
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2024

Automatic grading of short answers using Large Language Automatic grading of short answers using Large Language

Models in software engineering courses Models in software engineering courses

Nguyen Binh Duong TA

Yi Meng CHAI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Educational Assessment, Evaluation, and Research Commons, Higher Education

Commons, and the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9267&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automatic Grading of Short Answers Using Large
Language Models in Software Engineering Courses

Ta Nguyen Binh Duong, Chai Yi Meng
School of Computing and Information Systems

Singapore Management University
Email: donta@smu.edu.sg

Abstract—Short-answer based questions have been used widely
due to their effectiveness in assessing whether the desired learning
outcomes have been attained by students. However, due to their
open-ended nature, many different answers could be considered
entirely or partially correct for the same question. In the context
of computer science and software engineering courses where the
enrolment has been increasing recently, manual grading of short-
answer questions is a time-consuming and tedious process for
instructors.

In software engineering courses, assessments concern not just
coding but many other aspects of software development such
as system analysis, architecture design, software processes and
operation methodologies such as Agile and DevOps. However,
existing work in automatic grading/scoring of text-based answers
in computing courses have been focusing more on coding-oriented
questions. In this work, we consider the problem of autograding a
broader range of short answers in software engineering courses.
We propose an automated grading system incorporating both
text embedding and completion approaches based on recently
introduced pre-trained large language models (LLMs) such as
GPT-3.5/4. We design and implement a web-based system so
that students and instructors can easily leverage autograding for
learning and teaching. Finally, we conduct an extensive evaluation
of our automated grading approaches. We use a popular public
dataset in the computing education domain and a new software
engineering dataset of our own. The results demonstrate the
effectiveness of our approach, and provide useful insights for
further research in this area of AI-enabled education.

Index Terms—automatic grading, large language models, em-
bedding, software engineering courses, short answers

I. INTRODUCTION

Assessments in education can be done in many forms, for
instance multiple-choice questions, essays, short written re-
sponses, coding tests, etc. We note that questions which require
short textual answers are popular in educational assessments
[1]. One of the main reasons is that they could be considered to
be more effective compared to multiple-choice questions due
to a greater level of information retrieval from memory when
trying to come up with answers [2]. However, short-answer
questions can accept different correct and partially correct
answers. Grading many of such answers is undoubtedly a very
tedious and time-consuming process, especially in computing
courses at the university level where the number of students
has been increasing significantly recently.

Automatic grading/scoring of short textual answers is an
established problem in technology-enabled education. Various
existing approaches made use of traditional machine learning

techniques [3], [4], which require careful feature extractions
before model training and score prediction. More recent ap-
proaches leverage deep learning techniques, which are able
to learn representative features from huge amounts of data
instead manual feature engineering work. The deep learning
based approaches may suffer from the lack of data on short
answer based assessments.

Latest advances in pre-trained LLMs, e.g., OpenAI’s release
of the GPT family of models, have enabled researchers to
further investigate autograding for text-based responses from
students, e.g., [5], [6]. However, not much work has been done
for LLM-based autograding of short answers in the context of
computing education, especially software engineering courses
[7]. Such courses cover a wide range of topics including
programming, system design, Agile processes, DevOps prac-
tices in system deployment, operation, and maintenance, etc.
Assessment questions in these topics, e.g., “list one problem
with agile processes such as Scrum?” could have a wide
range of correct answers. We note that automated grading in
computing education has been focusing more on coding based
questions [8], [9], which could have a rather limited set of valid
responses and could be graded by running pre-determined unit
testcases.

In this work, we consider the problem of autograding of
short answers in the context of software engineering courses,
which are not limited to just programming/coding questions.
We makes the following contributions in this paper:

• We propose an automated grading method incorporating
both text embedding and completion approaches based
on recently introduced pre-trained LLMs such as GPT-
3.5-Turbo and GPT-4. The completion-based autograding
approach also leverages Retrieval Augmented Generation
[10] for better grading accuracy.

• We design and implement a web based system for our
LLM-based autograding approaches. The system targets
both instructors and students. Instructors can use the
web system to do manual adjustments of the autograded
scores and to provide additional feedback to answers from
students; while students can practice question answering
with instant grading.

• We compile a new dataset containing popular questions
and short answers in the context of our software engineer-
ing courses. These courses cover important software con-
cepts in addition to programming, namely system design,

software testing, Agile processes, DevOps practices, etc.
This dataset complements existing ones, e.g., the Mohler
dataset [3] which is mainly about programming based
questions.

• We conduct an extensive evaluation of our automated
grading approach using the new dataset, together with
another public dataset in the domain of computer science.
To this end, we compare our approach in short-answer
grading to some of the most popular existing deep learn-
ing based approaches including paragraph embeddings
and Siamese long short-term memory (LSTM) neural
networks. The results demonstrate the effectiveness of our
approach, and provide useful insights for further work in
this area.

This paper is organized as follows. Section II discusses
related work in short answer autograding, especially recent
work in deep learning and LLMs. Section III describes our
approaches to autograding of short answers. Section IV pro-
vides details on our web based system implementation. Section
V presents our evaluation methodology, while Section VI
discusses the experimental results. Section VII concludes the
paper and highlights possible future work.

II. RELATED WORK

Below we summarize several key recent and existing work
in automatic short answer grading. We will compare the
reported performance for these approaches to ours in this paper
where possible.

