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ABSTRACT

Code idioms are commonly used patterns, techniques, or practices
that aid in solving particular problems or specific tasks across multi-
ple software projects. They can improve code quality, performance,
and maintainability, and also promote program standardization
and reuse across projects. However, identifying code idioms is sig-
nificantly challenging, as existing studies have still suffered from
three main limitations. First, it is difficult to recognize idioms that
span non-contiguous code lines. Second, identifying idioms with
intricate data flow and code structures can be challenging. More-
over, they only extract dataset-specific idioms, so common idioms
or well-established code/design patterns that are rarely found in
datasets cannot be identified.

To overcome these limitations, we propose a novel approach,
named IdioMine, to automatically extract generic and specific
idioms from both Java projects and libraries. We perform program
analysis on Java functions to transform them into concise PDGs, for
integrating the data flow and control flow of code fragments. We
then develop a novel chain structure, Data-driven Control Chain
(DCC), to extract sub-idioms that possess contiguous semantic
meanings from PDGs. After that, we utilize GraphCodeBERT to
generate code embeddings of these sub-idioms and perform density-
based clustering to obtain frequent sub-idioms. We use heuristic
rules to identify interrelated sub-idioms among the frequent ones.
Finally, we employ ChatGPT to synthesize interrelated sub-idioms
into potential code idioms and infer real idioms from them.

We conduct well-designed experiments and a user study to eval-
uate IdioMine’s correctness and the practical value of the extracted
idioms. Our experimental results show that IdioMine effectively
extracts more idioms with better performance in most metrics. We
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compare our approach with Haggis and ChatGPT, IdioMine outper-
forms them by 22.8% and 35.5% in Idiom Set Precision (ISP) and by
9.7% and 22.9% in Idiom Coverage (IC) when extracting idioms from
libraries. IdioMine also extracts almost twice the size of idioms
than the baselines, exhibiting its ability to identify complete idioms.
Our user study indicates that idioms extracted by IdioMine are well-
formed and semantically clear. Moreover, we conduct a qualitative
and quantitative analysis to investigate the primary functionalities
of IdioMine’s extracted idioms from various projects and libraries.
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1 INTRODUCTION

A code idiom is a programming pattern used to solve a specific
problem efficiently and concisely [1, 64], and it is commonly en-
countered across diverse software projects [2]. According to Di
Nucci et al. [40], if a piece of code is written in a natural and in-
tuitive manner, it can be considered idiomatic. Well-established
idioms can reduce ambiguity [55], optimize code performance and
efficiency [58], and enhance code readability and understanding
for programmers [54]. They also help establish coding standards
and best practices in development activities [49] and facilitate their
reuse in various contexts, such as data processing and resource
management [40, 55]. In addition, developers widely recognize the
significance of writing idiomatic code, evident from the abundance
of relevant resources dedicated to this topic [36]. For example, A
dedicated book on C++ idioms can be found on Wikibooks [3], and
similar guides are also available for Java [4] and JavaScript [5, 6].

https://doi.org/10.1145/3597503.3639135
https://doi.org/10.1145/3597503.3639135
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An idiomatic JavaScript guide on GitHub [6] has gained consider-
able popularity, amassing over 22.8k stars and 3.2k forks. Therefore,
mining code idioms is critical for enhancing the efficiency and
effectiveness of software development and maintenance [44].

Several existing studies focus on code idiom extraction. Alla-
manis et al. [36] proposed a pioneering model, Haggis, a machine
learning-based statistical method that mines code idioms based
on code syntax. However, their approach relies heavily on manual
annotations and is unable to identify code idioms with interleaved
dataflow [64]. This indicates that Haggis is a labor-intensive ap-
proach, and less experienced programmers may find it difficult to
generalize code patterns. To overcome this limitation, Sivaraman
et al. [64] introduced dataflow information to improve the tree rep-
resentation method used by Allamanis et al. [34, 36]. However, this
approach only resulted in a marginal enhancement in Haggis’s per-
formance, as it failed to merge the full semantic context of source
code to identify code idioms.

Extracting code idioms with complete semantic information
from software projects remains a challenging task due to three
unresolved limitations in existing studies:

1) Existing studies cannot extract idioms that are composed of non-
contiguous lines of code from a code fragment. Existing methods, as
demonstrated by previous studies [36, 64], are unable to extract code
idioms from non-contiguous lines of code. This restriction poses a
challenge, as many idioms involve non-contiguous lines within a
function. For instance, Listing 1 showcases an idiom extracted by
IdioMine that involves non-contiguous lines of code. This particu-
lar idiom [7] is derived from code that utilizes the com.rabbitmq
library, where it calculates the execution time of a code fragment
by determining its start and end times. As the code in lines 1 and 3
are typically non-contiguous in most projects, current approaches
are unable to detect such widely-used idioms.

Listing 1 An idiom with non-contiguous lines of code.

1 long start = System.currentTimeMillis ();
2 # code snippet
3 long end= System.currentTimeMillis ();
4 long time = end - start;

2) Existing studies cannot effectively identify idioms that encom-
pass intricate data flow and code structures. A significant drawback
of recent research on idiom mining [64] is that it captures only
one-way information flow. This limitation may result in the loss of
important semantic and data flow in code fragments, making it chal-
lenging to identify complex code idioms that involve intricate data
and control flows. This difficulty persists irrespective of whether
these idioms are constructed from contiguous or non-contiguous
lines of code. As an example, Listing 2 exhibits an idiom, which
is extracted from the source file named “FileManager.java” [8].
This idiom is a commonly used pattern for Git-based projects, e.g.,
JGit. It is used to push modifications to a specific Git repository
based on its parent directory. Its intricate control and data flow are
contained within a contiguous code fragment (specifically, Lines
3-7). This fragment encompasses an if-else statement and an
inner loop structure featuring an additional if statement. Unfor-
tunately, existing techniques fail to extract such idioms due to their
intricate control and data flow as well as non-contiguous code lines.
Note that the previous study [64] addressed the contiguity of code

lines within idioms and the complexity of data and control flow as
distinct issues in their Limitation Section. Hence, we also consider
this limitation as a separate concern from the first one discussed.

Listing 2 An idiom with complex code structure.

1 if (!file.exists () || !file.isDirectory ()){
2 # code snippet
3 } else{for (Repository r: reps){
4 if(r.getDirectory (). getParentFile (). getName (). equals(projectName ))
5 { Git git = new Git(refreshed );
6 RevCommit commit = git.commit (). setMessage(message)
7 .setAll(true).call ();}}}

3) Existing studies can only produce dataset-specific idioms, rather
than generic idioms. According to the public definition [2], a code
idiom is characterized as a code fragment that exhibits frequent re-
currence across various software projects. This implies that solely
mining code idioms from specific datasets may overlook certain
generic idioms that possess wider applicability but occur infre-
quently within that dataset. However, current techniques heavily
rely on probability distributions of code fragments in the dataset
to identify idioms. They only consider frequently used code frag-
ments in the dataset as idioms, but some less common fragments in
that dataset may still represent well-established and easy-to-reuse
design/code patterns in other projects. This limitation may prevent
existing techniques from recognizing certain real idioms. Listing 3
illustrates the use of an idiom [9] that encapsulates transactional
behavior for structuring the project named Stuctutr [10]. This id-
iom incorporates the well-known “Command Design Pattern” [11].
Although the design pattern appears only twice in the dataset, it
can be easily reused elsewhere because of its primary functionality,
which involves encapsulating the information required to perform
an action or trigger an event at a later time.

Listing 3 A design pattern with few occurrences in datasets.

