
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

MUT: Human-in-the-loop unit test migration MUT: Human-in-the-loop unit test migration

Yi GAO

Xing HU

Tongtong XU

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GAO, Yi; HU, Xing; XU, Tongtong; XIA, Xin; LO, David; and YANG, Xiaohu. MUT: Human-in-the-loop unit test
migration. (2024). ICSE '24: Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, Lisbon, Portugal, April 14-20. 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9254

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9254&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yi GAO, Xing HU, Tongtong XU, Xin XIA, David LO, and Xiaohu YANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9254

https://ink.library.smu.edu.sg/sis_research/9254

MUT: Human-in-the-Loop Unit Test Migration
Yi Gao

The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Hangzhou, China

gaoyi01@zju.edu.cn

Xing Hu∗
The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Hangzhou, China

xinghu@zju.edu.cn

Tongtong Xu
Huawei

Hangzhou, China
xutongtong9@huawei.com

Xin Xia
Huawei

Hangzhou, China
xin.xia@acm.org

David Lo
School of Computing and Information
Systems, Singapore Management

University
Hangzhou, China

davidlo@smu.edu.sg

Xiaohu Yang
The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Hangzhou, China

yangxh@zju.edu.cn

ABSTRACT
Test migration, which enables the reuse of test cases crafted with
knowledge and creativity by testers across various platforms and
programming languages, has exhibited effectiveness in mobile app
testing. However, unit test migration at the source code level has
not garnered adequate attention and exploration. In this paper,
we propose a novel cross-language and cross-platform test migra-
tion methodology, named MUT, which consists of four modules:
code mapping, test case filtering, test case translation, and test case
adaptation. MUT initially calculates code mappings to establish
associations between source and target projects, and identifies suit-
able unit tests for migration from the source project. Then, MUT’s
code translation component generates a syntax tree by parsing the
code to be migrated and progressively converts each node in the
tree, ultima tely generating the target tests, which are compiled
and executed in the target project. Moreover, we develop a web
tool to assist developers in test migration. The effectiveness of our
approach has been validated on five prevalent functional domain
projects within the open-source community. We migrate a total of
550 unit tests and submitted pull requests to augment test code in
the target projects on GitHub. By the time of this paper submis-
sion, 253 of these tests have already been merged into the projects
(including 197 unit tests in the Luliyucoordinate-LeetCode project
and 56 unit tests in the Rangerlee-HtmlParser project). Through
running these tests, we identify 5 bugs, and 2 functional defects,
and submitted corresponding issues to the project. The evaluation
substantiates that MUT’s test migration is both viable and beneficial
across programming languages and different projects.

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639124

ACM Reference Format:
Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang. 2024.
MUT: Human-in-the-Loop Unit Test Migration. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3597503.3639124

1 INTRODUCTION
During software development, developers often spend considerable
time and effort manually writing unit test cases. To facilitate the
testing process, many approaches are proposed to generate unit test
cases automatically, such as EvoSuite [33] and Randoop [42]. These
tools exploit random generation, genetic algorithms, and dynamic
symbolic execution to generate test cases.

Existing studies mainly focus on generating unit test cases for
Java and Python programming language [31, 33, 42, 44, 52]. How-
ever, generating test cases for C++ programs has not received much
attention. Although Fuzz testing tools [34, 38, 57] are proposed to
generate test inputs for C++ programs, generating unit test cases
for them is challenging due to i) difficulty in tool development. Due
to the high complexity and low-level nature of the C++ language,
which involves handling numerous low-level concepts and tech-
nologies such as dynamicmemory allocation and pointer arithmetic,
developing unit test case generation tools for C++ is challenging,
and ii) difficulty in generating effective test cases. As conventional
reliance on random testing methods can produce randomized test
data and logic that may lack real-world significance, thus limiting
their effectiveness.

In modern software development, many software products with
the same functionality are written in different programming lan-
guages for different platforms, such as Android phones have UI,
WI-FI, and Bluetooth functions written in Java language, while
OpenHarmony phones have the same functions, but they are im-
plemented in C/C++ language. Inspired by the success in code
migration [48], we argue that unit test cases can be migrated from
an existing similar donor software with high-quality unit test cases.

To achieve this objective, we propose a migration technique
aimed at generating new test cases from another programming
language. By defining mapping rules between Java and C++ code
and syntax, we can translate existing test cases written in Java

https://orcid.org/0009-0000-2554-2381
https://orcid.org/0000-0003-0093-3292
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0003-4111-4189
https://doi.org/10.1145/3597503.3639124
https://doi.org/10.1145/3597503.3639124
https://doi.org/10.1145/3597503.3639124
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639124&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang

into C++ test cases, eliminating the need to create test cases from
scratch. Furthermore, by leveraging the active open-source ecosys-
tem and abundant test case resources available in Java, we migrate
previously developed and validated test cases that were manually
designed. These test cases possess explicit meanings in their test
data and logic. Specifically, for the target migration project, we
utilize the search function of the GitHub open-source community
to identify projects with the same topic as the target migration
project, implemented in Java and ranked high in terms of stars.
These identified projects serve as candidate projects from which we
extract the test cases eligible for migration. Moreover, the migrated
C++ unit test code retains functional consistency with the original
Java unit test code, ensuring that it continues to examine the same
logic and behavior. As a result, this approach enables more effec-
tive identification of potential issues. Compared to generating unit
test cases from scratch, migrating techniques can automatically
translate original test cases into equivalent test cases of target code,
so as to reduce the cost of testing and ensure the correctness and
maintainability of migrated code.

To facilitate the generation of high-quality C++ test cases, we
propose a test migration tool MUT, which targets the scope where
two applications are different but functionally similar. The high-
level intuition is that test cases, namely test bodies, and assertions,
are simpler compared with general source codes, thus it is more
feasible to conduct code migration. Existing studies [41] have made
the first attempt to migrate UI tests from a source Android app to
automatically generate equivalent tests for a target Android app.
However, the task of migrating unit test cases between different
programming languages has not gained much attention in previous
research. Making such a tool for migrating unit test cases is a non-
trivial task, considering the following challenges:

• Establishing code mapping relationships. To facilitate the migra-
tion of unit test cases between two projects implemented in
different languages, we need to find similar production code snip-
pets and establish a set of mappings between their code snippets,
including classes, methods, and fields.

• Migrating unit tests. Once the code mapping relationships are es-
tablished, we next need to identify the unit tests in Java projects
that can be migrated. These migratable unit tests are then trans-
lated into the equivalent C++ unit tests in the target project.

To address the first challenge, MUT designs a code mapping
method to identify functionally similar code snippet pairs between
source and target projects. Subsequently, it establishes mapping
rules for classes, methods, and fields. To address the second chal-
lenge, MUT identifies migratable unit tests in the source project by
analyzing the invocation relationship between test methods and
focal methods. Subsequently, based on the code mapping relation-
ships obtained in the previous step, MUT translates the migratable
Java unit tests to C++ unit tests by employing a set of code trans-
lation and replacement components based on Backus-Naur Form
(BNF) rules [30]. BNF parsing guarantees the feasibility and high
quality of code translation, as it captures the syntactic structure and
semantic information of the source project comprehensively. We
have devised a complete rule translation and replacement engine to
handle each rule type in BNF flexibly and achieve source-to-target
language translation of source code.

