
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

Curiosity-driven testing for sequential decision-making process Curiosity-driven testing for sequential decision-making process

Junda HE
Singapore Management University, jundahe@smu.edu.sg

Zhou YANG
Singapore Management University, zyang@smu.edu.sg

Jieke SHI
Singapore Management University, jiekeshi@smu.edu.sg

Chengran YANG
Singapore Management University, cryang@smu.edu.sg

Kisub KIM
Singapore Management University, kisubkim@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HE, Junda; YANG, Zhou; SHI, Jieke; YANG, Chengran; KIM, Kisub; XU, Bowen; ZHOU, Xin; and David LO.
Curiosity-driven testing for sequential decision-making process. (2024). ICSE '24: Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, Lisbon, Portugal, April 14-20. 1-14.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9258

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Junda HE, Zhou YANG, Jieke SHI, Chengran YANG, Kisub KIM, Bowen XU, Xin ZHOU, and David LO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9258

https://ink.library.smu.edu.sg/sis_research/9258

Curiosity-Driven Testing for Sequential Decision-Making Process
Junda He

Singapore Management University
Singapore, Singapore
jundahe@smu.edu.sg

Zhou Yang∗
Singapore Management University

Singapore, Singapore
zyang@smu.edu.sg

Jieke Shi
Singapore Management University

Singapore, Singapore
jiekeshi@smu.edu.sg

Chengran Yang
Singapore Management University

Singapore, Singapore
cryang@smu.edu.sg

Kisub Kim
Singapore Management University

Singapore, Singapore
kisubkim@smu.edu.sg

Bowen Xu
North Carolina State University

Raleigh, United State
bxu22@ncsu.edu

Xin Zhou
Singapore Management University

Singapore, Singapore
xinzhou.2020@phdcs.smu.edu.sg

David Lo
Singapore Management University

Singapore, Singapore
davidlo@smu.edu.sg

ABSTRACT
Sequential decision-making processes (SDPs) are fundamental for
complex real-world challenges, such as autonomous driving, robotic
control, and traffic management. While recent advances in Deep
Learning (DL) have led to mature solutions for solving these com-
plex problems, SDMs remain vulnerable to learning unsafe behav-
iors, posing significant risks in safety-critical applications. However,
developing a testing framework for SDMs that can identify a di-
verse set of crash-triggering scenarios remains an open challenge.
To address this, we propose CureFuzz, a novel curiosity-driven
black-box fuzz testing approach for SDMs. CureFuzz proposes
a curiosity mechanism that allows a fuzzer to effectively explore
novel and diverse scenarios, leading to improved detection of crash-
triggering scenarios. Additionally, we introduce a multi-objective
seed selection technique to balance the exploration of novel sce-
narios and the generation of crash-triggering scenarios, thereby
optimizing the fuzzing process. We evaluate CureFuzz on various
SDMs and experimental results demonstrate that CureFuzz out-
performs the state-of-the-art method by a substantial margin in
the total number of faults and distinct types of crash-triggering
scenarios. We also demonstrate that the crash-triggering scenarios
found by CureFuzz can repair SDMs, highlighting CureFuzz as a
valuable tool for testing SDMs and optimizing their performance.

CCS CONCEPTS
• Software and its engineering→ Process validation; • Com-
puting methodologies→ Artificial intelligence.

∗Corresponding author.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639149

KEYWORDS
Fuzz Testing, Sequential Decision Making, Deep Learning

ACM Reference Format:
Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu,
Xin Zhou, and David Lo. 2024. Curiosity-Driven Testing for Sequential
Decision-Making Process. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3597503.3639149

1 INTRODUCTION
Sequential decision-making processes (SDPs) involve a series of in-
terrelated decisions, where each decision depends on the outcome of
the previous one. SDPs play a critical role in addressing various com-
plex real-world challenges such as autonomous driving [33], robotic
control [38], and traffic control [75]. Recent advances in Deep
Learning (DL), e.g., Deep Neural Networks (DNN) [62], Deep Rein-
forcement Learning (DRL) [64], and Imitation Learning (IL) [40],
have led to mature solutions for handling these complex sequen-
tial decision-making problems. We refer to these solutions as se-
quential decision-makers (SDMs). In various applications, such as
video game playing [20, 29, 64], and aircraft collision avoidance
systems [35], these SDMs demonstrate human-comparable or even
superior capabilities.

Despite impressive effectiveness, SDMs are susceptible to learn-
ing unsafe behaviors during the training process [56]. As SDMs
primarily aim to optimize overall performance, they might not
adequately prioritize safety concerns. This learning flaw could po-
tentially lead to catastrophic failures in real-world scenarios [56, 84].
The impact of such risks is particularly severe in safety-critical ap-
plications, where the actions of SDMs directly affect human lives,
and any negligence could result in disastrous consequences. A
heartbreaking report1 reveals that between July 2021 and May 2022,
there were 392 crashes involving autonomous vehicles, leading to
five serious injuries and six deaths. This highlights the necessity to
thoroughly test SDMs to ensure safety in critical scenarios before
their deployment.

1www.engadget.com/self-driving-car-technology-crash-data

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3597503.3639149
https://doi.org/10.1145/3597503.3639149
https://www.engadget.com/self-driving-car-technology-crash-data-172606258.html#:~:text=As%20The%20New%20York%20Times,2021%20and%20May%2015th%2C%202022
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639149&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

An ideal testing framework for SDMs must be able to produce a
diverse set of crash-triggering scenarios [31]. A scenario, in this con-
text, is defined as the set of environmental properties with which
an SDM interacts. For example, in autonomous driving, a scenario
would include the description of pedestrians, other vehicles, and
traffic conditions. The generation of a diverse set of crash-triggering
scenarios is crucial for several reasons. Firstly, identifying dupli-
cate (i.e., the opposite of diverse) crash-triggering scenarios wastes
computational resources that could have been used to uncover new
bugs. Secondly, less diverse scenarios cover smaller input space,
thus uncovering fewer corner case crashes.

However, enhancing the diversity of crash-triggering scenarios
is indeed challenging, as it necessitates a method to measure the
novelty of a scenario. In the context of sequential decision-making
problems, the state space is often high-dimensional and continu-
ous. This makes the computation of novelty difficult and leads to
high computational costs, commonly known as the “curse of dimen-
sionality” [39]. Thus, researchers are motivated to propose novelty
measures for scenarios in the context of testing SDMs. Nonetheless,
existing novelty measures have their limitations. For instance, the
density-based method [56] exhibits high computational complexity,
especially in environments with high complexity. Moreover, the
topological similarity measurement proposed by Li et al. [86] can
only measure the novelty of the termination states. While typically
SDMs make hundreds of interactions with the environment in each
run, and the rich information from the intermediate states is buried.
Consequently, finding a more efficient and effective novelty mea-
sure that helps in generating diverse test cases for SDMs remains a
to be an ongoing challenge.

Inspired by the concept of Random Network Distillation (RND)
in reinforcement learning [11], we propose a curiosity mechanism
and a novel fuzz testing method to address the aforementioned
challenge. Our curiosity mechanism calculates the extent of the
fuzzer’s curiosity in exploring specific scenarios and encourages
the fuzzer to prioritize scenarios with higher curiosity. Specifically,
when presented with a scenario, our curiosity mechanism will
predict the subsequent states within its environment. The discrep-
ancy between our prediction and the actual outcome (prediction
error) reflects the level of the fuzzer’s curiosity. A scenario with
higher curiosity suggests that it is unfamiliar to the fuzzer, as the
fuzzer cannot accurately predict it. An essential advantage of our
curiosity mechanism is its computational efficiency. The compu-
tational complexity of our curiosity mechanism increases linearly
while the environmental complexity increases. By leveraging this
approach, we can both effectively and efficiently encourage the
fuzzer to explore uncharted territories, thereby increasing the di-
versity of scenarios generated. The computationally inexpensive
feature also allows us to successfully apply our method to complex
environments, including self-driving systems.

With the novel curiosity mechanism, we propose CureFuzz
(Curiosity-driven fuzzer), a curiosity-driven fuzz testing approach
for Sequential Decision Making Process. CureFuzz combines two
distinct techniques: (1) a curiosity mechanism that measures the
novelty of encountered scenarios and encourages the fuzzer to
detect novel and diverse scenarios; (2) a multi-objective seed se-
lection technique in fuzzing that estimates the energy of a seed
based on its probability of triggering crashes and exploring novel

scenarios. CureFuzz then selects the seed for mutation based on its
estimated energy to guide the search for crash-triggering scenarios.
The former of these two techniques provides a diversity of gen-
erated scenarios, and the latter ensures effectiveness in detecting
crash-triggering scenarios. By combining them, CureFuzz achieves
a balance between effectiveness and diversity in fuzzing testing of
the Sequential Decision Making Process, leading to a significant
improvement over the state-of-the-art.

We evaluate CureFuzz by applying it to well-known SDMs that
use various learning algorithms. The algorithms include Deep Neu-
ral Networks (DNN) [52], Deep Reinforcement Learning (DRL) [3],
Multi-agent DRL (MARL) [17], and Imitation Learning (IL) [32].
We also consider a range of sequential decision-making problems.
(i.e., autonomous driving [70], aircraft collision avoidance [35], and
video game playing [41, 45]). The experimental results demonstrate
that CureFuzz effectively and efficiently identifies a significant
number of catastrophic failures across all considered SDMs. Over-
all, CureFuzz outperforms the state-of-the-art methods and detects
a more diverse set of crash-triggering scenarios. Furthermore, we
have also shown that the crash-triggering scenarios identified by
CureFuzz can be utilized to repair the SDMs. By re-running Cure-
Fuzz on the repaired SDMs, the number of detected faults decreases
by 73%, highlighting the practical utility of our approach in enhanc-
ing the effectiveness of SDMs.
The contributions of this paper are summarized as follows:

• We introduce CureFuzz, the first curiosity-driven black-box
fuzz testing framework for DL-based sequential decision mak-
ers. CureFuzz aims to reveal a diverse set of crash-triggering
scenarios, enhancing the safety and effectiveness of these decision-
making systems.
• We propose a novel curiosity mechanism that leverages the
prediction error of two neural networks to measure the novelty
of scenarios for fuzz testing.
• To evaluate the effectiveness of CureFuzz, we conducted ex-
periments on 4 sequential decision-making tasks. The results
demonstrate thatCureFuzz successfully uncovers crash-triggering
scenarios and outperforms our baseline method by a substantial
margin.

