
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2024

Reinforcement learning for strategic airport slot scheduling: Reinforcement learning for strategic airport slot scheduling:

Analysis of state observations and reward designs Analysis of state observations and reward designs

Anh Nguyen-Duy

Duc-Thinh Pham

Jian-Yi Lye

Nguyen Binh Duong TA

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, Operations Research, Systems Engineering

and Industrial Engineering Commons, and the Transportation Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Reinforcement Learning for Strategic Airport Slot
Scheduling: Analysis of State Observations and

Reward Designs

1st Anh Nguyen-Duy
Air Traffic Management Research Institute

Nanyang Technological University
Singapore

nguyendu002@e.ntu.edu.sg

2nd Duc-Thinh Pham
Air Traffic Management Research Institute

Nanyang Technological University
Singapore

dtpham@ntu.edu.sg

3rd Jian-Yi Lye
School of Computing and Information Systems

Singapore Management University
Singapore

jianyi.lye.2020@scis.smu.edu.sg

4th Duong Ta
School of Computing and Information Systems

Singapore Management University
Singapore

donta@smu.edu.sg

Abstract—Due to the NP-hard nature, the strategic airport
slot scheduling problem is calling for exploring sub-optimal
approaches, such as heuristics and learning-based approaches.
Moreover, the continuous increase in air traffic demand requires
approaches that can work well in new scenarios. While heuristics
rely on a fixed set of rules, which limits the ability to explore new
solutions, Reinforcement Learning offers a versatile framework to
automate the search and generalize to unseen scenarios. Finding a
suitable state observation and reward structure design is essential
in using Reinforcement Learning. In this paper, we investigate
the impact of providing the Reinforcement Learning agent with
an intermediate positive signal in the reward structure along with
the use of the Full State Observation and the Local State Obser-
vation. We perform training with different combinations of the
reward structure, the state observation, and the Deep Q-Network
(DQN) algorithm to define the training efficient formulation. We
use two types of scenarios, medium and high-density, to test the
ability to generalize to unseen data of the approach. Each type of
scenario is used to train two separate models, Model 1 and Model
2. Model 1, which is trained on high-density scenarios, will be
tested with medium-density scenarios; the results obtained will
then be compared with the results of Model 2, and vice versa. We
additionally analyze the performance of the DQN models with
the Proximal Policy Optimization (PPO) models. Results suggest
that combining the Local State Observation and the intermediate
positive signal leads to a stable convergence. The obtained DQN
models perform better compared to the PPO models, achieving an
average displacement per request of 1.44/1.99 while only having
on average 0.00/0.02 unaccommodated requests for medium/high-
density scenarios. The t-statistic of 0.0810/-1.0016 and the p-value
of 0.9356/0.3190 also suggest that the DQN models can generalize
to unseen scenarios.

Index Terms—Reinforcement Learning, airport slot scheduling,
strategic

I. INTRODUCTION

The significant increase in air traffic demand leads to severe

airport congestion, which results in flight delays, economic

loss, and environmental pollution [1], [2], [3]. While a supply-

side solution, building more infrastructure, is infeasible in

the short-term and capital intensive, a demand-side approach,

airport slot scheduling or airport slot allocation, via effective

control of the distribution of the demand can help to adapt to

the current infrastructure [4]. Current approaches for airport

slot scheduling vary from exact methods to sub-optimal ap-

proaches; however, due to the NP-hard nature of the problem

which makes it intractable for exact methods, the literature

is calling for more investigations of sub-optimal approaches,

such as heuristics and learning-based approaches [5], [6],

[7], [8], [9]. Reinforcement Learning (RL), a learning-based

approach, is rising as a potential candidate for the problem.