MUT can be easily integrated into the human test process to
assist developers in understanding and writing their final-version
test cases. To boost the efficient use of MUT, we develop a web
interface that displays pertinent pieces of information during test
migration including API matching relations, pre-migration test
cases, and post-migration test cases. Developers can easily under-
stand the reason that MUT generates the post-migration codes,
and correspondingly confirm, revise, or reject the migration result
at this time. We carefully design a comparison study to evaluate
the usefulness of MUT in helping developers and find our users
are satisfied with MUT in helping them efficiently write test cases.
We successfully migrated 550 test cases across 10 projects in five
categories. By compiling and running these tests, we detected a
total of 7 issues in the projects.

In summary, the main contributions of this paper include:
• We propose MUT, to facilitate cross-language, cross-platform test
case migration and enhance test coverage, and minimize manual
labor. The tool is available on our website 1.

• We develop a web interface to assist testers in examining pre-
and post-migration code details, improving the ease of adapting
migrated test cases.

• Experiments with 15 open-source projects (including Jsoup, Joda-
Time, Commons-lang, etc), show the effectiveness and practi-
cality of the MUT tool. In total, we detect 7 vulnerabilities and
merge 253 unit tests.

2 PRELIMINARIES
In this section, we illustrate how a developer can potentially boost
his test process by referring to a similar project, then we depict
how a developer actually boosts his test process by integrating with
MUT. Finally, we provide the definition of our test migration.

2.1 Motivation
During software development, developers often write different soft-
ware products with different programming languages. For example,
Jsoup [14] is a top HTML parsing project written in Java with 10.1k
stars on GitHub, and Mylogin-Htmlparser [20] is a lightweight
HTML parsing project developed in C++, which is similar to Jsoup.
We find that Jsoup has high-quality unit test cases while Mylogin-
Htmlparser does not have sufficient tests.

As Figure 1 illustrates, the test method findsCharsetInMalfor-
medMeta is a unit test within the Jsoup, it is utilized to validate
the accurate parsing of meta elements and the retrieval of the
charset attribute value from an HTML document. This unit test
employs the parse method to parse HTML elements, the select
method to select HTML tags from the parsing result, then the attr
method to retrieve specific attribute values from the tags. All of
these APIs, which implement fundamental HTML manipulation
functionalities, are available in the Mylogin-Htmlparser. However,
Mylogin-Htmlparser is not provided with any test cases to check
the correctness of its functionality.

With our tool. Our tool MUT aims to facilitate the reuse of unit
tests from source projects and generate tests for target projects. It
works by taking two projects with similar functionalities as input.
The usage scenario of MUT is as follows:
1https://github.com/testmigrator/mut

MUT: Human-in-the-Loop Unit Test Migration ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(a) Source test from Jsoup
1 @Test public void findsCharsetInMalformedMeta () {
2 String h = "<meta http -equiv=Content -Type content=

text/html; charset=gb2312 >";
3 // example cited for reason of html5's <meta

charset > element

4 Document doc = Jsoup . parse (h);

5 assertEquals("gb2312", doc. select ("meta").attr("
charset"));

6 }

(b) Migrated test by MUT
1 void findsCharsetInMalformedMeta () {
2 string h = "<meta http -equiv=Content -Type content=

text/html; charset=gb2312 >";

3 node doc = parser . parse (h);

4 ASSERT_EQ("gb2312", doc -> select ("meta")->attr("
charset"));

5 }

(c) Migrated test in Mylogin-Htmlparser
1 TEST(test , findsCharsetInMalformedMeta) {
2 string h = "<meta http -equiv=Content -Type content=

text/html; charset=gb2312 >";
3 parser parser;

4 node doc = parser.parse(h);

5 ASSERT_EQ("gb2312", doc->select("meta")->get_attr("charset"));

6 }

Figure 1: An example of unit test migration from Jsoup to
Mylogin-Htmlparser.

MUT facilitates developers in generating unit tests and supports
the C++ language. For instance, when developing a lightweight
HTML parser module, developers can find well-known projects
with similar functionalities in the open-source community. MUT
migrates function-related tests from these projects to the current
development project, thereby generating unit test code. Although
the migrated unit tests generated by MUT may only be partially
correct, they still reduce the effort required for developers to write
unit tests from scratch. Therefore, MUT helps developers improve
the efficiency of writing unit tests.

2.2 Task Definition
This work primarily focuses on the migration of unit tests. The
task can be formalized as follows: (1) Given the source code of
two projects, 𝑠 and 𝑠′, the goal is to find a function 𝑓 such that
𝑓 (𝑠, 𝑠′) = 𝑟 . We refer to 𝑠 , 𝑠′, and 𝑟 as the production code snippets
of the original project, the production code snippets of the target
project, and the code mapping rules, respectively. We calculate the
code similarity between the two projects to obtain 𝑓 . (2) Given 𝑟

and the unit tests of the source project, 𝑥 , the objective is to find a
function 𝑔 such that 𝑔(𝑟, 𝑥) = 𝑦. We refer to 𝑥 and 𝑦 as the original
unit test and the target unit test, respectively. We utilize a code
translation approach to obtain 𝑔.

3 PROPOSED APPROACH
Figure 2 illustrates the overall framework of our approach. The
migration process mainly has four steps:

Step ❶ Code mapping. This step aims to find the corresponding
production code snippet 𝐶𝑠 with the same functionalities in the
source projects given code 𝐶𝑡 in the target projects.

Step ❷ Test case filtering. This step aims to find the unit test
case 𝑇𝑠 of code snippets 𝐶𝑠 in the source project. These unit test
cases are candidates to be migrated.

Step ❸ Test case translation. This step translates the test cases in
the source projects into those in the target projects. Specifically, the
test cases in the source projects are written in Java programming
language with JUnit [15] test framework. These test cases will be
translated into the C++ programming language and executed using
the most popular test framework in C++, GTest [9].

Step ❹ Migrated test case adaptation. After the translation pro-
cess, the generated test cases may not be used directly. Thus, we
should adapt them to facilitate compilation and execution within
the target project.

3.1 Code Mapping
As illustrated in Figure 2, during the Code Mapping stage, MUT
identifies potential code mapping relationships between the two
projects and concludes them into code mapping rules.

3.1.1 Code Data Extraction. During the code data extraction stage,
MUT extracts basic code information (e.g., class names, method
names, method parameters, return types, and documentation) from
both the source project and the target project. We use ANTLR [1]
to facilitate the extraction process of code written in different pro-
gramming languages. ANTLR provides a straightforward syntax
rule language, commonly utilized for parsing tasks in various pro-
gramming languages. The extracted information is used to find
code mapping relationships between two projects, which serve as
the basis for migrating test cases from the source project to the
target project.

