
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2024 

Coca: Improving and explaining graph neural network-based Coca: Improving and explaining graph neural network-based 

vulnerability detection systems vulnerability detection systems 

Sicong CAO 

Xiaobing SUN 

Xiaoxue WU 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Lili BO 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Graphics and Human Computer Interfaces Commons, OS and Networks Commons, and 

the Software Engineering Commons 

Citation Citation 
CAO, Sicong; SUN, Xiaobing; WU, Xiaoxue; LO, David; BO, Lili; LI, Bin; and LIU, Wei. Coca: Improving and 
explaining graph neural network-based vulnerability detection systems. (2024). ICSE '24: Proceedings of 
the IEEE/ACM 46th International Conference on Software Engineering, Lisbon, Portugal, April 14-20. 1-13. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9250 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Sicong CAO, Xiaobing SUN, Xiaoxue WU, David LO, Lili BO, Bin LI, and Wei LIU 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/9250 

https://ink.library.smu.edu.sg/sis_research/9250


Coca: Improving and Explaining Graph Neural Network-Based
Vulnerability Detection Systems

Sicong Cao
Yangzhou University
Yangzhou, China

DX120210088@yzu.edu.cn

Xiaobing Sun∗
Yangzhou University
Yangzhou, China
xbsun@yzu.edu.cn

Xiaoxue Wu
Yangzhou University
Yangzhou, China

xiaoxuewu@yzu.edu.cn

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Lili Bo
Yangzhou University
Yangzhou, China

Yunnan Key Laboratory of Software
Engineering

Yunnan, China
lilibo@yzu.edu.cn

Bin Li
Yangzhou University
Yangzhou, China
lb@yzu.edu.cn

Wei Liu
Yangzhou University
Yangzhou, China
weiliu@yzu.edu.cn

ABSTRACT

Recently, Graph Neural Network (GNN)-based vulnerability de-
tection systems have achieved remarkable success. However, the
lack of explainability poses a critical challenge to deploy black-
box models in security-related domains. For this reason, several
approaches have been proposed to explain the decision logic of the
detection model by providing a set of crucial statements positively
contributing to its predictions. Unfortunately, due to the weakly-
robust detection models and suboptimal explanation strategy, they
have the danger of revealing spurious correlations and redundancy
issue.

In this paper, we propose Coca, a general framework aiming
to 1) enhance the robustness of existing GNN-based vulnerabil-
ity detection models to avoid spurious explanations; and 2) pro-
vide both concise and effective explanations to reason about the
detected vulnerabilities. Coca consists of two core parts referred
to as Trainer and Explainer. The former aims to train a detection
model which is robust to random perturbation based on combina-
torial contrastive learning, while the latter builds an explainer to
derive crucial code statements that are most decisive to the detected
vulnerability via dual-view causal inference as explanations. We

*Xiaobing Sun is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639168

apply Coca over three typical GNN-based vulnerability detectors.
Experimental results show that Coca can effectively mitigate the
spurious correlation issue, and provide more useful high-quality
explanations.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software maintenance tools.

KEYWORDS

Contrastive Learning, Causal Inference, Explainability
ACM Reference Format:

Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei
Liu. 2024. Coca: Improving and Explaining Graph Neural Network-Based
Vulnerability Detection Systems. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639168

1 INTRODUCTION

Software vulnerabilities, sometimes called security bugs, are weak-
nesses in an information system, security procedures, internal con-
trols, or implementations that could be exploited by a threat actor
for a variety of malicious ends [36]. As such weaknesses are un-
avoidable during the design and implementation of the software,
and detecting vulnerabilities in the early stages of the software life
cycle is critically important [60, 70].

Benefiting from the great success of Deep Learning (DL) in
code-centric software engineering tasks, an increasing number
of learning-based vulnerability detection approaches [6, 21, 42, 43]
have been proposed. Compared to conventional approaches [5, 9,
12, 26] that heavily rely on hand-crafted vulnerability specifica-
tions, DL-based approaches focus on constructing complex Neural
Network (NN) models to automatically learn implicit vulnerability

ar
X

iv
:2

40
1.

14
88

6v
1 

 [
cs

.C
R

] 
 2

6 
Ja

n 
20

24

https://doi.org/10.1145/3597503.3639168
https://doi.org/10.1145/3597503.3639168


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu

patterns from source code without human intervention. Recently,
inspired by the ability to effectively capture structured semantic
information (e.g., control- and data-flow) of source code, Graph Neu-
ral Networks (GNN) have been widely adopted by state-of-the-art
neural vulnerability detectors [11, 40, 67, 80].

While demonstrated superior performance, due to the black-box
nature of NN models, GNN-based approaches fall short in the ca-
pability to explain why a given code is predicted as vulnerable
[11, 59]. Such a lack of explainability could hinder their adop-
tion when applied to real-world usage as substitutes for traditional
source code analyzers [20]. To reveal the decision logic behind the
binary detection results (vulnerable or not), several approaches
have been proposed to provide additional explanatory informa-
tion. These efforts can be broadly cast into two categories, namely
Global Explainability and Local Explainability. Global explanation
approaches leverage the explainability built in specific architectures
to understand what features that influence the predictions of the
models. A common self-explaining approach is attention mechanism
[66], which uses weights of attention layers inside the network to
determine the importance of each input token. For example, LineVul
[28] leverages the self-attention mechanism inside the Transformer
architecture to locate vulnerable statements for explanation. How-
ever, the global explanation is derived from the training data and
thus it may not be accurate for a particular decision of an instance
[55]. A more popular approach is local explanation [31, 83], which
adopts perturbation-based mechanisms such as LEMNA [30] to
provide justifications for individual predictions. The high-level idea
behind this approach is to search for important features positively
contributing to the model’s prediction by removing or replacing a
subset of the features in the input space. IVDetect [40] leverages
GNNExplainer [75] to simplify the target instance to a minimal
PDG sub-graph consisting of a set of crucial statements along with
program dependencies while retaining the initial model prediction.

However, these approaches face two challenges that limit their
potentials. Firstly, perturbation-based explanation techniques as-
sume that the detection model is quite robust, i.e., these removed/p-
reserved statements are consistent with the ground truth. Unfortu-
nately, as reported in recent works [56, 74], simple code edits (e.g.,
variable renaming) can easily mislead NN models to alter their pre-
dictions. As a result, the weak robustness of detection models could
lead to spurious explanations even if the vulnerable code is cor-
rectly identified. Secondly, most prior methods focus on generating
explanations from the perspective of factual reasoning [40, 56, 61],
i.e., providing a subset of the input program for which models make
the same prediction as they do for the original one. However, such
extracted explanations may not be concise enough, covering many
redundant statements which are benign but highly relevant to the
model’s prediction. Therefore, it still requires extensive manpower
to analyze and inspect numerous explanation results.
Our Work. To tackle these challenges, we propose Coca, a novel
framework to improve and explain GNN-based vulnerability detec-
tion systems via combinatorial Contrastive learning and dual-view
Causal inference. The key insights underlying our approach in-
clude (❶) enhancing the robustness of existing neural vulnerability
detection models to avoid spurious explanations, as well as (❷)
providing both concise (preserving a small fragment of code for
manual review) and effective (covering as many truly vulnerable

statements as possible) explanations. To this end, we develop two
core parts in Coca referred to as Trainer (abbreviated as Coca𝑇𝑟𝑎)
and Explainer (Coca𝐸𝑥𝑝 for short).
Coca Design. In the model construction phase, Coca𝑇𝑟𝑎 first
applies six kinds of semantic-preserving transformations as data
augmentation operators to generate diverse functionally equivalent
variants for each code sample in the dataset. Then, given an off-the-
shelf GNN-based vulnerability detection model, Coca𝑇𝑟𝑎 combines
self-supervised with supervised contrastive learning to learn robust
feature representations by grouping similar samples while pushing
away the dissimilar samples. These robust feature representations
will be fed into the classifier to train a robustness-enhanced vul-
nerability detection model. In the vulnerability explanation phase,
we propose a model-agnostic extension based on dual-view causal
inference called Coca𝐸𝑥𝑝 , which integrates factual with counter-
factual reasoning to derive crucial code statements that are most
decisive to the detected vulnerability as explanations.
Implementation and Evaluations. We provide the prototype
implementation of Coca over three state-of-the-art GNN-based
vulnerability detection approaches (Devign [80], ReVeal [11], and
DeepWuKong [16]). We extensively evaluate our approach with rep-
resentative baselines on a large-scale vulnerability dataset compris-
ing well-labeled programs extracted from real-world mainstream
projects. Experimental results show that Coca can effectively im-
prove the vulnerability detection performance of existing NN mod-
els and provide high-quality explanations.
Contributions. This paper makes the following contributions:
• We uncover the spurious correlations and redundancy problems
in existing GNN-based explainable vulnerability detectors, and
point out that these two issues need to be treated together.

• We propose Coca1, a novel framework for improving and ex-
plaining GNN-based vulnerability detection systems, in which
Coca𝑇𝑟𝑎 improves the robustness of detection models based on
combinatorial contrastive learning to avoid spurious explana-
tions, while Coca𝐸𝑥𝑝 derives both concise and effective code
statements as explanations via dual-view causal inference.

• We provide prototype implementations of Coca over three state-
of-the-art GNN-based vulnerability detection approaches. The
extensive experiments show substantial improvements Coca
brings in terms of the detection capacity and explainability.

2 BACKGROUND

2.1 Problem Formulation

Instead of exploring new models for more effective vulnerability
detection, we focus on a more practical scenario, i.e., explaining the
decision logic of off-the-shelf GNN-based vulnerability detection
models in a post-hoc manner as an input code snippet is predicted
as vulnerable. In particular, following the definition in recent works
[33, 40], our problem is formalized as:

Definition 1 (Vulnerability Explanation). Given an input
program 𝑃 = {𝑠1, · · · , 𝑠𝑚} which is detected as vulnerable, the
explanation is a set of crucial statements {𝑠𝑖 , · · · , 𝑠 𝑗 } (1 ≤ 𝑖 ≤ 𝑗 ≤
𝑚) that are most relevant to the decision of the model, where 𝑠𝑢
(𝑖 ≤ 𝑢 ≤ 𝑗) denotes the 𝑢-th statement in program 𝑃 .