A. Deep learning based approaches

Traditional machine learning techniques have been applied
to the problem of automated short answer grading for many
years. In these approaches, e.g., [3], [4], [11], manual feature
engineering is needed before training the models on a part
of the dataset. For instance, [4] described feature extraction
methods including text similarity, question demoting, term
weighting, etc. Using these features, a simple ridge regression
model was trained. The authors reported autograding perfor-
mance, e.g., accuracy, in the form of the Pearson correlation
coefficient value of 0.592, and the root mean squared error
(RMSE) of 0.887. They used a dataset consisting of many
computer programing related questions and answers [3] made
available by Mohler et al.

Recently, deep learning based approaches have gained
much popularity. Deep learning based autograders automat-
ically learn representative features from large datasets. In
[12], the authors did a comprehensive survey of deep learn-
ing approaches, including embedding, sequential models and
attention-based neural networks for short answer grading.
The authors then showed that the features learned by deep
learning methods mainly work as complementary to manually
crafted features of the autograding model. [13] considered
automatic grading of short answers using two different types
of paragraph embedding models. They obtained a Pearson
correlation coefficient of 0.569 and RMSE of 0.797 on the
Mohler dataset [3]. Other neural network based approaches

were described in [14] and [15], which leverage the Siamese
Bidirectional Long Short-Term Memory networks (BiLSTMs).
Their results were also reported using the same dataset in
[3]. More recent approaches to short answer grading including
[16], which uses the Transformer architecture [17] and other
optimization techniques to address the problem of insufficient
training data.

B. LLM-based approaches

Due to recent advances in pre-trained LLMs, there have
been a growing body of work making use of LLMs for
automated grading in educational contexts. In particular, [5]
investigated text augmentation techniques using GPT-3.5 to
improve the dataset for training machine learning models
which will be used to provide automated feedback to students.
[6] evaluated the accuracy of using GPT-3’s text-davinci-003
model for automatic grading of essays. Using 12,100 essays,
it concluded that GPT-3 models, combined with linguistic
features, provided a high level of accuracy. Note that this is for
essay scoring, not short answer grading in computer science
related courses. [18] also used OpenAI’s GPT-3.5 text-davinci-
003 model for one-shot prompting and the text completion
API to do automatic grading. However, they made use of the
Prize Short Answer Scoring dataset, which includes questions
from science, biology, English, etc., but not computer science
related courses. Similarly, [19] investigated automated scoring
for the subject of divergent thinking. The authors performed
fine-tuning of LLMs on human-judged responses. The authors
of [20] evaluated GPT-4 for short answer grading using the
SciEntsBank and Beetle datasets. They found that for these
datasets, GPT-4’s performance is comparable to manually
crafted machine learning models.

Regarding autograding of short answers in the context of
computer science related courses, very recent works including
[21] which made use of ChatGPT for grading exams in a data
science course. They also evaluated ChatGPT for a German-
based information system introductory course. They found that
such LLM deployment can be valuable, but it is not yet ready
for fully automated grading. ChatGPT was also used in [22]
to provide corrections to open-ended answers from software
development professionals participating in technical training.
The authors found that subject matter experts usually agreed
with the corrections given by ChatGPT. None of these work
made use of well-known datasets in computer science courses
such as the Mohler dataset [3]. The exception is [7], in which
the authors compared pre-trained LLMs such as ELMo, BERT,
GPT-2, etc., directly on their autograding performance for the
Mohler dataset. We note that this work was done a while ago
so the latest GPT models were not included.

C. Summary

We note that existing deep learning based approaches to
short answer grading could provide good accuracy, but they
need to be combined with hand-crafted features and require
extensive training with large datasets. On the other hand, more

recent approaches based on generative AI, in particular pre-
trained LLMs, have been focusing more on other educational
domains which are not computer science related. In addition,
many of the existing approaches made use of the computer
science dataset from [3] which had been released a while
ago. This dataset is about basic data structures and computer
programming concepts.

In this work, we aim to develop new LLM-based approaches
which do not require training, and to evaluate these approaches
using an entirely new dataset obtained from software engineer-
ing courses which include many more topics and concepts
beyond just programming. We plan to release our new dataset
publicly to encourage further research in this area.

III. LLM-BASED AUTO-GRADING APPROACHES

In this section, we describe in details our proposed
approaches to auto-grading short answers, namely the
embedding-based, and the completion-based approach. Both
of the approaches are based on latest advances in pre-trained
LLMs, in particular the text embedding and chat completion
models released publicly by OpenAI.

A. Embedding-based
Text embeddings are numerical representations of text in

which words or phrases are represented as a vector of numbers.
They are used to capture semantic meanings and relationships
between words or phrases, enabling more efficient processing
and understanding of human languages [23].

1 Input: pair of question, answer (Q, A)
2 list R = [reference answers for Q]
3

4 Output: numerical score S for A
5 Steps:
6 Ch = 0
7 Sq = 0
8 Compute the embedding Ea for A
9 For each reference answer Ar in R

10 Compute the embedding Er for Ar
11 Compute a cosine similarity Cr = cos(Er, Ea)
12 If Cr > Ch:
13 Ch = Cr
14 Sq = score of Ar
15

16 S = Ch * Sq
17 Return S

Listing 1. Embedding-based autograding approach

The algorithm for our embedding-based autoscoring ap-
proach is shown in Listing 1. In this approach, the algorithm
computes the embeddings of all the reference answers and
student answers for a particular question using an available text
embedding model (lines 8-11 of Listing 1). In this work, we
use OpenAI’s text-embedding-ada-002 model as it is OpenAI’s
best and most cost-effective embedding model as of 2023.