3.1.2 Preprocessing. Due to the significant differences in code
styles between different programming languages, we then prepro-
cess the extracted code information to mitigate the impact of code
style variations. Specifically, naming styles for class names and
method names often follow composite forms, such as camel case
or snake case. We split them into word sequences, for example,
startObject and start_object are split into 𝑠𝑡𝑎𝑟𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡 . Then,
we convert them into lowercase and eliminate irrelevant stop words
(such as a, an, and the). Furthermore, each word is transformed
into its stem form, for instance, equals is transformed to equal. For
example, the method name selectElement is preprocessed into
select and element, class name HtmlParse is preprocessed into html
and parse, respectively.

3.1.3 API Mapping. An API [2] represents the fundamental unit
for implementing functionality in a system module, and each pub-
lic method within a class is defined as an API. Different software
projects might include code modules with similar or identical func-
tionality, but the code implementation logic, style, and syntax of
each API can vary significantly, particularly in cross-language and
cross-platform contexts. We design a series of strategies to reveal

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang

Code Data Extraction

API Mapping

Code Data Preprocess

Class Mapping

Field Mapping

Test File Filtering

Test Filtering BNF Parse Process

Step1: Code Mapping

Step2: Test Case Filtering Step3: Test Case Translation

translate

AST Node Translation

Target Test Generation

Test Adaptation

Preset Syntax
Translation Rules

Code Mapping
Rules

Migration
Codebase

Source Project

Target Project

Step4: Migrated Test Adaptation

Translate Test HINT

Source Project
Test

Target Test

Figure 2: Overview of our Approach.

potential API mapping relationships, including token similarity,
semantic similarity, and documentation similarity. These strategies
explore API mappings between different production code snip-
pets in terms of token and code semantic similarity, with a spe-
cific API represented as a combination of class name sequences
and method name sequences, i.e., api = ClassNameSequence $
MethodNameSequence. The following section elaborates on the API
mapping in detail.

a. Token Similarity: The token similarity mapping identifies can-
didate API mapping pairs when two APIs have identical or similar
method names. To achieve this, we first input the sequences and
utilize the Word2Vec [22] technique to transform them into vectors.
Next, we calculate the sum and mean of the vectors within each set,
deriving the corresponding API vectors. Subsequently, the cosine
similarity between two API vectors is determined, if the similarity
exceeds a predefined threshold, the APIs are considered a candidate
mapping pair. In this paper, the threshold is set as 0.95 since we
empirically find it achieves the best performance.

b. Semantic Similarity: This step aims to recognize API map-
ping pairs that possess semantic associations. Due to variations
in naming styles across systems and platforms, APIs with similar
functionalities might exhibit significant token differences, limiting
the effectiveness of obtaining mappings based on token similarity.

For JSON processing libraries, an API named startObject is
typically used to initiate the creation of a JSON object. It provides an
entry point that facilitates the addition of key-value pairs or fields
to the object. In another project, an API with a similar functionality
might be called beginObject. Although the API names differ in the
token, they are semantic-related. Therefore, we design a semantic-
related mapping method to obtain the similarity between APIs.

Figure 3 illustrates the process of obtaining API mapping pairs
by calculating semantic-related similarity. Specifically, we divide
this process into two steps:

Step ❶: Calculate the semantic similarity between two tokens.
We utilize WordNet [23] to identify synsets for each token in the
API sequence. Then, we identify the two most semantically sim-
ilar words from the synsets and calculate their similarity as the
similarity between the two tokens.

a1,a2,
a3…

A

x1,x2,
x3…

X

𝑠𝑖𝑚(𝐴, 𝑋) = max(𝑠𝑖𝑚(𝑎!, 𝑥!),
𝑠𝑖𝑚(𝑎!, 𝑥"), … , 𝑠𝑖𝑚(𝑎#, 𝑥$))

A X

B Y

Z

1

0.4
0.2

0.1
0.6

1

Figure 3: An example of semantic-related similarity.

Step ❷: Calculate the semantic similarity between two token
sequences. Since an API name is composed of token sequences, we
construct a bipartite graph with the tokens as nodes. The weights
of the edges between the nodes are the token similarities calculated
in Step 1. We then apply the KM [16] algorithm to find the maxi-
mum weighted matching in the bipartite graph. The weight of this
matching in the graph serves as the similarity between the two
token sequences. Finally, we set a threshold to determine whether
the two token sequences form an API mapping pair.

c. Documentation Similarity: We can utilize API documentation
to describe the functionality and usage of an API, which enables
us to discover API mappings between two projects that use differ-
ent programming languages. Generally, API documentation with
similar or related functionalities exhibits semantic correlations. We
remove semantically irrelevant identifiers in API documentation,
such as @param and @return. Subsequently, similar to the semantic
similarity, we employWord2Vec to convert documents into vector
representations and calculate the cosine similarity between the
vectors. Then, we obtain candidate API mapping pairs based on
this similarity.

3.1.4 Class Mapping. We construct class mappings based on API
mapping relationships. As illustrated in Figure 1 (refer to Sec 2), the
pair ⟨ Jsoup.parse, parser.parse ⟩ denotes an API mapping. We
then establish a class mapping among the associated classes, namely

MUT: Human-in-the-Loop Unit Test Migration ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 @Test
2 public void testIteratorUpdateable () {
3 Attributes a = new Attributes ();
4 Iterator <Attribute > iterator = a.iterator ();
5 Attribute attr = iterator.next();

6 attr. setKey ("Foo");

7 attr = iterator.next();

8 attr. setKey ("Bar");

9 attr. setValue ("Qux");
10
11 assertEquals("a&p", a.get("Foo"));
12 assertEquals("Qux", a.get("Bar"));
13 }

Figure 4: A test case from Jsoup.

⟨ Jsoup, parser ⟩. During the translation of the test case, we re-
placed the Jsoup class with parser based on the class mapping.
Similarly, the pair ⟨ Document.text, node.to_text ⟩ denotes an-
other API mapping from which the class mapping pair ⟨ Document,
node ⟩ is derived. As a result, the Document class is ultimately
replaced by the node class in this example. In addition, class map-
pings can exhibit a one-to-many relationship. In the translation
process, the target class is determined based on the pre-existing
API mapping relationships within the specific test case.

3.1.5 Field Mapping. Test cases often employ fields in a specific
class as preconditions prior to conducting functional testing. The
test case depicted in Figure 4 aims to evaluate the update func-
tionality of HTML tag attributes in the Jsoup [14]. The Attribute
class includes two fields: key and value. This test case validates
whether the attr object accurately retrieves the key and value
after field configuration. If we need to migrate this test case to
Mylogin-Htmlparser [20], it is necessary that the two fields should
also exist correspondingly in Mylogin-Htmlparser. Thus, it is es-
sential to establish a mapping relationship between the fields in
both projects. Since both Java and C++ programming languages
exhibit object-oriented characteristics and their encapsulation fea-
ture requires accessing fields through getter and setter methods, in
this step, we establish a set of field mapping pairs between the two
projects by examining the consistency of getter and setter methods
with the same names. For example, in the case of the setKey and
setValuemethods in the Jsoup Attribute class, we will locate the
corresponding method with the same name in the target project
and establish field mapping pairs.