2 PRELIMINARIES
2.1 Markov Decision Process
The Markov Decision Process (MDP) is a well-known mathemati-
cal framework for modeling complex sequential decision-making
problems under various uncertainties [61]. In this paper, we focus
on the SDMs solving MDPs. An agent (i.e., defined as SDM) and the
environment are the two main components of an MDP. In a general
paradigm, an agent actively engages with its environment through
a sequence of actions. Upon executing an action, the environment
responds by transitioning to a new state and provides the agent
with feedback in the form of rewards. This reward signal serves as
a measure of the quality of the agent’s action. The agent’s ultimate
objective is to learn an optimal policy, which is a strategy that
guides its decision-making process to maximize the accumulated
reward over time. For simplification, the interactions are assumed
to be performed in discrete time steps. Given 𝑡 = 0, 1, 2, ... denotes

Curiosity-Driven Testing for Sequential Decision-Making Process ICSE ’24, April 14–20, 2024, Lisbon, Portugal

the discrete time step, we formally define the Markov Decision
Process as a tuple of (𝑆,𝐴,𝑇 , 𝑅), where:
• 𝑆 is the state space, a set of states that represents all the possible
statuses of the environment. A state 𝑠 ∈ 𝑆 refers to the current
situation of the agent, and 𝑠𝑡 refers to the state at time 𝑡 .
• 𝐴 is the action space, a set of available actions that can be taken
by the agent. Given a state 𝑠 , the agent selects its action 𝑎 ∈ 𝐴,
accordingly.
• 𝑇 is the state transition probability function of the environment,
such that 𝑇 (𝑠′ |𝑠, 𝑎) describes the probability of transitioning to
𝑠′ from 𝑠 when the action 𝑎 is taken.
• 𝑅 is the reward function.𝑅(𝑠, 𝑎, 𝑠′) refers to the immediate reward
received by the agent when it takes the action 𝑎 at state 𝑠 and
reaches 𝑠′.

A sequential decision-making problem is an MDP if and only if it
satisfies the Markov Property. In other words, the decision-making
process in this environment depends solely on the current state of
the environment and not on the sequence of past states. Mathemat-
ically, Markov Property is described as:

𝑃 (𝑆𝑡+1 = 𝑠𝑡+1 |𝑆𝑡 = 𝑠𝑡 , ..., 𝑆0 = 𝑠0) = 𝑃 (𝑆𝑡+1 = 𝑠𝑡+1 |𝑆𝑡 = 𝑠𝑡)

𝑃 denotes the probability of transitioning from 𝑆𝑡 = 𝑠𝑡 at time step
𝑡 to 𝑆𝑡+1 = 𝑠𝑡+1 at time step 𝑡 + 1. Intuitively, the Markov property
ensures that the current state encapsulates all relevant information
from history and that the future of the process is independent of
the past when the present state is known.

2.2 Sequential Decision Makers
Sequential Decision Makers (SDMs) powered by deep learning have
shown strong capabilities in solving MDPs. Here, we introduce the
technology used in four state-of-the-art DL-based SDMs: Deep Neu-
ral Networks (DNN) [52], Deep Reinforcement Learning (DRL) [3],
Multi-agent DRL (MARL) [17], and Imitation Learning (IL) [32].

2.2.1 Deep Neural Network . Although all four techniques involve
neural networks, we refer to DNN [52] when the training process is
conducted in the supervised setting. In this case, the optimal actions
to take for certain states are labeled. During the training session,
the model learns to derive the optimal policy by minimizing the
difference between its predicted actions and the manually labeled
actions. One application is the aircraft collision avoidance system,
ACAS Xu [35].

2.2.2 Deep Reinforcement Learning. DRL [51] combines the notion
of deep learning with traditional reinforcement learning techniques.
Instead of learning with labeled data, a DRL agent learns optimal
policy through trial-and-error with the rewards or penalties re-
ceived from the environment. Algorithms like DQN [51], PPO [63],
and TQC [41] have been used in a wide range of tasks. For example,
AlphaGo [64], and OpenAI’s DOTA 2 agents [81].

2.2.3 Multi-agent Reinforcement Learning. MARL extends conven-
tional reinforcement learning to scenarios that have multiple agents.
MARL is a type of machine learning in which multiple agents learn
to interact with each other in a shared environment through a
feedback mechanism. In MARL, agents learn to make decisions
also based on the actions of other agents in the environment. A
MARL game can be cooperative, competitive, or a mix of both. In

Figure 1. Illustration of the overall workflow of the proposed ap-
proach CureFuzz.

a cooperative game, the agents work together towards a common
goal, where the success of one agent is dependent on the success
of the other agents.

2.2.4 Imitation Learning. IL is widely used in scenarios where
reinforcement learning may be too slow or expert demonstrations
are available, such as autonomous driving. IL usually involves two
agents: an expert agent and a student agent. It can be considered
as another form of supervised learning, where the student agent
aims to mimic the behaviors of the expert agent.

2.3 Fuzz Testing
Fuzz testing is a widely used method in software testing that auto-
mates the generation of inputs to identify vulnerabilities, crashes,
or any other unexpected behavior in software programs. This ap-
proach usually creates a wide range of variants from a set of initial
inputs (often referred to as seed corpus). These variants are gen-
erated by applying certain mutation operations, such as bit flip-
ping [14]. The mutated inputs are then used to test the software,
with the intent of causing unexpected behavior or crashes. The
advantage of mutation-based fuzzing lies in its capability to ex-
plore the program execution paths that might not be covered under
standard testing procedures, thereby increasing the robustness and
security of the software.

3 APPROACH
3.1 Assumption
We focus on environments where the transition dynamics satisfy
the Markov Property [61], and our testing subjects are DL-based
SDMs (agents) solving MDPs. CureFuzz performs fuzz testing in a
black-box manner, which is realistic and practical. While white-box
testing can be valuable for certain tests, the high complexity of
deep learning models, potentially with millions of parameters, can
make white-box testing overwhelming. Additionally, in the real
world, SDMs’ internals are often not available (e.g., users access
the SDM through a third-party vendor’s service). More specifically,
CureFuzz does not require access to the SDM’s internal logic, nor
knowledge of the environment’s transition dynamics or reward
mechanism. Moreover, the SDM’s policy remains fixed and will
not be updated during the fuzzing process. Given a particular state,
CureFuzz can obtain the corresponding action from the SDM by
interacting with the environment.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

CureFuzz is designed to uncover crash-triggering scenarios that
eventually lead to the crash of SDMs. It is crucial to note that the
definition of a ‘crash’ can vary across different environments. For
instance, within the context of autonomous driving, a crash could
be defined as an incident where an autonomous vehicle collides
with pedestrians. In the context of robotics control, a crash can
refer to the falling of a walking robot. We employ the term ‘crash’
to represent its broader conceptual meaning. Furthermore, our
methodology focuses on catastrophic failure rather than minor
deviations from optimal performance. If an SDM initiates from
a particular scenario, and the subsequent cumulative reward falls
below a predefined threshold, yet no catastrophic failure is observed,
we do not classify this as a failed case.

3.2 Approach Overview
CureFuzz consists of the following stages: Setup and initialization,
seed energy estimation, seed selection, seed mutation, and seed
evaluation. Algorithm 2 presents the high-level workflow of Cure-
Fuzz and visually represented in Figure 1. As it core, CureFuzz
maintains a corpus of seeds, each representing a unique scenario
in the environment. We refer to the starting condition of a specific
scenario as the initial state. We then observe the resultant actions
of the SDM under the initial state. The SDM’s actions change the
environment and lead to new states, thus we obtain the induced
state sequence for each initial state. The interaction between the
SDM and the environment is automatically terminated if the state
sequence reaches its maximum length or a crash is detected. Cure-
Fuzz then estimates the energy of a seed based on its intrinsic
reward (to be described later in Section 3.3), the probability of trig-
gering new scenarios (to be described later in Section 3.4), and the
probability of triggering a crash (to be described later in Section
3.4). Seeds with higher energy, indicating either their novelty or
higher crash probability, are selected preferentially for mutation.
This mutation process produces new seeds, whose induced state
sequences are then evaluated. This cycle repeats throughout the
fuzz testing procedure.

3.3 A Curiosity-driven Search Strategy
Inspired by the success of exploration engineering [42], we propose
a curiosity mechanism that measures the novelty of a scenario.
Algorithm 1 shows the pseudocode for our curiosity mechanism.
Our curiosity module consists of a pair of neural networks, which
includes a fixed target network𝑇 and a learnable predictor network
𝑃 . Both networks have identical neural architectures, consisting of
a simple multi-layer perceptron (MLP) [23]. The fixed target net-
work is initialized with random weights, which remain unchanged
throughout the fuzzing process. In contrast, the predictor network
is trained to approximate the output of the target network. For
each encountered state, we denote the output generated by the
target network as 𝑇 (𝑠) and the output generated by the predictor
network as 𝑃 (𝑠). The difference between the outputs of these two
networks, referred to as the prediction error, serves as a proxy for
the novelty of a given state. The prediction error, essentially is the
mean squared error (MSE) between the outputs of the target and
predictor networks. It is computed as:

𝐸 (𝑠) = | |𝑇 (𝑠) − 𝑃 (𝑠) | |2 (1)

Algorithm 1: The Curiosity Mechanism
1 Function initCuriosity():
2 Initialize target network 𝜙𝑡𝑎𝑟𝑔𝑒𝑡
3 Initialize predictor network 𝜙𝑝𝑟𝑒𝑑 with same architecture as

𝜙𝑡𝑎𝑟𝑔𝑒𝑡

4 Fix the weights of 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 to random values
5 return 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 , 𝜙𝑡𝑎𝑟𝑔𝑒𝑡
6 Note that 𝑺 = {𝑠1, 𝑠2, ..., 𝑠𝑡 }
7 Function Curiosity(𝑺 , 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 , 𝜙𝑡𝑎𝑟𝑔𝑒𝑡):
8 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐_𝑟𝑒𝑤𝑎𝑟𝑑 = 0
9 for 𝑖 = 1 to 𝑡 do

/* Compute intrinsic reward */

10 𝑟𝑖 = ∥𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠′𝑖) − 𝜙𝑝𝑟𝑒𝑑 (𝑠′𝑖) ∥2
11 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐_𝑟𝑒𝑤𝑎𝑟𝑑+ = 𝑟𝑖

/* Update predictor network */

12 Update 𝜙𝑝𝑟𝑒𝑑 to minimize ∥𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠′𝑖) − 𝜙𝑝𝑟𝑒𝑑 (𝑠′𝑖) ∥2
13 end
14 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐_𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐_𝑟𝑒𝑤𝑎𝑟𝑑 × 1

𝑡

15 return 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐_𝑟𝑒𝑤𝑎𝑟𝑑 , 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 , 𝜙𝑡𝑎𝑟𝑔𝑒𝑡

This prediction error serves as an intrinsic reward signal for each
state. In CureFuzz, given the induced states sequence of a scenario,
we calculate the intrinsic reward for all states within the sequence.
The novelty score of a scenario is the mean of all intrinsic rewards.
The intrinsic reward for the ‘novel’ inputs should be higher than the
previously encountered inputs during the fuzzing process, thereby
driving the fuzzer to explore those novel states. In addition, when
updating the parameters of the predictor network, we apply 𝐿2
regularization to avoid overfitting.