1 Services.command(securityContext ,
2 TransactionCommand.class). execute(new StructrTransaction (){
3 @Override public Object execute () {
4 if (( lockType == LockType.READ) &
5 (graphDb instanceof AbstractGraphDatabase )){
6 (( AbstractGraphDatabase)node.getGraphDatabase ())
7 .getLockManager (). getReadLock(node); }
8 return null; } };

To overcome the aforementioned constraints, our paper puts
forth a novel approach, IdioMine, that can automatically recognize
high-quality code idioms in an unsupervised manner. IdioMine
comprises three distinct phases, i.e., idiom representation construc-
tion, frequent sub-idiom mining, and semantic idiom identification.
Specifically, IdioMine analyzes Java functions to create concise
program dependency graphs (PDGs), which seamlessly integrates
dataflow and control information for a better understanding of the
code’s semantics. It then establishes a chain structure called Data-
driven Control Chain (DCC) to extract code lines with contiguous
semantic meanings as sub-idioms from PDGs. In phase two, we
employ GraphCodeBERT to generate code embeddings for these
sub-idioms and a density-based clustering technique to identify
frequent sub-idioms. In phase three, we identify related sub-idioms
among frequent ones by applying predefined rules. Afterward, with
the aid of ChatGPT’s capabilities, IdioMine synthesizes related
sub-idioms as potential idioms and identifies real ones from them.

We evaluate IdioMine’s effectiveness through extensive experi-
ments on project-level and library-level datasets, and perform a user
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study to explore the practical value of extracted idioms. In addition,
we perform a quantitative and qualitative analysis of IdioMine’s
extracted idioms, thereby discovering novel insights. After com-
paring the results of IdioMine with baselines, we observe that
IdioMine outperforms them in many evaluation metrics. Specif-
ically, IdioMine exhibits exceptional performance in identifying
idioms, surpassing Haggis and ChatGPT by 22.8% and 35.5%, re-
spectively, in terms of Idiom Set Precision (ISP). Additionally, our
approach excels in Idiom Coverage (IC), outperforming baselines by
9.7% and 22.9% when extracting idioms from libraries. IdioMine’s
performance is impressive: the size of the extracted idioms is nearly
twice that of the baselines, indicating the ability of our approach
to identify both specific and generic idioms in a more complete
manner. Moreover, IdioMine’s extracted idioms outperform the
baselines in terms of code completeness and semantic clarity, with
an average improvement of 0.22 and 0.19, respectively. In conclu-
sion, our study makes the following primary contributions:

(1) We introduce a novel approach, called IdioMine, for automati-
cally extracting both dataset-specific and generic idioms from
Java code. The replication package is available at [12].

(2) We devise DCC, a chain structure, that enables us to extract
sub-idioms with contiguous semantic meanings from PDGs.

(3) We conduct well-designed experiments to evaluate the effec-
tiveness of IdioMine and design a user study to validate that
IdioMine’s extracted idioms exhibit superior quality in com-
parison to the baselines.

(4) Notably, we examine the primary functionalities of idioms ex-
tracted from every Java project and library using IdioMine
through both quantitative and qualitative analysis.

2 PROBLEM DEFINITION

Definition of Code Idioms. A code idiom is a code fragment that
demonstrates two key characteristics. Firstly, it exhibits recurring
patterns across multiple software projects [2]. Secondly, it serves a
singular semantic purpose [36]. Code idioms thus can encompass
non-contiguous lines of code, exemplified by Listing 1, and involve
intricate data and control flow, as demonstrated in Listing 2. Consid-
ering the formalization of code idioms in the prior study [36], which
primarily emphasizes their syntactic structures while overlooking
the completeness of semantic aspects, we propose an extension
to enhance the original version. Specifically, we define idioms as
sets of interconnected nodes, I = {𝑉 , 𝐸}, by data or control flow,
𝐸 = {𝐸𝑑 , 𝐸𝑐 }, in PDGs, representing the completed semantic and
syntactic structure of idioms.
What Idioms are Not. 1) Simple APIs or method invocations
are not code idioms. The previous study [36] illustrated the
difference between code idiom mining and API mining and
clearly stated that simple APIs or method invocations (e.g.,
parcel.writeDouble($Var);) are not code idioms due to limited
syntactic structure. However, their tool, Haggis, identified some
common API usages and method invocation patterns with
richer syntactic structures in the dataset as code idioms, such
as “Location.distanceBetween($(Location).getLatitude(),
$...);” and “Toast.makeText(this, $stringLit,
Toast.LENGTH_SHORT).show();”. Actually, certain API-based
usages can be regarded as code idioms. Because when developers
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Figure 1: The overall framework of IdioMine.

consistently employ a particular API in a specific manner to
achieve a desired functionality or implement a common design
pattern, it can be recognized as an API-based code idiom. Hence,
our study abides by this rule to not regard single APIs or method
invocations as idioms.

2) While one-line statements can be classified as code idioms, sim-
ple return statements and certain types of assignment statements
with limited semantic significance are excluded from this catego-
rization. The previous study [36] acknowledged one-line state-
ments as code idioms, exemplified by the top idiom “Elements
$name=$(Element).select($StringLit);” identified by Haggis.
However, to enhance the mining of more meaningful idioms,
our study chooses not to classify simple return statements (i.e.,
return $var;) and two specific types of assignment statements
(i.e., this.$Var = Var; and super.$Var = Var;) as code idioms.

3 IDIOMINE
In this section, we introduce the technical framework of our pro-
posed approach, IdioMine. Specifically, we provide an overview of
the framework and then explain each phase.

3.1 Overall Framework

Our approach, IdioMine, endeavors to extract code idioms within
software projects. The framework of IdioMine, shown in Fig. 1, has
three phases: 1) idiom representation construction, 2) frequent sub-
idiommining, and 3) semantic idiom identification. In phase one, we
conduct program analysis to construct a PDG for each Java function,
which comprehensively integrates the data flow and control flow
of Java functions. Additionally, we develop a chain structure, DCC,
which extracts code fragments possessing contiguous semantic
meanings from PDGs as sub-idioms. In phase two, we encode sub-
idioms using GraphCodeBERT and utilize density-based clustering
to identify frequently occurring sub-idioms. Finally, we identify
interrelated sub-idioms based on specific rules and employ ChatGPT
to synthesize them as potential code idioms. Using ChatGPT’s
powerful capability [37], we can accurately identify real idioms from
the pool of candidates. In the following sections, we will present a
step-by-step explanation to facilitate readers’ understanding.

3.2 Phase 1: Idiom Representation Construction

Existing methods cannot handle complex idioms made up of ❶ non-
contiguous lines of code and ❷ intricate data and control flow. This
is because they place a strong emphasis on code syntax during pro-
gram analysis, disregarding the semantic connections and data flow
between lines of code. To overcome these limitations, we employ
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data flow analysis to extract semantically related code fragments
from Java functions. We integrate the variables’ data flow into the
CFG to create the PDG, which comprehensively combines control
flow and data flow, facilitating us to process complex code with ease.
Next, we propose a chain structure, Data-driven Control Chains
(DCCs), to obtain code lines with semantic relationships and regard
them as sub-idiom. Fig. 2 provides an example that illustrates the
complete process of constructing the PDG and generating DCCs.
We will delve into the specifics below.

3.2.1 PDG Construction. Our intuition suggests that a code frag-
ment’s semantics is shaped by data exchanges of variables within
a function. To capture this, we extract data flows of variables as
semantic information of a function. A variable’s data flow can be
characterized by two types of usage: writing and reading. Following
the Def-Use Chain definition[32], our study uses Def to represent
writes and Use for reads. We merge these variables’ data flow (i.e.,
Defs and Uses) into the CFG to build the PDG, preserving the
control information from the CFG.