Now, we obtain the mapping pairs between the production code
of the two projects. These mapping pairs serve as guidelines for
code translation and are stored as configuration files, allowing for
convenient modification and adaptation. Moreover, to adapt the
substitution of test statements across diverse testing frameworks,
we establish a predefined collection of syntax replacement rules.
Table 1 shows some mapping rules between the Java unit testing
framework JUnit [15] and the C++ unit testing framework GTest [9].
For instance, automatically substituting JUnit’s assertTrue with
GTest’s ASSERT_TRUE. These rules are utilized to substitute the
source code with the target code during the subsequent migration
of test cases.

Table 1: Test Mapping Rules: JUnit and GTest Framework.

JUnit GTest
assertTrue ASSERT_TRUE
assertFalse ASSERT_FALSE
assertEquals ASSERT_EQ
assertNotEquals ASSERT_NE
assertNull ASSERT_TULL

3.2 Test Case Filtering
In the second stage, MUT identifies the test cases from the source
project suitable for migration. We first identify the appropriate
test files, and then we identify the code elements (classes, methods,
fields) associated with the test cases.

Test File Filtering: For each class file in the source project, we
first identify its focal test files. It is worth noting that the naming
style for test files corresponding to class files is not always strictly
standardized, thus requiring us to widen the scope of regular ex-
pression matching. A heuristic algorithm is employed to match
test files using the following regular Expression: Test[a-zA-Z]
ClassName[a-zA-Z] (Test|Tests)?, where ClassName represents
the specific class name. A class may match multiple test files, for
example, the Date class may match test files such as TestDate,
TestLocalDate, and TestDateTime. These test files are further
filtered based on API call relationships in the subsequent step.

Test Filtering: In the previous step, we filtered out the test files
required for migration. It is important to note that not all test cases
in the test file need to be migrated to the target project. In this
step, based on the existing API mapping relationships, we further
filter out the test cases in the test file that need to be migrated. To
ensure that the migrated test cases can evaluate and verify the API
functions in the target project, we set two filtering rules. First, the
test cases in the test file need to be tested to the API defined in the
focal class, which is judged according to the analysis of the call
relationship between the test cases and the API. Second, the API
tested in the test case is required to have a mapping relationship in
the target project. At this stage, all the structures to be migrated,
including classes, fields, and test methods, are identified.

3.3 Test Case Translation
In this stage, MUT employs the translation component and code
mapping rules to progressively translate source code elements into
the target code elements.

BNF Parse Process: In this step, MUT conducts syntax analysis
and gathers the parsing results for the test cases designated for
migration, which is utilized in the subsequent translation process.
A test case can encompass diverse syntax structures, including class
and field declarations, conditions, loops, method invocations, etc.
Syntax analysis is essential for translating these structures from
the source language to the target language, and we use ANTLR [1]
to recognize and parse these syntax structures. The Java syntax
rules defined in ANTLR establish mappings between each syntax
structure and a corresponding BNF node object. Throughout this
parsing process, we collect all the different types of BNF nodes
present in the test cases, which serve as the translation targets.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang

1 methodDeclaration
2 :methodModifier* methodHeader methodBody ;
3 methodBody
4 :block
5 |';' ;
6 block
7 :'{' blockStatements? '}' ;
8 blockStatements
9 :blockStatement+ ;
10 blockStatement
11 :localVariableDeclarationStatement
12 |classDeclaration
13 |statement ;

Figure 5: The BNF Rules Generated by ANTLR for Java
Method Declarations.

As shown in Figure 5, when parsing the test case, the declaration
of the test method corresponds to the BNF nodeMethodDeclaration,
and the corresponding node object MethodDeclarationContext can
be obtained by parsing the test method. From this BNF node object,
we can extract all the information related to the method declaration,
such as the method name, return value type, parameter list, and
each block statement in themethod body. In the subsequent step, we
systematically translate this information into the target language
and structure it into new test cases.

BNF Node Translation: In the prior step, we obtain BNF node
objects corresponding to each test case for migration. This stage in-
volves parsing these node objects and executing the source-to-target
code translation. To illustrate this translation process, let’s consider
the translation of a method. The specific node object corresponding
to a method is calledMethodDeclarationContext, essentially a syntax
tree structure, the BNF syntax rule depicted in Figure 5 specifies
that its child nodes comprise MethodModifier, MethodHeader, and
MethodBody, signifying method modifiers (e.g., public, private),
method headers, and method bodies, respectively.

The Translate component within MUT is tasked with parsing
and converting these BNF node objects. It accepts the BNF nodes
of the source code as input and produces target code elements as
output. The fundamental function of Translate involves adjusting a
syntax tree by replacing, adding, or eliminating child nodes, and
subsequently converting it into the target structure. Given the 243
distinct BNF node types in Java syntax [1], to recognize, parse, and
translate all possible syntax structure types that may be encoun-
tered in the source project, we establish a corresponding Translate
for each BNF node type to facilitate the source-to-target transla-
tion. To ensure the translated test is executable within the target
project, the Replace component replaces code according to the code
mapping rules and pre-set syntax replacement rules (see Figure 2).
By extending these two components, we further enhance the MUT
tool’s capability to facilitate translations between additional pro-
gramming languages.

3.4 Migrated Test Adaptation
Finally, the migrated test is compiled and executed within the target
project. However, ensuring the executability of the migrated test
(e.g., from Java to C++) poses a significant challenge [25, 30, 32].
Consequently, addressing specific issues, such as adding missing
dependencies and modifying unmapped code segments, is crucial

for the successful compilation and execution of the migrated test
within the target project.

To facilitate this process and enable manual adaptation on the
migrated test, we developed a web tool that offers various beneficial
features. As shown in Figure 6, developers can visualize the code
before and after migration via the web interface, allowing for quick
comparison and assessment of the translation results. Furthermore,
when mapping relationships are absent, MUT provides hints to em-
phasize specific code that failed to convert, empowering developers
to address these concerns more effectively.

Figure 6: An example of the web interface of MUT.

By utilizing the MUT web framework, developers can streamline
the test adaptation process, identify and resolve potential issues
more efficiently, and ultimately improve the overall quality and
reliability of the migrated test.

4 EXPERIMENTS
In this section, we discuss the experimental details of our tool and
address the following three research questions:
• RQ1: How is the quality of code mapping in MUT for the test
migration task?

• RQ2: How useful is the MUT tool in practice?
• RQ3: How effective are the migrated tests in the target project?

4.1 Experimental Setup
As MUT aims to migrate unit test cases from Java to C++ open-
source projects, we select our test migration dataset from widely
used open-source projects in both Java and C++ languages. We
choose Java projects that are either popular or highly ranked based
on GitHub stars. Such projects exhibit more comprehensive unit
tests, higher code writing standards, and enhanced quality, making
them suitable for source code selection in test migration. When se-
lecting C++ projects for the test migration experiment, we consider
categories that are similar to Java projects, and we randomly select
some newly developed, lightweight C++ projects. These projects
typically lack sufficient test cases, making them suitable candidates
for our test migration objectives.

In total, 15 open-source projects are selected as experimental
subjects, which are shown in Table 2. Five of these projects are in
Java and 10 are in C++. To ensure functional diversity, our selected
projects cover five categories, including string processing, data
structures and algorithms, HTML manipulation, date processing,
and JSON processing. These categories host popular projects with
active developer communities, facilitating the acquisition of suitable
tests for migration.