The quantity of training data will influence the magnitude of
prediction errors, which explains why our curiosity mechanism
serves as a reliable novelty measure for scenarios. When the predic-
tor network encounters few instances for certain types of scenario
during training, the prediction error tends to be high. Conversely,
when the SDM frequently encounters one type of scenario, the
predictor network has more opportunities to learn and mimic the
target network’s responses for that specific scenario. The predictor
network can accurately predict the outcomes and the prediction
error tends to be lower, indicating these are familiar scenarios.
By leveraging the prediction error as a measure of curiosity, our
mechanism can effectively identify scenarios that deviate from the
learned patterns, highlighting their novelty. This approach enables
the fuzzer to prioritize exploring unfamiliar scenarios, leading to
an increased diversity of crash-triggering scenarios during fuzz
testing for SDMs.

3.4 CureFuzz Architecture

Setup and Initialization: Lines 13-15 in Algorithm 2 shows the
initialization of CureFuzz. The function EnvMonitor is responsible
for monitoring the interaction between the SDM and the environ-
ment. For the target SDM and environment, given an initial state as
the input, EnvMonitor returns the induced state sequence and the
associated cumulative reward. CureFuzz first loads the target SDM
and the environment. 𝜃𝑇 and 𝜃𝑃 are the parameters of our curiosity
module and are randomly initialized. The fuzzer then generates an

Curiosity-Driven Testing for Sequential Decision-Making Process ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Algorithm 2: CureFuzz Workflow
Input :Target SDM: 𝑆𝐷𝑀 , Environment: 𝑒𝑛𝑣
Output :Crash-triggering Seeds:𝐶

1 Function EnvMonitor(𝑒𝑛𝑣, 𝑆𝐷𝑀, 𝑠):
2 {𝑠′ }, 𝑟 ,←− EnvSim(𝑒𝑛𝑣, 𝑆𝐷𝑀, 𝑠,𝑚𝑎𝑥_𝑠𝑡𝑒𝑝) ;
3 return {𝑠′ }, 𝑟 ;
4 Function InitCorpus():
5 𝐼 ←− ∅
6 while runnign time < 2 hours do
7 𝑠 ←− 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑎𝑡𝑒 (𝑒𝑛𝑣) ;
8 𝑠′ ←− EnvMonitor(env, SDM, s) ;
9 𝐼 ←− 𝐼 ∪ {𝑠′ };

10 end
11 return 𝐼 ;
12 Function CureFuzz(𝑒𝑛𝑣, 𝑆𝐷𝑀):
13 𝐶 ←− ∅;
14 𝜃𝑇 , 𝜃𝑃 ←− initCuriosity;
15 𝐼 ←− InitCorpus(env, SDM) ;
16 while runnign time < 12 hours do
17 𝑠 ←− SeedSelection(𝐼) ;
18 𝑠𝛿 ←− SeedMutation(𝑠) ;
19 𝑠′

𝛿
←− EnvMonitor(𝑒𝑛𝑣, 𝑆𝐷𝑀, 𝑠𝛿) ;

20 𝑖𝑛_𝑟𝑒𝑤𝑎𝑟𝑑, 𝜃𝑇 , 𝜃𝑃 ←− Curiosity(𝑠′
𝛿
, 𝜃𝑇 , 𝜃𝑃) ;

21 if isCrashed (𝑠′
𝛿
) then

22 𝐶 ←− 𝐶 ∪ 𝑠′
𝛿
;

23 else if isInteresting (𝑠′
𝛿
) then

24 𝐼 ←− 𝐼 ∪ 𝑠′
𝛿
;

25 end
26 return𝐶 ;

initial corpus of seed by randomly sampling with the environment,
as depicted in Function InitCorpus (Algorithm 2 Line 5 to 11). The
underlying assumption is that we are aware of the legitimate state
space of the environment, allowing us to generate valid seeds across
this state space randomly. Since the definition of legitimate state
space varies in different environments, a detailed description for
each environment is given in Section 4.1.

Seed energy estimation: The main fuzzing process starts at Line
15. Following the settings from prior works [36, 56], a 12-hour long
fuzzing is conducted. At each iteration, a seed is selected from the
seed corpus. Similar to traditional fuzz testing of software [67], we
first estimate the energy of each seed. A seed with a high energy
is more likely to be selected. Because CureFuzz aims to find a
diverse set of crashes, the energy of a seed cannot only reflect the
novelty but also needs to consider the probability of triggering
crashes. To balance these objectives, the estimation process is based
on multiple factors. These factors are intrinsic reward (novelty
measure), cumulative reward (probability of triggering crashes),
and robustness (probability of triggering unseen states).
Cumulative reward. The cumulative reward is a direct measurement
on the performance of the SDM.We begin with a simple assumption:
if the SDM does not perform well under certain scenarios, mutating
on these scenarios is more likely to trigger crashes. CureFuzz
prioritizes the seeds with low cumulative reward. Thus a seed with

Algorithm 3: Robustness Estimation
Input :State sequence: 𝑺, 𝑒𝑛𝑣, 𝑆𝐷𝑀

Output :Robustness Measure: 𝑅
1 Function Robustness(𝑺):
2 Obtain 𝑠0 from 𝑺

3 𝑠𝛿0 ←− SeedMutation(𝑠0)
4 𝑺𝛿 , 𝑟 ←− EnvMonitor (𝑒𝑛𝑣, 𝑆𝐷𝑀, 𝑠𝛿0 ,)
5 return |𝑺−1 − 𝑺𝛿−1 |

a lower cumulative reward is accordingly given a higher energy
estimation.
Robustness. We define the term Robustness as the probability for
a given seed to trigger diverse consequences. The calculation of
robustness is detailed in the Algorithm 3. Given a seed 𝑠 and its
induced state sequence 𝑺 , we first record the final state of 𝑺 , denoted
as 𝑺−1. We add a tiny random perturbation on 𝑠 to generate a
new initial state 𝑠𝛿 . The mutated state 𝑠𝛿 then is fed the function
EnvMonitor, and we obtain its induced sequence 𝑺𝛿 . Robustness is
then measured as the Euclidean distance between the final states
of 𝑺 and 𝑺𝛿 , which essentially is |𝑺−1 − 𝑺𝛿−1 |.

Robustness is a measure of how sensitive an SDM’s behavior is
to slight perturbations in the original state. When the Euclidean
distance between the final states of the original and mutated state
sequences is large, it indicates that even a small perturbation in the
initial state leads to significantly different outcomes. This suggests
that the seed has the potential to trigger a diverse range of behaviors,
making it a valuable candidate for further exploration and testing.
On the other hand, if the distance between the final states is small,
it implies that the SDM’s behavior is relatively consistent and less
sensitive to small changes in the input. In this case, the seed might
be less likely to reveal new or unexpected system behaviors.
Intrinsic reward. The intrinsic reward generated by the curiosity
mechanism serves as the novelty measure of a given seed. The
intrinsic reward can be easily combined with the cumulative reward
and robustness score measurement.

Denoting reward as 𝑟 , intrinsic reward as 𝑖 , robustness as 𝑟 ′,
𝛼, 𝛽, and 𝛾 as scaling factors, the overall score of seed is:

𝐸 (𝑠) = 𝑒−𝛼𝑟 + 𝑒𝛽𝑖 + 𝛾𝑟 ′ (2)

Seed Selection: We prioritize selecting the seed with a high energy.
Given the corpus 𝐶 and total number of seeds in the corpus 𝑁 ,
each seed would be selected with a probability of 𝐸 (𝑠)∑𝑁

𝑖=1 𝐸 (𝑠𝑖)
, where∑𝑁

𝑖=1 𝐸 (𝑠𝑖) denotes the total energy of the seeds in the corpus.
Seed Mutation: Once a seed is selected from the corpus, the Seed-
Mutation function generates a new mutated state by applying a
small random perturbation to a selected state. The mutated state is
fed into the EnvMonitor function to generate its corresponding state
sequence and collect the cumulative reward. We need to ensure
that the mutated seed lies in the legitimate state spaces , and the
mutated seed would not trigger an initial crash. In our experiments,
we have carefully addressed this concern and verified the validity
of each mutated seed, details are given in Section 4.
Seed Evaluation: The function Curiosity assigns the intrinsic re-
ward to the newly induced state sequence, and this intrinsic reward
serves as the curiosity of the fuzzer in the further mutation of this

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

seed. For each state sequence, we calculate the difference between
the two networks of the curiosity mechanism using MSE loss. The
parameters of the predictor network are updated using this loss.
CureFuzz then checks on the termination status of the state se-
quence. If a crash is found, the mutated seed is added to the list
of crashes, and the fuzzing process continues with the next seed
input. When CureFuzz does not identify a crash, it shifts focus to
assessing the state sequence based on the induced intrinsic reward
and cumulative reward. CureFuzz measures the intrinsic reward
of the state sequence. If this reward surpasses a pre-set threshold,
the seed responsible for this sequence is considered significant.
Consequently, it is added to the seed corpus for further analysis.
CureFuzz also compares the cumulative reward of the mutated
seed against that of the original seed. This mutated seed is also
added to the corpus if the mutated seed’s cumulative reward is
lower. If neither of these conditions are met, the mutated seed is
then discarded, and CureFuzz progresses to the next iteration.

Termination: The fuzzing process continues the above-mentioned
iteration and is terminatedwhen the time has exceeded the specified
limit (12 hours). Finally, CureFuzz returns the list of crashes found
during the fuzzing process.

4 EXPERIMENTAL SETTING
4.1 Research Questions
To evaluate the performance of CureFuzz and comprehensively
understand the impact, we formulate the three research questions:
RQ1: How effective is CureFuzz in finding crash-triggering
scenarios?
RQ2: Can CureFuzz be effectively guided with the curiosity
mechanism?
RQ3: Can we use the crashes found by CureFuzz to improve
SDMs?