1https://github.com/CocaVul/Coca

https://github.com/CocaVul/Coca


Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

2023/4/20 19:28 ASE.svg

file:///C:/Users/CSC/Desktop/ASE.svg 1/3

Phase1: Data Augmentation

Token-Level
Transformation

SE Variants

Statement-Level
Transformation

Phase2: Feature Extraction

Graph 
Construction

Feature 
Embedding Program Graph

Phase3: Contrastive Learning

C
on

tra
st

iv
e 

En
co

de
r

Sample 1

Sample 1+

Sample k

...C
la

ss
ifi

er

Vulnerability 
Detector

Source Code

Source Code

Feature 
Extraction

Vulnerable Benign

引言

问题背景

研究背景

存在问题

提出方法

漏洞、严重性（为什么要检测）

分类（静态、DL-based）

为什么要可解释（黑盒模型难以理解、一些经验研究也呼吁需要可解释性）

基于可解释人工智能（XAI）--全局可解释（MSR’22）、局部可解释（FSE’21）

基于程序约简（Delta Debugging）--FSE’21

模型鲁棒性弱

解释针对性差

两种方法都需要与检测模型进行交互，通过扰动输入
（删除相关的语句）以获取对模型预测影响较大的子
集，但其前提是模型足够精确（鲁棒），即模型不会
因为一些无关的扰动而轻易地改变预测结果

XAI倾向于包含足够信息以不改变预测结果，但其解
释可能会包括冗余语句，导致解释结果不够紧凑；程
序约简需要与模型进行多次交互以获取解释结果，不
适用于批量的漏洞检测结果，此外，程序约简倾向于
只包含最关键信息的解释，导致解释结果不够全面；

基于对比学习和反事实推理的可解释漏洞检测

通过漏洞样本与补丁样本，漏洞样本与语义等价
样本进行对比，提高模型的鲁棒性（Stronger）

通过结合事实推理与反事实推理，使得解释结
果既充分，又必要（Less）

背景与挑战

Explainability in 
Code Models

Robustness in 
Code Models

挑战

全局可解释

局部可解释

数据层面：对抗样本

挑战2：如何简洁但全面地提供解释信息？

模型层面：对比学习

挑战1：如何提高检测模型的鲁棒性？

Stability Enhancement

Explainable Detection

Detection Model

Vulnerability 
Detector

Source Code

Stable 
Trainer

Explanations

Vulnerability 
Explainer

Unlabeled
Programs

Augmented
Variants

Contrastive
Learning

Data 
Augmentation

Transformation 
Operators

funcA() 
{ ...
 int item;
 if (...) {

return;
 }else {...}

funcB() 
{ ...
 var key;
 for (...)

{...}
 return key;

funcA() 
{ ...
 int var0;
 if (...) {

return;
 }else {...}

funcB() 
{ ...
 var key;
 while (...)

{...}
 return key;

fk

fq q

k+

k- k- k- k-

Maximize

Minimize

Encoder

Negatives Buffer

g

g

Projector

Figure 1: Contrastive code representation learning pipeline.

In other words, our goal turns to develop an explanation frame-
work applicable to any GNN-based vulnerability detector to provide
not only binary results, but also a few lines of code (i.e., a subset
of the input program) as explanatory information, to help security
practitioners understand why it is detected as vulnerable.

2.2 Contrastive Learning for Code

Due to the limited labeled data in downstream tasks, contrastive
learning (CL) has emerged as a promising method for learning
better feature representation of code without supervision from
labels [22, 34, 46, 79]. The goal of CL is to maximize the agreement
between original data and its positive data (an augmented version of
the same sample) while minimizing the agreement between original
data and its negative data in the vector space. Figure 1 presents
the typical code-oriented CL pipeline. Unlabeled programs are first
transformed into functionally equivalent (FE) variants via data
augmentation. In this work, we apply the following six token- or
statement-level augmentation operators introduced by prior works
[10, 34, 46] to construct FE program variants:

• Function/Variable Renaming (FR/VR) substitutes the function/vari-
able name with a random token extracted from the vocabulary
set constructed on the pre-training dataset.

• Operand Swap (OS) is to swap the operands of binary logical
operations. In particular, the operator will also be changed to
make sure the modified expression is the logical equivalent to
the one before modification when we swap the operands of a
logical operator.

• Statement Permutation (SP) randomly swaps two lines of state-
ments that have no dependency (e.g., two consecutive declaration
statements) on each other in a basic block in a function body.

• Loop Exchange (LX) replaces for loops with while loops or vice
versa.

• Block Swap (BS) swaps the then block of a chosen if state-
ment with the corresponding else block. We negate the original
branching condition to preserve semantic equivalence.

• Switch to If (SI) replaces a switch statement in a function body
with its equivalent if statement.

Then, these augmented variants are fed into the feature encoder
𝑓𝑞 (or 𝑓𝑘 ) with a projection head to produce better global program
embeddings via minimizing the contrastive loss. A widely adopted
contrastive loss in SE tasks is Noise Contrastive Estimate (NCE) [13],

which is computed as:

L𝑁𝐶𝐸 =
1
|B|

∑︁
𝑖∈B

−log
exp(𝑧𝑖 · 𝑧 𝑗 (𝑖 )/𝜏)∑

𝑎∈A(𝑖 )
exp(𝑧𝑖 · 𝑧𝑎/𝜏) (1)

where 𝑧𝑖 = 𝑔(𝑓 (𝑥𝑖 )) represents the low-dimensional embedding of
an arbitrary sample 𝑥𝑖 among augmented variants. 𝑗 (𝑖) is the index
of the other view originating from the same source. 𝜏 ∈ R+ is the
temperature parameter to scale the loss, and A(𝑖) ≡ B\{𝑖}.

2.3 Explanation for GNN-based Models

Although Graph Neural Networks (GNN)-based code models have
achieved remarkable success in a variety of SE tasks (e.g., code re-
trieval [58] and automated program repair [14]), the lack of explain-
ability creates key barriers to their adoption in practice. Recently,
several studies have attempted to explain the decisions of GNNs
via factual reasoning [49, 75] or counterfactual reasoning [45, 47].
Factual Reasoning. Factual reasoning-based approaches focus
on seeking a sub-graph with a sufficient set of edges/features that
produce the same prediction as using the whole graph. Formally,
given an input graph G𝑘 = {V𝑘 , E𝑘 } with its label 𝑦𝑘 predicted
by the trained GNN model, the condition for factual reasoning can
be produced as following:

argmax
ℓ∈L

𝑃 (ℓ | 𝐴𝑘 ⊙ 𝑀𝑘 , 𝑋𝑘 ⊙ 𝐹𝑘 ) = 𝑦𝑘 (2)

where L is the set of graph labels and ⊙ denotes element-wise
multiplication; 𝑀𝑘 ∈ {0, 1}V𝑘×V𝑘 represents the edge mask of
G𝑘 ’s adjacency matrix 𝐴𝑘 ∈ {0, 1}V𝑘×V𝑘 , while 𝐹𝑘 ∈ {0, 1}V𝑘×𝑑

is the feature mask of G𝑘 ’s node feature matrix 𝑋𝑘 ∈ RV𝑘×𝑑 . V𝑘

is the number of nodes in the 𝑘-th graph and 𝑑 is the dimension of
node features.
Counterfactual Reasoning. Counterfactual reasoning-based ap-
proaches seek a necessary set of edges/features that lead to different
predictions once they are removed. Similarly, the condition for
counterfactual reasoning can be formulated as:

argmax
ℓ∈L

𝑃 (ℓ | 𝐴𝑘 −𝐴𝑘 ⊙ 𝑀𝑘 , 𝑋𝑘 − 𝑋𝑘 ⊙ 𝐹𝑘 ) ≠ 𝑦𝑘 (3)

After optimization, the sub-graph G′
𝑘
will be 𝐴𝑘 ⊙ 𝑀𝑘 with the

sub-features 𝑋𝑘 ⊙ 𝐹𝑘 , which is the generated explanations for the
prediction of G𝑘 . In our scenario, the extracted sub-graph G′

𝑘
will

be furthermapped to its corresponding code snippet as explanations
for GNN-based vulnerability detectors.

3 MOTIVATION

3.1 Special Concerns for DL-based Security

Applications

In contrast to other domains, explanations for security systems
should satisfy certain special requirements [25, 69]. In this work,
we primarily focus on two aspects, i.e., effectiveness and conciseness.
Effectiveness. The main goal of an explanation approach is to
uncover the decision logic of black-box models. Thus, the vulner-
ability explainer should be able to capture most relevant features
employed by detection models for prediction. For example, given
a set of detected vulnerable code, it would be perfect if the pro-
vided explanations only cover vulnerability-related context without
additional program statements [15].



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu

Definition 2 (Effective Explanations). An explanation result
is effective if statements which describe the offending execution
trace/context of the detected vulnerability are covered.
Conciseness. Picking up features/statements highly relevant to
the model’s prediction is a necessary prerequisite for good explana-
tions. However, it may be difficult and time-consuming for security
practitioners to understand and analyze numerous explanation re-
sults. Thus, narrowing down the scope of manual review is also
important in practice.

Definition 3 (Concise Explanations). An explanation result
is concisewhen it only contains a small number of crucial statements
sufficient for security experts to understand the root cause of the
detected vulnerability.

3.2 Why Not Fine-Grained Detectors?

Since the vulnerability explanations are a set of crucial statements
derived from the predictions of DL models, an intuitive solution
is to construct a fine-grained model to locate vulnerability-related
statements, as prior works do [7, 8, 32, 41]. However, the lack of
large-scale and human-labeled datasets create key barriers to the
adoption of these statement-level approaches in practice. By con-
trast, we aim to seek a model-independent (or post-hoc) way to
provide explanations, instead of replacing them.

3.3 Why Not Existing Explainers?

Although the explainability of DL models has been extensively
studied in non-security domains [27, 77], we argue that existing
explanation approaches face two critical challenges when directly
applied to GNN-based vulnerability detection systems.
Weak Robustness. As reported in [11, 33, 59], existing neural
vulnerability detectors focus on picking up dataset nuances for
prediction, as opposed to real vulnerability features. Unfortunately,
the robustness of most explanation approaches (e.g., LIME [57],
SHAP [48]) are weak, and their explanations for the same sample are
easy to be altered due to small perturbations, or even random noise
[25, 69]. As a result, explanations built on top of the detection results
from such weakly-robust models just reveal spurious correlations,
which are hard to be tolerated by security applications.
Hard to Balance Effectiveness and Conciseness. Post-hoc ap-
proaches mostly explain the predictions made by DL models from
the perspective of factual reasoning [29, 40], which favors a suffi-
cient subset which contains enough information to make the same
prediction as they do for the original program. However, such ex-
tracted explanations may produce a large number of false alarms,
posing a barrier to adoption. What’s worse, since the existing post-
hoc explanation approaches mainly leverage perturbation-based
mechanisms (e.g., LEMNA [30]) to track input features that are
highly relevant to the model’s prediction, the explanation perfor-
mance will deteriorate further due to the weak robustness of de-
tection models to random perturbations. On the contrary, coun-
terfactual explanations [18] contain the most crucial information,
which constitutes minimal changes to the input under which the
model changes its mind. However, just because of this, they may
only cover a small subset of the ground truth.

2023/7/27 17:21 ASE.svg

file:///C:/Users/CSC/Desktop/ASE.svg 1/1

Detection 
Model

Source 
Code

Trainer

Vulnerability 
Detection

Explainer

Explanations

Ro
bu

st
ne

ss
 

En
ha

nc
em

en
t

Ex
pl

ai
na

bl
e 

D
et

ec
tio

n

Figure 2: The workflow of Coca.

3.4 Key Insights Behind Our Design

In this study, we primarily focus on providing both effective and
concise explanations for security practitioners to gain insights into
why a given program was detected as vulnerable. The key insight
of Coca is that the effectiveness and conciseness of explanations
can be improved in a two-stage process. This is inspired by the
observation that the robustness of detection models is a necessary
prerequisite for effective explanations, while the trade-off between the
effectiveness and conciseness mainly depends on the adopted explana-
tion strategy. Therefore, by employing the two-stage process, the
special concerns for effectiveness and conciseness of explanations
in GNN-based vulnerability detection systems can be well satisfied.
Overview. Figure 2 presents the workflow of Coca, including two
core components: Trainer and Explainer. Given a crafted GNN-based
vulnerability detection model M, one major difference between
our framework and existing approaches lies in the training strategy
of the model. Specifically, instead of employing cross-entropy loss,
our Trainer module leverages combinatorial contrastive loss to
train a more robust detector against random perturbations to avoid
spurious explanations. Thus, in the vulnerability detection phase,
we still transform the input program into graphs and leverage
the well-trained model to learn code feature representations for
prediction as previous works do. In the explainable detection phase,
given a vulnerable code detected by the robustness-enhancedmodel,
we propose a model-agnostic extension, called Explainer, to provide
security practitioners with both concise and effective explanations
to understand model decisions via dual-view causal inference.