The cosine similarity [24] between each reference answer
and student answer (to be auto-graded) is then calculated using
their corresponding embedding vectors, A and B respectively,
as follows:

cos(A,B) =
A ·B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(1)

The cosine similarity will range from 0 to 1, with 0 being
the least similar and 1 being the most similar. After comparing
the cosine similarities between each student answer and all
the reference answers, the most similar reference answer to
the student answer will be selected (lines 12-14 of Listing
1). A mark will then be given to the student answer which
is proportional to the cosine similarity (line 16 of Listing 1).
This is done by multiplying the cosine similarity score with
the reference answer’s score.

The embedding-based autoscoring of short answers can be
implemented and deployed to use quickly due to the general
availability and affordability of of state-of-the-art text embed-
ding models such as text-embedding-ada-002. For instance, its
pricing as the time of writing is just $0.0001 per 1K tokens.
However, this approach might require a wide range of possible
reference answers to be provided for more accurate grading.
For short-answer questions, this is potentially challenging as
there can be a large number of possibly correct answers to a
single question. We can mitigate this issue by using correct
answers from students as reference answers. Another issue is
that, although models such as text-embedding-ada-002 is quite
affordable, computing embeddings for answers every time you
need to do grading (lines 8 and 10 of Listing 1) will add to
the total cost. For this, we could use a vector database such
as Chroma (https://www.trychroma.com) to store and retrieve
the pre-computed embeddings when required.

B. Completion-based

Completion is essentially the generation of output based
on the text prompts given to a pre-trained LLM such as
GPT-3.5-Turbo. Prompt construction, or prompt engineering
for LLMs is an active research area [25]. In a prompt, we
may provide relevant instructions, examples, etc., in natural
languages. Such data would help direct the model to produce
the desired output. One way to do prompting is called zero-
shot, in which a query is sent to the LLM without concrete
examples of expected results. On the other hand, in few-
shot prompting, we provide multiple examples of questions
and their corresponding answers in a simulated multi-turn
conversation with the LLM. At the end of the conversation,
we can ask the LLM to score a student answer for a given
question.

In this completion-based autograding approach, we make
use of the OpenAI’s Chat Completions API1. The API defines
prompts as sequences of messages. Each message has two
components, namely role and content. The role can be “sys-
tem”, “user”, or “assistant”. A message with ”system” role
is usually used first to define the behavior of the model. A
“user” message gives instructions, and an “assistant” message
provides an example of the desired output. The prompt is
constructed with all the required messages and sent to the LLM
via an API call. Our completion-based autograding approach
is shown in Listing 2.

1https://platform.openai.com/docs/guides/text-generation/chat-completions-
api

1 Message 1: {"role": "system", "content": "You are an
AI assistant for teaching software engineering
concepts."}

2

3 # Start providing examples in the prompt here
4 Message 2: {"role": "user", "content": "Given the

question ’What could be a problem with
monolithic software?’, provide a score for the
corresponding answer ’Scaling needs to be done
for the whole application’."}

5 Message 3: {"role": "assistant", "content": "Score:
4/4"}

6

7 Message 4: {"role": "user", "content": "Given the
question ’What could be a problem with
monolithic software?’, provide a score for the
corresponding answer ’It is easier to develop’."
}

8 Message 5: {"role": "assistant", "content": "Score:
1/4"}

9

10 # Provide more examples using additional messages if
needed

11

12 # This message is used for autograding
13 Last message: {"role": "user", "content": "Given the

question ’What could be a problem with
monolithic software?’, provide a score for the
corresponding answer ’It is hard to make changes
.’"}

14

15 # The LLM will respond with an appropriate score in
the below message

16 Message: {"role": "assistant", "content": "Score: <
predicted_score>"}

Listing 2. Completion-based autograding approach

When instructors need to do autograding, the completion-
based approach constructs a sequence of messages as de-
scribed in Listing 2. Each “user” message provides the ques-
tion and a corresponding answer, which could be a reference
answer, or a student answer. This “user” message is imme-
diately followed by an “assistant” message which has the
score given for the answer. Together, this pair of messages
provides a concrete example of how scoring should be done
for a question and its corresponding answer. For example, in
Listing 2, messages 2 and 3 provide a score of 4/4 for the
following question/answer pair: “What could be a problem
with monolithic software?” / ”Scaling needs to be done for
the whole application”. Similarly, messages 4 and 5 provide
another example for the same question with a different answer.
We can give more examples to the prompt by providing more
of such pair of messages. Finally, the last “user” message
in the prompt will provide the answer to be graded for the
same question which has been used in the previous examples.
Following the Chat Completions API, the LLM, e.g., GPT-
3.5-Turbo, will provide a predicted score for this answer.

In the below, we discuss two important considerations for
the completion-based autograding approach, namely example
selection and the incorporation of RAG (Retrieval Augmented
Generation):

Selecting examples for prompt construction: The number
of examples in a prompt could be varied. Providing more
examples would likely yield better scoring results as the
LLM can learn more effectively using the relevant examples.

