The rules combine the

positioning/location state (in bedroom) and the readings

from the bed pressure sensor to detect the states.

V. DATA VALIDATION EXPERIMENTS

To test the hypothesis on whether the digital biomarkers

obtained based on daily activities are indicative of the partici-

pants’ cognitive health, we have conducted extensive empirical

experiments wherein predictive models are built using various

machine learning techniques based on the digital biomarker

data collected.

A. Experiments with Monthly Averaged Data

From the sensor data collected over a period of 17 months

from January 2022 to May 2023, we obtained a total of 8,428

daily biomarker records from 63 participants. We did not make

use of the sensor data collected from 2020 to 2021 as they were

known to be more noisy. To eliminate the effect of outliers,

our first set of the experiments averaged the feature values

over the days within each calendar month. After filtering away

those records with 100% missing feature values, we obtained

a data set containing a total of just 346 monthly averaged

biomarker records for our experiments. As shown in Table II,

the monthly feature data obtained was still highly sparse and

noisy with more than 71% of the records having more than

50% of their feature values missing. In particular, the bed

sensors and wearables presented the highest missing rates

largely due to the human interaction required. These missing

data clearly pose a great challenge to the machine learning

models in learning the task of MCI detection. While our

preliminary experiments showed that removing those samples

with high missing rates could potentially improve the models’

performance in cross validation, the experiments reported

below have made use of all the available biomarker records

as long as not all the feature values are missing.

For detection of mild cognitive impairment (MCI) cases,

each of the monthly averaged biomarker records for each

participant was tagged with the outcome of his/her closest

clinical assessment within a six month period, which served as

TABLE II
DISTRIBUTION OF BIOMARKER RECORDS WITH MISSING FEATURES IN

THE MONTHLY AVERAGED SINEW DATA SET.

Records with ≥ x% missing features
x Number of Records Percent of Records (%)

90 7 2.023
80 15 4.335
70 52 15.029
60 194 56.069
50 248 71.676

the cognitive label of the record. Five distinct machine learning

models were used in our experiments for building predictive

models, namely K Nearest Neighbour (KNN) , Support Vector

Machine (SVM) , Decision Tree (DT) , Random Forest (RF) ,

and fusion Adaptive Resonance Theory (fART) networks [13].

These models are chosen as they have been used and showed

satisfactory results in previous studies on MCI prediction [11],

[26]–[28]. We did not explore deep learning models which

typically require a large number of training samples. Each of

these machine learning models was trained and tested in a

supervised learning fashion for predicting MCI cases based

on the monthly-averaged biomarker features. For handling

missing data, the KNN imputation method [29] was used for

all machine learning models, except fusion ART, which has an

in-built mechanism for encoding missing feature values using

complement coding [11].

To empirically evaluate the predictive models, we performed

stratified 10-fold cross validation, wherein the data set was

split into ten folds with roughly the same distribution of

positive and negative cases in each fold. Each machine learn-

ing model was then trained on the training set (consisting

of nine folds) and tested on the remaining one fold. The

performance of each learning model was evaluated in terms

of the commonly used precision, recall and F1 measure for

detecting MCI cases.

Table III shows the predictive performance of the various

machine learning models, including K Nearest Neighbour

(KNN), Support Vector Machine (SVM), Decision Tree (DT),

Random Forest (RF), and fusion ART (fART), in identifying

MCI cases based on the monthly averaged biomarker features.
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TABLE III
PERFORMANCE OF MACHINE LEARNING MODELS IN IDENTIFYING MCI

CASES BASED ON MONTHLY AVERAGED BIOMARKER FEATURES.

Precision Recall F1 Score
KNN 0.661± 0.080 0.576± 0.171 0.607± 0.125
SVM 0.765± 0.142 0.569± 0.164 0.645± 0.150
DT 0.576± 0.106 0.603± 0.154 0.584± 0.121
RF 0.796± 0.135 0.634± 0.122 0.703± 0.121
fART 0.866± 0.064 0.835± 0.089 0.849± 0.068

TABLE IV
DISTRIBUTION OF BIOMARKER RECORDS WITH MISSING FEATURES IN

THE WEEKLY AVERAGED SINEW DATA SET.

Records with ≥ x% missing features
x Number of Records Percent of Records (%)
90 30 2.29
80 70 5.34
70 243 18.52
60 828 63.11
50 1058 80.64

We can see that fusion ART has produced the highest level

of performance across all three measures of precision, recall

and F1 scores. As a distant second, RF performed markedly

better than KNN and SVM. DT was the worst performer.

B. Experiments with Weekly Averaged Data

We further conducted experiments wherein the daily biomarker

feature values were averaged within each week to produce a

weekly averaged biomarker data set. A total of 1,312 weekly

biomarker records were obtained with 529 MCI cases and 783

healthy cognition (HC) cases. Besides providing more data

records for training and testing the machine learning models,

the weekly averaging method also produces a more balanced

class distribution of MCI and HC cases. However, as shown in

Table IV, the weekly average data has a even higher missing

rate with 80% of the records having more than 50% of their

feature values missing.