4.2 Experiment Subject and Environment
We evaluate CureFuzz using the same environments and SDMs
as Pang et al. [56]. Our investigation covers various environments,
including the CARLA autonomous driving simulator [16], ACAS
Xu for collision avoidance in aviation [49], the Cooperative Naviga-
tion (Coop Navi) environment for multi-agent reinforcement learn-
ing [45], and the BipedalWalker environment in OpenAI Gym [41].

4.2.1 Autonomous Driving. CARLA [16] is a widely used open-
source simulator for autonomous driving research. In the CARLA
simulator, at each timestep, the SDM receives an RGB image and
its current velocity as inputs. Using this information, the SDM
calculates the appropriate steering, throttle, and brake commands
to navigate toward the specified goals. The performance of the
SDM is assessed in an urban driving environment that includes
intersections and traffic lights. Two SDMs are considered in the
CARLA environment, which are developed using DRL and IL, re-
spectively. In CARLA, CureFuzz checks for the situations when
the SDM-controlled vehicle experiences a collision with other ve-
hicles or buildings. The environment of CARLA can be described
as the positions of angles of all vehicles on the map, including the
SDM-controlled one. When CureFuzz mutates a given state, small
perturbations are randomly generated and added to the positions

and angles of these vehicles. We use the CARLA simulator itself
to check for the validity of the mutated state. All illegally mutated
states and the states that trigger initial collision are discarded in
our experiments.

4.2.2 Aircraft Collision Avoidance. ACAS Xu is a collision
avoidance system for the aviation industry [49]. We utilize the
popular DNN-based variant of ACAS Xu [35], which has also been
broadly studied by previous literature [74]. The system employs 45
distinct neural networks to predict the most appropriate actions to
avoid the collision, such as Clear-of-Conflict (which goes straight),
weak left (1.5 deg/s), strong left (3.0 deg/s), weak right, and strong
right. In ACAS Xu, CureFuzz simply aims to find the scenarios
when there are collisions between the SDM-controlled airplane
with other airplanes. For mutation, the initial positions and speeds
of the SDM-controlled and the other planes slightly changed. The
maximal speed of all airplanes is capped at 1,100 ft/sec. Given the
predefined range of acceptable states, states that fall outside legal
space are automatically discarded.

4.2.3 Video Game. Coop Navi [45] is an OpenAI environment
designed for multi-agent reinforcement learning (MARL) applica-
tions. In Coop Navi, agents aim to learn how to cooperate with
each other to reach the pre-determined landmarks without colliding
with one another. The underlying SDM for this game is proposed
by the original publication [45]. This SDM is aware of the position
of each agent and the target landmarks, then the SDM decides the
moving direction and speed for each agent. CureFuzz aims to find
the scenarios when there are collisions between SDM-controlled
agents. The initial positions of the three MARL-controlled agents
are mutated, and their initial speeds are set to 0 to avoid initial colli-
sion. With a clear definition of permissible positions and velocities,
CureFuzz ignores any illegal states.

BipedalWalker [41] is an environment in the OpenAI Gym frame-
work that challenges a two-legged robot to navigate through vari-
ous terrains and obstacles using bipedal locomotion. We select the
SDM which is employed with Twin Delayed DDPG with Quantile
Distributional Critics (TQC) [41] algorithm, and its implementation
is available in the stable-baselines3 repository [71]. The robot takes
in a 24-dimensional state and predicts the speed for each leg based
on body angle, leg angles, speed, and lidar data. We aim to find the
scenarios when the robot falls. Following Pang et al. [56], we mutate
the sequence of ground types the robot encounters. Specifically,
we make sure that the first 20 frames are “flat” to prevent initial
failure. We also place a “flat” between two hurdles to enable the
agent to pass the obstacles while taking optimal actions. Since the
valid ground types are known, illegal states can be easily detected
and discarded.

4.3 Implementation
CureFuzz is coded in Python and the curiosity module is imple-
mented with the Pytorch Library [57]. The curiosity module utilizes
a simple multilayer perceptron [23] as the underlying neural ar-
chitecture for both the target network and predictor network, and
we use the ReLU function [1] as the activation function. Following
prior work [56], we randomly sample for 2 hours to construct the
initial corpus, and the main fuzzing process is conducted for 12

Curiosity-Driven Testing for Sequential Decision-Making Process ICSE ’24, April 14–20, 2024, Lisbon, Portugal

hours as the standard setting [36]. The interaction time between
the SDMs and the environment of Coop Navi and Acas Xu takes
significantly less time than the other environments. We follow Pang
et al. [56] to modify the experiment setup accordingly. Specifically,
we reduce the time taken to construct the initial corpus to 1 hour in
ACAS Xu, and 30 minutes in Coop Navi, then conduct the 12 hours
of fuzzing. For each SDM, we make sure CureFuzz and MDPFuzz
are experimented under the same setting to make a fair comparison.
When mutating a seed, the magnitude of the random perturbation
is a critical factor that can impact the performance of the fuzzer.
We re-use the code implementation from Pang et al. for generating
mutations. Our experiments are conducted on a server with one
Intel Xeon E5-2698 v4 @ 2.20GHz CPU, 504GB RAM, and NVIDIA
Tesla V100 GPU.

5 EXPERIMENT RESULTS
RQ1: How effective is CureFuzz in finding
crash-triggering scenarios?
We compare the performance of CureFuzz with two state-of-the-
art approaches: MDPFuzz [56] and the method proposed by Li et
al. [86] (referred to as “G-Model” in our paper). MDPFuzz is a black-
box fuzz testing framework for SDMs while G-Model employs a
model-based method to generate diverse scenarios. Our evaluation
focuses on three key metrics: environmental state coverage, the
total number of detected crash-triggering scenarios, and the distinct
types of crash-triggering scenarios. We repeat the experiment five
times for each SDM and report the average results. The inclusion of
two markedly different baselines and three diverse metrics ensures
that our evaluation comprehensively compares the effectiveness of
our CureFuzz and the baselines from multiple perspectives.
Coverage Analysis. Coverage analysis plays a crucial role in eval-
uating the thoroughness and completeness of a testing technique.
Inspired by fuzzing for traditional software, which measures code
coverage, we measure the environmental state coverage in our ex-
periments. State coverage refers to the effectiveness of a fuzzer
in covering the possible scenarios within the state space of the
environment. Considering that experimental environments have
a high-dimensional and continuous state space, to calculate state
coverage, we discretize the state space of the experimental environ-
ments by bucketing continuous variables into discrete segments. In
other words, we divide each dimension of the state space into a fixed
number of bins, effectively creating a grid over the state space. Each
bin represents a discrete state.When performing the state discretiza-
tion, we use multiple numbers of bins (i.e., 5, 10, 100) [44]. Note that
the exception here is the case of BipedalWalker, where we mutate
the sequence of ground types that the robot needs to walk through.
Since the available number of ground types is fixed, we only need to
calculate the proportion of encountered ground types over the total
number of ground types as state coverage and there are no actual
bins.We present the average state coverage results ofCureFuzz and
the baselines in Table 1. CureFuzz demonstrates promising state
coverage performance in comparison to baseline methods across
various environments and bin numbers. We perform the Mann-
Whitney U [54] statistical significance test at 95% significance level
and compute effect size measure (Cohen’s d [22]). Notable environ-
ments where it significantly and substantially outperforms others

Table 1. State Coverage of CureFuzz and baselines with 95% confi-
dence interval margins of error.

Method 5 bins 10 bins 100 bins

Carla (RL)
MDPFuzz 7.3% ± 0.6% 1.3% ± 0.1% 3e−5 ± 3e−6
G-Model 5.0% ± 1.2% 1.6% ± 0.3% 2.4e−5 ± 5.5e−6
CureFuzz 8.0% ± 0.9% 3.4% ± 0.3% 1e−4 ± 2e−5

ACAS Xu (DNN)
MDPFuzz 5.3% ± 0.5% 0.48% ± 0.01% 2e−6 ± 4e−8
G-Model 6.7% ± 0.9% 0.72% ± 0.02% 3e−6 ± 1e−7
CureFuzz 11% ± 0.6% 1.2% ± 0.15% 6e−6 ± 1e−6

Carla(IL)
MDPFuzz 6.4% ± 1.2% 1.0% ± 0.6% 2e−5 ± 2e−6
G-Model 6.7% ± 0.5% 1.6% ± 0.5% 3e−5 ± 1e−6
CureFuzz 7.2% ± 0.1% 1.6% ± 0.44% 3e−5 ± 1e−7

Coop Navi (MARL)
MDPFuzz 0.034% ± 0.008% 3e−7 ± 1e−8 5e−19 ± 6e−20
G-Model 0.021% ± 0.008% 6e−8 ± 3e−9 7e−20 ± 3e−21
CureFuzz 0.059% ± 0.018% 7e−7 ± 1e−7 1e−18 ± 5e−19

BipedalWalker (DRL)
MDPFuzz 0.065% ± 0.002% – –
G-Model 0.011% ± 0.002% – –
CureFuzz 0.42% ± 0.02% – –

include Carla(RL), Acas Xu (DNN), Coop Navi(MARL), and Bipedal-
Walker(RL). The only exception is in Carla(IL), where CureFuzz
shows comparable results to G-Model. Overall, CureFuzz achieves
the best coverage rate.
Total Number of Crashes. Table 2 shows the comparative results of
CureFuzz and baseline methods in terms of the number of detected
crashes. The results show that CureFuzz consistently outperforms
MDPFuzz in all five sets of experiments. The most significant im-
provement is observed in the SDM of BipedalWalker(RL), with a
remarkable 422.22% increase in detected crashes, rising from 126 to
658. For CARLA(RL) and CARLA(IL), the improvements are 145.83%
(from 120 to 295) and 110.47% (from 86 to 181), respectively; for
Coop Navi(MARL), the performance is boosted by 62.21% (from
52.4 to 85). The smallest improvement is for ACAS Xu(DNN), which
is 46.45% (from 183 to 268). Furthermore, CureFuzz outperforms G-
Model for four out of five SDMs by up to 134.16% (from 281 to 658 in
BipedalWalker(RL)). For Carla(RL) and Carla(IL), the improvements
are 86.7% (from 158 to 195)and 60.1% (from 113 to 181). CureFuzz
also archives an improvement of 94.2% in Acas Xu(DNN). After
performing the statistical test and computing effect size, results
show that CureFuzz statistically significantly and substantially out-
performs both baselines in these cases. The only exception is in
the context of Coop Navi(MARL), where G-Model identifies more
crashes than CureFuzz (185.4 vs. 85). We perform additional analy-
sis to investigate why it is happening for Coop Navi(MARL). Recall
that the goal of the Coop Navi game is to find the scenarios when
the agents collide with each other, in Figure 2, we select the median
performance from the five repeated experiments for CureFuzz and
G-Model, and plot the positions of the agents in the crash-triggering
scenarios found by different methods. While the valid range of the
agent’s position is from -1 to 1, from Figure 2, we can see that
G-Model tends to find the crashes that the agents are positioned
around the boundary of the valid input. In contrast, CureFuzz
covers more spread positions. It also explains why the coverage of
G-Model is lower than CureFuzz but it finds more crashes for Coop
Navi (MARL). CureFuzz and G-Model tend to be interested in a
different area of the search space, thus one possible future direction
could combine the advantages of both kinds of methods.
Distinct Crashes. Using the same state discretization procedure that
we used for coverage analysis, we transform the continuous state
space into a discrete grid representation again. For each method,

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

Figure 2. Visualization of Agent Positions in Crash-Triggering Sce-
narios found by various methods for Coop Navi (MARL). This graph
plots the x and y coordinates, ranging from -1 to 1. The red crosses
represent G-model, the green dots represent CureFuzz, and the blue
triangles represent MDPFuzz.