We note that more examples used translates to more cost,
as models such as OpenAI’s offerings charge based on the
number of tokens in the requests and responses. However, in
this work we focus on ways to provide more relevant examples
to improve grading accuracy rather than cost.

In our completion-based grading approach, we split the an-
swers in a dataset into three different categories, namely low-
quality (having low marks), medium-quality (having average
to quite decent marks), and high-quality (having full marks).
During the automated grading process for a particular question,
our algorithm will select a random answer from each answer
category and construct the appropriate prompt to be sent to
the LLM. The number of answers to be used as examples for
each category can be configurable. For instance, in this work
we have considered using 1, 2, and 3 answers per category as
examples. As a result, the completion-based grading approach
can construct prompts having a total of 3, 6, or 9 examples
(for 3 categories). We believe that this approach provides the
LLM with a better understanding of the grading rubrics for
each given question.

Incorporating Retrieval Augmented Generation (RAG):
Pre-trained LLMs have been shown to perform well in many
common NLP tasks. However, their knowledge base could
not be easily revised or expanded beyond simple fine-tuning,
and they may hallucinate in their responses [26]. RAG [10],
[27] enables a LLM to access external knowledge databases
to complete domain-specific tasks with better consistency,
reliability and reduced hallucinations. Given an input, e.g.,
a question, RAG retrieves relevant texts from the specified
external knowledge databases, and adds those texts as context
to the prompt to be sent to the LLM. With more appropriate
context, the LLM can generate output with higher quality.

In the completion-based autograding approach using RAG,
we make use of the course content to provide additional
context. The aim is to improve grading accuracy and reliability.
For our software engineering courses, we make available PDF
lecture notes for each topic covered, e.g., automation, software
processes, software testing, etc. The lecture notes will then
be parsed and partitioned into chunks of texts for which
corresponding text embeddings will be computed. Given a
specific question to be graded, the most relevant chunks will be
retrieved based on comparing the embedding of the question
versus the embedding of each chunk. The relevant chunks are
then fed into the LLM as the grading context.

IV. IMPLEMENTATION

For instructors and students to take advantage of LLM-
based autograding, we design and implement a web system
incorporating both the embedding-based and completion-based
autograding approaches. The system components are shown in
Figure 1.

A. Components

The system is designed for both computing students and
instructors at the undergraduate level. The web interface pro-
vides functionalities for instructors to create/read/update/delete

Fig. 1. Components in our web based autograding system

(CRUD) questions and answers, and to monitor student per-
formance. For students, they can use the system as a way to
practice for quizzes by answering questions according to topics
covered in the course. In this way, students continue to provide
more data so the system could get better in autograding over
time. The database ensures all the questions/answers/marks are
persisted.

We implement a data partitioning mechanism to automat-
ically divide the student answers into categories, e.g., high
quality, medium quality, etc., as mentioned in Section III. The
mechanism should be rerun once more answers from students
have been added to the database. For context extraction, we use
OpenAI’s text-embedding-ada-002 and the Faiss library [28],
which is a popular package for similarity search developed at
Meta’s AI Research, to compute and extract chunks of lecture
notes relevant to a question which needs to be auto-graded.
The context is then incorporated into the prompt together with
the grading examples.

B. LLM deployments

OpenAI’s GPT LLMs are used in the implemen-
tation of both the embedding-based and completion-
based automated grading approaches. These pre-trained
LLMs are deployed in the Azure cloud, and accessi-
ble via web APIs. In particular, our system accesses
the Chat Completions API, and the text embedding via
endpoints at https://api.openai.com/v1/chat/completions, and
https://api.openai.com/v1/embeddings, respectively.

In our implementation, we have incorporated three differ-
ent LLM deployments from OpenAI, namely GPT-3.5-Turbo,
GPT-4, and text-embedding-ada-002. As these are pay-per-use
models, the cost is a concern especially when there are more
students using our system in the future. For this reason, GPT-
3.5-Turbo is used as the default LLM most of the time instead
of GPT-4, as the former is quite capable and cost-effective,
i.e., 30x cheaper compared to the latter. The embedding model
provided by OpenAI is rather inexpensive, costing just $0.0001
per 1K tokens.

C. Web-based implementation

We have implemented a complete web based system using
Vue.js for the frontend interface, Flask for the backend logic,

and MongoDB as the database. Figure 2 shows the web inter-
face in which students can practice answering short questions.
When students answer a question, their answers and the marks
given by our autograding approaches will be automatically
added into the database. In Figure 3, the instructors can edit
any answers and marks given by the autograding approaches,
as well as providing additional feedback for each answer.
Instructors can also add more questions/answers for students
to practice.

Fig. 2. Students can practice on short answer questions. Their answers will
be graded automatically.

V. EVALUATION METHODOLOGY

This section describes the datasets and the performance
measures used in our evaluation.

A. Datasets

Two complementary datasets are used to evaluate the per-
formance of our proposed embedding-based and completion-
based autograding approaches.

Mohler dataset [3]: This dataset has been widely used in
evaluating automatic grading approaches for short answers.
Most questions in the dataset are about programming/coding
concepts. We use it mainly for fair comparisons with existing
approaches in this area. The dataset is obtained through exam-
s/assignments given to students in an introductory computer
science class at the University of North Texas. For every
student answers, it is marked by two graders and the average
mark is calculated for each answer in the range of 0 mark to
5 marks, with 5 marks being the maximum.