MUT: Human-in-the-Loop Unit Test Migration ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Subject projects for MUT’s evaluation.

Category Open Source Projects
Source Project Target Project

String Commons-lang [5] Libstrop [17]
Boost algorithm [3]

DataStructure Fishercoder [8]

Luliyucoordinate-Leet-
Code [18]

Data-Structure-and-
Algorithms [7]

HTML Jsoup [14]

Rangerlee-Html-
Parser [21]

Mylogin-Html-
Parser [20]

Date Joda-Time [11]
CPP-DateTime-

library [6]
Boost Date [4]

JSON Minimal-json [19] JsonParser [12]
Jsontest [13]

4.2 RQ1: The Effectiveness of Code Mappings
In the first part of our experimental evaluation, we concentrate on
the efficacy of code mapping generated by the MUT tool. During
this stage, we identify all potential similarities and correlations
between the source and target projects, which facilitate the cre-
ation of code mapping rules. API mapping is critical during the
code mapping process. As elaborated in Section 3, API mapping as-
sists in establishing class mapping relationships and field mapping
relationships. Furthermore, the quality of API mapping directly
influences the effectiveness of later stages, such as code translation.
A test case is considered eligible for migration only if it utilizes the
mapped API, thereby validating the functionality of the API.

As depicted in Figure 7, MUT automatically obtains 534 API
mappings from five test migration projects, of which 364 API map-
pings are related to tests that invoked the mapped APIs in the
source project. We manually verify all API mapping results for
each dataset by inspecting the source code or documentation of
the APIs. The experimental results reveal that the performance of
API mapping varied considerably among different experimental
groups. The proportion of finally selected API mappings is 63.7%.
The highest performance is observed in the DataStructure dataset
at 96.4%, while the Date dataset exhibits the lowest performance at
a mere 31%.

We present examples illustrating the effectiveness of MUT’s
code mapping and explain the reasons behind the manual adapta-
tion of specific mappings. For instance, in the JSON dataset, MUT
successfully identifies API mapping pairs that are functionally iden-
tical, such as <JsonObject-isObject, JsonObject-IsObject>. Moreover,
MUT recognizes semantically related API mappings with analo-
gous functionality, such as <JsonObject-startObject, JsonObject-
beginObject> and <JsonObject-stopObject, JsonObject-endObject>,
which are employed to mark the starting and ending positions of a
JSON object during its creation.

These findings suggest that MUT is capable of identifying API
mapping relationships that are related in terms of tokens or seman-
tics across diverse programming languages and projects. However,

Figure 7: Results for API Mapping. all - total number of map-
pings obtained, mut - number of mappings after filtering
with MUT, manual - number of mappings after manual se-
lection.

MUT also produces inaccurate mapping pairs. As MUT’s code map-
ping relies on token or semantic correlations between APIs, APIs
with some form of association will be chosen as candidate map-
ping pairs. For example, in the Date dataset, Joda-time [11] and
date-boost [4] both feature the API year, used to obtain the year
of a time object. MUT accurately maps them as a candidate API
mapping pair, which is the expected correct mapping relationship.
Nevertheless, the Years class in Joda-time also possesses a years
method that is similar to year. MUT maps them as a candidate
API mapping pair, but they exhibit different functionalities. Conse-
quently, this API mapping pair is invalidated. Similar situations are
prevalent in the Date dataset, resulting in the retention of only 45
out of 145 accurate API mapping pairs.

In summary, after manually verifying the mapping outcomes,
we select 232 API mappings from the 364 API mapping results to
serve as the basis for subsequent steps.

4.3 RQ2: The Effectiveness of Tool Usage
To address RQ2, we initially introduce the parts of MUT that require
manual intervention during its usage. Subsequently, we evaluate
the tool’s effectiveness through a user study. Currently, the utiliza-
tion of MUT necessitates manual intervention during three parts:
code mapping selection, test case selection, and adaptation of mi-
grated test cases to the target project. All of these adjustments
can be executed directly on the web interface provided by MUT,
eliminating the need to access source code from code files, thereby
rendering the tool highly convenient to use.

Table 3 illustrates the time distribution for these three stages of
the migration process across the five experiments. As evidenced
in the Table 3, the manual time required for code mapping and
test method selection is relatively brief, with total durations of
17 and 26 minutes, respectively. Experimenters merely need to
remove obviously incorrect mappings and unsuitable test methods
for migration to the target project via the web interface. The most
time-consuming aspect involved adapting the migrated tests to
the target system environment, with a total manual duration of
119 minutes. Throughout the experiment, a total of 550 test cases

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang

Table 3: Measurements of manual effort spent on different
stages of the migration process, including mapping selection
(#MS), test selection (#TS), and test adaptation (#TA).

Category #MS[min] #TS[min] #TA[min]
String 2 3 15

DataStructure 5 3 25
HTML 3 3 20
Date 3 7 33
JSON 4 10 26
ALL 17 26 119

are migrated, averaging a manual time of merely 18 seconds per
migrated test case.

1 @Test
2 public void cssEscapedAmp () {
3 Document doc = Jsoup.parse("<p class='\\&'>One </p>"

);
4 Element one = doc.expectFirst(".\\\\\\&"); //

tested matches js querySelector
5 assertEquals("One", one.text());
6
7 String q = one.cssSelector ();
8 assertEquals("html > body > p.\\\\\\&", q);
9 assertEquals(one , doc.expectFirst(q));
10 }

Figure 8: An example of Unit Test Case Migration from Jsoup
to Mylogin-HtmlParser.

During MUT’s second stage, the tool identifies candidate test
cases from all test files in the source project that cover APIs with
mapping relationships, providing functional test coverage and val-
idation for the corresponding APIs. As shown in Figure 9, MUT
selects a total of 1,103 candidate migration tests across five cate-
gory projects. However, not every candidate can be successfully
migrated to the target project and pass compilation and execution.
There is a scenario in which candidate tests must be filtered out:
although the test cases utilize APIs that have mapping relationships,
the source test cases may contain functional features that are not
present in the target project. We utilize the HTML project as an
example to illustrate this, as shown in Figure 8, the cssEscapedAmp
test case is for the Jsoup [14], and the test case verifies whether
the expectFirst() method can accurately handle escape charac-
ters in class names and if the cssSelector() method can convert
an element’s CSS selector to a string. Although the target project
also has similar functionality for Jsoup parsing and simple selector,
the cssSelector() method is not present in the target project to
translate an element’s CSS selector to a string. Consequently, this
test case cannot be migrated and used in the target project.

Therefore, a manual inspection of these test cases is required, and
this process can be accomplished through the filtration functionality
offered by the web interface of the MUT tool. If a functional API in
the test is not present in the target project, these test cases must
be removed, and subsequent migrations will not include them. In
total, after manual inspection and filtering, we select a total of 550
test cases for all target projects.

Figure 9: Results for Test Case Filtering. mut - number of test
cases filtered by MUT, manual - number of tests confirmed
by a manual check.