Based on the weekly biomarker data set, we repeated the

predictive modeling experiments following the same stratified

10-field cross validation methodology. As shown in Table V,

the predictive performance of all machine learning models

improved with the weekly biomarker data set. In particular,

fusion ART achieved the best F1 score of 0.906. By encoding

missing feature values using complement coding, fusion ART

appears to be well suited for handling input patterns with high

missing rates. Among the other four models, KNN, RF, and

SVM produced a similar level of performance while DT again

performed the worst.

Besides predictive performance, the ability to interpret and

explain the knowledge learned by the machine learning models

is also a key consideration. For fusion ART, due to its

compatibility with rule-based representation, the knowledge

learned can be translated into IF-THEN symbolic rules for

further analysis. For illustration, Table VI shows two sample

rules extracted from the fusion ART models. The rules indicate

that MCI patients generally tend to be inactive in their daily

living in terms of both indoor room transitions as well as

TABLE V
PERFORMANCE OF MACHINE LEARNING MODELS IN IDENTIFYING MCI

CASES BASED ON WEEKLY AVERAGED BIOMARKER FEATURES.

Precision Recall F1 Score
KNN 0.862± 0.036 0.801± 0.053 0.830± 0.039
SVM 0.853± 0.031 0.760± 0.070 0.802± 0.040
DT 0.739± 0.034 0.722± 0.088 0.728± 0.050
RF 0.870± 0.045 0.784± 0.086 0.822± 0.057
fART 0.891± 0.041 0.924± 0.038 0.906± 0.025

outdoor duration. In addition, they have a high tendency of

forgetting their medication.

TABLE VI
TOP TWO RULES FOR THE MCI CLASS EXTRACTED FROM FUSION ART.

Rule Conditions Interpretation
1 IF (transLivRM: [Very Low, Low]) Very Low-Low indoor transitions

AND (transKitchen: Low) Very Low-Average outing
AND (transBedRM: Very Low)
AND (outingTimes: [Low, Average])
AND (outingDur: [Very Low, Low])

2 IF (forgetWallet: Very Low) Very High forget medication
AND (forgetKeys: Very Low) Very Low-Low indoor transitions
AND (forgetMed: Very High)
AND (transLivRM: [Very Low, Low])
AND (transKitchen: Low)
AND (transBedRM: [Very Low, Low])

VI. DISCUSSION

As a deployed application, the SINEW project has faced

various challenges posed by the real world environment. We

discuss the key issues and our countermeasures below.
Hardware limitations: To manage the deployment cost, the

sensors employed in the SINEW are typically low cost and

light weight mobile devices which can be deployed easily.

However, as such sensors are meant to capture data in real

time, failures of hardware may happen over time resulting

in errors or lapses in data capture. Powering these mobile

sensors on a 24-7 manner is another challenge. In particular,

batteries on the contact and motion sensors need to be replaced

regularly. To mitigate these issues of hardware failures, a

dashboard system is developed to monitor the status of the

sensors deployed and provide alerts to our data engineers for

attention and maintenance.
Human factors: As sensors are installed in the homes of the

participants, they are subject to the proper handling and use

of their users. In particular, some participants have found the

bed sensors uncomfortable to sleep on and do not use them

on a regular basis. Besides reminding the users on the proper

use of the devices, we have to make use of other situational

factors, such as the time of the days and the signals detected

by other sensors, to infer the missing sleep-related features.
Data Challenge: Related to the challenges arising from

hardware limitations and human factors, the sensor readings

captured are typically sparse and noisy. In particular, more than

77% of the monthly biomarker data contain more than 50%

missing feature values. In addition to using data imputation

techniques, we explore machine learning models, such as

fusion ART, which are able to handle missing data with a

high degree of efficacy and robustness.
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VII. CONCLUSION

The SINEW project represents a large-scale study leveraging

ambient intelligence devices and artificial intelligence tech-

niques for non-intrusive sensing of human daily activities and

cognitive health assessment in a home-based environment.

To mitigate the issues and challenges presented by a real

world environment, we have spent considerable effort in

sensor network deployment, monitoring, and maintenance, as

well as developing various heuristics in biomarker feature

extraction and exploring various machine learning models to

handle sensor data with a high missing rate. By developing a

suite of customized feature extraction methods and predictive

modeling techniques using machine learning models which

are able to handle missing data, we have obtained promising

results showing that sensor-captured digital biomarkers are

indeed indicative of the cognitive statue of the participants

and can be exploited effectively to detect cognitive decline.

Going forward, we shall continue to build and analyze large

sensor and biomarker data sets and to explore the use of more

fine-grained activity-based biomarkers for MCI prediction

and early detection of transitions in cognitive states. Beyond

cognitive assessment, the SINEW framework and platform

could also be further expanded to support more general safety

monitoring and health assessment. In the foreseeable future,

we expect homes with such setting combining ambient sensing

and AI analysis will become more commonplace, considering

the challenges faced by the ageing populations in many

countries globally.
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