4 ROBUSTNESS ENHANCEMENT

Figure 3 depicts the architecture of our Coca Trainer (Coca𝑇𝑟𝑎 for
short). In this stage, we aim to train a neural vulnerability detection
model that is robust to random perturbation, which is the core
mechanism used in most explainers, to avoid spurious explanations.
Specifically, given a crafted detection model M, Coca𝑇𝑟𝑎 (❶) aug-
ments the vulnerable (or benign) programs in the dataset into a
set of functionally equivalent variants via semantics-preserving
transformations; and (❷) leverages combinatorial contrastive learn-
ing to force the detection model to focus on critical vulnerability
semantics that are consistent between original vulnerable programs



Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

2023/10/28 19:25 ASE.svg

file:///C:/Users/CSC/Desktop/ASE.svg 1/1

Phase1: Data Augmentation

Dataset

Functionally
Equivalent 
Variants

Injection Sites 
Localization

Augmentation 
Operator Selection

Transformation 
Application

Phase2: Combinatorial Contrastive Learning

Mini-Batch

Robust 
D

etector
M

odel 
Training

Self-Supervised Contrastive Learning

Supervised Contrastive Learning

Feature 
Encoder

Projector

Sample 1

Sample 1+

Sample k

...

Feature 
Encoder

Projector

Sample 1

Sample 1+

Sample k

...

𝓛 sup
con

𝓛 self
con

Figure 3: The architecture of Coca𝑇𝑟𝑎 .

and their positive pairs (including perturbed variants and other
vulnerable samples), instead of subtle perturbation.

4.1 Data Augmentation

Inspired by the recent works which adopt obfuscation-based adver-
sarial code as robustness-promoting views [3, 35], our core insight is
that the effectiveness of perturbation-based explanation approaches
can also benefit from the robustness-enhanced detection models
via transformed code because 1) existing perturbation approaches
are not suitable for sparse and high-dimensional feature repre-
sentations of source code [55]; and 2) semantics-preserving code
transformations in the discrete token space without changingmodel
predictions can be approximately mapped to the perturbations in
the continuous embedding space.

Specifically, to construct functionally equivalent variants, we
first perform static analysis to parse each source code 𝑐𝑖 into an AST
𝑇𝑐𝑖 and traverse it to search for potential injection locations (i.e.,
AST nodes to which can be applied aforementioned six program
transformations Φ = {𝜙1, 𝜙2, · · · , 𝜙6}). Once an injection location
𝑛𝑘 is found, an applicable augmentation operator 𝜙 𝑗 ∈ Φ will be
randomly selected and applied to get the transformed node 𝑛′

𝑘
.

We then adapt the context of 𝑛𝑘 accordingly, and translate it to
the FE variant 𝑐′

𝑗
. It is noteworthy that different from synthetic

samples [52, 53] used to mitigate the data scarcity issue in classifier
training, our transformed FE variants are regarded as augmented
views of original samples during contrastive learning to train a
robust feature encoder that can capture real vulnerability features.
Subsequently, we arrange original code samples along with their
FE perturbed variants (positives) as inputs in a mini-batch. In this
way, augmented samples originated from one pair are negatively
correlated to any sample from other pairs within a mini-batch
during contrastive learning.

4.2 Combinatorial Contrastive Learning

To train a detection model robust to random perturbations, we
borrow the contrastive learning technique to learn better feature
representations. Despite the similarity in terms of the high-level
design idea [4, 23, 34, 46], i.e., pre-training a self-supervised feature-
acquisition model over a large unlabeled code database, and per-
forming supervised fine-tuning over labeled dataset to transfer it
to a specific downstream SE task, we employ an additional super-
vised contrastive loss term to effectively leverage label information.

Below, we elaborate on each component of our combinatorial con-
trastive learning with more technical details.
Feature Encoder. To extract representations of source code, we
employ three typical GNN-based models (Devign [80], ReVeal [11],
and DeepWuKong [16]) as feature encoders 𝑓 (·). Note that no mat-
ter data augmentation or combinatorial contrastive learning are
architecture-agnostic, our Coca𝑇𝑟𝑎 can be easily extended and inte-
grated into other DL-based SE model for robustness enhancement.
Projection Head. To improve the representation quality of the
feature encoder as well as the convergence of contrastive learning,
we add a projection head𝑔(·) consisting of aMulti-Layer Perceptron
(MLP) [62] with a single hidden layer, to map the embeddings
learned by the feature encoder into a low-dimensional latent space
to minimize the contrastive loss.
Contrastive Loss. Following existing approaches [34, 46], we first
employ the NCE loss defined in Eq. (1) as our self-supervised loss
function L𝑠𝑒𝑙 𝑓

𝑐𝑜𝑛 . Specifically, given a set of 𝑁 randomly sampled
unlabeled code samples {𝑥𝑘 }𝑘=1,· · · ,𝑁 , data augmentation (Section
4.1) is applied once to obtain their corresponding FE variants. These
samples {𝑥𝑖 }, where 𝑥2𝑘−1 and 𝑥2𝑘 are the original and augmented
view of 𝑥𝑘 , respectively, are then arranged in the mini-batch B ≡
{1, · · · , 2𝑁 } to compute L𝑠𝑒𝑙 𝑓

𝑐𝑜𝑛 .
In addition, inspired by a recent finding [35] that the robustness

enhanced in the self-supervised pre-training phase may no longer
hold after supervised fine-tuning, we also adopt the Supervised
Contrastive (SupCon) loss [37] during the training process because
the use of label information encourages the feature encoder to
closely aligns all samples from the same class in the latent space
to learn more robust (in terms of original samples and FE variants)
and accurate (in terms of samples with the same label) cluster
representations. Formally, the SupCon loss L𝑠𝑢𝑝

𝑐𝑜𝑛 is written as:

L𝑠𝑢𝑝
𝑐𝑜𝑛 =

1
|B𝑙 |

∑︁
𝑖∈B𝑙

−1
|Q(𝑖) |

∑︁
𝑞∈Q(𝑖 )

log
exp(𝑧𝑖 · 𝑧𝑞/𝜏)∑

𝑎∈A(𝑖 )
exp(𝑧𝑖 · 𝑧𝑎/𝜏) (4)

where B𝑙 corresponds to the subset (known vulnerable or benign
code) of B, and Q(𝑖) ≡ {𝑞 ∈ A(𝑖) : 𝑦𝑞 = 𝑦𝑖 } is the set of indices
of all other positives that hold the same label as 𝑥𝑖 in B. 1/|Q(𝑖) |
is the positive normalization factor which serves to remove bias
present in multiple positives samples and preserve the summation
over negatives in the denominator to increase performance.

Finally, the total loss used to train a robust feature encoder over
the batch is defined as:

L𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)L𝑠𝑒𝑙 𝑓
𝑐𝑜𝑛 + 𝜆L𝑠𝑢𝑝

𝑐𝑜𝑛 (5)

where 𝜆 is a weight coefficient to balance the two loss terms.
At the end of combinatorial contrastive learning, the projection

head𝑔(·) will be discarded and the well-trained feature encoder 𝑓 (·)
is frozen (i.e., containing exactly the same number of parameters
when applied to specific downstream tasks) to produce the vector
representation of a program for vulnerability detection.

5 EXPLAINABLE DETECTION

The explainable detection stage aims to (❶) train a classifier on top
of the robust feature encoder for vulnerability detection; and (❷)
build a explainer to derive crucial statements as explanations.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu

5.1 Vulnerability Detection

The goal of this task is to train a binary classifier able to accurately
predict the probability that a given function is vulnerable or not.
In particular, given a popular GNN-based vulnerability detection
model, we only replace its feature encoder with the more robust
one2 (sharing the same NN architecture) which is pre-trained by
Coca𝑇𝑟𝑎 . Thus, any coarse-grained (function- or slice-level) vul-
nerability detector, which receives structural graph representations
of source code (in which code tokens/statements are nodes while
semantic relations between nodes are edges) as inputs and employs
an off-the-shelf or crafted GNN as its feature encoder for vulnera-
bility feature learning, can be easily integrated into our framework.
For example, when ReVeal [11] is selected as the target detection
model, labeled code snippets are parsed into Code Property Graphs
(CPGs) [73] and fed into the robust feature encoder 𝑓 (·) (a vanilla
GGNN [39]) pre-trained by Coca𝑇𝑟𝑎 to produce corresponding
vector representations. Then, these representations and their labels
are used to train a built-in classifier (a convolutional layer with
maxpooling) with the triplet loss function.

In the inference phase, given an input program, the vulnerability
detector first performs static analysis to extract its graph repre-
sentation and maps it as a single vector representation using the
pre-trained feature encoder. Then, the program representation will
be fed into the trained classifier for prediction.

5.2 Vulnerability Explanation

To derive explanations on why the detection model has decide on
the vulnerability, we propose a model-agnostic extension based on
the detection results, referred to as Explainer (Coca𝐸𝑥𝑝 for short).
Overview. Similar to themost relatedwork IVDetect [40], Coca𝐸𝑥𝑝
aims to find a sub-graph G′

𝑘
, which covers the key nodes (tokens/s-

tatements) and edges (program dependencies) that are most decisive
to the prediction label, from the graph representation G𝑘 of the
detected vulnerable code 𝑘 . The main difference lies in that we aim
to seek both concise and effective explanations. Hence, we build
Coca𝐸𝑥𝑝 based on a dual-view causal inference framework [63]
which integrates factual with counterfactual reasoning to make
a trade-off between conciseness and effectiveness. Formally, the
extraction of G′

𝑘
can be formulated as:

minimize 𝐶 (𝑀𝑘 , 𝐹𝑘 )
s.t., 𝑆𝑓 (𝑀𝑘 , 𝐹𝑘 ) > 𝑃 (𝑦𝑘,𝑠 | 𝐴𝑘 ⊙ 𝑀𝑘 , 𝑋𝑘 ⊙ 𝐹𝑘 ),
𝑆𝑐 (𝑀𝑘 , 𝐹𝑘 ) > −𝑃 (𝑦𝑘,𝑠 | 𝐴𝑘 −𝐴𝑘 ⊙ 𝑀𝑘 , 𝑋𝑘 − 𝑋𝑘 ⊙ 𝐹𝑘 )

(6)

where the objective part 𝐶 (𝑀𝑘 , 𝐹𝑘 ) measures how concise the ex-
planation is. It can be defined as the number of edges/features
used to generate the explanation sub-graph G′

𝑘
, and computed

by 𝐶 (𝑀𝑘 , 𝐹𝑘 ) = ∥𝑀𝑘 ∥0 + ∥𝐹𝑘 ∥0, in which ∥𝑀𝑘 ∥0 (/∥𝐹𝑘 ∥0) rep-
resents the number of 1’s in the binary edge mask 𝑀𝑘 (/feature
mask 𝐹𝑘 ) metrices. The constraint part 𝑆𝑓 (𝑀𝑘 , 𝐹𝑘 ) (/𝑆𝑐 (𝑀𝑘 , 𝐹𝑘 )) re-
flects whether the factual (/counterfactual) explanation is effective
enough. Formally, the factual explanation strength 𝑆𝑓 (𝑀𝑘 , 𝐹𝑘 ) is
consistentwith the condition for factual reasoning, i.e., 𝑆𝑓 (𝑀𝑘 , 𝐹𝑘 ) =
𝑃 (𝑦𝑘 | 𝐴𝑘 ⊙ 𝑀𝑘 , 𝑋𝑘 ⊙ 𝐹𝑘 ). Similarly, the counterfactual explana-
tion strength 𝑆𝑐 (𝑀𝑘 , 𝐹𝑘 ) is calculated as 𝑆𝑐 (𝑀𝑘 , 𝐹𝑘 ) = −𝑃 (𝑦𝑘 |

2Note that the feature encoder is fixed during the whole training phase.