Due to the unavailability of an open-source and suitable C++ test
generation tool as a baseline, we conduct a user study to evaluate
the effectiveness and efficiency of the MUT tool in test migration.
The study involves three doctoral students and three undergraduate
students, all of whom had a basic year’s experience in C++ and Java
at least 5. To conduct the user study, we randomly select 20 tests
from five Java projects. To ensure that the participants understood
how to construct unit tests in the target project, we provide them
with one day to familiarize themselves with the usage of each target
project in advance. The participants are randomly divided into three
groups: Group A, Group B, and Group C, with two participants in
each group. Within each group, the two participants share the task
of writing tests equally, and each group is required to complete the
task of writing 20 test cases. Group A is given basic tips about which
APIs required testing, and they are tasked with writing tests from
scratch. Group B is provided with the source code for the tests from
the source project but without any prompts. They are instructed
to write the tests for the target project based on the original tests.
Group C uses the MUT tool to write the tests.

Table 4: Result for the User Study of MUT.

Group Total[sec] Avg[sec] Test Accuracy
Group A 1967 98 75
Group B 1496 75 85
Group C 520 26 100

By referring to Table 4, we observe that Group A takes the
longest time to write tests, averaging 98 seconds to construct a
single test. Additionally, compared to the other groups, Group A
has the highest error rate, with 5 tests that could not be compiled
and executed successfully. Group B, benefiting from the availability
of source tests as references, requires relatively less time, with an
average of 75 seconds per test. Additionally, Group B demonstrates
an improved accuracy rate compared to Group A, with an accuracy
rate of 85%. However, the most efficient is Group C, which, with the
assistance of the MUT tool, averaged only 26 seconds of manual
effort per test. The time efficiency for each group can be attributed

MUT: Human-in-the-Loop Unit Test Migration ICSE ’24, April 14–20, 2024, Lisbon, Portugal

to the varying degrees of effort required. Group A needed to design
test cases and then write the code from scratch. Group B, having
a reference, saved some time by not needing to design test cases.
However, as the source language is Java, they needed to consider
the code mapping relationships between the source and target and
manually translate the source code into a test case. Group C, on
the other hand, benefited from the automatic API replacement in
the MUT tool and the translation to the target testing framework,
which saved considerable time. Their task is simply to rewrite any
missing parts based on the provided hints.

Figure 10: Participant Ratings of MUT Tool’s Effectiveness
Across Four Stages.

We carry out an assessment to gain insight into the effectiveness
of the MUT tool across its four stages using Likert-scale diagrams
(Figure 10). Participants are instructed to rank each stage on a scale
ranging from one (poor) to five (excellent). In the code mapping
stage, three participants are assigned an excellent rating, while four
are designated a good rating, suggesting the proficiency of our tool
in identifying code mappings—a vital aspect in the preliminary
stage of the migration process. In the test selection stage, seven
participants grant a good rating, and three adjudges it as average,
indicating satisfactory performance in selecting an appropriate test
case from the source project for migration.

During the test translation stage, four participants attribute fa-
vorable ratings, while four categorize them as average, and two as
poor. Despite the inherent complexity of this stage, the tool’s ca-
pability to translate test cases into the target language is generally
appreciated, although with potential for further refinement.

In the test adaptation stage, seven participants award a good
rating, and three deem it as average. The results of the user study
confirm the efficacy of the MUT tool across its principal operational
stages. The tool exhibits commendable performance in the code
mapping and test case filtering stages, with areas for improvement
identified in the test transformation stages. The findings of this
study inform future enhancements to the MUT tool, particularly
concerning its capacity to manage test translation and adaptation.

4.4 RQ3: Usefulness of Migrated Tests
To assess the efficacy of the test case migrated by MUT, we first
execute all migrated tests. This process entails compiling the mi-
grated code within the target projects to verify its correctness and
applicability. Subsequently, we run these tests to perform functional
testing of the target project, analyze the test outcomes, identify
issues (bugs, functional defects, etc.) encountered during testing,

and report them to the target project maintainers via GitHub is-
sues. Lastly, we submit the migrated tests as separate GitHub pull
requests to the maintainers of the target projects.

1) Pull Request Table 5 presents detailed information regard-
ing the test case migration for each group of projects. The Source
Project and Target Project columns indicate the names of the source
and target projects for the migrated test case, respectively. The
#Tests column displays the number of tests that are migrated and
compiled for each group of projects, while the #PRac column de-
notes the current acceptance status of our migrated tests.

Figure 11: One of the Accepted Pull Requests for migrating
test cases.

A checkmark signifies that the target project developers have ap-
proved the migrated test and merged it into their projects, whereas
a dash indicates that the pull request is pending review by the tar-
get project developers and has not been rejected yet. As depicted
in Table 5, developers of two target projects have responded, ac-
knowledging the usefulness of these tests for maintaining their
existing projects, and ultimately accepted our migrated tests. As
shown in the Figure 11, the developer of Rangerlee-HtmlParser has
accepted our migrated tests. As of the submission of this paper,
out of the 550 test cases we submitted, 253 test cases have been
accepted, accounting for 46% of the total. The remaining test cases
are currently under evaluation by the developers.

2) Issue Report Besides augmenting the testing capabilities of
the target project, another goal of migrating tests is to uncover
potential issues within the target system, such as functional defects
or code bugs. We identify seven issues in our experiments across
the five categories of datasets, as illustrated in Table 6. The example
in section 2 refers to a bug detected in the Mylogin-HtmlParser
library by our migrated test, and Figure 12 is the feedback from
the developer of the library, who confirmed the bug and fixed it
accordingly. In addition to discovering bugs, we also observe that
some API functions in the target project are not fully developed.
For instance, in the HTML category experiment, the parse API
is utilized to parse HTML elements. However, we notice that in
some tests migrated from Jsoup to Mylogin-HtmlParser, for certain
uncommon HTML elements like frameset, Mylogin-HtmlParser
could not successfully parse them as HTML elements but instead

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang

Table 5: Results for Migration testing: #Tests - the total num-
ber of migrated and executed tests; #PRac - the acceptance
status of the pull requests submitted for the migrated tests
on Github, where a checkmark indicates acceptance by the
maintainer.

Source Project Target Project #Tests #PRac

Commons-lang Libstrop
Boost algorithm

11
23

-
-

Fishercoder

Luliyucoordinate-Leet-
Code

Data-Structure-and-
Algorithms

197
49

✓
-

Jsoup Rangerlee-HtmlParser
Mylogin-HtmlParser

56
75

✓
-

Joda-Time CPP-DateTime-library
Boost Date

26
60

-
-

Minimal-json JsonParser
Jsontest

19
34

-
-

Table 6: Issues discovered in the process of migration testing
in the target projects.

Category Issue Report
Bugs Functional Defects Total

HTML 2 2 4
Date 1 0 1
JSON 2 0 2
ALL 5 2 7

as regular strings. Consequently, we raised an issue concerning
the incomplete functionality of Mylogin-HtmlParser and presented
the comprehensive test. We furnished detailed descriptions of the
identified issues and offered suggestions for rectifying them in all
of our submitted issues.

Figure 12: The select API bug detected by the migrated test
was confirmed and fixed by the Mylogin-HtmlParser devel-
oper.