Heuristics rely on a fixed set of rules, which limits the

possibility of finding new solutions [10], [11]. Reinforcement

Learning, on the other hand, can automate the search and

explore freely new strategies. Furthermore, learning-based

approaches like Reinforcement Learning can generalize to

unseen scenarios and use the new scenarios as inputs for im-

proving performance, i.e. the ability to self-evolve [12], [13],

[14]. Reinforcement Learning has been applied extensively in

the Air Traffic Management (ATM) domain [15], [16], [17],

[18]. In the pre-tactical phase, Reinforcement Learning has

been used to adjust the flight time of flights or trajectories by

imposing delay to cope with congestion [19], [20], [13], [21],

[22], [23]. Few works consider using Reinforcement Learning

for airport slot scheduling at the strategic phase. While pre-

tactical slot reallocation is a reactive measure concerning

up-to-date information, strategic slot scheduling is a long-

term planning to maximize resource utilization and ensure

regulatory compliance. The difference between airport slot

scheduling at the strategic phase and airport slot reallocation at

the pre-tactical phase is that at the pre-tactical phase, the flight

1192

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00213

time is displaced later via imposing delay, while at the strategic

phase, the flight time can be displaced not only later but also

earlier, i.e. move the flight time ahead to the original time.

Furthermore, in airport slot scheduling at the strategic phase,

there are constraints relating to a series of slots associated with

a request that guarantee the schedule regularity over a whole

scheduling season. However, for simplicity, in this paper, we

have not considered these constraints. We refer to the term

”airport slot scheduling” for ”airport slot scheduling/allocation

at the strategic phase” throughout the paper.

To fill in the research gap, we study the use of Re-

inforcement Learning for airport slot scheduling. We first

formulate the airport slot scheduling problem as a Markov

Decision Process (MDP). We consider the reward structure

commonly used for the pre-tactical airport slot allocation

problem [13], [21], [22], which consists of the delay and

overload components. We argue that adding a positive reward

signal after solving an unaccommodated request will lead

to a more stable training convergence. To prove our claim,

we train different models with two reward designs, Reward

Design A, with the positive reward signal, and Reward Design

B, without the positive reward signal. Along with the two

reward designs, we also analyze the use of the full state

observation and the local (partial) state observation to verify

the effectiveness of each type of state observation. We consider

the following metrics for performance evaluation, the total

schedule delay, the maximum displacement across all requests,

and the number of unaccommodated requests. To estimate the

ability to generalize to unseen scenarios of the models, t-

statistic and p-value are used. Further details will be explained

later. Our main contribution can be summarized as follows:

• We provide a Reinforcement Learning formulation dedi-

cated specifically to the airport slot scheduling problem

at the strategic phase.

• We prove that using the reward structure deducted from

the current Reinforcement Learning approaches for pre-

tactical airport slot allocation is not efficient for the strate-

gic airport slot scheduling problem. Adding a positive

reward signal in the reward structure helps to achieve

convergence in training.

• We provide a convergence analysis of different combi-

nations of the two reward structures along with the full

state observation and the local state observation. We also

test the generalizing ability of the obtained model(s).

II. LEARNING MECHANISM

A. Generated scenarios

Figure 1 shows the overall concept diagram throughout this

study. To apply Reinforcement Learning, it is necessary to

have a learning environment for the agent to interact with.

A scenario, that consists of the airlines’ requests and the

airports’ capacity, is first generated by the learning envi-

ronment. Each airline’s request consists of two movement

requests, departure and arrival. An airline’s request r ∈ R
is a tuple (adep, tdep, aarv, tarv), where adep, aarv ∈ A and

Fig. 1. The proposed framework for the learning mechanism.

tdep, tarv ∈ T . Each departure/arrival movement associated

with a time slot t ∈ T at airport a ∈ A will add 1 unit to the

current demand dat ∈ DA
T . The current demand dat equals the

total number of movements associated with the time slot ta.

The capacity of time slot t at airport a is denoted as cat . Let

Tviolated = {ta|dat > cat } be the set of all violated time slots.

If a request r has either tdep or tarv ∈ Tviolated, the request is

added to the violated set V . One of the RL agent’s objectives is

to clear all of the requests from V, i.e. assigning new time slots

to the requests in V so that there is no more time slot ta with

dat > c
a
t . It is important to note that clearing all requests from

the violated set is not encoded as a hard constraint, but rather

as a minimizing objective. Imposing it as a hard constraint

is not flexible in considering the trade-off between the two

conflicting objectives, minimizing the total schedule delay and

minimizing the number of unaccommodated requests. Consid-

ering the maximum displacement per request is essential as it

1193

guarantees the schedule acceptability [24]. In our problem,

we consider scenarios for two airports. We have two levels of

density, medium and high density, to test the performance of

the agent in generalizing to different unseen scenarios. Further

details of the scenarios will be explained later. We provide

below a summary of notations for the problem:

• r = (adep, tdep, aarv, tarv) ∈ R: set of airlines’ requests.