Specifically, we begin by generating ASTs and CFGs from Java
functions. We use Javalang [13] to parse the source code and ex-
tract the AST. As code idioms typically are composed of sequential
statements (yellow nodes) and control statements (brown nodes),
we only retain necessary nodes at the expression level and beyond,
including nodes at the expression, statement, and block levels to
ensure the conciseness of ASTs. Since the PDG is based on the CFG,
our next step is to extract the control flows from the AST and use
them to build the corresponding CFG. The control structure, such as
conditional branches and loops, enables the classification of execu-
tion paths between AST nodes into two distinct categories: MustExe
(blue dotted edges) and MayExe (red dotted edges). MustExe edges
represent paths that will definitely be executed, while MayExe edges
represent paths that will be executed under specific conditions. We
depict the code example’s control flow with AST’s MustExe and
MayExe, and the resulting CFG is located adjacent to AST in Fig. 2.

To construct a concise PDG, it is necessary to simplify the cor-
responding CFG by excluding nodes (hollow nodes) that do not
provide specific code of Java functions. This is because these nodes
do not convey any semantic information about program variables.
Next, the specific code represented by each node in the CFG is
examined to capture the Defs and Uses of variables used in the
node. We formalize the usage (i.e., Def and Use) of these variables
into <Def/Use->VarName: VarType> and serve these usages as the
semantic information required for constructing the concise PDG.
For example, the first CFG node in Fig. 2 declares a variable named
file. The usage of this variable can be denoted as <Def->file:
File>, where Def represents the creation (write) operation of the
variable file, and File denotes the variable’s type. Therefore, the
data flow in the first CFG node can be effectively symbolized by
the usage of the variable file. In a similar fashion, the For Loop
node utilizes the file variable in its loop condition, thus repre-
senting the semantic information of file as <Use->file: File>.
We afterward integrate semantic information of variables into the
concise version of the CFG to build the PDG.

3.2.2 DCC Generation. We develop a novel chain structure, called
Data-driven Control Chain (DCC), to capture semantic relationships
between code lines from the PDG. Each DCC captures the semantic

information of one variable by connecting a variable’s Defs and
Uses along one possible execution path of that variable. Hence,
the nodes in a DCC can represent non-contiguous lines of code
within a function. Since functions typically involve data exchanges
between multiple variables, and the same variable may produce
several data flows due to differences in execution paths, it is possible
to extract multiple DCCs of one variable from a single PDG and
produce numerous short code fragments involving data interactions
with a particular variable. These short code fragments have the
potential to become idioms or essential building blocks of a code
idiom. Hence, we consider these DCCs as sub-idioms.

Fig. 2 explains the DCC extraction process for file. Node 1 in
the PDG defines the variable file, which is subsequently utilized
in Nodes 2, 3, 4, and 8. Hence, the initial DCC for file comprises
{𝑁𝑜𝑑𝑒 1, 𝑁𝑜𝑑𝑒 2, 𝑁𝑜𝑑𝑒 3, 𝑁𝑜𝑑𝑒 4, 𝑁𝑜𝑑𝑒 8}, signifying the variable’s
Defs and Uses. Among these, Nodes 2 and 4 depict control state-
ments and offer the necessary control information for DCCs of
file, whereas the other nodes represent sequential statements that
use file. However, merely connecting the nodes that define and
use the same variable in sequence is insufficient to obtain a complete
DCC for that variable, as it could lead to a loss of control informa-
tion or semantic meanings. To build a comprehensive DCC for a
variable, it is crucial to integrate certain essential nodes into the
initial DCC. These necessary nodes typically represent the requisite
conditions or code preceding the execution of Def and Use nodes
within a single execution path of said variable. For instance, the
data flow for the initial DCC from Node 4 to Node 8 passes through
Node 6, a control structure that must be executed before Node 8.
To ensure a seamless data flow within this sequence, Node 6 should
be included in the initial DCC for the variable file. Therefore, as
depicted in Fig. 2, one of the final DCCs for the variable file is
{𝑁𝑜𝑑𝑒 1, 𝑁𝑜𝑑𝑒 2, 𝑁𝑜𝑑𝑒 3, 𝑁𝑜𝑑𝑒 4, 𝑁𝑜𝑑𝑒 6, 𝑁𝑜𝑑𝑒 8}. There is another
possible execution path for the variable file that does not activate
the catch block, this results in Nodes 6 and 8 being skipped. As a
result, another DCC for file is {𝑁𝑜𝑑𝑒 1, 𝑁𝑜𝑑𝑒 2, 𝑁𝑜𝑑𝑒 3, 𝑁𝑜𝑑𝑒 4}.
Fig. 2 also presents the DCCs for the br and line variables, which
contain the corresponding data and control flows.

3.3 Phase 2: Frequent Sub-idiom Mining

The code fragments, which are represented by a DCC and encom-
pass the control flow and data flow of a single variable, have the
potential to be a code idiom or a component of one. Hence, those
code fragments could be regarded as a sub-idiom. To ensure that
the idioms extracted by our approach adhere to the definition of
code idioms – code patterns that frequently occur within functions
across software projects [2] – we qualify frequent sub-idioms that
occur in datasets multiple times. Given that a single sub-idiom
can be part of different complete idioms, we consider sub-idioms
occurring at least twice in our datasets as frequent ones to max-
imize IdioMine’s ability to extract both generic and real idioms.
We achieve this by converting DCCs into specific code fragments,
embedding and clustering them to discover frequent sub-idioms.

3.3.1 Code Transformation. Our initial step towards obtaining fre-
quent sub-idioms is to generate the code fragments represented by
DCCs. We do this by mapping each DCC node to its corresponding
node in the CFG and extracting the relevant code indicated by that
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public static void readFile() {
File[] files = {new File("file1.txt"), new File("file2.txt"), new File("file3.txt")};
for (File file: files) {

try (BufferedReader br = new BufferedReader(new FileReader(file))) {
String line;
while ((line = br.readLine()) != null) {

System.out.println(line);
}

} catch (IOException e) {
System.err.println("Failed to read file: " + file.getName());
}

}
}

PDGCFGAST

MayExe

MustExe

Data-driven Control Chains

X NecCode : Necessary Code

X NecStruc : Necessary Structure

Figure 2: An example of constructing a concise PDG from a Java function and generating DCCs from it.

CFG node. These code lines are then assembled to form a sub-idiom.
To enhance comprehension of this step, Fig. 3 furnishes an example
to illustrate the formation of the sub-idiom for the first DCC of the
variable file. All nodes, with the exception of Node 6, utilize the
variable file. Despite this, the control structure of Node 6 should
be incorporated into the sub-idiom as it must be executed prior
to the final output statement at Node 8. Moreover, if there are no
relevant statements in a particular code block, such as the try block
in the example given, it is acceptable for that block to be empty
within sub-idioms.

File[] files = {new File("file1.txt"),
xxxxxnew File("file2.txt"), new File("file3.txt")};
for (File file: files) {
xxxxxtry (BufferedReader br = 
xxxxxxxxxxnew BufferedReader(new FileReader(file))) {
xxxxx} catch (IOException e) {
xxxxxxxxxxSystem.err.println("Failed to read file: " 
xxxxxxxxxxxxxxX+ file.getName()); } }

1 Def

2 Use

6 MustStruc

8 Use

3 Use 4 StrucInfo

Figure 3: One of the DCCs for the variable file.

3.3.2 Sub-idiom Embedding. This step serves as a preparation for
mining frequent sub-idioms, with the goal of transforming them
into code embeddings. Due to the difficulty in constructing labeled
idioms for code representation, employing a pre-training model to
embed sub-idioms in an unsupervised manner is a suitable solution
for this challenge. Therefore, we take into consideration a high-
regard pre-training model, i.e., GraphCodeBERT [46], that is used
for code representation and incorporates the structural information
and data flow of code. This feature aligns with IdioMine’s overall
design, enhancing its suitability for sub-idiom representation.