Table 2. Average total number of crashes found by CureFuzz and
the baselines run across different SDMs and margin of errors in 95%
confidence interval.

Method Mean

Carla (RL)
MDPFuzz 120 ± 22.8
G-Model 158 ± 18.6
CureFuzz 295 ± 38.3

ACAS Xu (DNN)
MDPFuzz 183 ± 15.9
G-Model 138 ± 27.9
CureFuzz 268 ± 26.8

Carla (IL)
MDPFuzz 86 ± 25.0
G-Model 113 ± 33.5
CureFuzz 181 ± 25.4

Coop Navi (MARL)
MDPFuzz 52.4 ± 8.8
G-Model 185.4 ± 36.6
CureFuzz 85 ± 7.3

BipedalWalker (RL)
MDPFuzz 126 ± 31.8
G-Model 281 ± 52.5
CureFuzz 658 ± 98.3

we determine the average number of unique grid cells occupied by
the detected crashes. We account for one grid cell as one distinct
crash. As shown in Table 3, CureFuzz finds more types of crash-
triggering scenarios than MDPFuzz in all bin numbers and every
SDM. For the 100 bins situation, the largest improvement is seen
for the Carla(IL) SDM, where CureFuzz found 200% more types
than MDPFuzz. Similarly, for the other SDMs, CureFuzz found
88.9%, 177.8%, and 62.8% more types of crashes respectively. After
performing the statistical test and computing effect size, we find that
CureFuzz statistically significantly and substantially outperforms
the baselines apart from Coop Navi (MARL). Again, in the context
of Coop Navi (MARL), CureFuzz falls short of G-Model. We have
discussed this in detail in the sub-section above.
Efficiency Analysis. We further conduct an in-depth analysis to
investigate the efficiency of CureFuzz. The total time taken by a
fuzz testing method can be split into two parts, which are execution
time and analysis time. The execution time corresponds to the

Table 3. Average distinct types of crash-triggering scenarios found
by CureFuzz and baselines run across different SDMs and margin of
errors in 95% confidence interval.

Method 5 bins 10 bins 100 bins

Carla (RL)
MDPFuzz 9.0 ± 0.9 17.8 ± 2.4 29.8 ± 3.9
G-Model 6.8 ± 1.0 12.2 ± 1.1 20.6 ± 1.5
CureFuzz 10.0 ± 0.6 30.2 ± 3.1 89.4 ± 25.3

ACAS Xu (DNN)
MDPFuzz 8.0 ± 0.9 9.0 ± 0.9 9.0 ± 0.9
G-Model 5.8 ± 1.6 6.4 ± 1.1 6.6 ± 1.7
CureFuzz 12.0 ± 0.9 13.6 ± 0.7 17.0 ± 1.5

Carla (IL)
MDPFuzz 9.0 ± 0.9 14.4 ± 2.3 21.6 ± 3.0
G-Model 5.6 ± 0.7 12.8 ± 3.2 23.4 ± 6.0
CureFuzz 10.0 ± 0.0 27.5 ± 1.9 60.0 ± 10.5

Coop Navi (MARL)
MDPFuzz 52 ± 11.0 52.4 ± 11.7 52.4 ± 11.7
G-Model 104.8 ± 35.5 156.2 ± 30.0 184.6 ± 38.8
CureFuzz 83.5 ± 8.0 85.3 ± 7.3 85.3 ± 7.3

BipedalWalker (RL)
MDPFuzz 126 ± 31.8 - -
G-Model 281 ± 52.5 - -
CureFuzz 658 ± 98.3 - -

Table 4. Time comparison between CureFuzz and MDPFuzz in sec-
onds.

MDPFuzz CureFuzz

Carla (RL) 0.855 0.008 (+99.1%)
ACAS Xu (DNN) 0.231 0.005 (+97.8%)

Carla (IL) 0.985 0.005 (+99.5%)
Coop Navi (MARL) 0.033 0.006 (+81.8%)
BipedalWalker (RL) 0.970 0.011 (+98.9%)

duration an SDM needs to interact with its environment, while the
analysis time accounts for the computational time needed for the
fuzzing process (i.e., seed selection and seed evaluation). Table 4
presents the average analysis time for each iteration of CureFuzz
and MDPFuzz. Note here we do not compare with G-Model in the
efficiency analysis since it operates differently. It is not a fuzzing
test method and requires the retraining of its generative model in
each iteration. This retraining process can significantly extend the
time taken, making it incomparable to the efficiency of CureFuzz
and MDPFuzz, as these two fuzzing methods do not necessitate
repeated training. The results clearly demonstrate the remarkable
efficiency of CureFuzz, with its analysis time typically requiring
only up to 0.08 seconds. In contrast, MDPFuzz takes about one
second in some cases. On average, CureFuzz’s analysis time is
81.8% faster than that of MDPFuzz, highlighting the minimal time
overhead associated with our curiosity mechanism across various
environments and state spaces.

Answer to RQ1: CureFuzz can efficiently find crash-triggering
scenarios across various SDMs and environments.

RQ2: Can CureFuzz be effectively guided with the
curiosity mechanism?
For this research question, we follow the same experimental setting
with RQ1. We remove the curiosity component from CureFuzz and
conduct the fuzzing again on our target SDMs. Table 5 shows the

Curiosity-Driven Testing for Sequential Decision-Making Process ICSE ’24, April 14–20, 2024, Lisbon, Portugal

2 4 6 8 10 12
0

50

100

150

200

250

N
um

be
r o

f C
ra

sh
es

CureFuzz ablated
CureFuzz

(a) ACAS Xu(DNN)

2 4 6 8 10 12
0

25

50

75

100

125

150

175

N
um

be
r o

f C
ra

sh
es

CureFuzz ablated
CureFuzz

(b) Carla(IL)

2 4 6 8 10 12
0

50

100

150

200

250

300

N
um

be
r o

f C
ra

sh
es

CureFuzz ablated
CureFuzz

(c) Carla(RL)

2 4 6 8 10 12
0

20

40

60

80

N
um

be
r o

f C
ra

sh
es

CureFuzz ablated
CureFuzz

(d) Coop Navi(MARL)

2 4 6 8 10 12
0

100

200

300

400

500

600

700

N
um

be
r o

f C
ra

sh
es

CureFuzz ablated
CureFuzz

(e) BipedalWalker(RL)

Figure 3. Results for RQ2: Comparison between CureFuzz with and without the curiosity mechanism. The x-axis represents the time passed in
hours and the y-axis represents the number of found crashes. The complete CureFuzz is represented with green color and triangles, the ablated
CureFuzz is represented with blue color and circles.

Table 5. Results for RQ2, shows the average state coverage (for 100
bins), total number of crashes, distinct types of crash-triggering
scenarios (for 100 bins) found by the ablated CureFuzz

State Coverage Total crash Distinct crash
Carla (RL) 4e-3% 46.25 26.6

Acas Xu (DNN) 2.5e-4% 46.0 7.8
Carla (IL) 1.3e-3%. 52.6 23.8

Coop Navi (MARL) 1.0e-17% 28.8 28.8
BipedalWalker (RL) 2.4e-1% 367 367

performance of the ablated CureFuzz . We can observe that the ad-
dition of the curiosity mechanism plays a vital role in boosting the
effectiveness of CureFuzz, as it provides an additional signal that
motivates CureFuzz to further explore the states it is curious about.
We plot the number of crashes found by CureFuzz and the ablated
CureFuzz on an hourly basis in Figure 3. Notice that the experi-
ments are repeated five times, and we select the median performer
for plotting. We can see that CureFuzz consistently outperforms
ablated CureFuzz across all scenarios and time intervals.

Answer to RQ2: The curiosity mechanism can effectively guide
CureFuzz. The novelty measure provided by the curiosity mech-
anism serves as important guidance for CureFuzz to find crash-
triggering scenarios.

RQ3: Can we use the crash-triggering scenarios
found by CureFuzz to improve SDMs?
In this research question, we investigate whether the identified
crash-triggering scenarios found by CureFuzz can advance the
overall performance of SDMs. We follow the same procedure con-
ducted by Pang et al. [56] to repair the DNN-based SDM for ACAS
Xu with further fine-tuning. In RQ1, the experiments for ACAS
Xu are repeated five times for CureFuzz. We select the median
performer (ranked by the number of detected crashes), and then
manually inspect these crash-triggering scenarios to identify the
optimal actions to avoid collisions. In the end, to verify the effec-
tiveness of the repair, we utilize CureFuzz again to test the newly
fine-tuned SDM.

For the repaired ACAS Xu, 55 faults and 4 distinct types of crash-
triggering scenarios are detected. We find that the crashes found
by CureFuzz are reduced by 73% compared with the original DNN

model. Therefore, CureFuzz’s findings can boost the performance
of the SDM. It is important to note that a similar effectiveness en-
hancement process can also be applied to other SDMs. We demon-
strate it in the environment of ACAS Xu, as aviation avoidance is
one of the safety-critical situations and the DNN SDM of ACAS Xu
has a relatively straightforward architecture. In comparison, previ-
ous papers have shown that substantial computational resources
are needed to train complex SDMs. For example, the training pro-
cess of an RL agent under the CARLA environment can take more
than a month [15].