• A = {0, 1}: set of considered airports denoted by a, a =
0 encodes the first airport and a = 1 encodes the second

airport

• T = {0, 1, ..., 287}: set of 5-minute-interval time slots t
• CA

T : set of capacity constraint cat of time slot t at airport

a
• DA

T : set of current demand dat for time slot t at airport a
• Tviolated = {ta|dat > cat }: set of all violated time slots

• V = {r = (adep, tdep, aarv, tarv)|tdep ∈ Tviolated ∪
tarv ∈ Tviolated}: set of unaccommodated requests

B. Learning environment and the agent interaction

At the beginning of each episode, the learning environment

will generate a scenario with the airline’s requests and the

airports’ capacity. We encapsulate the data in the form of

arrays. All the arrays will be of the size of (1x288), where 288
is the number of 5-minute time slots in a day. Each airport a
has its capacity array Capacity Arraya = [ca0 , c

a
1 , ..., c

a
287]

and current demand array Current Demand Arraya =
[da0 , d

a
1 , ..., d

a
287]. From the capacity and current demand arrays

of each airport a, we obtain the remaining capacity array

Remaining Capacity Arraya = [c′a0 , c
′a
1 , ..., c

′a
287], where

c′t = ct − dt. The remaining capacity arrays are used to

identify the current unaccommodated requests. The mecha-

nism of solving the unaccommodated requests one by one

has been applied for heuristics [9], [25]. Therefore, we let

the learning environment pick a request from the violated set

and distribute it to the RL agent. The order of solving the

unaccommodated requests may affect the final results if we

consider a multiple-day scheduling horizon. Choosing requests

with the highest number of spanning days over the scheduling

horizon gives the best results [25]. However, in this paper,

since we only consider a single-day scheduling horizon, there

is no order of spanning days. A request from the violated

set is, thus, randomly picked at each step. From the obtained

request, the information of the request is encapsulated as state

observations, the inputs for the RL agent to make decisions.

After the agent takes an action, the current demand arrays,

the remaining capacity arrays, and the violated set will update

accordingly based on the chosen action. The episode continues

until there is no more request in the violated set or the

predefined number of maximum steps per episode has been

reached.

III. REINFORCEMENT LEARNING MODEL

A. Action space

Figure 2 shows the design of the action space. The goal of

strategic slot scheduling is to minimize the difference between

airlines’ requested time slots and the assigned time slots with

respect to airports’ capacity, resulting in the assigned time

slots varying around the requested slots. Therefore, we design

the agent’s actions to be either shifting the request to a later

or earlier slot. A natural intuition is to make the action space

to be a space of all 288 time slots and let the agent decide

which time slot to allocate. However, this approach has two

drawbacks. First, too many actions can significantly hinder the

agent’s training efficiency [26]. Secondly, it is not reasonable

in reality to shift a request to a time slot too far compared to

the initially requested time slot, e.g. shifting a request from 6

am to 6 pm. Therefore, it is reasonable to limit the number

of actions, i.e. limit the maximum time slot displacement. We

design the action space of the agent to move forward by n
time slots (+n) or backward by n time slots (−n) or keep

the time slot the same compared with the current time slot of

the request as per figure 2. Allowing to displace a maximum of

n time slots per step does not necessarily mean that a request

cannot be displaced further than n time slots. If a request is

displaced k ≤ n time slots but is still in the violated set, then

it may be further displaced in another step.

Fig. 2. Action space of the Reinforcement Learning agent.

B. State observation

To make decisions, the agent must have information about

the current demand and capacity of the time slots. The capacity

is assumed to be fixed across all time slots. However, the

demand can change depending on the agent’s course of action.