3.3.3 Sub-idiom Clustering. To identify frequent sub-idioms, we
use a density-based clustering algorithm, DBSCAN [42], which au-
tomatically identifies the number of clusters without prior specifi-
cation. We employ the Parameter Tuning technique [14] to optimize
clustering performance. This optimal technique involves iteratively
adjusting parameter values while we achieve an optimal Silhouette
Score metric [15]. Based on the results, we identify the sub-idioms
represented by the cluster centroids as frequent ones since they
encompass the fundamental features of their respective clusters.

3.4 Phase 3: Semantic Idiom Identification

A frequent sub-idiom may be deemed a complete code idiom on
occasion, but most idioms entail the data flow of multiple variables,
necessitating the merging of several frequent sub-idioms. To spot
these intricate idioms, two vital steps are required: a) fusing mul-
tiple related sub-idioms into a potential code idiom (PCI) and b)
distinguishing real idioms from synthesized potential idioms. Both
of these steps present significant challenges. For instance, synthe-
sizing sub-idioms can be problematic as it is difficult to ❶ determine
which sub-idioms and ❷ decide how many sub-idioms should be
fused and ❸ ensure each statement or code block is correctly in-
corporated in its designated location. Furthermore, identifying real
idioms from a vast of synthesized potential idioms is a crucial
problem in the second step. Addressing these challenges would
necessitate human intelligence to manually synthesize sub-idioms
and identify real idioms from them, which could lead to a significant
increase in operational costs.

Fortunately, the recent unveiling of ChatGPT [16] has substan-
tially augmented the cognitive prowess of large language models
(LLMs), which showcases their potential to match and even surpass
human intelligence [17]. Hence, we would like to use ChatGPT
to: 1) synthesize interrelated frequent sub-idioms as PCIs and 2)
distinguish real idioms from PCIs. We utilize ChatGPT through its
open-source API [18], which is based on the GPT-3.5 architecture.

3.4.1 Frequent Sub-idiom Synthesis. We first design a rule-based
sub-idiom selection strategy that facilitates us to choose the most
suitable ones for synthesis. This strategy consists of two rules: a)
The related sub-idioms to be synthesized must involve the shared
variable, ensuring the consistency of the data flow in the synthe-
sized code. b) The sub-idioms selected for synthesis must belong
to the same Java function in the same source file, ensuring the
correctness and realism of the data flow in the synthesized code.
We introduce a parameter 𝑘 to indicate the number of selected sub-
idioms that adhere to the aforementioned rules for code synthesis.
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Once we select the appropriate sub-idioms for synthesis, we
then use ChatGPT for sub-idiom synthesis. We design a suitable
prompt to ensure the accurate synthesis of sub-idioms. The initial
step in crafting an effective prompt is to establish the task objec-
tive. Our objective is to input 𝑘 sub-idioms (𝑘 ≥ 1), denoted as
{SI1, SI2, · · · , SI𝑘 }, and require a function f that can accurately
synthesize multiple sub-idioms into a potential code idiom, PCI,
with both correct syntax and accurate semantic meaning. With this
definition, we establish the format for the input and output of this
task: the input comprises 𝑘 separate code segments, and the output
is a synthesized code segment. Due to a fixed input and output
format, we opt to employ the discrete prompt (i.e., hard prompt) [52]
as the template prompt for our task. Thus, our prompt is as follows:
“The following code fragments, [SI1], [SI2], · · · , [SI𝑘 ] can be inte-
grated into the reasonable code [PCI]”.

To optimize the performance, we create specific typical exam-
ples by leveraging our template prompt as a foundation to form
a demonstration context and utilize them to instruct ChatGPT to
generate proper outputs [41, 52]. This serves two primary purposes:
a) It enables the used LLM to comprehend our template prompt.
b) It facilitates the used LLM’s acquisition of potential rules for
sub-idiom synthesis from specific prompts, which can enhance the
model’s performance, particularly in few-shot scenarios. To gen-
erate effective prompts for training, we conduct an analysis and
categorization of potential actions that may arise during sub-idiom
synthesis. These actions fall into two distinct categories: a) the
concatenation action (SCA), which involves incorporating the re-
spective sequential statements of sub-idioms in sequence, following
the order of the shared variable’s data flow among the sub-idioms.
b) The insertion action (IA), which involves inserting one or more
sequential statements from one sub-idiom into the appropriate
position of a certain control structure of synthesized code, based
on the data flow of the shared variable. We thus generate specific
prompts that encompass both SCA, IA, and a combination of both.
Finally, we utilize the fine-tuned ChatGPT to synthesize selected
sub-idioms to obtain potential code idioms.
3.4.2 Code Idiom Identification. We employ the technique called
prompt ensembling [52] to enhance the ability of ChatGPT to iden-
tify code idioms. This involves utilizing a series of questions as
prompts to guide the used LLM to generate reliable results [52].
Based on the definition of code idioms, which refers to patterns with
both high semantic clarity and commonly used in source code, we
develop three distinct questions as prompts. These three prompts
and their workflow are presented in Fig. 4. To be precise, our ap-

synthesized code [PCI]Input

PR 1

Does this synthesized code [PCI] possess 
clear semantics?PR 2

Would this synthesized code [PCI] be 
suitable for use in a general 
application or common situation? 

Can this synthesized code [PCI] 
be considered a code idiom?PR 3

Figure 4: Designed prompts used for idiom identification.

proach involves inputting a potential code idiom (PCI) into the
model and guiding it to assess the PCI’s generality and semantic
clarity using the first two distinct prompts, PR 1 and PR 2. Based

Table 1: Details for two evaluation datasets.

Projects Stars Description

Pr
oj
ec
t

arduino 13.5k Electronics Prototyping
atmosphere 3.6k WebSocket Framework
bigbluebutton 7.9k Web Conferencing
elasticsearch 62.3k REST Search Engine
grails-core 2.7k Web App Framework
hadoop 13.4k Map-Reduce Framework
hibernate 5.3k ORM Framework
libgdx 21.3k Game Dev Framework
netty 31k Net App Framework
storm 6.4k Distributed Computation
vert.x 13.5k Application Platform
voldemort 2.6k NoSQL Database
wildfly 2.8k Application Server

Li
br

ar
y

android.location Android Location API
android.net.wifi Android WiFi API
com.rabbitmq Messaging System
com.spatial4j Geospatial Library
io.netty Network App Framework
opennlp NLP Tool
org.apache.hadoop Map-Reduce Framework
org.apache.lucene Search Server
org.elasticsearch REST Search Engine
org.eclipse.jgit Git Implementation
org.hibernate Persistence Framework
org.jsoup HTML Parser
org.mozilla.javascript JavaScript implementation
org.neo4j Graph Database
twitter4j Twitter API

on the responses to both prompts, we input the final prompt into
ChatGPT to determine whether the input PCI qualifies as a code
idiom or not. The final output will be either “Yes” or “No” to ensure
accurate identification of genuine idioms.

4 EVALUATION

This section outlines the techniques and datasets used to evalu-
ate the effectiveness of IdioMine. It also includes details on our
experimental settings.

4.1 Baselines

After analyzing existing techniques for mining idioms, we select
a widely used, well-recognized, and reproducible approach called
Haggis as our baseline. Haggis is the first model proposed in [36]
for extracting Java idioms. This framework serves as a foundation
for other tools, such as the latest work [64], and is a popular choice
for research. The latest work experimented on Hack [31], a niche
PL developed by Facebook, and its applicability to other languages
is unknown due to the unavailability of the tool for replication. We
thus select Haggis as a baseline due to no other good options avail-
able. Similarly, the latest work selected only one idiom extractor,
i.e., Haggis, as the baseline for the same reason. To address this
issue, we also conduct a comparison experiment between IdioMine
and ChatGPT in Section 6.