The dataset consists of a total of 87 questions and 1 refer-
ence answer for each question, but 6 questions are excluded
from the dataset as they are not short answer questions.
There are 24 to 31 students’ answers per questions in the
dataset, summing up to 2273 answers with an average of 28
answers per questions. All results obtained through this dataset
are based on the 81 questions and 2273 answers. A sample
question and its corresponding answers/scores extracted from
[3] are shown in Table I.

In our work, the answers in this dataset are split into
3 different categories: low-quality (less than or equal to 2
marks), medium-quality (less than or equal to 4 marks) and
high-quality (5 marks). This partitioning is important for the

Fig. 3. Instructors can edit answers and marks given automatically for any question, as well as providing more feedback.

TABLE I
MOHLER DATASET: SAMPLE QUESTION, ANSWERS AND SCORES

Question What is a pointer?
Reference Answer A variable that contains the address in

memory of another variable.
Student Answer a pointer holds a memory location.
Score 1 5
Score 2 4
Average Score 4.5

evaluation of the completion-based approach, where different
numbers of examples are used for prompting LLMs.

Software engineering (SE) dataset: This is a dataset on
the broader topic of software development with subtopics
consisting of automation, software design, versioning, agile
processes, extreme programming (XP), security, solution sup-
port, and testing. The summary for each subtopic is listed in
Table II. It nicely complements the Mohler dataset, which is
mainly about programming. The dataset consists of a total
of 32 short-answer questions, with the number of reference
answers per question ranging from 1 to 4. There is a total
of 421 graded answers with their corresponding marks, with
an average of 13 answers per question. The marks for each
question ranges from 0 to 4, with 4 marks being the maximum.
Along with this dataset, there are PDF lecture notes for each
of the subtopics with the number of pages ranging from 22
to 50. The PDFs are to be used as additional contexts for the
grading of questions related to their respective subtopics.

The answers in this dataset are also split into 3 different
mark categories: low-quality (less than or equal to 1 marks),
medium-quality (less than or equal to 3.5 marks) and high-
quality (4 marks). An example is shown in Table III.

B. Performance measures

Similar to existing work in this area [15], the results
are evaluated using the Pearson correlation coefficient, mean
absolute error (MAE) and root mean square error (RMSE).

The Pearson correlation coefficient is one of the most
common way to measure linear correlations. The result will
range from value of -1 to 1 depending on the strength and
direction of the relationship. A larger absolute value will
signify stronger correlation between the two variables tested.

TABLE II
SE LECTURE NOTES INCORPORATED AS GRADING CONTEXTS

Topic Summary Pages
Automation Software deployment models, infrastruc-

ture and CI/CD
25

Software design Dependency injection, REST API design 32
Software processes Waterfall, iterative and agile processes 29
Security Confidentiality, integrity, availability ap-

proaches
30

Versioning Distributed version control, Git workflows 36
XP practices Code review, refactoring, and pair pro-

gramming
30

Software support Events, incidents and problem manage-
ment for software systems

50

Software testing Blackbox, whitebox, input space partition-
ing, unit, integration, regression testing

22

TABLE III
SE DATASET: SAMPLE QUESTION, ANSWERS AND SCORE

Subtopic Automation
Question What is one advantage of canary deploy-

ment?
Reference Answer Can minimize the impact of errors to a

subset of users
Graded Answer it is cheaper to do
Graded Answer’s Score 1

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(2)

where xi represents the actual mark given by human graders,
and yi represent the mark given by the autograding approach
for the same answer. x and y represent the means of x and y,
respectively.

The mean absolute error (MAE) is calculated by averaging
the absolute differences between the actual and predicted
marks:

MAE =
1

n

n∑
i=1

|xi − yi| (3)

Finally, the root mean square error (RMSE) is also used
widely to measure the quality of predictions:

RMSE =

√∑n
i=1(xi − yi)2

n
(4)

In (3) and (4), n is the total number of answers being
evaluated, xi is the actual mark for the i-th answer and yi
is the predicted mark given by the autograding approach for
the same answer. Both MAE and RMSE are reliable metrics
for assessing the accuracy of predictions.

C. Research questions

In the evaluation, we aim to answer the following research
questions (RQs):

• RQ1: Which is the better approach for autograding short
answers: embedding-based or completion-based?

• RQ2: How do embedding-based and completion-based
autograding compare to existing deep learning based
approaches?

• RQ3: Does adding context from relevant lecture notes
on the question’s topic using RAG produce more ac-
curate grading result when using the completion-based
approach?

• RQ4: How do different versions of the same LLM family,
e.g., GPT-3.5-Turbo and GPT-4, compare to each other
in the autograding of short answers?

VI. RESULTS

A. RQ1: Embedding-based vs. completion-based

We first compare our proposed embedding-based and
completion-based approaches using both the Mohler dataset
[3] and the SE dataset. The default LLM used is GPT-3.5-
Turbo. The results are shown in Table IV.

TABLE IV
EMBEDDING VS. COMPLETION

Model Pearson Correlation Coefficient RMSE MAE
Mohler Dataset

Embedding 0.557 0.932 0.749
Completion (3 examples) 0.450 1.185 0.960
Completion (6 examples) 0.406 0.975 0.780
Completion (9 examples) 0.525 0.922 0.706

SE Dataset
Embedding 0.507 2.017 1.727

Completion (3 examples) 0.621 1.342 1.044
Completion (6 examples) 0.694 1.207 0.872
Completion (9 examples) 0.674 1.240 0.852

For the Mohler dataset [3], the embedding-based approach
produces the highest Pearson correlation coefficient of 0.557.
On the other hand, the completion-based approach with 9
examples produces a Pearson correlation of 0.525, as well as
the best RMSE and MAE of 0.922 and 0.706 respectively.