𝐴𝑘 −𝐴𝑘 ⊙𝑀𝑘 , 𝑋𝑘 −𝑋𝑘 ⊙ 𝐹𝑘 ). 𝑦𝑘,𝑠 is the label other than 𝑦𝑘 that has
the largest probability score predicted by the GNN-based detection
model.

To solve such a constrained optimization problem, we follow
[63], which optimizes the objective part by relaxing𝑀𝑘 and 𝐹𝑘 to
real values𝑀∗

𝑘
∈ RV𝑘×V𝑘 and 𝐹 ∗

𝑘
∈ RV𝑘×𝑑 , and using 1-norm to

ensure the sparsity of𝑀∗
𝑘
and 𝐹 ∗

𝑘
. For the constraint part, we relax

it as pairwise contrastive loss L𝑓 and L𝑐 :

L𝑓 = ReLU( 1
2
− 𝑆𝑓 (𝑀∗

𝑘
, 𝐹 ∗

𝑘
)

+ 𝑃 (𝑦𝑘,𝑠 | 𝐴𝑘 ⊙ 𝑀∗
𝑘
, 𝑋𝑘 ⊙ 𝐹 ∗

𝑘
))

L𝑐 = ReLU( 1
2
− 𝑆𝑐 (𝑀∗

𝑘
, 𝐹 ∗

𝑘
)

− 𝑃 (𝑦𝑘,𝑠 | 𝐴𝑘 −𝐴𝑘 ⊙ 𝑀∗
𝑘
, 𝑋𝑘 − 𝑋𝑘 ⊙ 𝐹 ∗

𝑘
))

(7)

After that, the explanation sub-graph G′
𝑘
= (𝐴𝑘 ⊙ 𝑀∗

𝑘
, 𝑋𝑘 ⊙ 𝐹 ∗

𝑘
)

is generated by:

minimize ∥𝑀∗
𝑘
∥1 + ∥𝐹 ∗

𝑘
∥1 + 𝛼L𝑓 + (1 − 𝛼)L𝑐 (8)

Where 𝛼 controls the trade-off between the strength of factual and
counterfactual reasoning. By increasing/deceasing 𝛼 , the generated
explanations will focus more on the effectiveness/conciseness.

6 EXPERIMENTS

6.1 Research Questions

In this paper, we seek to answer the following RQs:
RQ1 (Detection Performance): How effective are existing GNN-
based approaches enhanced via Coca on vulnerability detection?

The disconnection between the learned features versus the ac-
tual cause of the vulnerabilities has raised the concerns regarding
the effectiveness of DL-based detection models. Thus, we inves-
tigate whether the enhanced GNN-based vulnerability detectors
outperform their original ones in terms of detection accuracy and
the ability to capture real vulnerability features after robustness
enhancement.
RQ2 (Explanation Performance): Is Coca more concise and
effective than state-of-the-art baselines when applied to generate
explanations for GNN-based vulnerability detectors?

We argue that generating corresponding explanations for detec-
tion results is just the first step and the quality evaluation of them is
also important. With this motivation, we evaluate the performance
of Coca in generating concise and effective explanations.
RQ3 (Ablation Study): How do various factors affect the overall
performance of Coca?

We perform sensitivity analysis to understand the influence of
different components of Coca, including the impact of (RQ3a)
combinatorial contrastive learning, and (RQ3b) dual-view causal
inference.

6.2 Datasets

Since the detection capability of DL-based models benefits from
large-scale and high-quality datasets, we built our evaluation bench-
mark by merging five reliable human-labeled datasets collected
from real-world projects, including Devign [80], ReVeal [11], Big-
Vul [24], CrossVul [51], and CVEFixes [2]. Detailed statistics for
each of the five datasets is shown in Table 1. Column 2 and Column



Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: The statistics of datasets.

Dataset # Vul # Non-vul # Total % Ratio

Devign 11,888 14,149 26,037 45.66
ReVeal 1,664 16,505 18,169 9.16
Big-Vul 11,823 253,096 264,919 4.46
CrossVul 6,884 127,242 134,126 5.13
CVEFixes 8,932 159,157 168,089 5.31
Merged 29,844 305,827 335,671 8.89

3 are the number of vulnerable and non-vulnerable functions, re-
spectively. Column 4 indicates the total number of functions in each
dataset. Column 5 denotes the ratio of vulnerable functions in each
dataset. Note that, for two multi-language datasets CrossVul and
CVEFixes, we only preserve code samples written in C/C++ in our
experiments to unify the whole dataset. In total, our merged dataset
contains 335,671 functions, of which 29,844 (8.89%) are vulnerable.

6.3 Coca Implementation

For Coca𝑇𝑟𝑎 , we parsed all the code snippets in our merged dataset
into ASTs using tree-sitter3 and performed the transformation
based on augmentation operators described in Section 4.1 to gener-
ate perturbed variants. We applied all six transformations with an
equal probability of 0.5, which leads us to an average of three trans-
formations per program. In contrastive learning, any GNN-based
detection model can be served as an feature encoder in our frame-
work and trained on an Ubuntu 18.04 server with 2 NVIDIA Tesla
V100 GPU. Following standard practice in contrastive code repre-
sentation learning [34, 79], we set the size of the projection head
to 128, and used Adam [38] for optimizing with 256 batch size and
1𝑒-5 learning rate. The temperature parameter 𝜏 of contrastive loss
is set to 0.07. For feature encoder training, we randomly sampled
a subset (50%) of vulnerable and benign samples from the merged
dataset, respectively, to construct B, and the remaining samples
are regarded as the unlabeled data B𝑙 . The feature encoder and
classifier of each detection model were trained with 100 maximum
epochs and early stopping. For Coca𝐸𝑥𝑝 , we set 𝛼 to 0.5 to balance
factual and counterfactual reasoning.

7 EXPERIMENTAL RESULTS

7.1 RQ1: Detection Performance

Baselines.We consider three state-of-the-art GNN-based vulnera-
bility detectors: 1) Devign [80] models programs as graphs and
adopts GGNN [39] to capture structured vulnerability semantics; 2)
ReVeal [11] adopts graph embedding with triplet loss function to
learn class-separation vulnerability features; and 3) DeepWuKong

[16] leverages GCN to learn both unstructured and structured vul-
nerability information at the slice-level.

Evaluation Metrics.We apply four widely used metrics [54], in-
cluding Accuracy (Acc), Precision (Pre), Recall (Rec), and F1-

score (F1), for evaluation.
Experiment Setup. For the open-source approaches (ReVeal and

DeepWuKong), we directly use their official implementations. For
Devign, which is not publicly available, we re-implemented it by
3https://tree-sitter.github.io/tree-sitter/

Table 2: Evaluation results on vulnerability detection in per-

centage compared with GNN-based baselines.

Config Loss Approach Acc Pre Rec F1

Default CE
Devign 89.74 32.59 31.40 31.98
ReVeal 86.05 31.43 38.45 34.59
DeepWuKong 87.21 28.55 26.04 27.24

Coca𝑇𝑟𝑎

Ours
Devign 88.15 34.68 37.12 35.86
ReVeal 87.42 35.96 40.61 38.14

DeepWuKong 88.30 30.07 34.79 32.26

InfoNCE
Devign 86.33 28.38 30.11 29.22
ReVeal 84.95 29.64 34.27 31.78
DeepWuKong 86.20 25.99 24.83 25.40

NCE
Devign 83.97 26.15 27.69 26.90
ReVeal 81.52 26.73 31.76 29.03
DeepWuKong 83.06 22.40 21.46 21.92

strictly following its methods elaborated in the original paper. In
addition, to integrate these approaches into Coca, we also employ
tree-sitter to uniformly parse input programs into their expected
graph representations (e.g., PDG, CPG). We randomly split the
benchmark into 80%-10%-10% for training, validation, and testing.
For each approach, we repeated the experiment 10 times to address
the impact of randomness [1, 64].

Results. Table 2 summarizes the experimental results of all the
studied baselines and their corresponding variants enhanced by
Coca𝑇𝑟𝑎 on vulnerability detection. Column "Config" presents the
configuration of GNN-based vulnerability detectors, i.e., construct-
ing detection models with default implementations (supervised
learning with CE loss) or Coca𝑇𝑟𝑎 (contrastive learning with NCE
and SupCon loss). Overall, the average improvements of robustness-
enhanced models over their default ones are positive, ranging from
5.32% (DeepWuKong) to 14.41% (ReVeal) on Precision, from 5.62%
(ReVeal) to 33.60% (DeepWuKong) on Recall, and from 10.26% (Re-
Veal) to 18.43% (DeepWuKong) on F1, respectively. In addition,
Coca𝑇𝑟𝑎 (ReVeal) achieves the overall best performance, with an
Accuracy of 87.42%, the Precision of 35.96%, the Recall of 40.61%,
and the F1 of 38.14%.

All these results demonstrate the effectiveness of Coca𝑇𝑟𝑎 in
improving the vulnerability detection performance of existing GNN-
based code models. It indicates that incorporating structurally per-
turbed samples (e.g., statement permutation, loop exchange) into
contrastive learning is beneficial for the graph-based model to
focus on security-critical structural semantics rather than noise
information. Taking the greatest improved model DeepWuKong
as an example, as shown in the visualizations in Figure 4, the fea-
ture representations learned by Coca𝑇𝑟𝑎 (DeepWuKong) are more
class-discriminative compared to the ones learned with default
cross-entropy loss. We attribute such improvements to robustness-
enhanced models truly capturing discriminative vulnerability pat-
terns from the comparison between vulnerable samples and per-
turbed/benign variants.

Answer to RQ1: Coca𝑇𝑟𝑎 comprehensively improves the per-
formance of existing GNN-based vulnerability detectors in terms
of all evaluation metrics. We attribute the improvements to the
robustness-enhanced models truly picking up real vulnerability
features for prediction.

https://tree-sitter.github.io/tree-sitter/


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu
2023/4/26 20:03 Original.svg

file:///C:/Users/CSC/Desktop/Original.svg 1/1

(a) DeepWuKong (Default)

2023/4/26 20:43 Enhanced.svg

file:///C:/Users/CSC/Desktop/Enhanced.svg 1/1

(b) DeepWuKong (Coca𝑇𝑟𝑎)

Figure 4: Visualizations of feature representations learned

by DeepWuKong trained with/without Coca𝑇𝑟𝑎 .