4.2 Dataset

We capitalize on the widespread use of idioms in source code to
assess the performance of IdioMine. In our study, we utilize the
same set of Java projects and libraries used in Haggis [36] as our
two evaluation datasets. The information of the two datasets is
explicated in Table 1. The Project dataset serves the purpose of
identifying project-specific idioms, whereas the Library dataset
is utilized for extracting library-specific idioms. Idioms extracted
from the Library dataset can be regarded as cross-project code
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idioms due to their versatility in various projects. The projects
in the Project dataset are widely recognized in the community
and have earned significant popularity owing to their high-quality
code and utility. The same as the method used in [36], we build the
Library dataset by extracting source files from the Java GitHub
Corpus [35] that import and use the 15 popular libraries but do not
implement them. Following the data segmentation method used
in [36], both datasets are split into a 70% training set and a 30%
testing set.

4.3 Experimental Settings

We implemented IdioMine using Pytorch[19]. Our experiments
were conducted on Ubuntu v20.04.1 64-bit OS with an RTX3090-
24GB GPU, ensuring reliable and replicable results. The replication
package has extra model settings info accessible.

5 RESULTS

To better understand IdioMine’s performance and the usefulness
of extracted code idioms, we analyze our evaluation results by
addressing four research questions (RQs):

(1) RQ1: How effective is IdioMine?
(2) RQ2: How effective is IdioMine in code synthesis?
(3) RQ3: Are extracted idioms of high quality?
(4) RQ4: What are the characteristics of extracted idioms?

5.1 RQ1: How effective is IdioMine?
5.1.1 Motivation. In this RQ, we conduct experiments to evalu-
ate IdioMine’s effectiveness in idiom extraction and compare its
performance to the baseline.

5.1.2 Method. We utilize both IdioMine and Haggis to extract
code idioms from two evaluation datasets and evaluate their per-
formance, respectively. During experiments with IdioMine, we
vary the parameter 𝑘 , which determines the maximum number of
sub-idioms that can be synthesized, to 1, 2, and 3. This is based
on our observation that idioms typically consist of three or fewer
sub-idioms. Additionally, we prioritize regarding a code fragment
as a complete function rather than an idiom with a single purpose
when increasing 𝑘 results in excessive code complexity. To ensure
a fair comparison with Haggis, we set two parameters of Haggis,
𝑛𝑚𝑖𝑛 and 𝐶𝑚𝑖𝑛 , to the same values used in their study [36].

5.1.3 Evaluation Metrics. We adhere to evaluation metrics pro-
posed in the prior research [36], i.e, idiom coverage (IC) and idiom
set precision (ISP), for comparison experiments. IC measures the
percentage of AST nodes in a Java function that correspond to any
of the identified code idioms, while ISP measures the proportion of
idioms in the training corpus that are also found in the test corpus.
IC assesses how well an idiom mining technique considers the full
semantic meaning of a function when generating code idioms. It’s
a real number between 0 and 1. ISP assesses the frequency of iden-
tified code idioms in projects. Both metrics are tailored for code
idiom mining and are similar to precision and recall in information
retrieval, but adjusted for the specific domain of code idioms. We
also use an additional metric, the average size of the extracted id-
ioms (Avg Size), which calculates the average number of AST nodes
contained within extracted idioms.

Table 2: The performance of Haggis and IdioMine.

Approach IC(%) ISP(%) Avg Size(#Nodes)

Pr
oj
ec
t

Haggis1 30.3 ± 12.5 14.4 ± 9.4 15.5 ± 3.1
Haggis2 3.1 ± 2.6 29.9 ± 19.4 25.3 ± 3.5
Haggis𝑎𝑣𝑔 16.7 — 22.2 — 20.4 —
IdioMine1 29.2 ± 11.2 42.4 ± 21.3 39.5 ± 24.9
IdioMine2 32.1 ± 12.4 46.3 ± 23.5 45.7 ± 27.8
IdioMine3 34.2 ± 13.5 50.8 ± 25.6 51.5 ± 31.7
IdioMine𝑎𝑣𝑔 31.8 — 46.5 — 45.6 —

Li
br

ar
y

Haggis1 23.5 ± 13.2 8.5 ± 3.2 15.0 ± 2.1
Haggis2 2.8 ± 3.0 16.9 ± 10.1 27.9 ± 8.6
Haggis𝑎𝑣𝑔 13.2 — 12.7 — 21.5 —
IdioMine1 17.7 ± 5.6 31.8 ± 24.0 44.7 ± 27.5
IdioMine2 23.3 ± 9.9 34.7 ± 26.1 53.4 ± 30.3
IdioMine3 27.6 ± 13.4 39.9 ± 27.9 58.6 ± 34.0
IdioMine𝑎𝑣𝑔 22.9 — 35.5 — 52.2 —

* 𝑛𝑚𝑖𝑛 and 𝑐𝑚𝑖𝑛 for Haggis1 and Haggis2 are 5/2 and 20/25, respectively.

5.1.4 Results. Table 2 allows us to draw the following conclusions:
a) Compared toHaggis, IdioMine extracts code idioms with

more complete semantic meanings. Specifically, as evidenced
by Table 2, IdioMine exhibits a higher IC value than baseline, with
an average of 15.1% and 9.7% on the Project and Library, respec-
tively. Furthermore, on average, the number of nodes in IdioMine’s
extracted idioms on the Project dataset is over double that of the
baseline, and almost triple on the Library dataset. This indicates
that IdioMine’s extracted idioms can cover a broader range of code
within a function and offer more semantic information than Haggis.

b) IdioMine can not only extract commonly used idioms but

also identify infrequently occurring idioms in datasets but

with a broad generality.As demonstrated in Table 2, our approach
outperforms the baseline in terms of ISP values for all 𝑘 values. This
clearly demonstrates that the idioms mined by IdioMine adhere
to the definition of code idioms, which is characterized by being
frequently used in source code. However, upon manual inspection
of IdioMine’s extracted idioms, we observe a subset of them with
generic semantics despite having fewer occurrences in the dataset.
As illustrated in the third motivating example of Section 1, an idiom
extracted from the library “org.neo4j” by IdioMine appears in only
two out of the 2,357 Java functions across 1,294 source files. Despite
its infrequency, the idiom represents a well-known and generic
code pattern called the “Command Pattern”. This pattern can occur
in various projects underscores its versatility, which verifies the
capability of IdioMine in identifying infrequently occurring in our
datasets, but generic idioms.

c) Compared to the baseline, IdioMine demonstrates a su-

perior capability in identifying idioms with intricate syntax.

The Avg Size metric in Table 2 indicates that IdioMine’s extracted
idioms contain a greater number of AST nodes compared to those of
the baseline. This illustrates that the idioms extracted by IdioMine
are more complex, possibly owing to their distinctive capability to
identify non-continuous and semantically linked code lines.

5.2 RQ2: How effective is IdioMine in code

synthesis?

5.2.1 Motivation. IdioMine leverages ChatGPT to generate po-
tential code idioms by synthesizing interrelated sub-idioms. How-
ever, despite ChatGPT’s proficiency in various domains, it may
still generate erroneous potential code idioms, which can impact
its overall effectiveness in identifying code idioms to some extent.
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Table 3: The performance of IdioMine in code synthesis.

P(%) R(%) F1(%)

93.6 97.9 95.7

Hence, we conduct experiments to evaluate IdioMine’s perfor-
mance during the sub-idiom synthesis phase.