Since the capacity is fixed, both the capacity and demand

information can be encapsulated in the remaining capacity c′t.
Giving the agent the remaining capacity of all 288 time

slots would be intuitive thinking. However, too much irrelevant

information may result in inefficient training as the agent

cannot identify which piece of information has the highest

contribution to the outcomes. For example, the agent does not

necessarily need to know the remaining capacity of time slot

200 when the current investigating request is assigned at time

slot 100. To prove this claim, we perform training on two

modifications of state observation:

• Full State Observation: which is an array of size 578,

consisting of the current time slot of the departure/arrival

side and the remaining capacity of all 288 time slots at

the departure/arrival airport.

• Local State Observation: which is an array of size

2 ∗ (2n+ 1), consisting of the remaining capacity of the

n time slots before the current time slot of the depar-

ture/arrival side, the remaining capacity of the current

time slot of the departure/arrival side, the remaining

capacity of the n time slots after the current time slot

of the departure/arrival side.

1194

C. Reward design

The design of the reward affects the training efficiency

of the Reinforcement Learning agent [27]. A straightforward

reward design for the slot scheduling problem is to penalize

the displacement of requests and give a penalty for the total

unaccommodated requests as the nature of the problem is to

minimize the total schedule displacement and minimize the

number of unaccommodated requests. Therefore, we come up

with the first two components of the reward:

• Rlocal = z ∗ (− |t− tm|), where t is the newly assigned

time slot for the request and tm is the original time

slot of the request. This is the penalty for displacement

that resembles the widely adopted cost function in the

slot scheduling problem. The constant number z is to

normalize the reward to a smaller number to increase

training efficiency. This reward is given to the agent every

time steps.

• Rglobal = −u or Rglobal = v, where u is the total number

of unaccommodated requests at the end of each episode.

This is the penalty for failing to accommodate all requests

based on the number of unaccommodated requests left.

If there is no unaccommodated request at the end of each

episode, the agent receives a positive constant reward v.

Rglobal is only given to the agent when an episode ends.

To encourage the agent to solve the problem faster and

prevent any undesired behavior of prolonging the episode, a

third component is added to the reward structure:

• Rtime step = −p, where p is a constant number. This

reward is given to the agent at every time step.

In the literature, the reward design with the above com-

ponents is currently adopted in the pre-tactical airport slot

reallocation problem [13], [21], [22]. One problem with this

reward design is that for every time step, besides the penalty

per time step, the agent will only receive 0 if the agent

decides to keep the time slot the same or receive a penalty for

shifting the request. The further the displacement, the larger

the penalty. This will discourage the agent from trying to solve

the request and only maintain the original time slot of the

request. The agent needs to learn the behavior of clearing

a request from the violated set. Therefore, to overcome the

problem, we add one more reward component to the agent:

• Rsolving = +s, where s is a constant number. This

reward is given to the agent if the agent can clear the

current considered request out of the violated set. The

reward encourages the agent to learn the behavior of

clearing a request out of the violated set. One should

note that balancing between the Rsolving and the Rlocal

is important as the agent may learn to create more

unaccommodated requests, and prolong the episode to

earn more Rsolving . We use two reward designs, Reward

Design A (with Rsolving) and Reward Design B (without

Rsolving), to validate our claim that giving the Rsolving

is beneficial for training efficiency.

Figure 3 shows the two designs of the state observation, the

Full State Observation and the Local State Observation, and

the two reward designs, Reward Design A and Reward Design

B. We perform experiments with different combinations of

state observation and reward design.

Fig. 3. The different combinations of the Full State Observation/Local State
Observation and the Reward Design A/Reward Design B.

IV. EXPERIMENTS

A. Training scenarios and settings

Figure 4 shows the flow diagram from the training phase

to the testing phase. The data are generated randomly with

1000 requests, the approximate number of movements per day

at Changi airport. We assume two hypothetical distributions

of the requested time since we do not have access to the

original requests from airlines. We assume two peak demand

periods for movements at time slot 72, the time interval 0600-

0605, and time slot 216, the time interval 1800-1805, the first

distribution is the normal distribution X ∼ N (μ = 72, σ)
and the second distribution is the normal distribution Y ∼
N (μ = 216, σ). We consider the standard deviation σ = 60
and σ = 36 to create medium and high-density scenarios. The

capacity of the airports is assumed to be fixed cat = 6, ∀a ∈ A,

∀t ∈ T .