7.2 RQ2: Explanation Performance

Baselines.Weadopt three recent vulnerability explanation approaches
as baselines: 1) IVDetect [40] leverages GNNExplainer [75] to pro-
duce the key program dependence sub-graph (i.e., a list of crucial
statements closely related to the detected vulnerability) that affect
the decision of the model as explanations; 2) P2IM [61] borrows
Delta Debugging [76] to reduce a program sample to a minimal
snippet which a model needs to arrive at and stick to its original
vulnerable prediction to uncover the model’s detection logic; and
3) mVulPreter [82] combines the attention weight with the vul-
nerability probability outputted by the multi-granularity detector
to compute the importance score for each code slice.

Evaluation Metrics. As we described in Section 3, an ideal expla-
nation should cover as many truly vulnerable statements (in terms
of effectiveness) as possible within a limited scope (in terms of con-
ciseness). Thus, we use the fine-grained Vulnerability-Triggering
Paths (VTP) [15, 17] metrics to evaluate the quality of explanations,
which are formally defined as follows:
• Mean Statement Precision (MSP): 𝑀𝑆𝑃 = 1

𝑁

∑𝑁
𝑖=1 𝑆𝑃𝑖 where

𝑆𝑃𝑖 = |𝑆𝑒 ∩ 𝑆𝑝 |/|𝑆𝑒 | stands for the proportion of contextual
statements truly related to the detected vulnerability sample 𝑖 in
the explanations.

• Mean Statement Recall (MSR): 𝑀𝑆𝑅 = 1
𝑁

∑𝑁
𝑖=1 𝑆𝑅𝑖 , where

𝑆𝑅𝑖 = |𝑆𝑒 ∩ 𝑆𝑝 |/|𝑆𝑝 | denotes that how many contextual state-
ments in the triggering path of the detected vulnerability sample
𝑖 can be covered in explanations.

• Mean Intersection over Union (MIoU):𝑀𝐼𝑜𝑈 = 1
𝑁

∑𝑁
𝑖=1 𝐼𝑜𝑈𝑖 ,

where 𝐼𝑜𝑈𝑖 = |𝑆𝑒 ∩𝑆𝑝 |/|𝑆𝑒 ∪𝑆𝑝 | reflects the degree of overlap be-
tween the explanatory statements and the contextual statements
on the vulnerability-triggering path.

Here, 𝑆𝑒 denotes the set of explanatory statements provided by ex-
plainers, while 𝑆𝑝 denotes the set of labeled vulnerability-contexts
(ground truth) in the dataset. | · | represents the size of a set.

Experiment Setup.We still employ three aforementioned GNN-
basd vulnerability detectors (with default/robustness-enhanced con-
figurations) to provide prediction labels for IVDetect4, P2IM, and
Coca𝐸𝑥𝑝 . For mVulPreter, we follow the official implementation to
produce explanations because its detection and explanation module
is highly coupled. For two baselines (IVDetect and mVulPreter)
which require a human-selected 𝑘 value to decide the size of the
4Since IVDetect implements its own vulnerability detector based on FA-GCN, we do
not use other detection models as alternatives.

Table 3: Evaluation results on vulnerability explanation in

percentage compared with explainable vulnerability detec-

tion baselines.

Config Approach MSP MSR MIoU

D
ef
au
lt

mVulPreter 25.86 29.01 22.88
IVDetect 32.54 23.79 17.06
P2IM (Devign) 27.99 43.85 22.56
P2IM (ReVeal) 31.04 46.10 28.94
P2IM (DeepWuKong) 26.57 38.12 23.11
Coca𝐸𝑥𝑝 (Devign) 33.84 44.06 30.89
Coca𝐸𝑥𝑝 (ReVeal) 35.61 52.94 34.36
Coca𝐸𝑥𝑝 (DeepWuKong) 29.77 40.16 25.83

Co
ca

𝑇
𝑟
𝑎

IVDetect 39.81 31.64 25.19
P2IM (Devign) 33.01 48.33 29.27
P2IM (ReVeal) 40.62 55.73 36.29
P2IM (DeepWuKong) 32.97 44.85 28.10
Coca𝐸𝑥𝑝 (Devign) 43.61 52.98 39.64
Coca𝐸𝑥𝑝 (ReVeal) 49.52 58.39 44.97

Coca𝐸𝑥𝑝 (DeepWuKong) 40.33 47.61 34.22

explanations, we follow [40, 82] to narrow down the scope of can-
didate statements to 5, while the size of explanations produced by
our approach and P2IM are automatically decided by themselves
via optimization. Following [17, 61], we evaluate these explanation
approaches on another vulnerability dataset D2A [78] because it
is labeled with clearly annotated vulnerability-contexts which are
more reliable than other diff -based ground truths [15]. We ran-
domly select 10,000 vulnerable samples which can be correctly
detected from the D2A dataset to calculate the VTP metrics.

Results. Table 3 shows the performance comparison of Coca𝐸𝑥𝑝
with respect to state-of-the-art explanation approaches. As can be
seen, based on the predictions of popular graph-based vulnerability
detectors (with default implementations), Coca𝐸𝑥𝑝 substantially
outperforms all the compared explanation techniques on all metrics.
Taking the best comparison baseline P2IM (ReVeal) as an example,
Coca𝐸𝑥𝑝 (ReVeal) outperforms it by 14.72% in MSP, 14.84% in MSR,
and 18.73% in MIoU, respectively.

In addition, although there is still a certain gap from our best-
performing Coca𝐸𝑥𝑝 , we find that the performance of each expla-
nation baseline can be improved to varying degrees when applied
to robustness-enhanced detection models. The main reason leading
to this result is that the more robust feature representations gained
by contrastive learning can better reflect the potential vulnerable
behaviour of programs and boost vulnerability semantic compre-
hension. Among them, Coca𝐸𝑥𝑝 (ReVeal) yields the best explana-
tion performances on all metrics (especially MIoU), demonstrating
that our dual-view causal inference makes a great trade-off between
the effectiveness (covering as many truly vulnerable statements
as possible) and conciseness (limiting the number of candidates
for manual review) of explanations. Meanwhile, we notice that the
attention-based explainer mVulPreter performs extremely poorly
on the vulnerability explanation task. The reason is that attention
weights are derived from the training data [81]. Thus, it may not be
accurate for a particular decision of an instance. On the contrary,
Coca𝑇𝑟𝑎 and the other two vulnerability explainers (IVDetect and
P2IM) construct an additional explanation model for an individual



Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Unlabeled
Programs

Augmented
Variants

Contrastive
Learning

Data 
Augmentation

Transformation 
Operators

funcA() 

{ ...

  int item;

  if (...) {

return;

  }else {...}

funcA() 

{ ...

  int item;

  if (...) {

return;

  }else {...}

funcB() 

{ ...

  var key;

  for (...)

{...}

  return key;

funcB() 

{ ...

  var key;

  for (...)

{...}

  return key;

funcA() 

{ ...

  int var0;

  if (...) {

return;

  }else {...}

funcA() 

{ ...

  int var0;

  if (...) {

return;

  }else {...}

funcB() 

{ ...

  var key;

  while (...)

{...}

  return key;

funcB() 

{ ...

  var key;

  while (...)

{...}

  return key;

fk

fq q

k
+

k
-

k
-

k
-

k
-

k
-

k
-

k
-

k
-

Maximize

Minimize

Encoder

Negatives Buffer

g

g

Projector

Robustness Enhancement

Source Code Explanations

Vulnerability 
Detection

Trainer

Explainer

Phase2: Feature Extraction

Graph 
Construction

Feature 
Embedding

Graph 
Construction

Feature 
Embedding

Graph 
Construction

Feature 
Embedding

Program Graph

Graph 
Construction

Feature 
Embedding

Program Graph

Phase2: Feature Extraction

Graph 
Construction

Feature 
Embedding

Program Graph
Vulnerable BenignVulnerable Benign

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o

n
trastiv

e
 

E
n

co
d

er

C
lassifier

C
lassifier

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

C
o

n
trastiv

e
 

E
n

co
d

er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase2: Contrastive Learning

C
o

n
trastiv

e
 

E
n

co
d

er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o

n
trastiv

e
 

E
n

co
d

er

C
lassifier

Sample 1

Sample 1+

Sample k

...

1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
8     rp[0] = rp[max - 1] = 0;
9     rp++;
10    j = n;
11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun

Classifier

P2IM P2IM+ COCA GT

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Detection 
Model

Source 
Code

Trainer

Vulnerability 
Detection

Explainer

Explanations

R
ob

u
st

n
es

s 
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

 
D

et
ec

ti
on

Detection 
Model

Source 
Code

Trainer

Vulnerability 
Detection

Explainer

Explanations

R
ob

u
st

n
es

s 
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

 
D

et
ec

ti
on

1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
8     rp[0] = rp[max - 1] = 0;
9     rp++;
10    j = n;
11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun

mVul

Preter
IVDetect P2IM COCA

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

GT

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Figure 5: Qualitative study of our Coca vs. baselines.

instance in a model-independent manner to provide explanatory
information, effectively avoiding the decision bias.

To gain a more intuitive understanding of how effective and
concise our generated explanations are, we perform a qualitative
study to evaluate the quality of explanations generated by Coca
and other explainers. To ensure the fairness, the explanations pro-
vided by two explainers (P2IM and Coca) not dependent on specific
detectors, are generated from the robustness-enhanced model Re-
Veal. Figure 5 shows a correctly detected vulnerable function in the
D2A dataset. Column "GT" denotes the ground truth. It contains
a Buffer Overrun vulnerability in rp (at line 13) when calling the
function bn_mul_words(). Statements at line 7 and line 9 are its
corresponding vulnerability-contexts annotated by D2A. Overall,
all three vulnerable statements are covered by Coca, while mVul-
Preter, IVDetect, and P2IM could only report one, two, and two of
them, respectively. Furthermore, in terms of the conciseness, three
of five explanatory statements provided by Coca are true positives,
with a recall of 60%. By contrast, 87.5%, 71.43%, and 71.43% state-
ments included in the explanations of mVulPreter, IVDetect, and
P2IM are false positives. Therefore, Coca can provide as many truly
vulnerable statements as possible within a limited scope to help
security practitioners understand the detection results provided by
GNN-based vulnerability detection systems.

Answer to RQ2: Coca𝐸𝑥𝑝 is superior to the state-of-the-art
explainers in terms of the effectiveness and conciseness. When
applied to the best detection model Coca𝑇𝑟𝑎 (ReVeal), Coca𝐸𝑥𝑝
improvesMSP, MSR, andMIoU over the best-performing baseline
P2IM by 21.91%, 4.77%, and 23.92%, respectively.

7.3 RQ3: Ablation Study

Baselines. For RQ3a, we compare Coca𝑇𝑟𝑎 with three representa-
tive loss functions: 1)NCE [13] frames contrastive learning as a self-
supervised binary classification problem, which predicts whether a
data point came from the noise distribution or the true data distri-
bution; 2) InfoNCE [65] generalizes NCE loss by computing the
probability of selecting the positive sample across a batch and a
queue of negatives; and 3) Cross-Entropy (CE), the most widely
used supervised loss for deep classification models. For RQ3b, we
compare Coca𝐸𝑥𝑝 with the following GNN-specfic explanation
approaches: 1) GNNExplainer [75] selects a discriminative sub-
graph that retains important edges/node features via maximizing

Table 4: Contributions of different explanation approaches.