5.2.2 Method. We select the hibernate project as the dataset since it
is the largest project in the Project, comprising the highest number
of source files. We do not select any libraries from the Library for
sub-idiom synthesis evaluation, as most sub-idioms utilizing the
same library typically originate from different functions, source
files, or even projects, rendering them ineligible to meet the rules
for code synthesis.

To ensure the accuracy of our evaluation, we engage two ex-
perienced Java developers with more than seven years of Java
development expertise to create a ground-truth dataset. First, they
independently identify sub-idioms to be synthesized based on the
proposed rules, and then manually synthesize them to generate
sensible code fragments. Subsequently, they discuss their results
together to resolve any disagreements. We assess their inter-rater
agreement using Cohen’s Kappa [56], a widely used metric [68, 69]
and obtain a robust value of 0.83, indicating a strong level of agree-
ment. In total, they cost two weeks to synthesize 48 potential code
idioms from the 776 sub-idioms in the hibernate project.

5.2.3 Evaluation Metrics. We use three commonly used metrics,
precision (P), recall (R), and F1-score (F1), to evaluate IdioMine’s
performance in sub-idiom synthesis. Precision (P) refers to the per-
centage of correctly identified idioms, while recall (R) indicates the
percentage of identified idioms out of those manually identified.
We only evaluate IdioMine’s performance in this phase, as Haggis
does not involve sub-idiom synthesis.

5.2.4 Results. Conclusions can be drawn from Table 3:
a) IdioMine performs well in sub-idiom synthesis, which

is essential for accurate code idiom identification. As demon-
strated in Table 3, with the help of ChatGPT, IdioMine can syn-
thesize code fragments with a high degree of accuracy and correct
syntax. It achieves impressive Recall and F1 scores of 97.9% and
95.7%, which lays a solid foundation for IdioMine’s outstanding
performance in idiom extraction. Based on our analysis, we have
observed that the strong performance of ChatGPT in this phase can
be attributed to our utilization of its exceptional code understand-
ing capabilities, coupled with our strategic approach to mitigate its
highly powerful generation capability. By constraining ChatGPT
to synthesize code fragments based on our provided input, we ef-
fectively leverage its strengths while preventing the generation of
potentially incorrect code that may appear plausible.
Failure analysis. During the code synthesis phase, there are still
three errors and one omission that persists. Uponmanual inspection,
we notice that IdioMine struggles with synthesizing sub-idioms
that feature complex syntax, such as ❶ the sub-idiom to be synthe-
sized involving multiple control structures or ❷ sub-idioms whose
statement order is challenging to determine. Furthermore, we ob-
serve one sub-idiom pair which IdioMine fails to synthesize since
they do not possess any shared variables. However, our developers
are confident that these sub-idioms should be synthesized as they

Table 4: The quality performance of the extracted idioms.

Approach Code Completeness Semantic Clarity Generality

Haggis 3.65 ± 0.80 3.68 ± 0.85 3.23 ± 0.92

IdioMine 3.95 ± 0.80 3.91 ± 0.82 3.41 ± 0.82

are located within the same exception-handling block. Overall, Id-
ioMine has proven to be effective in identifying code idioms during
the sub-idiom synthesis phase.

5.3 RQ3: Are extracted idioms of high quality?

5.3.1 Motivation. This RQ aims to ascertain the quality of Id-
ioMine’s extracted idioms through human analysis.

5.3.2 Method. According to the definition of the idiom, we evalu-
ate the quality of extracted code idioms by considering three aspects,
i.e., code completeness, semantic clarity, and generality. To achieve
this, we design a user study with the aim of investigating the pref-
erences in those three aspects of experienced Java practitioners
towards the top idioms extracted by the baseline and IdioMine.

We investigate the top 18 most common code idioms in our
user study extracted by different approaches. Those top idioms are
the ones with the highest ISP extracted from the Library dataset.
This is for two reasons: 1) The idioms extracted from the Library
dataset are cross-project in nature and have a greater degree of
universality compared to those found in the Project dataset. 2)
The top 18 idioms extracted from the Library dataset by Haggis
are available in [36], ensuring consistency of idioms used in our
study as well as in others. This enhances the accuracy and rigor of
our study and provides a standardized reference for future studies.

11 highly experienced Java developers with over seven years
of experience are invited to our user study. They independently
evaluate each of the top idioms in terms of code completeness,
semantic clarity, and generality on a scale of 1 to 5. A score of 1
indicates poor performance while a score of 5 indicates excellent
performance. We will analyze the results to evaluate the quality and
practicality of the top idioms extracted by Haggis and IdioMine.
This study is approved by the Institutional Review Board (IRB).

5.3.3 Results. Conclusions can be inferred from Table 4:
a) Compared to Haggis, IdioMine’s extracted idioms per-

form well in code completeness, semantic clarity, and gener-

ality. Table 4 shows that IdioMine’s extracted idioms score 3.95,
3.91, and 3.41, respectively, outperforming the baseline by 0.30, 0.23,
and 0.17 in code completeness, semantic clarity, and generality.
This is likely due to IdioMine’s ability to extract idioms from non-
contiguous code lines that possess semantic relationships and the
ability to recognize generic idioms. Therefore, the results suggest
that IdioMine’s extracted idioms are complete, easy to understand,
and generality, offering greater practical value than the baseline.

b) IdioMine’s extracted idioms achieve lower standard de-

viations among all three metrics. In Table 4, the standard de-
viations of IdioMine’s idioms exhibit a decrease of 3% and 10% in
semantic clarity and generality, respectively, as compared to those
of Haggis. Besides, it shows an equivalent standard deviation in
code completeness as that of the baseline. These demonstrate that
IdioMine’s idioms consistently outperform the baseline in terms of
quality performance and display lower volatility across all metrics.
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Table 5: Analysis results on idioms extracted from the Project and Library datasets by IdioMine.

Project/Library #Total #API #CS #WP

Code Fragment

Top Three Functionalities (#Num)

#Generic #Specific

arduino 34 1 10 1 18 4 GUI Programming (16) Input Text Processing (5) Preference Setting (3)
atmosphere 39 10 10 - 15 4 Data processing(6) WebSocket Communication (5) Configuration Management (3)
bigbluebutton 46 6 10 2 20 8 Web Event Programing (9) Message Processing (7) RedisConnection Operation (5)
elasticsearch 11 1 3 - 4 3 Configuration Management (5) Information Retrieval (4) Search Result Processing (3)
grails-core 32 5 3 - 18 6 Network Cmomunication (4) Configuration Management (4) URL Processing (3)
hadoop 29 5 8 - 15 1 Web Service (4) Resource Management (3) Hadoop YARNApplication (3)
hibernate 31 3 3 1 21 3 I/O Operation (10) Configuration Management (8) Event-driven Programing (5)
libgdx 45 4 15 - 17 9 GUI programming (8) Data Processing (4) Network Communication (3)
netty 26 7 5 - 11 3 I/O Operation (12) Net Communication (4) Memory Operation (4)
storm 75 6 24 1 34 10 Real-time Operation (9) Authentication&Authorization (4) Network Communication (3)
vert.x 57 9 6 - 36 6 Network Communication (11) Data Processing (8) Command-line Input (5)
voldemort 32 7 12 - 10 3 Network Communication (5) Input Validation (5) Data Processing (3)
wildfly 33 19 2 - 11 1 XML Configuration (5) Resource Registering (4) DeploymentUnit Operation (3)
Project 490 83 111 5 230 61