Answer to RQ3: The crash-triggering scenarios found by Cure-
Fuzz are beneficial for enhancing the effectiveness of SDMs in
avoiding catastrophic failures. The experiment result shows that
the number of found crashes is reduced by 73% on the repaired
model.

6 DISCUSSION
Facilitating Fault Detection through Curiosity Mechanism
Optimization. The curiosity mechanism’s optimization process
can be conceptualized as knowledge distillation from a randomly
initialized neural network to the predictor network [11]. The pre-
diction error of the target network and the predictor network then
serves as a proxy for measuring uncertainty, specifically epistemic
uncertainty [28]. Epistemic uncertainty would be particularly high
in regions of the input space where few similar examples were seen
in the predictor network’s training data. By focusing on areas of
high epistemic uncertainty, where the predictor network struggles,
the testing process inherently explores a wider variety of scenarios.
Previous studies have shown that generating a diverse set of test
cases can effectively detect failures [2, 26, 30]. Increasing the diver-
sity of test cases leads to a more comprehensive exploration of the
fault space, thereby improving the chances of identifying faults and
crash-triggering scenarios [2, 26, 30]. As we showed in RQ2, the
guidance provided by the curiosity mechanism effectively enhances
CureFuzz’s ability to detect a diverse set of crashes. Additionally,
a varied set of crash-triggering scenarios is particularly beneficial
during the model development phase, as it provides developers with
a wider range of contexts for debugging, repairing, and enhancing
the model’s effectiveness.
Comparison with SDM Testing Methods.While MDPFuzz also
utilizes a density-based method to estimate the novelty of the state

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

sequence, it primarily focuses on mutating seeds with high crash
potential. In contrast, CureFuzz emphasizes exploring novel sce-
narios. As a result, we can observe that prioritizing novel scenarios
is more effective and can improve the diversity of crash-triggering
scenarios. Moreover, our curiosity mechanism is computationally
more efficient than the density-based method of MDPFuzz, mak-
ing it better suited for complex environments. G-Model employs
a topological similarity measure that evaluates the novelty of the
state to guide the generation of diverse scenarios. However, their
proposed novelty measurement is only applied to the termination
state instead of the entire state sequence. In comparison, Cure-
Fuzz captures richer information from the entire state sequence,
which gives a more comprehensive picture of the SDM’s behavior
over time. This comprehensive approach is particularly crucial in
our experiment setting, where SDMs engage in hundreds of inter-
actions with the environment per run. By focusing solely on the
termination state, G-Model risks overlooking a wealth of valuable
information embedded in the intermediate states.
Comparison with Exploration Heuristics in RL. Exploration is
a long-studied topic in the field of reinforcement learning. Apart
from leveraging the prediction error, another popular method is
the count-based method [6, 68], where the visited frequency of
states is leveraged as the novelty measure. However, it may not
scale well to high-dimensional state spaces or non-discrete environ-
ments where the state space becomes effectively infinite, making
state visitation counts sparse and less informative. Our curiosity
mechanism overcomes this by using neural network-generated pre-
dictions as a basis for exploration, providing a more generalizable
measure of novelty. In highly complex environments where the
SDM’s behavior is influenced by an extensive range of variables and
intricate interactions, CureFuzz may struggle to accurately identify
all potential failure scenarios. The complexity can mask underlying
issues, making them harder to detect.
Real-World Complexities. Another critical part to consider is the
discrepancy between our simulated environment and real-world
scenarios. Simulation environments, while sophisticated, may not
perfectly replicate the complexities of real-world scenarios. For
example, environmental and sensor-related noise can influence the
accuracy of simulation-based testing compared to real-world sce-
narios. As pointed out by Stocco et al. [66], this gap between the
virtual and physical-world testing may lead to any testers produc-
ing false positives and false negatives. Moreover, when applied to
larger-scale and more complex systems, the resource requirements
of CureFuzz, which mainly come from three aspects, need to be
considered. Firstly, the sophistication of the simulator increases,
necessitating greater computational resources. Secondly, CureFuzz
requires more resources to handle intricate scenarios characterized
by numerous properties, such as high-resolution images and radar
data. Thirdly, the exploration of a larger input space in extensive
systems demands more time and resources. Future research will
delve into the effects of applying CureFuzz in these advanced,
complex environments

7 THREATS TO VALIDITY
Threats to Internal Validity. These threats relate to factors within
the experimental design. To ensure the implementations of base-
lines are correct, we reuse the official replication package released
by Pang et al. [56] and Li et al [86]. To reduce the variability due to
the inherent randomness in our experiments, we repeat each ex-
periment five times. We report the mean results marginal of errors
and conduct statistical tests.
Threats to External Validity. These threats relate to the general-
izability of our experimental results. We mitigated this threat by
including typical and various environments, including autonomous
driving, aviation collision avoidance systems, and video game play-
ing. We also experiment on five state-of-the-art SDMs, which are
powered by different types of complex technologies (i.e., DNN, DRL,
MARL, and IL). In the future, we aim to apply our testing approach
to more complex environments to gain more profound insights.
Threats to Construct Validity. Threats to construct validity are
related to the suitability of our evaluation metrics. The number of
faults found per 12 hours is a widely adopted metric for fuzzing [56,
77]. Moreover, we report the state coverage and distinct types of
crash-triggering scenarios. Because most of the environments con-
sidered in our paper have a continuous state space, we use state
discretization to transform a continuous space into a discrete one.
The number of bins has a major impact on the state discretization
process and is not straightforward to decide. To mitigate this risk,
we report the results for multiple bin numbers (i.e., 5, 10, 100). Thus,
we believe the associated threats to construct validity are minimal.

8 RELATEDWORK
8.1 Fuzz Testing
Fuzz testing is a predominant method to detect vulnerabilities and
faults in software engineering [10, 12, 30, 58]. Advancements in
fuzzing methodologies have incorporated the usage of execution
states. These approaches aim to guide the fuzzing process more
effectively by considering the stateful nature of certain applica-
tions [30, 34, 55, 60]. For example, due to the complexity of network
protocols, network services (i.e., implementations of network pro-
tocols) respond differently to identical input messages based on
their current session state, leading to stateful bugs that are only ac-
tivated under specific, often complex, conditions. To address these
challenges, the development of stateful black-box [34] and gray-
box methods [30, 55, 60] has gained momentum. More recently,
inspired by the success of large language models (LLM) in a wide
range of SE-related tasks [24, 25, 85], Meng et al. [50] combined
the pre-trained LLM to extract information about the protocol that
can be used during the fuzzing process. However, these methods
are tailored to the discrete state space of network services, while
the state spaces encountered in SDMs typically are continuous and
high dimensional (i.e., with a large number of features).

8.2 Diversity in Testing
The diversity of input and output is a long-studied problem in soft-
ware testing. Executing similar test cases results in the execution
of identical parts of the source code, which leads to revealing the
same faults [7, 13, 27]. Thus, researchers are motivated to propose

Curiosity-Driven Testing for Sequential Decision-Making Process ICSE ’24, April 14–20, 2024, Lisbon, Portugal

various testing methods to support diversity. Böhme et al. formulate
the fuzzing as a species discovery problem [8–10], where inputs are
classified into different species and more energy is assigned to the
rare species (e.g., rare paths) to discover new behaviors of the pro-
gram. Entropic [10] used Shannon’s entropy to measure the general
rate at which the fuzzer discovers new behaviors. Our objectives
in this paper are similar to these studies but in the context of SDM
testing. As several studies have shown the effectiveness of diversity
metrics in guiding the testing of software systems, we investigated
its usefulness in testing SDMs. In recent years, researchers also pro-
posed diversity-based testing methods for Deep Learning models.
Aghababaeyan et al. [2] studied the impact of black-box input di-
versity metrics for testing DNNs. For the image dataset, they found
that geometric diversity outperforms white-box coverage criteria in
terms of fault detection and computational time. Such methods are
designed for images and are not compatible with SDMs. Zohdinasab
et al. [87] developed DeepHyperion, a search-based test method
that automatically generates a large, diverse set of testing scenarios
using illumination search [53]. We did not include DeepHyperion
to compare with CureFuzz as DeepHyperion necessitates human
expertise to select interpretable features within a given environ-
ment. As the effectiveness of DeepHyperion depends on how good
these domain-specific features and metrics are designed, and we
neither have ready domain-specific features and metrics for our
complex environments nor sufficient domain expertise to design
them, we did not include DeepHyperion in comparison.

8.3 Deep Learning Testing
In the last decade, Deep Learning-based models have achieved great
success in a wide range of tasks [43]. However, the inherent safety
concerns of these models limit their application in real life [43].
Consequently, the field of testing Deep Learning-based models has
drawn great attention recently. Researchers have proposed various
solutions, such us differential testing [4, 79], metamorphic test-
ing [5], and coverage-driven methods [48, 76] for testing various
deep learning-based models (e.g., code models [80], autonomous
driving [82], etc). Inspired by the use of code coverage in test-
ing traditional software programs, Pei et al. [59] introduced the
concept of neuron coverage and proposed DeepXplore to detect
behavioral inconsistencies in DNNs. Subsequent research intro-
duced more structured neuron coverage metrics and developed a
range of coverage-guided fuzzing tools, such as DeepHunter [76],
DeepTest [72], DeepGauge [48], and DeepCT [47] for testing DNNs.
However, recent studies suggested that the existing neuron cov-
erage metrics may not be effective in the generation of test cases
SDMs [73, 78, 83]. Trujillo et al. [73] studied the relationship be-
tween neuron coverage [59] and the performance of DRL agents.
More specifically, they focus on investigating the relationship be-
tween neuron coverage and rewards of two different models of
Deep Q-Network (DQN) [64] in the game of Mountain Car [37].
They demonstrated that a high neuron coverage cannot be related
to the achievement of high rewards for DRL agents. Moreover, they
also discovered that excessive exploration by the agent can also
lead to achieving maximum coverage, which can result in exploring
irrelevant actions that do not help the agent maximize its reward.