In summary, our experimental results demonstrate that the MUT
tool can effectively migrate test cases, and the migrated test cases
can effectively test the functional correctness of the target project,
aiding not only in maintaining the existing code library of the target
project but also in detecting potential issues. In our experiments,
the migrated test cases are not only approved by the target project
developers but also contributed to resolving bugs.

5 THREATS TO VALIDITY
The primary concern regarding the external validity of our tool is
whether it can be generalized to other projects, tests, and categories.
To address this concern, we selected real-world projects from five
different categories using a random sampling approach. A potential
threat to internal validity arises from the fact that some users who
wrote the tests used in our evaluation were not familiar with the
projects under test. However, developers are generally knowledge-
able about the projects they develop themselves. Another threat to
internal validity is the possibility of errors in the manual inspection
and adaptation of the test migration results. Despite the differences
in code design and implementation between two projects within
the same category, they share common functionality, making the in-
spection and adaptation feasible. We aim to compare Fuzzer-based
methods, including test generation tools like Randoop and Evosuite,
with our tool MUT. However, we encounter a limitation as these
existing tools lack support for C++ language testing generation. As
a result, we are unable to conduct direct comparative experiments.

6 RELATEDWORK
A considerable body of research has been devoted to test generation
techniques [26, 36, 37, 39, 47, 51, 55, 58, 61], such as model-based
methodologies [47, 55, 58], Fuzz testing approaches [37, 39, 61], and
specification-based strategies [26, 53, 56, 59], primarily focusing on
revealing data and logical errors. Besides automatic test generation,
test migration has emerged as an effective technique for reusing
tests [27, 28, 35, 41, 45, 50, 54, 60], leading to the development of
various tools andmethods. TestMig [50] is a migration tool designed
to transfer tests from iOS to Android, implemented using UI events
and requiring source code from both source and target applications.
MAPIT [54] presented a cross-platform test migration approach
based on user interactions with the UI, eliminating the need for
source code and facilitating the migration of oracle events and
system events among apps with similar functionalities. Mariani
et al. [46] framed the test reuse problem as a search challenge,
employing evolutionary testing to achieve test migration across
different Android applications. The test transplantation technique
facilitates the reuse of test cases. Abdi et al. [24] conducted program
slicing on tests from the project’s dependent libraries, extracting
test inputs, and isolating them by creating mocks. Subsequently,
they transplanted the test code into the target project. Lima et
al. [40] applied the technique of test transplantation to various
JavaScript engines, transplanting a test suite from one engine to
others. This approach aided in the detection of potential issues and
vulnerabilities in the different engines.

We systematically study the existing studies on code transla-
tion [25, 29, 32, 43, 49], and find the research scope is limited within
translating cross-language projects for the same application. They

MUT: Human-in-the-Loop Unit Test Migration ICSE ’24, April 14–20, 2024, Lisbon, Portugal

often struggle to handle complex semantic functions and ensure
consistency and compatibility post-conversion, which hampers
their widespread application. Java2C# [30], created using TXL, a
language explicitly designed for program transformation that em-
ploys tree-based rewriting. TXL is a functional rule-based language
that accepts arbitrary context-free grammars in Extended BNF
(EBNF) notation as input and applies a collection of transforma-
tion rules to the input program, demonstrated through examples.
Java2CSharp [10] utilizes manually defined mappings and rules to
transform Java code into C#.

7 CONCLUSION AND FUTUREWORK
This paper proposes a unit test codemigrationmethod, which builds
a test migration process based on the source code of projects with
functional intersections. Our work demonstrates that it is feasible
to migrate unit test source code across languages and platforms, by
transferring high-quality test cases from well-known projects to
the target project to discover functional defects and bugs, and to
serve as test code for the target project. In future work, we intend
to explore the effectiveness of MUT’s test migration method in a
broader range of domains within the open-source community, vali-
dating it with a more extensive selection of projects and migrating
a larger number of test cases. Additionally, we aim to extend the
applicability of our method to support migration between more
programming languages, such as Java to Python, and beyond.

ACKNOWLEDGMENTS
This research is supported by the Fundamental Research Funds for
the Central Universities (No. 226-2022-00064), National Natural Sci-
ence Foundation of China (No. 62141222), and the National Research
Foundation, under its Investigatorship Grant (NRF-NRFI08-2022-
0002). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore.

REFERENCES
[1] 2023. ANTLR. http://www.antlr.org.
[2] 2023. API. https://en.wikipedia.org/wiki/API.
[3] 2023. boost-algorithm. https://github.com/boostorg/algorithm.
[4] 2023. Boost-DateTime. https://github.com/boostorg/date_time.
[5] 2023. commons-lang. https://github.com/apache/commons-lang.
[6] 2023. CPP-DateTime-library. https://github.com/jeremydumais/CPP-

DateTime-library.
[7] 2023. Data-Structure-and-Algorithms. https://github.com/Keshav0907/

Data-Structure-and-Algorithms.
[8] 2023. Fishercoder. https://github.com/fishercoder1534/Leetcode.
[9] 2023. Gtest. https://github.com/google/googletest.
[10] 2023. Java2CSharp. http://sourceforge.net/projects/j2cstranslator/.
[11] 2023. joda-time. https://github.com/JodaOrg/joda-time.
[12] 2023. JsonParser. https://github.com/mindflower/JsonParser.
[13] 2023. jsontest. https://github.com/josexy/jsontest.
[14] 2023. Jsoup. https://github.com/jhy/jsoup.
[15] 2023. JUnit. https://github.com/junit-team/junit4.
[16] 2023. KM. https://encyclopedia.thefreedictionary.com/Hungarian+

algorithm.
[17] 2023. libstrop. https://github.com/nicmcd/libstrop.
[18] 2023. Luliyucoordinate-LeetCode. https://github.com/luliyucoordinate/

Leetcode.
[19] 2023. minimal-json. https://github.com/ralfstx/minimal-json.
[20] 2023. Mylogin-HtmlParser. https://github.com/mylogin/htmlparser.
[21] 2023. Rangerlee-HtmlParser. https://github.com/rangerlee/htmlparser.
[22] 2023. Word2Vec. https://zh.wikipedia.org/wiki/Word2vec.
[23] 2023. WordNet. https://wordnet.princeton.edu/.

[24] Mehrdad Abdi and Serge Demeyer. 2022. Test Transplantation through Dy-
namic Test Slicing. In 2022 IEEE 22nd International Working Conference on Source
Code Analysis and Manipulation (SCAM). 35–39. https://doi.org/10.1109/
SCAM55253.2022.00009

[25] Vicki H Allan and X Chen. 2001. Convert2Java: semi-automatic conversion of C
to Java. Future Generation Computer Systems 18, 2 (2001), 201–211.

[26] Yusuke Aoyama, Takeru Kuroiwa, and Noriyuki Kushiro. 2020. Test case gener-
ation algorithms and tools for specifications in natural language. In 2020 IEEE
International Conference on Consumer Electronics (ICCE). IEEE, 1–6.

[27] Farnaz Behrang andAlessandro Orso. 2018. Test migration for efficient large-scale
assessment of mobile app coding assignments. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 164–175.

[28] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 54–65.