android.location 39 15 5 - 14 5 Location-based Operation (11) UI Element Processing (10) Preference Setting (3)
android.net.wifi 33 8 5 - 14 6 WiFi Network Management (11) Information Retrival (8) Preference Setting (2)
com.rabbitmq 98 2 17 2 54 23 Message Processing (14) Network Communication (13) Timestamp-related Operation (5)
com.spatial4j 54 10 8 - 21 15 Data Processing (13) Graphics-related Operation (13) Distance Calculation (3)
io.netty 155 21 33 1 48 52 Network Communication (8) Configuration Management (4) Web Service (4)
opennlp 52 10 13 - 26 3 ML Implementation (8) Modle Parameter Processing (4) Natual Language Processing (4)
org.apache.hadoop 48 17 4 - 26 1 (large-scale) data processing (19) Configuration Management (12) File Cache (3)
org.apache.lucene 51 9 5 - 32 5 Lucene Search Processing (23) Search Result Processing (5) Data Tokenizing (2)
org.elasticsearch 35 8 3 - 21 3 Elasticsearch Search Processing (8) Search Result Processing (4) Data Tokenizing (2)
org.eclipse.jgit 69 9 10 1 37 12 Git Command Excution (42) Git Connection (8) Information Retrieval (6)
org.hibernate 177 15 27 - 83 52 SQL Operation (50) Data Processing (27) Configuration Management (14)
org.jsoup 28 6 6 - 10 6 HTML Scraping&Parsing (8) Network Connection (3) Data Processing (3)
org.mozilla.javascript 35 10 2 - 18 5 Javascript Operation (11) Configuration Management (4) Atom Feeds&Publishing (2)
org.neo4j 36 11 3 1 15 6 Graph Dataset Operation (18) I/O operation (6) Configuration Management (3)
twitter4j 100 4 12 4 54 26 Twitter API-elated (16) UI Element Processing (13) Drool-based Application (3)
Library 1,010 155 153 9 473 220

5.4 RQ4: What are the characteristics of the

extracted idioms?

5.4.1 Motivation. This RQ aims to systematically investigate Id-
ioMine’s extracted idioms to explore their classification and pri-
mary functionalities.

5.4.2 Method. To accomplish our objective, we perform a com-
prehensive analysis of the idioms extracted from two evaluation
datasets utilizing IdioMine. Our analysis comprises two phases.
In the first phase, we classify idioms into five categories based on
their formations, including: a) API – an API usage recognized as a
code idiom, b) Code Skeleton (CS) – a code structure considered as
a code idiom, c) Well-known Pattern (WP) – an idiom formed by a
well-known design/code pattern, d) Generic idiom – an idiom that
can reoccur and be reused in multiple projects, and e) Specific idiom
– an idiom that requires significant modifications when reoccur-
ring in other usages. After categorizing idioms, we quantitatively
analyze the distribution of idioms in each type.

In the second phase, we undertake a qualitative analysis to in-
vestigate the main functionalities of idioms extracted from each
project and library. To ensure the correctness of the conclusions
drawn from this RQ, two experienced Java developers with over
seven years of experience are involved in the classification and se-
mantic analysis of code idioms. First, they independently label the
semantic of these idioms based on their experience and ChatGPT’s
answers. Next, they independently derive the top three functionali-
ties by generalizing idioms extracted from each project and library.
They collaborate to reach a consensus in case of discrepancies and
integrate their results into a final version that serves as the ground
truth. Similar to RQ1, Cohen’s Kappa [56] is used to measure the

agreement between them, achieving values of 0.88 and 0.80 in the
two phases and indicating high concordance. Note that we focus on
key features of idioms and exclude less important and too generic
functions, such as exception handling (empty code structure) and
collection operations (e.g., element iteration).

5.4.3 Results. Drawing on the experimental results presented in
Table 5, we arrive at the following conclusions:

a) Idioms are more commonly extracted from the Library
dataset compared to the Project dataset. Table 5 reveals that
1,010 idioms are identified in the Library dataset, whereas the
Project dataset yields only 490 idioms, which is less than half
the number extracted from the Library dataset. Our insight into
this observation is that the Library dataset primarily consists of
source files that both import and use 15 different Java libraries.
Consequently, the code in these source files tends to be more similar
and idiomatic compared to that in the Project dataset, resulting in
a higher number of extracted idioms from the Library dataset.

b) Idioms from Library embody the primary functionali-

ties of their datasets better than those from Project. Table 5
highlights the top three functionalities of both projects and libraries.
It is worth noting that some of these functionalities are generic
and do not necessarily represent the main purpose of the projects
or libraries. These generic functionalities encompass Configura-
tion Management, I/O Operation, Data Processing, Input Validation,
Memory Operation, Input Text Processing, Command-line Input, and
File Cache. In the Project dataset, 85 out of 215 top idioms, which
account for 39.5%, fall under these generic functionalities. On the
other hand, only 108 out of 453 top idioms, which account for
23.8%, in the Library dataset are classified as generic functional-
ities. This difference can be attributed to the fact that the idioms
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Table 6: The performance of ChatGPT in RQ1.

Approach IC(%) ISP(%) Avg Size(#Nodes)

Project ChatGPT 31.7 ± 29.8 40.8 ± 49.6 16.4 ± 11.3

Library ChatGPT — — —

in the Library dataset summarize the common patterns in differ-
ent projects’ source files that import and use the selected libraries.
Hence, these idioms better represent the libraries’ main role and
usages compared to those in the Project dataset.

c) IdioMine can produce both dataset-specific and generic

idioms. As previously demonstrated, Haggis uses an ML-based sta-
tistical method to extract idioms from projects and libraries. How-
ever, these idioms are not easily transferable to other Java projects.
Our approach, IdioMine, which not only performs program analy-
sis on specific code but also integrates ChatGPT’s capability can
produce both specific and generic idioms. For example, Table 5
demonstrates that IdioMine generates 230 and 473 generic idioms,
as well as 61 and 220 dataset-specific idioms from the Project and
Library datasets, respectively.

d) IdioMine extracts well-recognized design patterns from

datasets, exhibiting its practicality and effectiveness. Our ap-
proach successfully identifies five and nine widely-used design pat-
terns from Project and Library datasets, respectively. These pat-
terns are the Dispose Pattern [20], Observer Pattern [21], Consumer-
Producer Pattern [22], Builder Pattern [23], and Lazy Initialization [24]
for the Project dataset. Meanwhile, the Library dataset contains
the Observer Pattern [21],Wait-retry Pattern [25], Double-Checked
Locking pattern [26], Lazy Initialization [24], Command Pattern [11],
Factory Method Pattern [27], ViewHolder Pattern [28], Dynamic Dis-
patch [29], and Random Access [30]. These patterns have a different
scope of application. For example, some of them such as Lazy Ini-
tialization and Factory Method Pattern are not language-specific,
while the ViewHolder Pattern is tailored to Android projects, used
for providing efficient processing of collection elements without the
need for lookup. Overall, the recognition of these well-established
patterns highlights IdioMine’s practicality and effectiveness.

6 DISCUSSION

Considering only one baseline, in this section, we select ChatGPT as
an additional baseline and compare the performance of IdioMine
and ChatGPT in addressing RQ1 and RQ3. Moreover, since Id-
ioMine incorporates ChatGPT in Phase Three, this study can also
be regarded as an ablation study aimed at validating the necessity of
program analysis in the first two phases.

6.1 ChatGPT in RQ1

6.1.1 Method. We employ two prompts to facilitate ChatGPT in
generating idioms from two evaluation datasets. PR 1 is “Generate as
many code idioms as possible from the Java project named [project
name]”. PR 2 is “Generate as many code idioms as possible from the
code that imports and uses the Java library [library name]”.

6.1.2 Results. Conclusions can be drawn from Table 6:
a)Without the program analysis phase, ChatGPT cannot

perform well in idiom extraction. ChatGPT performs poorly in

Table 7: The performance of ChatGPT in RQ3.