8.4 SDM Testing
Recently, numerous methods have been proposed to test deep
learning-based sequential decision-makers. Lu et al. presented a
mutation testing framework for DRL systems [46] and proposed
mutation operators that adapt to the DRL systems. Gong et al. [?
] combine curiosity information and estimate the information of
the system under test to produce adversarial policies. STARLA [88]
utilized a genetic algorithm to narrow the search space of test cases
and it is applied on Deep-Q-Learning agents in the Cartpole and
Mountain car environments. We did not include STARLA in our
comparison since STARLA is only applicable to Deep-Q-Learning
agents and requires the internal logic of the RL model. While Cure-
Fuzz can be applied to any kind of SDMs and in a black-box setting.
Tapple et al. [69] presented a search-based testing approach for RL
agents with stochastic policies. This method uses a depth-first back-
tracking search algorithm to identify a reference trace that solves
the RL task and identifies a set of boundary states that can lead
to unsafe states. However, their method is not directly applicable
to deterministic policies interacting with stochastic environments,
which is common in safety-critical domains. In contrast, CureFuzz
targets a broader range of SDMs solvingMDPs. Another line of work
in testing SDMs utilizes metamorphic testing. Steinmetz et al. [65]
and Eniser et al [19]. have pioneered this direction. Steinmetz et
al. identify bugs based on the availability of a better-performing
alternative policy, while Eniser et al. define a bug as a failure of a
Deep Reinforcement Learning (DRL) agent in an easier state, despite
success in more complex ones. The cornerstone of these methods
is their use of manually designed metamorphic oracles and relax-
ations, which have proven effective in uncovering bugs. Eisenhut et
al. [18] advanced this concept by introducing fully automated test
oracles for metamorphic testing. They aim to find a policy that can
perform better than the one under test, and call it a bug if such a
case is identified. Researchers have also investigated other security
issues of SMD, e.g., data poisoning [21], etc.

9 CONCLUSION AND FUTUREWORK
This paper introduces CureFuzz, a curiosity-driven fuzz testing
method for SDMs. CureFuzz proposes a curiosity mechanism to
measure the novelty of a scenario, which aims to reveal a diverse
set of crash-triggering scenarios. CureFuzz demonstrates its effec-
tiveness in various applications such as video game playing, au-
tonomous driving, and aircraft collision avoidance. CureFuzz out-
performs the existing state-of-the-art method by a considerablemar-
gin in revealing crashes. In the future, we will evaluate the perfor-
mance of CureFuzz on more environments. A replication package
is provided at https://figshare.com/s/6d7a984f6ef797904d4b.

ACKNOWLEDGMENTS
This research/project is supported by the National Research Foun-
dation Singapore and DSO National Laboratories under the AI
Singapore Programme (AISG Award No: AISG2-RP-2020-017).

REFERENCES
[1] Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375 (2018).
[2] ZohrehAghababaeyan,Manel Abdellatif, Lionel C. Briand, Ramesh S, andMojtaba

Bagherzadeh. 2023. Black-Box Testing of Deep Neural Networks through Test

https://figshare.com/s/6d7a984f6ef797904d4b

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

Case Diversity. IEEE Trans. Software Eng. 49, 5 (2023), 3182–3204. https://doi.
org/10.1109/TSE.2023.3243522

[3] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine 34, 6 (2017), 26–38.

[4] Muhammad Hilmi Asyrofi, Zhou Yang, and David Lo. 2021. CrossASR++: A
Modular Differential Testing Framework for Automatic Speech Recognition. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1575–1579. https://doi.org/10.1145/3468264.3473124

[5] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang,
Ferdian Thung, and David Lo. 2021. Biasfinder: Metamorphic test generation
to uncover bias for sentiment analysis systems. IEEE Transactions on Software
Engineering 48, 12 (2021), 5087–5101.

[6] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. 2016. Unifying count-based exploration and intrinsic
motivation. Advances in neural information processing systems 29 (2016).

[7] Robert Binder. 2000. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional.

[8] Marcel Böhme. 2018. STADS: Software testing as species discovery. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 27, 2 (2018), 1–52.

[9] Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz. 2021. Estimating
residual risk in greybox fuzzing. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 230–241.

[10] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting fuzzer
efficiency: an information theoretic perspective. In ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 678–689. https://doi.
org/10.1145/3368089.3409748

[11] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. 2019. Explo-
ration by random network distillation. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=H1lJJnR5Ym

[12] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering 45, 5 (2019), 489–506. https://doi.org/10.1109/TSE.2017.2785841

[13] Emanuela G Cartaxo, Patrícia DL Machado, and Francisco G Oliveira Neto. 2011.
On the use of a similarity function for test case selection in the context of model-
based testing. Software Testing, Verification and Reliability 21, 2 (2011), 75–100.

[14] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In 2015 IEEE Symposium on Security and Privacy. IEEE, 725–
741.

[15] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. 2020. Learning
by Cheating. In Proceedings of the Conference on Robot Learning (Proceedings of
Machine Learning Research, Vol. 100), Leslie Pack Kaelbling, Danica Kragic, and
Komei Sugiura (Eds.). PMLR, 66–75. https://proceedings.mlr.press/v100/chen20a.
html

[16] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, AntonioM. López, and Vladlen
Koltun. 2017. CARLA: AnOpenUrbanDriving Simulator. In 1st Annual Conference
on Robot Learning, CoRL 2017, Mountain View, California, USA, November 13-15,
2017, Proceedings (Proceedings of Machine Learning Research, Vol. 78). PMLR, 1–16.
http://proceedings.mlr.press/v78/dosovitskiy17a.html

[17] Maxim Egorov. 2016. Multi-agent deep reinforcement learning. CS231n: convolu-
tional neural networks for visual recognition (2016), 1–8.

[18] Jan Eisenhut, Alvaro Torralba, Maria Christakis, and Jörg Hoffmann. 2023. Auto-
matic Metamorphic Test Oracles for Action-Policy Testing. (2023).

[19] Hasan Ferit Eniser, Timo P Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria
Christakis. 2022. Metamorphic relations via relaxations: An approach to ob-
tain oracles for action-policy testing. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. 52–63.

[20] Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter Dürr.
2021. Super-human performance in gran turismo sport using deep reinforcement
learning. IEEE Robotics and Automation Letters 6, 3 (2021), 4257–4264.

[21] Chen Gong, Zhou Yang, Yunpeng Bai, Junda He, Jieke Shi, Arunesh Sinha, Bowen
Xu, Xinwen Hou, Guoliang Fan, and David Lo. 2022. Mind Your Data! Hiding
Backdoors in Offline Reinforcement Learning Datasets. https://doi.org/10.48550/
ARXIV.2210.04688

[22] Robert J Grissom and John J Kim. 2005. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers.

[23] Simon Haykin. 1994. Neural networks: a comprehensive foundation. Prentice Hall
PTR.

[24] Junda He, Bowen Xu, Zhou Yang, DongGyun Han, Chengran Yang, and David Lo.
2022. PTM4Tag: Sharpening Tag Recommendation of Stack Overflow Posts with
Pre-Trained Models. In Proceedings of the 30th IEEE/ACM International Conference

on Program Comprehension (Virtual Event) (ICPC ’22). Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3524610.3527897

[25] Junda He, Xin Zhou, Bowen Xu, Ting Zhang, Kisub Kim, Zhou Yang, Ferdian
Thung, Ivana Clairine Irsan, and David Lo. 2023. Representation Learning for
Stack Overflow Posts: How Far Are We? ACM Trans. Softw. Eng. Methodol. (dec
2023). https://doi.org/10.1145/3635711 Just Accepted.

[26] Hadi Hemmati, Andrea Arcuri, and Lionel C. Briand. 2013. Achieving scalable
model-based testing through test case diversity. ACM Trans. Softw. Eng. Methodol.
22, 1 (2013), 6:1–6:42. https://doi.org/10.1145/2430536.2430540

[27] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. 2015. Prioritizing manual test
cases in traditional and rapid release environments. In 2015 IEEE 8th international
conference on software testing, verification and validation (ICST). IEEE, 1–10.

[28] Eduard Hofer, Martina Kloos, Bernard Krzykacz-Hausmann, Jörg Peschke, and
MartinWoltereck. 2002. An approximate epistemic uncertainty analysis approach
in the presence of epistemic and aleatory uncertainties. Reliability Engineering &
System Safety 77, 3 (2002), 229–238.

[29] Ionel-Alexandru Hosu and Traian Rebedea. 2016. Playing Atari Games with Deep
Reinforcement Learning and Human Checkpoint Replay. CoRR abs/1607.05077
(2016). arXiv:1607.05077 http://arxiv.org/abs/1607.05077

[30] Fan Hu, Shisong Qin, Zheyu Ma, Bodong Zhao, Tingting Yin, and Chao Zhang.
2023. NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing -
RCR Report. ACM Trans. Softw. Eng. Methodol. 32, 6 (2023), 161:1–161:8. https:
//doi.org/10.1145/3580599

[31] Yuqi Huai, Sumaya Almanee, Yuntianyi Chen, Xiafa Wu, Qi Alfred Chen, and
Joshua Garcia. 2023. scenoRITA: Generating Diverse, Fully Mutable, Test Scenar-
ios for Autonomous Vehicle Planning. IEEE Transactions on Software Engineering
49, 10 (2023), 4656–4676. https://doi.org/10.1109/TSE.2023.3309610

[32] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. 2017.
Imitation learning: A survey of learning methods. ACM Computing Surveys
(CSUR) 50, 2 (2017), 1–35.

[33] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fu-
jimura. 2018. Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning. In 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 2034–2039.

[34] William Johansson, Martin Svensson, Ulf E. Larson, Magnus Almgren, and Vin-
cenzo Gulisano. 2014. T-Fuzz: Model-Based Fuzzing for Robustness Testing of
Telecommunication Protocols. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation. 323–332. https://doi.org/10.1109/
ICST.2014.45

[35] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep Neu-
ral Network Compression for Aircraft Collision Avoidance Systems. CoRR
abs/1810.04240 (2018). arXiv:1810.04240 http://arxiv.org/abs/1810.04240

[36] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang
(Eds.). ACM, 2123–2138. https://doi.org/10.1145/3243734.3243804

[37] W Bradley Knox, Adam Bradley Setapen, and Peter Stone. 2011. Reinforcement
Learning with Human Feedback in Mountain Car.. In AAAI Spring Symposium:
Help Me Help You: Bridging the Gaps in Human-Agent Collaboration.

[38] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),
1238–1274.

[39] Mario Köppen. 2000. The curse of dimensionality. In 5th online world conference
on soft computing in industrial applications (WSC5), Vol. 1. 4–8.

[40] Nishanth Kumar. 2020. The Past and Present of Imitation Learning: A Citation
Chain Study. CoRR abs/2001.02328 (2020). arXiv:2001.02328 http://arxiv.org/abs/
2001.02328

[41] Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov.
2020. Controlling overestimation bias with truncated mixture of continuous
distributional quantile critics. In International Conference on Machine Learning.
PMLR, 5556–5566.

[42] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274 (2017).

[43] David Lo. 2023. Trustworthy and Synergistic Artificial Intelligence for Software
Engineering: Vision and Roadmaps. arXiv preprint arXiv:2309.04142 (2023).