Detector Approach MSP MSR MIoU

Devign
GNNExplainer 21.40 43.28 14.68
PGExplainer 25.39 47.86 20.17
CF-GNNExplainer 34.10 29.65 22.79
Coca𝐸𝑥𝑝 43.61 52.98 39.64

ReVeal
GNNExplainer 23.06 47.28 17.11
PGExplainer 26.84 51.34 21.39
CF-GNNExplainer 39.11 34.72 28.66
Coca𝐸𝑥𝑝 49.52 58.39 44.97

DeepWuKong
GNNExplainer 18.40 37.15 16.97
PGExplainer 25.56 46.81 22.64
CF-GNNExplainer 36.79 27.09 23.96
Coca𝐸𝑥𝑝 40.33 47.61 34.22

the mutual information of a prediction; 2) PGExplainer [49] uses
an explanation network on a universal embedding of the graph
edges to provide explanations for multiple instances; and 3) CF-
GNNExplainer extends GNNExplainer by generating explanations
based on counterfactual reasoning.

Experiment Setup. To answer RQ3a, we built three variants of
Coca𝑇𝑟𝑎 by replacing our combinatorial contrastive learning loss
with NCE, InfoNCE, and CE loss, and follow the same training, val-
idation, and testing dataset in RQ1 for evaluation. To answer RQ3b,
we also respectively build three variants of Coca𝐸𝑥𝑝 by replacing
our dual-view causal inference with GNNExplainer, PGExplainer,
and CF-GNNExplainer, and adopt the same evaluation dataset in
RQ2 for evaluation.

Evaluation Metrics. We use the same metrics as in RQ1 and RQ2.

7.3.1 RQ3a: Impact of Combinatorial Contrastive Learning. Table 2
presents the experimental results of Coca𝑇𝑟𝑎 (Ours) and its variants
trained under different loss functions (Column "Loss"). The results
demonstrate the contribution of our combinatorial contrastive learn-
ing to the overall detection performance of Coca𝑇𝑟𝑎 . In particular,
we can observe that detection models which are trained with tra-
ditional cross-entropy loss outperform their variants trained with
self-supervised contrastive loss (InfoNCE and NCE). It is reasonable
because fine-tuning on the labeled vulnerability dataset may signifi-
cantly alter the distribution of learned feature representations. As a
result, the robustness and accuracy of learned deep representations
enhanced by self-supervised pre-training may not longer hold after
supervised fine-tuning. On the contrary, the supervised contrastive
learning allows us to effectively leverage label information, which
groups the samples belonging to the same class as well as the se-
mantically equivalent variants while simultaneously pushing away
the dissimilar samples. Accordingly, the downstream task-specific
generalization and robustness can be retained as much as possible.

7.3.2 RQ3b: Impact of Dual-View Causal Inference. Table 4 shows
the performance of Coca𝐸𝑥𝑝 and its three variants. The results
demonstrate that our dual-view causal inference positively con-
tributes to vulnerability explanation. Taking the best performed
detection model ReVeal as an example, our Coca𝐸𝑥𝑝 improves GN-
NExplainer, PGExplainer, and CF-GNNExplainer by 114.74%, 84.50%,
and 26.62% respectively, in terms of MSP, by 23.50%, 13.73%, and
68.17% respectively, in terms of MSR, and by 162.83%, 110.24%, and



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

Unlabeled
Programs

Augmented
Variants

Contrastive
Learning

Data 
Augmentation

Transformation 
Operators

funcA() 

{ ...

  int item;

  if (...) {

return;

  }else {...}

funcA() 

{ ...

  int item;

  if (...) {

return;

  }else {...}

funcB() 

{ ...

  var key;

  for (...)

{...}

  return key;

funcB() 

{ ...

  var key;

  for (...)

{...}

  return key;

funcA() 

{ ...

  int var0;

  if (...) {

return;

  }else {...}

funcA() 

{ ...

  int var0;

  if (...) {

return;

  }else {...}

funcB() 

{ ...

  var key;

  while (...)

{...}

  return key;

funcB() 

{ ...

  var key;

  while (...)

{...}

  return key;

fk

fq q

k
+

k
-

k
-

k
-

k
-

k
-

k
-

k
-

k
-

Maximize

Minimize

Encoder

Negatives Buffer

g

g

Projector

Phase2: Feature Extraction

Graph 
Construction

Feature 
Embedding

Graph 
Construction

Feature 
Embedding

Graph 
Construction

Feature 
Embedding

Program Graph

Graph 
Construction

Feature 
Embedding

Program Graph

Phase2: Feature Extraction

Graph 
Construction

Feature 
Embedding

Program Graph

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o

n
trastiv

e
 

E
n
co

d
er

C
lassifier

C
lassifier

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

C
o

n
trastiv

e
 

E
n
co

d
er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase2: Contrastive Learning

C
o

n
trastiv

e
 

E
n
co

d
er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o

n
trastiv

e
 

E
n
co

d
er

C
lassifier

Sample 1

Sample 1+

Sample k

...

1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
8     rp[0] = rp[max - 1] = 0;
9     rp++;
10    j = n;
11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun
P2IM P2IM+ COCA GT

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

 

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

 

Detection 
Model

Source 
Code

Trainer

Vulnerability 
Detection

Explainer

Explanations

R
ob

u
st

n
es

s 
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

 
D

et
ec

ti
on

Detection 
Model

Source 
Code

Trainer

Vulnerability 
Detection

Explainer

Explanations

R
ob

u
st

n
es

s 
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

 
D

et
ec

ti
on

1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
8     rp[0] = rp[max - 1] = 0;
9     rp++;
10    j = n;
11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun

mVul

Preter
IVDetect P2IM COCA

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

GT

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Phase1: Data Augmentation

Dataset

Functionally
Equivalent 
Variants

Injection Sites 
Localization

Augmentation 
Operator Selection

Transformation 
Application 

Injection Sites 
Localization

Augmentation 
Operator Selection

Transformation 
Application 

Injection Sites 
Localization

Augmentation 
Operator Selection

Transformation 
Application 

Phase2: Combinatorial Contrastive Learning

Mini-Batch

R
obu

st 
D

etector
M

od
el 

T
ra

ining

Self-Supervised Contrastive Learning

Supervised Contrastive Learning

F
eatu

re 

E
n
co

d
er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n

co
d
er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n

co
d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n

co
d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n

co
d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re 

E
n

co
d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

𝓛 sup
con𝓛 sup
con

𝓛 self
con𝓛 self
con

(a) Ground Truth

(b) Factual 

Reasoning

(c) Counterfactual 

Reasoning

Detection 
Phase

Vulnerable BenignVulnerable Benign

Feature 

Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Feature 

Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Explanation 
Phase

特征嵌入

漏洞
数据库

待测程序

静态分析

节点嵌入

边嵌入

节点嵌入

边嵌入
漏洞检测模型

样本数据平衡 漏洞特征挖掘样本数据平衡 漏洞特征挖掘样本数据平衡 漏洞特征挖掘

漏洞 非漏洞

抽象语法树AST

控制流图CFG

数据流图DFG

抽象语法树AST

控制流图CFG

数据流图DFG

基于代码复合图

的漏洞特征建模

基于流敏感图神经网络

的检测模型构建

模型

训练

被测

样本

训练样本

AST抽取

历史漏洞
修复报告
历史漏洞
修复报告

预处理

AST分类

词嵌入

层次注意力

网络 关联规则挖掘

漏洞
症状

漏洞
成因

漏洞
症状

漏洞
成因

关联矩阵

新漏洞
报告
新漏洞
报告

预处理 词嵌入

层次注意力

网络 漏洞
成因

漏洞
症状

分类概率优化

漏洞类型

文本

Diff

文本

症状

概率

成因

概率

AST抽取

历史漏洞
修复报告

预处理

AST分类

词嵌入

层次注意力

网络 关联规则挖掘

漏洞
症状

漏洞
成因

关联矩阵

新漏洞
报告

预处理 词嵌入

层次注意力

网络 漏洞
成因

漏洞
症状

分类概率优化

漏洞类型

文本

Diff

文本

症状

概率

成因

概率

代码

序列化AST

安全属性

历史漏洞
修复报告
历史漏洞
修复报告

漏洞代码

补丁代码

漏洞代码

补丁代码

经验研究

编码器解码器

注意力机制

编码器解码器

注意力机制

Transformer

编码器解码器

注意力机制

Transformer x12

新漏洞
报告
新漏洞
报告

漏洞代码

自然语言描述

代码

序列化AST

安全属性

自动漏洞

修复模型

测试用例过滤

波束搜索

测试用例过滤

波束搜索

测试用例过滤

波束搜索

漏洞补丁

代码

序列化AST

安全属性

历史漏洞
修复报告

漏洞代码

补丁代码

经验研究

编码器解码器

注意力机制

Transformer x12

新漏洞
报告

漏洞代码

自然语言描述

代码

序列化AST

安全属性

自动漏洞

修复模型

测试用例过滤

波束搜索

漏洞补丁

1   static ssize_t qrtr_tun_write_iter(struct kiocb *iocb, 
                                       struct iov_iter *from)
2   {
3      kbuf = kzalloc(len, GFP_KERNEL);
4      if (!kbuf)
5             return -ENOMEM;
6      if (!copy_from_iter_full(kbuf, len, from))
7              return -EFAULT;
8      ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
9      return ret < 0 ? ret : len;
10  }

File: net/qrtr/tun.c

Commit: https://github.com/torvalds/linux/commit/a21b7f0cff1906a93a0130b74713b15a0b36481d

Vulnerability Type: Missing Release of Memory after Effective Lifetime (CWE-401)

Run 2

0

0
0
1
1
1
0
1
0

0

Run 1

0

0
1
1
0
0
1
0
1

0

str1

str1

str

str

4

3

6

1

stringPtr

stringPtr

p

strlen(str)
&str1

5

8

10
11

str1

str1

str

str

4

3

6

1

stringPtr

stringPtr

p

strlen(str)
&str1

5

8

10
11

13

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

Figure 6: The PDG sub-graphs (shaded areas) induced by

(a) Coca𝐸𝑥𝑝 , (b) factual reasoning (GNNExplainer), and (c)

counterfactual reasoning (CF-GNNExplainer), respectively.

Ground truths (i.e., vulnerable nodes and edges) are high-

lighted in red.

56.91% respectively, in terms of MIoU. The results demonstrate the
importance of combining factual with counterfactual reasoning for
generating both concise and effective explanations. For a more intu-
itive understanding, we still take the case in qualitative study (Fig-
ure 5) as an example. We employ the DeepWuKong, which adopts
PDGs as input representations, as the vulnerability detector to de-
rive sub-graph explanations. As shown in Figure 6, factual-based
approach GNNExplainer reveals more rich vulnerability-contexts
but also covers redundant nodes and edges, while counterfactual-
based approach CF-GNNExplainer has more precise prediction
but tends to be conservative and low in coverage. By contrast,
Coca presents all potential vulnerable statements within an ac-
cepted scope. In addition, we can find that factual reasoning-based
approaches (GNNExplainer and PGExplainer) are higher in MSR,
while counterfactual reasoning-based approach (CF-GNNExplainer)
is higher in MSP when comparing with each other. This observa-
tion further confirms the necessity of combining the strengths of
factual and counterfactual reasoning while mitigating each others’
weaknesses.