Settings 1, 3, 4, and 5 are the different combinations of the

full state observation/local state observation and the Reward

Design A/Reward Design B and are trained with the high-

density scenarios. Since only Setting 1 converges, we train

an additional Setting 2, which is the exact combination of

Setting 1 but the training data are medium-density scenarios.

We summarize the 5 training settings as below:

• Setting 1: Reward design A, local state observation, and

high-density scenarios in training (σ = 36).
• Setting 2: Reward design A, local state observation, and

medium-density scenarios in training (σ = 60).
• Setting 3: Reward design B, local state observation, and

high-density scenarios in training (σ = 36).
• Setting 4: Reward design A, full state observation, and

high-density scenarios in training (σ = 36).
• Setting 5: Reward design B, full state observation, and

high-density scenarios in training (σ = 36).

B. Learning algorithms and hyper-parameters

During the training phase, we use the Deep Q-Network

(DQN) as the learning algorithm across the 5 settings. The

algorithm is well-suited for problems with discrete action

spaces. We also make use of two techniques, experience replay

1195

and target network, for efficient data utilization and training

stability. Readers can refer to [28] for further details of the

algorithm.

The hyper-parameters for training DQN are buffer capacity

50000, batch size 32, discount rate 0.99, learning rate 0.0001,

target update cycle 10000, and number of training steps

10000000. The number of actions n is 6, which is equivalent

to a maximum displacement of 30 minutes per time step. The

z in Rlocal is 0.1, the v in Rglobal is 30. The p in Rtime step

is 0.8 to balance with the average reward gained after solving

a request. Balancing the reward components is important to

avoid the agent creating more unaccommodated requests to

gain higher rewards.

Since the DQN algorithm leads to convergence on Setting

1 and Setting 2, we additionally train the Proximal Policy

Optimization (PPO) algorithm with the two settings for per-

formance comparison with DQN. PPO is well-known for tasks

with continuous action spaces. However, the continuous action

spaces can be binned as discrete actions allowing PPO to be

applied to our problem. Readers can refer to [29] for further

details of the algorithm.

The hyper-parameters for training PPO are batch size 64,

discount rate 0.99, learning rate 0.0003, number of epochs 10,

and number of training steps 10000000. The number of actions

and the reward components are kept the same with DQN.

We refer to the models DQN (Setting 1), DQN (Setting 2),

PPO (Setting 1), and PPO (Setting 2) as Model 1, Model 2,

Model 3, and Model 4, respectively.

C. Convergence and performance metrics

After the training phase is finished, we evaluate the training

efficiency by analyzing the convergence of not only the reward

but also the episode length. Gaining a high reward is the goal

of the agent but it does not guarantee that the goals of the

problem are aligned as the agent can develop behavior such

as prolonging the episode by creating more unaccommodated

requests to gain more reward. We summarize the two metrics

for convergence analysis as below:

• Average Episode Reward =
∑

Episode Rewards

Number of Episodes

• Average Episode Length =
∑

Episode Lengths

Number of Episodes

During the testing phase, the generated data for each run

will use either the medium or high-density scenarios to test

the agent’s ability to generalize on unseen scenarios. We

consider the following performance metrics for performance

comparison:

• Total schedule delay M1 =
∑

m∈M |t− tm|.
• Maximum displacement across all requests M2 =

max
m∈M

|t− tm|.
• Number of unaccommodated requests M3 = u.

• Average displacement per request M4 = M1/U , where

U is the number of unaccommodated requests at the

beginning of each episode.

• t-statistic and p-value to measure the difference between

the results obtained from Model 1 and Model 2. If

Model 1 can achieve comparable results with Model 2

on medium-density scenarios, it means that Model 1 can

generalize well on unseen scenarios, and vice versa. If

the difference is not significant, we can conclude that

the models can generalize to unseen scenarios. The same

procedure is performed on Model 3 and Model 4.

Fig. 4. The training phase and the testing phase flow diagram.

V. RESULTS AND DISCUSSION

A. Training results

Figure 5 shows the training results of the 5 settings.