[29] Santiago Bragagnolo, Stéphane Ducasse, Nicolas Anquetil, Abderrahmane Seriai,
and Mustapha Derras. 2022. Alce: Predicting Software Migration. (2022).

[30] James R Cordy, Thomas R Dean, Andrew J Malton, and Kevin A Schneider.
2001. Software engineering by source transformation-experience with TXL.
In Proceedings First IEEE International Workshop on Source Code Analysis and
Manipulation. IEEE, 168–178.

[31] Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating unit tests
with descriptive names or: Would you name your children thing1 and thing2?.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 57–67.

[32] Mohammad El-Ramly, Rihab Eltayeb, and Hisham A Alla. 2006. An experiment
in automatic conversion of legacy Java programs to C. In IEEE International
Conference on Computer Systems and Applications, 2006. IEEE, 1037–1045.

[33] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[34] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 679–696.

[35] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using machine learning
to synthesize robust, reusable UI tests. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 269–282.

[36] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and Xin
Xia. 2019. A survey on adaptive random testing. IEEE Transactions on Software
Engineering 47, 10 (2019), 2052–2083.

[37] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 2123–2138.

[38] Ahcheong Lee, Irfan Ariq, Yunho Kim, andMoonzoo Kim. 2022. POWER: Program
option-aware fuzzer for high bug detection ability. In 2022 IEEE Conference on
Software Testing, Verification and Validation (ICST). IEEE, 220–231.

[39] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.
https://doi.org/10.1109/TR.2018.2834476

[40] Igor Lima, Jefferson Silva, Breno Miranda, Gustavo Pinto, and Marcelo D’Amorim.
2020. Exposing Bugs in JavaScript Engines through Test Transplantation and
Differential Testing. (2020).

[41] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test transfer across
mobile apps through semantic mapping. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 42–53.

[42] Xiangjun Liu and Ping Yu. 2022. Randoop-TSR: Random-based Test Generator
with Test Suite Reduction. In Proceedings of the 13th Asia-Pacific Symposium on
Internetware. 221–230.

[43] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 727–739.

[44] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2020. Automated unit test
generation for python. In Search-Based Software Engineering: 12th International
Symposium, SSBSE 2020, Bari, Italy, October 7–8, 2020, Proceedings 12. Springer,
9–24.

[45] Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni. 2021. Se-
mantic matching of gui events for test reuse: are we there yet?. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
177–190.

[46] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Exploiting
popular functionalities for the generation of semantic gui tests with oracles. In
Proceedings of the 40th International Conference on Software Engineering. 280–290.

[47] Muhammad Luqman Mohd-Shafie, Wan Mohd Nasir Wan Kadir, Horst Lichter,
Muhammad Khatibsyarbini, and Mohd Adham Isa. 2021. Model-based test case
generation and prioritization: a systematic literature review. Software and Systems
Modeling (2021), 1–37.

http://www.antlr.org
https://en.wikipedia.org/wiki/API
https://github.com/boostorg/algorithm
https://github.com/boostorg/date_time
https://github.com/apache/commons-lang
https://github.com/jeremydumais/CPP-DateTime-library
https://github.com/jeremydumais/CPP-DateTime-library
https://github.com/Keshav0907/Data-Structure-and-Algorithms
https://github.com/Keshav0907/Data-Structure-and-Algorithms
https://github.com/fishercoder1534/Leetcode
https://github.com/google/googletest
http://sourceforge.net/projects/j2cstranslator/
https://github.com/JodaOrg/joda-time
https://github.com/mindflower/JsonParser
https://github.com/josexy/jsontest
https://github.com/jhy/jsoup
https://github.com/junit-team/junit4
https://encyclopedia.thefreedictionary.com/Hungarian+algorithm
https://encyclopedia.thefreedictionary.com/Hungarian+algorithm
https://github.com/nicmcd/libstrop
https://github.com/luliyucoordinate/Leetcode
https://github.com/luliyucoordinate/Leetcode
https://github.com/ralfstx/minimal-json
https://github.com/mylogin/htmlparser
https://github.com/rangerlee/htmlparser
https://zh.wikipedia.org/wiki/Word2vec
https://wordnet.princeton.edu/
https://doi.org/10.1109/SCAM55253.2022.00009
https://doi.org/10.1109/SCAM55253.2022.00009
https://doi.org/10.1109/TR.2018.2834476

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yi Gao, Xing Hu, Tongtong Xu, Xin Xia, David Lo, and Xiaohu Yang

[48] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2014. Migrating
code with statistical machine translation. In Companion Proceedings of the 36th
International Conference on Software Engineering. 544–547.

[49] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2015. Divide-and-
conquer approach for multi-phase statistical migration for source code (t). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 585–596.

[50] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test
cases from ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 284–295.

[51] S Rani and Amandeep Kaur. 2020. A literature survey on automatic generation
of test cases using genetic algorithm. Wesleyan J. Res.(UGC Care Listed) 13, 2
(2020), 65–76.

[52] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-
Enhancer: Improving the readability of automatically generated tests. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 287–298.

[53] Yuji Sato. 2020. Specification-based test case generation with constrained genetic
programming. In 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C). IEEE, 98–103.

[54] Saghar Talebipour, Yixue Zhao, Luka Dojcilović, Chenggang Li, and Nenad Med-
vidović. 2021. UI test migration across mobile platforms. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 756–767.

[55] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit test case generation with transformers and focal context.
arXiv preprint arXiv:2009.05617 (2020).

[56] Rong Wang, Yuji Sato, and Shaoying Liu. 2019. Specification-based Test Case
Generation with Genetic Algorithm. In 2019 IEEE Congress on Evolutionary Com-
putation (CEC). IEEE, 1382–1389.

[57] Cerdic Wei Kit Wong. 2022. American fuzzy lop (AFL) fuzzer. (2022).
[58] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and

Qianxiang Wang. 2022. Automated assertion generation via information retrieval
and its integration with deep learning. In Proceedings of the 44th International
Conference on Software Engineering. 163–174.

[59] Arvin Zakeriyan, Ramtin Khosravi, Hadi Safari, and Ehsan Khamespanah. 2021.
Towards automatic test case generation for industrial software systems based
on functional specifications. In Fundamentals of Software Engineering: 9th Inter-
national Conference, FSEN 2021, Virtual Event, May 19–21, 2021, Revised Selected
Papers 9. Springer, 199–214.

[60] Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Feder-
ica Sarro, Mark Harman, and Nenad Medvidovic. 2020. Fruiter: a framework for
evaluating ui test reuse. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1190–1201.

[61] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: a
survey for roadmap. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–36.

	MUT: Human-in-the-loop unit test migration
	Citation
	Author

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Motivation
	2.2 Task Definition

	3 Proposed Approach
	3.1 Code Mapping
	3.2 Test Case Filtering
	3.3 Test Case Translation
	3.4 Migrated Test Adaptation

	4 Experiments
	4.1 Experimental Setup
	4.2 RQ1: The Effectiveness of Code Mappings
	4.3 RQ2: The Effectiveness of Tool Usage
	4.4 RQ3: Usefulness of Migrated Tests

	5 Threats to validity
	6 RELATED WORK
	7 Conclusion and Future Work
	References