[44] Karol Lina López, Christian Gagné, and Marc-André Gardner. 2018. Demand-side
management using deep learning for smart charging of electric vehicles. IEEE
Transactions on Smart Grid 10, 3 (2018), 2683–2691.

[45] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, HannaM.Wallach, Rob Fergus,
S. V. N. Vishwanathan, and RomanGarnett (Eds.). 6379–6390. https://proceedings.
neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html

[46] Yuteng Lu, Weidi Sun, and Meng Sun. 2022. Towards mutation testing of rein-
forcement learning systems. Journal of Systems Architecture 131 (2022), 102701.

https://doi.org/10.1109/TSE.2023.3243522
https://doi.org/10.1109/TSE.2023.3243522
https://doi.org/10.1145/3468264.3473124
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748
https://openreview.net/forum?id=H1lJJnR5Ym
https://doi.org/10.1109/TSE.2017.2785841
https://proceedings.mlr.press/v100/chen20a.html
https://proceedings.mlr.press/v100/chen20a.html
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.48550/ARXIV.2210.04688
https://doi.org/10.48550/ARXIV.2210.04688
https://doi.org/10.1145/3524610.3527897
https://doi.org/10.1145/3635711
https://doi.org/10.1145/2430536.2430540
https://arxiv.org/abs/1607.05077
http://arxiv.org/abs/1607.05077
https://doi.org/10.1145/3580599
https://doi.org/10.1145/3580599
https://doi.org/10.1109/TSE.2023.3309610
https://doi.org/10.1109/ICST.2014.45
https://doi.org/10.1109/ICST.2014.45
https://arxiv.org/abs/1810.04240
http://arxiv.org/abs/1810.04240
https://doi.org/10.1145/3243734.3243804
https://arxiv.org/abs/2001.02328
http://arxiv.org/abs/2001.02328
http://arxiv.org/abs/2001.02328
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html

Curiosity-Driven Testing for Sequential Decision-Making Process ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[47] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao.
2019. Deepct: Tomographic combinatorial testing for deep learning systems.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 614–618.

[48] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering. 120–131.

[49] Mike Marston and Gabe Baca. 2015. ACAS-Xu initial self-separation flight tests.
Technical Report.

[50] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS).

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529–533. https://doi.org/10.1038/nature14236

[52] GrégoireMontavon,Wojciech Samek, and Klaus-Robert Müller. 2018. Methods for
interpreting and understanding deep neural networks. Digital signal processing
73 (2018), 1–15.

[53] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

[54] Nadim Nachar et al. 2008. TheMann-Whitney U: A test for assessing whether two
independent samples come from the same distribution. Tutorials in quantitative
Methods for Psychology 4, 1 (2008), 13–20.

[55] Roberto Natella. 2022. StateAFL: Greybox fuzzing for stateful network servers.
Empir. Softw. Eng. 27, 7 (2022), 191. https://doi.org/10.1007/S10664-022-10233-3

[56] Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2022. MDPFuzz: testing models
solving Markov decision processes. In ISSTA ’22: 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, South Korea, July
18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.). ACM, 378–390.
https://doi.org/10.1145/3533767.3534388

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[58] Ketan Patil and Aditya Kanade. 2018. Greybox fuzzing as a contextual bandits
problem. arXiv preprint arXiv:1806.03806 (2018).

[59] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1–18.

[60] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNET: A
Greybox Fuzzer for Network Protocols. In 13th IEEE International Conference on
Software Testing, Validation and Verification, ICST 2020, Porto, Portugal, October
24-28, 2020. IEEE, 460–465. https://doi.org/10.1109/ICST46399.2020.00062

[61] Martin L Puterman. 1990. Markov decision processes. Handbooks in operations
research and management science 2 (1990), 331–434.

[62] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[63] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[64] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nat. 529, 7587 (2016), 484–489.
https://doi.org/10.1038/nature16961

[65] Marcel Steinmetz, Daniel Fišer, Hasan Ferit Eniser, Patrick Ferber, Timo P Gros,
Philippe Heim, Daniel Höller, Xandra Schuler, Valentin Wüstholz, Maria Chris-
takis, et al. 2022. Debugging a Policy: Automatic Action-Policy Testing in AI
Planning. In Proceedings of the International Conference on Automated Planning
and Scheduling, Vol. 32. 353–361.

[66] Andrea Stocco, Brian Pulfer, and Paolo Tonella. 2022. Mind the gap! a study on
the transferability of virtual vs physical-world testing of autonomous driving
systems. IEEE Transactions on Software Engineering (2022).

[67] Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

[68] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,
John Schulman, Filip De Turck, and Pieter Abbeel. 2017. #Exploration: A Study of
Count-Based Exploration for Deep Reinforcement Learning. In Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (Eds.). 2753–2762. https://proceedings.neurips.
cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html

[69] Martin Tappler, Filip Cano Córdoba, Bernhard K. Aichernig, and Bettina
Könighofer. 2022. Search-Based Testing of Reinforcement Learning. In Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 503–510.
https://doi.org/10.24963/ijcai.2022/72

[70] CARLA Team. 2021. CARLA Challenge. https://carlachallenge.org/. Accessed
on May 6, 2023.

[71] OpenAI Team. 2021. rlbaselines3-zoo. https://github.com/DLR-RM/rlbaselines3-
zoo. Accessed on May 6, 2023.

[72] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303–314.

[73] Miller Trujillo, Mario Linares-Vásquez, Camilo Escobar-Velásquez, Ivana Dus-
paric, and Nicolás Cardozo. 2020. Does Neuron Coverage Matter for Deep
Reinforcement Learning?: A Preliminary Study. In ICSE ’20: 42nd International
Conference on Software Engineering, Workshops, Seoul, Republic of Korea, 27 June -
19 July, 2020. ACM, 215–220. https://doi.org/10.1145/3387940.3391462

[74] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal Security Analysis of Neural Networks using Symbolic Intervals. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,
1599–1614. https://www.usenix.org/conference/usenixsecurity18/presentation/
wang-shiqi

[75] Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M
Bayen. 2017. Flow: Architecture and benchmarking for reinforcement learning
in traffic control. arXiv preprint arXiv:1710.05465 10 (2017).

[76] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. Deephunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146–157.

[77] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing file systems via two-dimensional input space exploration. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 818–834.

[78] Zhou Yang, Jieke Shi, Muhammad Hilmi Asyrofi, and David Lo. 2022. Revisit-
ing Neuron Coverage Metrics and Quality of Deep Neural Networks. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 408–419. https://doi.org/10.1109/SANER53432.2022.00056

[79] Zhou Yang, Jieke Shi,MuhammadHilmi Asyrofi, BowenXu, Xin Zhou, DongGyun
Han, and David Lo. 2023. Prioritizing Speech Test Cases. https://doi.org/10.
48550/ARXIV.2302.00330

[80] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-
Trained Models of Code. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Com-
puting Machinery, New York, NY, USA, 1482–1493. https://doi.org/10.1145/
3510003.3510146

[81] Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen,
Zhao Liu, Fuhao Qiu, Hongsheng Yu, et al. 2020. Towards playing full moba games
with deep reinforcement learning. Advances in Neural Information Processing
Systems 33 (2020), 621–632.

[82] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-Based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (Montpellier, France)
(ASE ’18). Association for Computing Machinery, New York, NY, USA, 132–142.
https://doi.org/10.1145/3238147.3238187

[83] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao.
2023. FalsifAI: Falsification of AI-Enabled Hybrid Control Systems Guided by
Time-Aware Coverage Criteria. IEEE Trans. Software Eng. 49, 4 (2023), 1842–1859.
https://doi.org/10.1109/TSE.2022.3194640

[84] Ziyuan Zhong, Gail Kaiser, and Baishakhi Ray. 2022. Neural network guided
evolutionary fuzzing for finding traffic violations of autonomous vehicles. IEEE
Transactions on Software Engineering (2022).

[85] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, Junda He, and David Lo. 2023.
Generation-based Code Review Automation: How Far Are We? arXiv preprint
arXiv:2303.07221 (2023).

[86] Li ZHUO, Xiongfei WU, Derui ZHU, Mingfei CHENG, Siyuan CHEN, Fuyuan
ZHANG, Xiaofei XIE, Lei MA, and Jianjun ZHAO. 2023. Generative model-based
testing on decision-making policies. ASE.

[87] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021.
DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems
through Illumination Search. In Proceedings of the 30th ACMSIGSOFT International
Symposium on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021).
Association for Computing Machinery, New York, NY, USA, 79–90. https://doi.

https://doi.org/10.1038/nature14236
https://doi.org/10.1007/S10664-022-10233-3
https://doi.org/10.1145/3533767.3534388
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1038/nature16961
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://doi.org/10.24963/ijcai.2022/72
https://carlachallenge.org/
https://github.com/DLR-RM/rlbaselines3-zoo
https://github.com/DLR-RM/rlbaselines3-zoo
https://doi.org/10.1145/3387940.3391462
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://doi.org/10.1109/SANER53432.2022.00056
https://doi.org/10.48550/ARXIV.2302.00330
https://doi.org/10.48550/ARXIV.2302.00330
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1109/TSE.2022.3194640
https://doi.org/10.1145/3460319.3464811
https://doi.org/10.1145/3460319.3464811

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou, and David Lo

org/10.1145/3460319.3464811
[88] Amirhossein Zolfagharian, Manel Abdellatif, Lionel C. Briand, Mojtaba

Bagherzadeh, and Ramesh S. 2023. A Search-Based Testing Approach for Deep Re-
inforcement Learning Agents. IEEE Transactions on Software Engineering (2023),

1–22. https://doi.org/10.1109/TSE.2023.3269804

https://doi.org/10.1145/3460319.3464811
https://doi.org/10.1109/TSE.2023.3269804

	Curiosity-driven testing for sequential decision-making process
	Citation
	Author

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Process
	2.2 Sequential Decision Makers
	2.3 Fuzz Testing

	3 Approach
	3.1 Assumption
	3.2 Approach Overview
	3.3 A Curiosity-driven Search Strategy
	3.4 CureFuzz Architecture

	4 Experimental Setting
	4.1 Research Questions
	4.2 Experiment Subject and Environment
	4.3 Implementation

	5 Experiment Results
	6 Discussion
	7 Threats To Validity
	8 Related Work
	8.1 Fuzz Testing
	8.2 Diversity in Testing
	8.3 Deep Learning Testing
	8.4 SDM Testing

	9 Conclusion and Future Work
	Acknowledgments
	References