From the graphs, considering the DQN algorithm, we can

see that Setting 1 and Setting 2 achieve convergence stably

based on the increasing trend in the average episode reward

and the decreasing trend in the average episode length. In

Setting 1, the reward obtained after convergence at the end

of the training phase is 1.468. This is a reasonable score

since with the reward per time step when solving a request

Rlocal +Rsolving +Rtime step = 0.1(− |t− tm|)+ 1− 0.8,∈[
0.1 ∗ (−6) + 1 − 0.8, 0.1 ∗ (−1) + 1 − 0.8

]
=

[− 0.4, 0.1
]
,

the average number of unaccommodated requests per episode

of 369.65, and the reward for clearing all requests of 30, the

reward can vary between [−0.4 ∗ 369.65 + 30, 0.1 ∗ 369.65 +
30] = [−117.86, 66.965]. Similarly for Setting 2, the reward

of 36.151 is also reasonable since with the average number

of unaccommodated requests per episode of 249.80, the range

of the reward is
[− 0.4 ∗ 249.80 + 30, 0.1 ∗ 249.80 + 30

]
=[−69.920, 54.980

]
. The PPO algorithm achieves similar trends

for both settings with slightly lower results, −10.869 for

Setting 1 and 27.051 for Setting 2.

For each episode, the average number of unaccommodated

requests is 249.80 and 369.65 for medium and high-density

scenarios, respectively. Model 1 and Model 3 achieve re-

spectively 399.81 and 412.89 average episode length, which

is comparable with the figure of 369.65 for high-density

scenarios. Similarly, Model 2 and Model 4 achieve respectively

1196

256.72 and 262.51 average episode length, which is compa-

rable with the figure of 249.80 for medium-density scenarios.

This shows that the agent does not need to frequently re-visit

the unaccommodated requests.

Fig. 5. Training results of the 5 settings.

B. Testing results

Table I and Table II show the testing results of the 4

models on 50 medium-density scenarios and 50 high-density

scenarios, respectively. The scenarios are the same across 4

TABLE I
TESTING RESULTS (MEDIUM-DENSITY)

DQN
(Setting 1)

DQN
(Setting 2)

PPO
(Setting 1)

PPO
(Setting 2)

U 246.26 (25.99)

M1
355.84
(40.90)

355.18
(39.79)

392.72
(44.00)

391.94
(46.42)

M∗
1 355.99 355.18 392.72 391.94

M2
4.30

(0.75)

4.36
(0.69)

5.44
(0.75)

6.18
(0.65)

M3
0.02

(0.14)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

M4
1.45

(0.08)

1.44
(0.07)

1.60
(0.07)

1.59
(0.08)

Each value cell indicates the mean and the standard deviation
(in parentheses) of the corresponding metric.

TABLE II
TESTING RESULTS (HIGH-DENSITY)

DQN
(Setting 1)

DQN
(Setting 2)

PPO
(Setting 1)

PPO
(Setting 2)

U 377.32 (33.41)

M1
750.82
(81.17)

768.04
(88.85)

785.30
(88.59)

729.58
(76.61)

M∗
1 751.11 769.53 786.60 746.67

M2
7.28

(1.78)

8.46
(2.53)

9.76
(1.63)

10.22
(2.53)

M3
0.02

(0.14)

0.08
(0.34)

0.08
(0.39)

0.84
(0.99)

M4
1.99

(0.10)

2.03
(0.14)

2.08
(0.13)

1.93
(0.11)

Each value cell indicates the mean and the standard deviation
(in parentheses) of the corresponding metric.

models. During testing, there are cases in which the models

do not solve all the unaccommodated requests, which leads

to lower total schedule delay. Although lower total schedule

delay is a positive indicator of good performance, achieving

this when there are still unaccommodated requests is not en-

couraged. Therefore, we introduce the adjusted total schedule

delay M∗
1 =M1+M3 ∗ (M2+4∗σ(M2)) to correct the total

schedule delay in such occurrences. M2+4∗σ(M2) represents

the furthest displacement based on the obtained statistics.