For the SE dataset, the results produced by the completion-
based approach with 6 examples are quite similar to those
produced by the same approach with 9 examples. The former
having a higher Pearson correlation coefficient of 0.694 and a
lower RMSE of 1.207; while the latter having a lower MAE of
0.852. However, given that more examples have to be passed
into the prompt, it may take a longer processing time and
higher cost when doing grading. Therefore, in this case the

completion-based approach with 6 examples will potentially
be more useful due to its balance between efficiency and
accuracy.

We can observe a large discrepancy between the results pro-
duced by the embedding-based approach for the two different
datasets, where the RMSE and MAE for the SE dataset are
more than twice of those produced for the Mohler dataset.
In particular, for the Mohler dataset, the embedding-based
approach produced a RMSE and a MAE of 0.932 and 0.749,
respectively. On the other hand, for the SE dataset, the same
approach produced a RSME and a MAE of 2.017 and 1.727.
For the Pearson correlation coefficient, it’s 0.557 and 0.507
for the Mohler and SE datasets, respectively.

From the experiments, we note that the embedding-based
approach is more biased towards giving higher scores due to
the relatively high cosine similarities obtained between the
student answers and the reference answers in many cases;
unless the student’s answer is hardly related to the question
text. This can be observed from the fact that 86% of the scores
predicted for the Mohler dataset [3] is more than 4 marks
when using the embedding-based approach. At the same time,
we also note that the Mohler dataset has about 63% of the
answers scoring above 4 out of 5 marks as given by the human
graders. On the other hand, the SE dataset only has 27% of the
answers scoring above 3 out of 4 marks. This explains why the
embedding-based approach does better in the Mohler dataset,
but much worse in the SE dataset. In this case, we observe
that the completion-based approach is the better way to do
autograding of short answers as it significantly outperforms
the embedding-based approach in the SE dataset.

Summary-RQ1: The completion-based approach could
be considered the better autograding approach overall;
as it is more consistent with the predicted marks given to
answers in both datasets, regardless of the actual mark
distribution in any of them. In both cases, we will need
to provide more relevant examples of answers and actual
scores in the completion-based prompt to improve the
autograding performance.

B. RQ2: Comparison to deep learning based methods
We now compare the embedding and completion based

approaches with other existing autograding methods which
made use of deep learning techniques. For a fair comparison,
all the approaches are considered using performance measures
reported previously with the Mohler dataset. Table V summa-
rizes the key results. In particular, we collected results reported
from [14], which implemented and evaluated several variations
of the Long Short-Term Memory (LSTM) neural networks for
short answer grading. The authors of [13] considered different
types of paragraph embedding models. Finally, the usage
Bidirectional LSTM (BiLSTM) has been shown to perform
well in automated grading [15]. More recently, pre-trained
models such as ELMo [7] was also used on the Mohler dataset.

As observed from Table V, the embedding and completion
based approaches may not be the best approach in terms of

TABLE V
COMPARING WITH EXISTING DEEP LEARNING BASED AUTOGRADING

APPROACHES - MOHLER DATASET

Approach Pearson
Correlation
Coefficient

RMSE MAE

LSTM-EMD-SVOR [14] 0.550 0.830 0.490
LSTM-EMD-Logits [14] 0.649 1.135 0.657
Paragraph embedding
(doc2vec) [13]

0.569 0.797 -

Siamese BiLSTM + feature
engineering [15]

0.655 0.889 0.618

Stacked BiLSTM (ELMo)
[7]

0.485 0.978 -

Embedding-based 0.557 0.932 0.749
Completion-based
(9 examples)

0.525 0.922 0.706

result. However they offer a good balance among all the three
metrics, and can be seen to have an average performance
which is quite comparable to the existing deep learning based
approaches, e.g., [13], [14]. It is important to note that in our
approaches, there was no extensive training or fine-tuning done
with a large labelled dataset. On the other hand, existing deep
learning based approaches incur significant training cost with
a large part of the same dataset prior to predictions [16]. In
some cases, e.g., [15], manual feature engineering tasks are
needed to improve the prediction performance.

We note that popular pre-trained LLMs such as BERT and
ELMo [29] have been applied on the Mohler dataset. As shown
in Table V, the performance of the ELMo-based approach still
has a gap when compared to the embedding and completion
based approach. There have been research on how to leverage
the GPT family of models on short answer grading, e.g., [20],
[21]. However, we could not find other recent works making
use of the latest pre-trained LLMs like GPT-3.5-Turbo or GPT-
4 on the Mohler dataset.

Summary-RQ2: The embedding and completion based
approaches do not require extensive training or fine-
tuning to perform reasonably well. Therefore, they are
more generally applicable to a wide variety of grading
scenarios; not just in our specific SE courses but also in
other courses.