Answer to RQ3: Combinatorial contrastive learning and dual-
view causal inference play different roles in our explanation.
Combining them together can produce significant improvements.

8 DISCUSSION

8.1 Preliminary User Study

To elaborate the practical value of Coca, we further perform a small-
scale user study to investigate whether effective and concise explana-
tions can provide more insights and information to help following
analysis and repair. Considering a practical application pipeline,
we integrated Coca into DeepWuKong, the best-performing model
in RQ1 & RQ2, to generate explanations.

Participants. We invite three MS students with two to five years
of experience in developing medium/large-scale C/C++ projects or
interning in some security companies for a period of time as our
participants. We also invite two security experts from a prominent

IT enterprise with at least five years of experience in software
security to participate in our user study.

Experiment Tasks.We randomly selected 50 vulnerable functions
from testing sets in RQ2, and independently assigned 10 unique
samples to each participant. For each sample, we present its de-
scriptions and vulnerability-contexts annotated by D2A as well as
their corresponding explanations provided by Coca. The partici-
pants are then asked to answer 1) whether the explanation covers
enough information to understand the vulnerability; and 2) whether
the explanation is concise enough to make further decisions. We
use 4-point likert scale [44] (1-disagree; 2-somewhat disagree; 3-
somewhat agree; 4-agree) to measure the difficulties.

Results.Overall, our user study reveals, to some extent, that Coca
presents as many truly vulnerable statements as possible within
an accepted scope to help security practitioners understand the
detected vulnerability. For effectiveness of Coca, 86% of the answers
are positive (i.e., score ≥ 3), 12% are 2 (somewhat disagree), and 2%
are 1 (disagree). For conciseness of Coca, only three (6%) responses
are negative (i.e., score ≤ 2), which means that explanations pro-
vided by Coca can help them intuitively understand the vulnerable
code without checking numerous irrelevant alarms.

8.2 Threats to Validity

Threats to Internal Validity come from the quality of our ex-
perimental datasets. We evaluate the detection and explanation
performance of Coca on five widely-used real-world benchmarks,
and the annotated D2A dataset, respectively. However, existing vul-
nerability datasets have been reported to exhibit varying degrees
of quality issues such as noisy labels and duplication. To reduce
the likelihood of experiment biases, following Croft et al.’s [19]
standard practice, we employ two experienced security experts
to manually confirm the correctness of vulnerability labels, and
leverage a code clone detector to remove duplicate samples.
Threats to External Validity refer to the generalizability of our
approach. We only conduct our experiments on C/C++ datasets,
and thus our experimental results may not generalizable to other
programming languages such as Java and Python. To mitigate the
threat, we employ tree-sitter, which supports a wide range of
languages, to implement Coca and baselines.
Threats to Construct Validity refer to the suitability of evaluation
measures used for quantifying the performance of vulnerability
explanation. We mainly adopt the same metrics following a recent
work regarding DL-based vulnerability detectors assessment [15].
In the future, we plan to employ other metrics, such as Consistency
and Stability [33, 69], for more comprehensive evaluation.

9 RELATEDWORK

9.1 DL-based Vulnerability Detection

Prior works focus on representing source code as sequences and
use LSTM-like models to learn the syntactic and semantic infor-
mation of vulnerabilities [41–43, 72]. Recently, a large number of
works [11, 16, 67, 68, 71, 80] turn to leveraging GNNs to extract rich
and well-defined semantics of the program structure from graph
representations for downstream vulnerability detection tasks. For



Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

example, AMPLE [71] simplifies the input program graph to allevi-
ate the long-term dependency problems and fuses local and global
heterogeneous node relations for better representation learning.

In contrast to these studies that aim to design novel neural mod-
els for effective vulnerability detection, our goal is to explain their
decision logic in a model-independent manner. Thus, existing GNN-
based approaches are orthogonal to our work and could be adopted
together for developing more practical security systems.

9.2 Explainability on Models of Code

The requirement for explainability is more urgent in security-
related applications [25, 50, 69] because it is hard to establish trust
on the system decision from simple binary (vulnerable or benign)
results without credible evidence. As the most representative at-
tempt, IVDetect [40] builds an additional model based on binary
detection results to derive crucial statements that are most relevant
to the detected vulnerability as explanations. Chakraborty et al. [11]
adopted LEMNA [30] to compute the contribution of each code
token towards the prediction.

Our approach falls into the category of local explainability, more
specifically, perturbation-based approach. A key difference is exist-
ing approaches mostly generate explanations from a single view
(either factual or counterfactual reasoning) and cannot satisfy spe-
cial concerns in security domains. By contrast, Coca proposes
dual-view causal inference, which combines the strengths of fac-
tual and counterfactual reasoning while mitigating each others’
weaknesses, to provide both effective and concise explanations.

10 CONCLUSION AND FUTUREWORK

In this paper, we propose Coca, a general framework to improve
and explain GNN-based vulnerability detection systems. Using a
combinatorial contrastive learning-based training scheme and a
dual-view causal inference-based explanation approach, Coca is
designed to 1) enhance the robustness of existing neural vulnerabil-
ity detection models to avoid spurious explanations, and 2) provide
both concise and effective explanations to reason about the detected
vulnerabilities. By applying and evaluating Coca over three typical
GNN-based vulnerability detection models, we show that Coca can
effectively improve the performance of existing GNN-based vulner-
ability detection models, and provide high-quality explanations.

In the future, we plan to explore a more automated data aug-
mentation approach to further improve the robustness of DL-based
detection models. In addition, we aim to work with our industry
partners to deploy Coca in their proprietary security systems to
test its effectiveness in practice.

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Founda-
tion of China (No.62202414, No.61972335, and No.62002309), the Six
Talent Peaks Project in Jiangsu Province (No. RJFW-053); the Jiangsu
“333” Project and Yangzhou University Top-level Talents Support
Program (2019), Postgraduate Research & Practice Innovation Pro-
gram of Jiangsu Province (KYCX22_3502), the Open Funds of State

Key Laboratory for Novel Software Technology of Nanjing Univer-
sity (No.KFKT2022B17), the Open Foundation of Yunnan Key Labo-
ratory of Software Engineering (No.2023SE201), the China Scholar-
ship Council Foundation (Nos. 202209300005, 202308320436), and
the National Research Foundation, under its Investigatorship Grant
(NRF-NRFI08-2022-0002). Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore.

REFERENCES

[1] Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Proceedings of
the 33rd International Conference on Software Engineering (ICSE). ACM, 1–10.

[2] Guru Prasad Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: au-
tomated collection of vulnerabilities and their fixes from open-source software.
In Proceedings of the 17th International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE). ACM, 30–39.

[3] Pavol Bielik and Martin T. Vechev. 2020. Adversarial Robustness for Code. In
Proceedings of the 37th International Conference on Machine Learning (ICML),
Vol. 119. 896–907.

[4] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-Supervised Contrastive
Learning for Code Retrieval and Summarization via Semantic-Preserving Trans-
formations. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR). ACM, 511–521.

[5] Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao Zhang, Xiaoxue Wu,
Ting Su, Lili Bo, Bin Li, Chuanlei Ma, Jiajia Li, and Tao Wei. 2023. ODDFuzz:
Discovering Java Deserialization Vulnerabilities via Structure-Aware Directed
Greybox Fuzzing. In Proceedings of the 44th IEEE Symposium on Security and
Privacy (SP). IEEE, 2726–2743.

[6] Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. 2021. BGNN4VD:
Constructing Bidirectional Graph Neural-Network for Vulnerability Detection.
Inf. Softw. Technol. 136 (2021), 106576.

[7] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuanqi Tao. 2022.
MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph
Neural Networks. In Proceedings of the 44th IEEE/ACM International Conference
on Software Engineering (ICSE). ACM, 1456–1468.

[8] Sicong Cao, Xiaobing Sun, Lili Bo, RongxinWu, Bin Li, XiaoxueWu, Chuanqi Tao,
Tao Zhang, andWei Liu. 2024. Learning to Detect Memory-related Vulnerabilities.
ACM Trans. Softw. Eng. Methodol. 33, 2 (2024), 43:1–43:35.

[9] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei Liu,
Biao He, Yu Ouyang, and Jiajia Li. 2023. Improving Java Deserialization Gadget
Chain Mining via Overriding-Guided Object Generation. In Proceedings of the
45th IEEE/ACM International Conference on Software Engineering (ICSE). IEEE,
397–409.

[10] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T. Devanbu,
and Baishakhi Ray. 2022. NatGen: generative pre-training by "naturalizing"
source code. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 18–30.

[11] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2022.
Deep Learning based Vulnerability Detection: Are We There Yet? IEEE Trans.
Software Eng. 48, 9 (2022), 3280 – 3296.

[12] Checkmarx. 2023. https://www.checkmarx.com/.
[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning (ICML),
Vol. 119. 1597–1607.

[14] Zimin Chen, Vincent J. Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-
Antoine Manzagol, Daniel Tarlow, and Subhodeep Moitra. 2021. PLUR: A Uni-
fying, Graph-Based View of Program Learning, Understanding, and Repair. In
Proceedings of the 34th Annual Conference on Neural Information Processing Sys-
tems (NeurIPS). 23089–23101.

[15] Xiao Cheng, Xu Nie, Li Ningke, Haoyu Wang, Zheng Zheng, and Yulei Sui. 2022.
How About Bug-Triggering Paths?-Understanding and Characterizing Learning-
Based Vulnerability Detectors. IEEE Trans. Dependable Secur. Comput. (2022).

[16] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong:
Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network.
ACM Trans. Softw. Eng. Methodol. 30, 3 (2021), 38:1–38:33.

[17] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-sensitive
code embedding via contrastive learning for software vulnerability detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). ACM, 519–531.

https://www.checkmarx.com/


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu

[18] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2022. Coun-
terfactual Explanations for Models of Code. In Proceedings of the 44th IEEE/ACM
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 125–134.

[19] Roland Croft, Muhammad Ali Babar, and M. Mehdi Kholoosi. 2023. Data Qual-
ity for Software Vulnerability Datasets. In Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 121–133.

[20] Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2018. Explainable software an-
alytics. In Proceedings of the 40th International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER). ACM, 53–56.

[21] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and
Aditya Ghose. 2021. Automatic Feature Learning for Predicting Vulnerable
Software Components. IEEE Trans. Software Eng. 47, 1 (2021), 67–85.

[22] Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray,
and Saikat Chakraborty. 2022. Towards Learning (Dis)-Similarity of Source
Code from Program Contrasts. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL). Association for Computational
Linguistics, 6300–6312.

[23] Yangruibo Ding, Saikat Chakraborty, Luca Buratti, Saurabh Pujar, Alessandro
Morari, Gail E. Kaiser, and Baishakhi Ray. 2023. CONCORD: Clone-Aware Con-
trastive Learning for Source Code. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, 26–38.

[24] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (MSR). ACM,
508–512.

[25] Ming Fan, Wenying Wei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and Ting Liu.
2021. CanWe Trust Your Explanations? Sanity Checks for Interpreters in Android
Malware Analysis. IEEE Trans. Inf. Forensics Secur. 16 (2021), 838–853.

[26] Flawfinder. 2023. http://www.dwheeler.com/FlawFinder.
[27] Ruth C. Fong and Andrea Vedaldi. 2017. Interpretable Explanations of Black

Boxes by Meaningful Perturbation. In Proceedings of the 16th IEEE International
Conference on Computer Vision (ICCV). IEEE Computer Society, 3449–3457.