Approach Code Completeness Semantic Clarity Generality

ChatGPT 3.81 ± 0.77 3.77 ± 0.64 3.41 ± 0.63

code idiom extraction compared with IdioMine. In Table 6, Chat-
GPT’s extracted idioms from Project are too brief and general,
averaging only 16.4 AST nodes with the longest being 52 nodes. The
idioms extracted from Library are even of low quality, describing
only general structures without contextual meanings. For instance,
ChatGPT identifies “Using the try-catch statement to handle excep-
tions”, “Creating and using objects from a class”, and “Utilizing for
loops for iterating over arrays and collections” as code idioms. These
code fragments are not idioms due to their lack of usefulness. Thus,
program analysis for building DvCFGs and frequent sub-idioms is
essential for idiom extraction.

b) After upgrading IdioMine and ChatGPT, updated Id-
ioMine can still achieve better performance than updated

ChatGPT. Although ChatGPT based on GPT-3.5 is unable to gen-
erate useful idioms from the Library dataset, we discover that
manual input on the updated GPT-4 version on its website can pro-
duce satisfactory results. We thus compare our updated IdioMine,
which is also upgraded to GPT-4, and find that while the updated
ChatGPT can generate a limited number of generic idioms from the
Library dataset, the quality decreases as the quantity increases. On
the other hand, our updated IdioMine can generate a larger number
of idioms, including both general and specific ones, outperforming
both the previous IdioMine version and the updated ChatGPT.

6.2 ChatGPT in RQ3

6.2.1 Method. We follow RQ3’s experimental method to assess
the quality of ChatGPT’s extracted idioms in code completeness,
semantic clarity, and generality by a user study. Once ChatGPT
generates fewer than 18 high-quality idioms from Library, we
will supplement them with idioms having the highest ISP which
ChatGPT generates from Project.

6.2.2 Results. Conclusions observed from Table 7 are:
a) ChatGPT has the lowest standard deviation among the

threemetrics than IdioMine andHaggis.ChatGPT demonstrates
exceptional consistency with the lowest standard deviation across
code completeness, semantic clarity, and generality, measuring
at 0.77, 0.64, and 0.63. This is due to its built-in algorithm and
stereotyped templates to generate idioms, resulting in minimal
variations in the three metrics.

b) ChatGPT’s generated idioms show similar generality to

IdioMine’s performance. ChatGPT excels at producing idiomatic
expressions with high generality, thanks to its impressive cognitive
abilities and general intelligence that allow it to analyze source
code in a great number of projects comprehensively. However,
these idioms are often too broad to represent the main purpose and
role of the generated dataset. Furthermore, ChatGPT’s ability to
generate idioms is limited, as it can only generate 49 idioms from
the Project, representing merely 8.7% of the idioms extracted by
IdioMine, and produces unqualified idioms from the Library.
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7 THREATS TO VALIDITY

We identify the following threats to the validity of our study:
Internal validity. Our approach uses the parameter value 𝑘 to
determine the scale of a potential code idiom, indicating the number
of sub-idioms that can be synthesized. Initially, in RQ1, we experi-
mented with a range of 1 to 3 for 𝑘 but later increased it to 5 to allow
for more flexibility in parameter selection. Our experiments have
shown that idioms synthesized from more than three sub-idioms
are rare. Therefore, we recommend using the optimal range of 1 to
3 for 𝑘 . To ensure accuracy, we tested IdioMine, but some errors
may have occurred during its implementation. Furthermore, we
have made an interesting observation during our study: ChatGPT
frequently generates additional, unnecessary code content based
on our provided inputs, ensuring the synthesis of complete code. A
typical example of this occurrence is when the code fragments to be
synthesized contain a try block; ChatGPT autonomously generates
a void catch block to complement the try-catch structure. Indeed,
these cases have no impact on the performance of our study. Besides,
ChatGPT sometimes overlooks consolidating duplicated control
blocks, such as try blocks, from different sub-idioms into a unified
form during code synthesis. We have improved the corresponding
prompt to impose restrictions on ChatGPT, thereby minimizing the
generation of additional and duplicated code.
External validity.Although idioms extracted from the source code
are often specific to the projects and libraries in the dataset and
the selected PL, our approach, IdioMine, is better than existing
methods to generate both specific and generic idioms using a small
number of projects and libraries. To improve the practicality of
IdioMine, we study Java due to its prevalence on GitHub, with a
source code volume of 117 million. This surpasses other commonly
used industry programming languages like C#, Python, Scala, and
JavaScript. As ChatGPT’s response varies with each of the N times
it is called, we input the same prompt to ChatGPT five times and
record all relevant answers after filtering duplicated ones.
Construct validity. The validity of the evaluation can be af-
fected by human errors. We minimize such threats by electing
well-experienced researchers and developers. While assessing the
performance of IdioMine in terms of IC and ISP, we identify code
fragments that share identical or similar structures with certain
code idioms, particularly structural idioms (i.e., code skeletons),
as idiomatic expressions. Note that during the development of Id-
ioMine, GPT-3.5 API served as the most recent version available
to us since GPT-4 API had not yet been released. As the version
and ability of GPT improve, the extracted idioms may show some
differences. In addition, access to the automatic API of ChatGPT is
restricted to sponsors or paying customers of OpenAI.

8 RELATEDWORK

We discussed idiom mining research by Allamanis et al.[34, 36]
as the first work in the field, and the latest work by Sivaraman
et al.[64] throughout the paper. As noted in Section 1, IdioMine
overcomes three key limitations in their approaches. Merchante et
al. [57] developed a web tool to mine Python idioms fromGitHub by
searching related tokens in Python code. Yang et al. [67] developed
a method for identifying fix patterns in Python by extracting fine-
grained bug-fixing code changes and clustering similar bug-fixing

code changes using abstract syntax tree edit distance. Orlov et
al. [60] introduced an idiom extraction algorithm based on subtree
counting and informationmetrics to extract Python idioms. Existing
idiom extraction techniques [40, 50, 61, 62] only identify commonly
used idioms in their datasets but do not capture generic ones. Also,
many ignored code fragment semantics to extract idioms.

Several studies [38, 43, 45, 48, 51, 65, 66] examined idiom im-
pact on code quality and applied them to SE tasks. Ajami et al.[33]
empirically demonstrated that disregarding common idioms may in-
crease code complexity. Long et al. [53] noticed that idioms improve
code changes in remixes. Da et al.[39] found that high-confidence
code recommendations perform better, and recommendation per-
formance declines as source code evolves due to outdated patterns.
Haase et al.[47] provided practical guidance on using and choosing
idioms, and Nielebock et al. [59] used code patterns for API misuse
detection. Finally, Shin et al.[63] introduced a system that mines
idioms for code generation by training a neural synthesizer.

9 CONCLUSIONS AND FUTUREWORK

In this paper, we introduce IdioMine, an innovative unsupervised
approach for extracting code idioms by three phases, including
idiom representation construction, frequent sub-idiom mining, and
semantic idiom identification. We assess the effectiveness of Id-
ioMine and the quality of extracted idioms using well-designed
experiments and a user study. Experimental results reveal that Id-
ioMine accurately extracts both generic and specific idioms from
Java projects and libraries. Specifically, IdioMine outperforms Hag-
gis and ChatGPT by 22.8% and 35.5% in Idiom Set Precision (ISP)
and by 9.7% and 22.9% in Idiom Coverage (IC) when extracting
idioms from Library. IdioMine extracts almost twice the size of
idioms than baselines. The user study results validate our extracted
idioms outperform baselines in terms of code completeness, se-
mantic clarity, and generality. Furthermore, we thoroughly analyze
the primary functionalities of our idioms extracted from each Java
project and library. In the future, we plan to expand IdioMine to
extract idioms from various programming languages and conduct
a thorough analysis of them.
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