For medium-density scenarios, Model 2 shows the best

overall performance with an average total schedule delay of

355.18 without having any unaccommodated requests left. For

high-density scenarios, although Model 4 achieves the lowest

average total schedule delay/adjusted with 729.58/746.67, this

model has a significantly high average number of unaccommo-

dated requests compared to the other three models. As for the

remaining three models, Model 1 has the best performance,

with an average total schedule delay of 750.82 (751.11 after

adjustment), an average maximum displacement of 7.28, an

average number of unaccommodated requests of 0.02, and an

1197

average displacement per request, 1.99. Overall, DQN models

have better performance compared to PPO models.

We compute the t-statistic and p-value on the total schedule

delay of the 50 runs of each type of scenario between Model

1 and Model 2. The t-statistics of 0.0810/-1.0016 and the p-

values of 0.9356/0.3190 for medium/high-density scenarios

suggest that there is no significant difference between the

results obtained from the two models, which imply a fair

generalization ability of the DQN models. However, for Model

3 and Model 4, the t-statistics of 0.0854/3.4625 and the p-

values of 0.9321/0.0008 for medium/high-density scenarios

suggest that the two models do not generalize well on high-

density scenarios.

VI. CONCLUSION

We provide a Reinforcement Learning formulation for the

strategic airport slot scheduling problem. We perform training

for different combinations of the state observations and reward

designs. The results suggest that the combination of the local

state observation and the positive reward signal leads to a

stable convergence. The obtained DQN models can gener-

alize fairly on unseen scenarios and have an overall better

performance compared to the PPO models. In the future, we

will expand the problem to include more airports and find

more informative features to include in the state observation

to improve the performance. Real data can be used for both

training and testing phases instead of generated data.

ACKNOWLEDGMENT

Anh Nguyen-Duy is supported by the NTU-Vingroup Grad-

uate Scholarship for his doctoral study, under the supervision

of Professor Vu Duong. Some experiment attempts were

conducted by the group Agent Aeronauts (Project Experience

course CS480) from Singapore Management University.

REFERENCES

[1] European Commission, EU Transport in Figures: Statistical Pocketbook.
Belgium, 2013.

[2] International Air Transport Association (IATA). (2014) Fact
sheet: Single european sky (ses). [Online]. Available:
http://www.iata.org/pressroom

[3] Eurocontrol’s Central Office for Delay Analysis (CODA), CODA Digest:
Delays to Air Transport in Europe (Annual 2013). Brussels, Belgium:
Eurocontrol, 2014.

[4] K. G. Zografos, M. A. Madas, and K. N. Androutsopoulos, “Increasing
airport capacity utilisation through optimum slot scheduling: review of
current developments and identification of future needs,” Journal of
Scheduling, vol. 20, pp. 3–24, 2017.

[5] J. A. Bennell, M. Mesgarpour, and C. N. Potts, “Airport runway
scheduling,” 4OR-Quart. J. Oper. Res., vol. 9, no. 2, pp. 115–138, Jun.
2011.

[6] S. Ikli, C. Mancel, M. Mongeau, X. Olive, and E. Rachelson, “The
aircraft runway scheduling problem: A survey,” Comput. Oper. Res.,
vol. 132, Aug. 2021.

[7] U. Benlic, “Heuristic search for allocation of slots at network level,”
Transportation Research Part C: Emerging Technologies, vol. 86, pp.
488–509, 2018.

[8] K. N. Androutsopoulos, E. G. Manousakis, and M. A. Madas, “Modeling
and solving a bi-objective airport slot scheduling problem,” European
Journal of Operational Research, vol. 284, no. 1, pp. 135–151, 2020.

[9] N. A. Ribeiro, A. Jacquillat, and A. P. Antunes, “A large-scale neighbor-
hood search approach to airport slot allocation,” Transportation Science,
vol. 53, no. 6, pp. 1772–1797, 2019.

[10] R. Zhang, A. Prokhorchuk, and J. Dauwels, “Deep reinforcement learn-
ing for traveling salesman problem with time windows and rejections,”
in 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020, pp. 1–8.

[11] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie,
“Multi-objective workflow scheduling with deep-q-network-based multi-
agent reinforcement learning,” IEEE Access, vol. 7, pp. 39 974–39 982,
2019.