C. RQ3: Using course materials as additional context in
completion-based autograding

We would like to find out if there will be an improvement in
the autograding capability of the completion-based approach
when provided with more context extracted from relevant
course materials such as lecture notes when they are available.
This is referred to as RAG - retrieval augmented generation
[27]. As described in the implementation, we use OpenAI’s
text-embedding-ada-002 and the Faiss library [28] to store and
extract chunks of lecture notes (as detailed in Table II) relevant
to a question which needs to be auto-graded. The context is
then incorporated into the prompt together with the grading
examples.

TABLE VI
EVALUATING THE EFFECT OF ADDITIONAL CONTEXT IN AUTOGRADING -

SE DATASET

Pearson Cor-
relation Coef-
ficient

RMSE MAE

Completion (3 ex-
amples)

0.621 1.342 1.044

Completion
with context
(3 example)

0.631 1.338 1.018

Completion (6 ex-
amples)

0.694 1.207 0.872

Completion
with context
(6 examples)

0.642 1.149 0.795

Completion (9 ex-
amples)

0.674 1.240 0.852

Completion
with context
(9 examples)

0.748 1.026 0.693

The results are shown in Table VI for the SE dataset, for
which we have the corresponding course materials. With rele-
vant context given in the prompt, it is observed that there are
generally notable improvements in the quality of autograding
for short answers. For instance, the completion-based approach
with 9 examples (no context provided) produces a Pearson
correlation coefficient of 0.674, RMSE of 1.207 and MAE of
0.872. With the context, the same approach produces better
predictions with a Pearson correlation coefficient of 0.748,
RMSE of 1.026 and MAE of 0.693. The only exception is
the completion-based (6 examples), in which the additional
context does not improve the already high Pearson correlation.
However, Table VI shows that the RMSE and MAE have been
improved due to more context in that case.

Summary-RQ3: Relevant context extracted from course
materials and given to the LLM prompt could signifi-
cantly improve the autograding accuracy in most cases.

D. RQ4: Comparison between GPT-3.5-Turbo and GPT-4

We also compare the grading performance of the GPT-4
and GPT-3.5-Turbo LLMs. We note that the cost of GPT-4 is
significantly more than GPT-3.5-Turbo for the same amount
of tokens. Due to the limited budget, we have not had the
chance to fully explore GPT-4’s capabilities. In our system,
we use GPT-4 to implement the completion-based approach
with 6 and 9 examples, and evaluate it on the SE dataset.

In Table VII, there is a significant improvement in the GPT-
4 based approach when compared to the one using GPT-3.5-
Turbo. GPT-4 completion-based approach with 9 examples
achieved the highest Pearson correlation coefficient of 0.844, a
low RMSE and MAE of 0.828 and 0.566, respectively. While
the results are very promising, a more extensive evaluation
of GPT-4 based approaches is needed when the cost becomes
less of an issue. It is worth noting that as the time of writing,
GPT-4 generally costs about 30x more compared to GPT-3.5-
Turbo.

TABLE VII
GPT-4 VS. GPT-3.5-TURBO FOR THE COMPLETION-BASED APPROACH -

SE DATASET

Pearson Cor-
relation Coef-
ficient

RMSE MAE

GPT-3.5-Turbo
(6 examples)

0.694 1.207 0.872

GPT-4
(6 example)

0.784 0.896 0.616

GPT-3.5-Turbo
(9 examples)

0.674 1.240 0.852

GPT-4
(9 examples)

0.844 0.828 0.566

Summary-RQ4: The newer LLM version such as GPT-4
could significantly outperform previous models in short
answer autograding.

E. Limitations

Here we discuss some limitations of this work. First, outputs
from LLMs could vary from time to time, which might affect
the autograding accuracy reported in Section VI. We have
attempted to mitigate this issue by reporting the accuracy
using a large number of answers from two different datasets.
Second, due to funding issues we could not fully evaluate GPT-
4’s autograding accuracy. It is possible that newer and more
expensive LLM versions will provide improved performance
compared to what we have reported here. Finally, it would
be better to build a larger dataset with more questions and
answers on various software engineering topics. We plan to
do so with the latest LLM versions, e.g., GPT-4 Turbo, when
the cost becomes more manageable.

VII. CONCLUSION

This work on LLM-based automatic grading of short an-
swers has the potential to reduce the marking burden on
instructors teaching a variety of courses, especially in the
domain of computer science and software engineering where
the number of students has been increasing recently. We have
proposed two new approaches for autograding short answers
using embedding and completion models, which are based on
the OpenAI’s GPT family of LLMs.

We have conducted extensive evaluations and comparison
to the existing methods in this area using a well-known
dataset and a new dataset of our own in software engineering
courses at the university level. The datasets capture different
kinds of mark distributions which could affect any auto-
grading methods. We found that our approaches, especially
the completion-based approach, which do not require time-
consuming training of deep learning models, could work well
for the given datasets. We also found that relevant context in
the form of lecture notes for the course would help improve
grading performance. Lastly, newer models like GPT-4 look
very promising in autograding tasks. However, the cost of such
models is still a concern especially for educational institutions.
We plan to investigate ways to do more accurate and fair
autograding while minimizing LLM cost in our future work.

ACKNOWLEDGEMENT

This work is supported by the UResearch programme from
the School of Computing and Information Systems, Singapore
Management University.

REFERENCES

[1] T. Puthiaparampil and M. M. Rahman, “Very short answer questions: a
viable alternative to multiple choice questions,” BMC medical education,
vol. 20, no. 1, pp. 1–8, 2020.