[28] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
based Line-Level Vulnerability Prediction. In Proceedings of the 19th IEEE/ACM
International Conference on Mining Software Repositories (MSR). IEEE, 608–620.

[29] Tom Ganz, Martin Härterich, Alexander Warnecke, and Konrad Rieck. 2021.
Explaining Graph Neural Networks for Vulnerability Discovery. In Proceedings of
the 14th ACM Workshop on Artificial Intelligence and Security (AISec@CCS). ACM,
145–156.

[30] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018.
LEMNA: Explaining Deep Learning based Security Applications. In Proceedings
of the 25th ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 364–379.

[31] Haoyu He, Yuede Ji, and H. Howie Huang. 2022. Illuminati: Towards Explaining
Graph Neural Networks for Cybersecurity Analysis. In Proceedings of the 7th
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 74–89.

[32] David Hin, Andrey Kan, Huaming Chen, andMuhammad Ali Babar. 2022. LineVD:
Statement-level Vulnerability Detection using Graph Neural Networks. In Pro-
ceedings of the 19th IEEE/ACM International Conference on Mining Software Repos-
itories (MSR). IEEE, 596–607.

[33] Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou,
and Hai Jin. 2023. Interpreters for GNN-Based Vulnerability Detection: Are We
There Yet?. In Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 1407–1419.

[34] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion
Stoica. 2021. Contrastive Code Representation Learning. In Proceedings of the
26th Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 5954–5971.

[35] Jinghan Jia, Shashank Srikant, Tamara Mitrovska, Chuang Gan, Shiyu Chang,
Sijia Liu, and Una-May O’Reilly. 2023. CLAWSAT: Towards Both Robust and
Accurate Code Models. In Proceedings of the 30th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 212–223.

[36] Arnold Johnson, Kelley Dempsey, Ron Ross, Sarbari Gupta, Dennis Bailey, et al.
2011. Guide for security-focused configuration management of information
systems. NIST special publication 800, 128 (2011), 16–16.

[37] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised Contrastive
Learning. In Proceedings of the 34th Annual Conference on Neural Information
Processing Systems (NeurIPS).

[38] Diederik P. Kingma and JimmyBa. 2015. Adam: AMethod for Stochastic Optimiza-
tion. In Proceedings of the 3rd International Conference on Learning Representations
(ICLR).

[39] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In Proceedings of the 4th International Confer-
ence on Learning Representations (ICLR).

[40] Yi Li, ShaohuaWang, and Tien N. Nguyen. 2021. Vulnerability detection with fine-
grained interpretations. In Proceeding of the 29th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 292–303.

[41] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. 2022.
VulDeeLocator: A Deep Learning-Based Fine-Grained Vulnerability Detector.
IEEE Trans. Dependable Secur. Comput. 19, 4 (2022), 2821–2837.

[42] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2022.
SySeVR: A Framework for UsingDeep Learning toDetect Software Vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 19, 4 (2022), 2244–2258.

[43] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society.

[44] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[45] Wanyu Lin, Hao Lan, and Baochun Li. 2021. Generative Causal Explanations for
Graph Neural Networks. In Proceedings of the 38th International Conference on
Machine Learning (ICML), Vol. 139. 6666–6679.

[46] Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu. 2023. Con-
traBERT: Enhancing Code Pre-trained Models via Contrastive Learning. In Pro-
ceedings of the 45th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE.

[47] Ana Lucic, Maartje A. ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fab-
rizio Silvestri. 2022. CF-GNNExplainer: Counterfactual Explanations for Graph
Neural Networks. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics (AISTATS), Vol. 151. 4499–4511.

[48] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to InterpretingModel
Predictions. In Proceedings of the 31st Annual Conference on Neural Information
Processing Systems (NeurIPS). 4765–4774.

[49] Dongsheng Luo, Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network.
In Proceedings of the 34th Annual Conference on Neural Information Processing
Systems (NeurIPS).

[50] Azqa Nadeem, Daniël Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baum-
gartner, and Sicco Verwer. 2022. SoK: ExplainableMachine Learning for Computer
Security Applications. arXiv preprint arXiv:2208.10605 (2022).

[51] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris
Mitropoulos. 2021. CrossVul: a cross-language vulnerability dataset with commit
data. In Proceedings of the 29th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 1565–1569.

[52] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Gen-
erating realistic vulnerabilities via neural code editing: an empirical study. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM,
1097–1109.

[53] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2023. VULGEN:
Realistic Vulnerability Generation Via Pattern Mining and Deep Learning. In
Proceedings of 45th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE, 2527–2539.

[54] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. 2017.
A Survey on Systems Security Metrics. ACM Comput. Surv. 49, 4 (2017), 62:1–
62:35.

[55] Chanathip Pornprasit, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Michael
Fu, and PatanamonThongtanunam. 2021. PyExplainer: Explaining the Predictions
of Just-In-Time Defect Models. In Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 407–418.

[56] Md. Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin Alipour.
2021. Understanding neural code intelligence through program simplification.
In Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM,
441–452.

[57] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 1135–1144.

[58] Yucen Shi, Ying Yin, Zhengkui Wang, David Lo, Tao Zhang, Xin Xia, Yuhai Zhao,
and Bowen Xu. 2022. How to better utilize code graphs in semantic code search?.
In Proceeding of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM,
722–733.

[59] Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2018.
An Empirical Study of Deep Learning Models for Vulnerability Detection. In
Proceedings of the 45th International Conference on Software Engineering (ICSE).
IEEE/ACM.

[60] Xiaobing Sun, Zhenlei Ye, Lili Bo, Xiaoxue Wu, Ying Wei, Tao Zhang, and Bin Li.
2023. Automatic software vulnerability assessment by extracting vulnerability
elements. J. Syst. Softw. 204 (2023), 111790.

http://www.dwheeler.com/FlawFinder


Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[61] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim Alain Laredo, and Alessandro
Morari. 2021. Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization. In Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 945–955.

[62] Bruce W Suter. 1990. The multilayer perceptron as an approximation to a Bayes
optimal discriminant function. IEEE transactions on neural networks 1, 4 (1990),
291.

[63] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and
Yongfeng Zhang. 2022. Learning and Evaluating Graph Neural Network Explana-
tions based on Counterfactual and Factual Reasoning. In Proceedings of the 31st
ACM Web Conference (WWW). ACM, 1018–1027.

[64] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2017. An Empirical Comparison of Model Validation Techniques for
Defect Prediction Models. IEEE Trans. Software Eng. 43, 1 (2017), 1–18.

[65] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. arXiv preprint arXiv:1807.03748 (2018).

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of the 31st Annual Conference on Neural Information
Processing Systems (NeurIPS). 5998–6008.

[67] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang,
Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. 2021. Combining
Graph-Based Learning With Automated Data Collection for Code Vulnerability
Detection. IEEE Trans. Inf. Forensics Secur. 16 (2021), 1943–1958.

[68] Wenbo Wang, Tien N. Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, and Aashish
Yadavally. 2023. DeepVD: Toward Class-Separation Features for Neural Net-
work Vulnerability Detection. In Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE.

[69] AlexanderWarnecke, Daniel Arp, ChristianWressnegger, and Konrad Rieck. 2020.
Evaluating Explanation Methods for Deep Learning in Security. In Proceedings
of the 5th IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
158–174.

[70] Ying Wei, Lili Bo, Xiaobing Sun, Bin Li, Tao Zhang, and Chuanqi Tao. 2023.
Automated event extraction of CVE descriptions. Inf. Softw. Technol. 158 (2023),
107178.

[71] Xin-Cheng Wen, Yupan Chen, Cuiyun Gao, Hongyu Zhang, Jie M. Zhang, and
Qing Liao. 2023. Vulnerability Detection with Graph Simplification and Enhanced
Graph Representation Learning. In Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE, 2275–2286.

[72] Xiaoxue Wu, Jinjin Shen, Wei Zheng, Lidan Lin, Yulei Sui, and Abubakar
Omari Abdallah Semasaba. 2023. RNNtcs: A test case selection method for
Recurrent Neural Networks. Knowl. Based Syst. 279 (2023), 110955.

[73] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of
the 35th IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
590–604.

[74] Zhou Yang, Jieke Shi, JundaHe, andDavid Lo. 2022. Natural Attack for Pre-trained
Models of Code. In Proceedings of the 44th IEEE/ACM International Conference on
Software Engineering (ICSE). ACM, 1482–1493.

[75] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks.
In Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems (NeurIPS). 9240–9251.

[76] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[77] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. 2018. Interpretable Convo-
lutional Neural Networks. In Proceedings of the 28th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Computer Vision Foundation / IEEE Com-
puter Society, 8827–8836.

[78] Yunhui Zheng, Saurabh Pujar, Burn L. Lewis, Luca Buratti, Edward A. Epstein,
Bo Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021. D2A: A Dataset
Built for AI-Based Vulnerability Detection Methods Using Differential Analy-
sis. In Proceedings of the 43rd IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 111–120.

[79] Jiayuan Zhou, Michael Pacheco, Jinfu Chen, Xing Hu, Xin Xia, David Lo, and
Ahmed E. Hassan. 2023. CoLeFunDa: Explainable Silent Vulnerability Fix Identi-
fication. In Proceedings of the 45th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE.

[80] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective Vulnerability Identification by Learning Comprehensive Pro-
gram Semantics via Graph Neural Networks. In Proceedings of the 33rd Annual
Conference on Neural Information Processing Systems (NeurIPS). 10197–10207.

[81] Chengcheng Zhu, Jiale Zhang, Xiaobing Sun, Bing Chen, and Weizhi Meng.
2023. ADFL: Defending backdoor attacks in federated learning via adversarial
distillation. Comput. Secur. 132 (2023), 103366.

[82] Deqing Zou, Yutao Hu, Wenke Li, Yueming Wu, Haojun Zhao, and Hai Jin.
2022. mVulPreter: A Multi-Granularity Vulnerability Detection System With
Interpretations. IEEE Trans. Dependable Secur. Comput. (2022).

[83] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021.
Interpreting Deep Learning-based Vulnerability Detector Predictions Based on
Heuristic Searching. ACM Trans. Softw. Eng. Methodol. 30, 2 (2021), 23:1–23:31.


	Coca: Improving and explaining graph neural network-based vulnerability detection systems
	Citation
	Author

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Formulation
	2.2 Contrastive Learning for Code
	2.3 Explanation for GNN-based Models

	3 Motivation
	3.1 Special Concerns for DL-based Security Applications
	3.2 Why Not Fine-Grained Detectors?
	3.3 Why Not Existing Explainers?
	3.4 Key Insights Behind Our Design

	4 Robustness Enhancement
	4.1 Data Augmentation
	4.2 Combinatorial Contrastive Learning

	5 Explainable Detection
	5.1 Vulnerability Detection
	5.2 Vulnerability Explanation

	6 Experiments
	6.1 Research Questions
	6.2 Datasets
	6.3 Coca Implementation

	7 Experimental Results
	7.1 RQ1: Detection Performance
	7.2 RQ2: Explanation Performance
	7.3 RQ3: Ablation Study

	8 Discussion
	8.1 Preliminary User Study
	8.2 Threats to Validity

	9 Related Work
	9.1 DL-based Vulnerability Detection
	9.2 Explainability on Models of Code

	10 Conclusion and Future Work
	Acknowledgments
	References