[12] H. Ali, D.-T. Pham, S. Alam, and M. Schultz, “A deep reinforcement
learning approach for airport departure metering under spatial–temporal
airside interactions,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 12, pp. 23 933–23 950, 2022.

[13] C. Yutong, H. Minghua, X. Yan, and Y. Lei, “Locally generalised multi-
agent reinforcement learning for demand and capacity balancing with
customised neural networks,” Chinese Journal of Aeronautics, vol. 36,
no. 4, pp. 338–353, 2023.

[14] Y. Chen, Y. Xu, and M. Hu, “General multi-agent reinforcement learning
integrating heuristic-based delay priority strategy for demand and capac-
ity balancing,” Transportation Research Part C: Emerging Technologies,
vol. 153, p. 104218, 2023.

[15] D.-T. Pham, L. L. Chan, S. Alam, and R. Koelle, “Real-time departure
slotting in mixed-mode operations using deep reinforcement learning: A
case study of zurich airport,” 2021.

[16] S. Limin, P. Due-Thinh, and S. Alam, “Multi-agent deep reinforcement
learning for mix-mode runway sequencing,” in 2022 IEEE 25th Interna-
tional Conference on Intelligent Transportation Systems (ITSC). IEEE,
2022, pp. 586–593.

[17] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow
management,” in Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, 2007, pp. 1–8.

[18] A. M. F. Crespo, L. Weigang, and A. G. de Barros, “Reinforcement
learning agents to tactical air traffic flow management,” International
Journal of Aviation Management, vol. 1, no. 3, pp. 145–161, 2012.

[19] C. Spatharis, A. Bastas, T. Kravaris, K. Blekas, G. A. Vouros, and J. M.
Cordero, “Hierarchical multiagent reinforcement learning schemes for
air traffic management,” Neural Computing and Applications, pp. 1–13,
2021.

[20] T. Kravaris, C. Spatharis, A. Bastas, G. A. Vouros, K. Blekas, G. An-
drienko, N. Andrienko, and J. M. C. Garcia, “Resolving congestions in
the air traffic management domain via multiagent reinforcement learning
methods,” arXiv preprint arXiv:1912.06860, 2019.

[21] Y. Chen, Y. Xu, M. Hu, and L. Yang, “Demand and capacity balanc-
ing technology based on multi-agent reinforcement learning,” in 2021
IEEE/AIAA 40th digital avionics systems conference (DASC). IEEE,
2021, pp. 1–9.

[22] Y. Tang and Y. Xu, “Multi-agent deep reinforcement learning for solving
large-scale air traffic flow management problem: A time-step sequential
decision approach,” in 2021 IEEE/AIAA 40th digital avionics systems
conference (DASC). IEEE, 2021, pp. 1–10.

[23] T. Duong, K. K. Todi, U. Chaudhary, and H.-L. Truong, “Decentraliz-
ing air traffic flow management with blockchain-based reinforcement
learning,” in 2019 IEEE 17th international conference on Industrial
informatics (INDIN), vol. 1. Ieee, 2019, pp. 1795–1800.

[24] K. G. Zografos, K. N. Androutsopoulos, and M. A. Madas, “Minding
the gap: Optimizing airport schedule displacement and acceptability,”
Transportation Research Part A: Policy and Practice, vol. 114, pp. 203–
221, 2018.

[25] S. Wang, J. H. Drake, J. Fairbrother, and J. R. Woodward, “A con-
structive heuristic approach for single airport slot allocation problems,”
in 2019 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2019, pp. 1171–1178.

[26] A. Yehudai, L. Choshen, L. Fox, and O. Abend, “Reinforcement learning
with large action spaces for neural machine translation,” arXiv preprint
arXiv:2210.03053, 2022.

[27] A. Dayal, L. R. Cenkeramaddi, and A. Jha, “Reward criteria impact
on the performance of reinforcement learning agent for autonomous
navigation,” Applied Soft Computing, vol. 126, p. 109241, 2022.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

1198

	Reinforcement learning for strategic airport slot scheduling: Analysis of state observations and reward designs
	Reinforcement Learning for Strategic Airport Slot Scheduling: Analysis of State Observations and Reward Designs