[2] S. Greving and T. Richter, “Examining the testing effect in university
teaching: Retrievability and question format matter,” Frontiers in Psy-
chology, vol. 9, 2018.

[3] M. Mohler, R. Bunescu, and R. Mihalcea, “Learning to grade short
answer questions using semantic similarity measures and dependency
graph alignments,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technolo-
gies, 2011, pp. 752–762.

[4] M. A. Sultan, C. Salazar, and T. Sumner, “Fast and easy short answer
grading with high accuracy,” in Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2016, pp. 1070–1075.

[5] K. Cochran, C. Cohn, J. F. Rouet, and P. Hastings, “Improving auto-
mated evaluation of student text responses using gpt-3.5 for text data
augmentation,” in International Conference on Artificial Intelligence in
Education. Springer, 2023, pp. 217–228.

[6] A. Mizumoto and M. Eguchi, “Exploring the potential of using an ai
language model for automated essay scoring,” Research Methods in
Applied Linguistics, vol. 2, no. 2, 2023.

[7] S. K. Gaddipati, D. Nair, and P. G. Plöger, “Comparative evaluation of
pretrained transfer learning models on automatic short answer grading,”
arXiv preprint arXiv:2009.01303, 2020.

[8] J. Mitra, “Studying the impact of auto-graders giving immediate feed-
back in programming assignments,” in Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1, 2023, pp.
388–394.

[9] D. S. Mishra and S. H. Edwards, “The programming exercise markup
language: Towards reducing the effort needed to use automated grading
tools,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, 2023, pp. 395–401.

[10] S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana,
and S. Nanayakkara, “Improving the domain adaptation of retrieval aug-
mented generation (rag) models for open domain question answering,”
Transactions of the Association for Computational Linguistics, vol. 11,
pp. 1–17, 2023.

[11] S. Basu, C. Jacobs, and L. Vanderwende, “Powergrading: a clustering ap-
proach to amplify human effort for short answer grading,” Transactions
of the Association for Computational Linguistics, vol. 1, pp. 391–402,
2013.

[12] S. Haller, A. Aldea, C. Seifert, and N. Strisciuglio, “Survey on automated
short answer grading with deep learning: from word embeddings to
transformers,” arXiv preprint arXiv:2204.03503, 2022.

[13] S. Hassan, A. A. Fahmy, and M. El-Ramly, “Automatic short answer
scoring based on paragraph embeddings,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 10, 2018.

[14] S. Kumar, S. Chakrabarti, and S. Roy, “Earth mover’s distance pooling
over siamese lstms for automatic short answer grading,” in Proceedings
of the 26th International Joint Conference on Artificial Intelligence, ser.
IJCAI’17. AAAI Press, 2017, p. 2046–2052.

[15] A. Prabhudesai and T. N. Duong, “Automatic short answer grading using
siamese bidirectional lstm based regression,” in 2019 IEEE international
conference on engineering, technology and education (TALE). IEEE,
2019, pp. 1–6.

[16] X. Zhu, H. Wu, and L. Zhang, “Automatic short-answer grading via
bert-based deep neural networks,” IEEE Transactions on Learning
Technologies, vol. 15, no. 3, pp. 364–375, 2022.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[18] S.-Y. Yoon, “Short answer grading using one-shot prompting and text
similarity scoring model,” arXiv preprint arXiv:2305.18638, 2023.

[19] P. Organisciak, S. Acar, D. Dumas, and K. Berthiaume, “Beyond seman-
tic distance: automated scoring of divergent thinking greatly improves
with large language models,” Thinking Skills and Creativity, p. 101356,
2023.

[20] G. Kortemeyer, “Performance of the pre-trained large language
model gpt-4 on automated short answer grading,” arXiv preprint
arXiv:2309.09338, 2023.

[21] J. Schneider, B. Schenk, C. Niklaus, and M. Vlachos, “Towards
llm-based autograding for short textual answers,” arXiv preprint
arXiv:2309.11508, 2023.

[22] G. Pinto, I. Cardoso-Pereira, D. Monteiro, D. Lucena, A. Souza,
and K. Gama, “Large language models for education: Grading open-
ended questions using chatgpt,” in Proceedings of the XXXVII Brazilian
Symposium on Software Engineering, 2023, pp. 293–302.

[23] J. M. Gomez-Perez, R. Denaux, A. Garcia-Silva, J. M. Gomez-Perez,
R. Denaux, and A. Garcia-Silva, “Understanding word embeddings
and language models,” A Practical Guide to Hybrid Natural Language
Processing: Combining Neural Models and Knowledge Graphs for NLP,
pp. 17–31, 2020.

[24] P. Xia, L. Zhang, and F. Li, “Learning similarity with cosine similarity
ensemble,” Information sciences, vol. 307, pp. 39–52, 2015.

[25] P. Denny, V. Kumar, and N. Giacaman, “Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using natural
language,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, 2023, pp. 1136–1142.

[26] A. Martino, M. Iannelli, and C. Truong, “Knowledge injection to counter
large language model (llm) hallucination,” in European Semantic Web
Conference. Springer, 2023, pp. 182–185.

[27] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[28] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–
547, 2019.

[29] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Computing Surveys, vol. 56, no. 2, pp. 1–40, 2023.

	Automatic grading of short answers using Large Language Models in software engineering courses
	tmp.1725516479.pdf.8ND9Z

