
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

Greening large language models of code Greening large language models of code

Jieke SHI

Zhou YANG

Hong Jin KANG

Bowen XU

Junda HE

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
SHI, Jieke; YANG, Zhou; KANG, Hong Jin; XU, Bowen; HE, Junda; and LO, David. Greening large language
models of code. (2024). ICSE-SEIS'24: Proceedings of the 46th International Conference on Software
Engineering: Software Engineering in Society, Lisbon, Portugal, April 14-20. 142-153.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9249

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jieke SHI, Zhou YANG, Hong Jin KANG, Bowen XU, Junda HE, and David LO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9249

https://ink.library.smu.edu.sg/sis_research/9249

Greening Large Language Models of Code
Jieke Shi♦, Zhou Yang♦, Hong Jin Kang♠, Bowen Xu♣, Junda He♦, and David Lo♦
♦School of Computing and Information Systems, Singapore Management University, Singapore

♠Department of Computer Science, University of California, Los Angeles, USA
♣Department of Computer Science, North Carolina State University, Raleigh, USA

{jiekeshi, zyang, jundahe, davidlo}@smu.edu.sg, hjkang@cs.ucla.edu, bxu22@ncsu.edu

ABSTRACT

Large language models of code have shown remarkable effective-
ness across various software engineering tasks. Despite the avail-
ability of many cloud services built upon these powerful models,
there remain several scenarios where developers cannot take full
advantage of them, stemming from factors such as restricted or un-
reliable internet access, institutional privacy policies that prohibit
external transmission of code to third-party vendors, and more.
Therefore, developing a compact, efficient, and yet energy-saving
model for deployment on developers’ devices becomes essential.

To this aim, we propose Avatar, a novel approach that crafts a
deployable model from a large language model of code by optimiz-
ing it in terms of model size, inference latency, energy consumption,
and carbon footprint while maintaining a comparable level of ef-
fectiveness (e.g., prediction accuracy on downstream tasks). The
key idea of Avatar is to formulate the optimization of language
models as a multi-objective configuration tuning problem and solve
it with the help of a Satisfiability Modulo Theories (SMT) solver
and a tailored optimization algorithm. The SMT solver is used to
form an appropriate configuration space, while the optimization
algorithm identifies the Pareto-optimal set of configurations for
training the optimized models using knowledge distillation. We
evaluate Avatar with two popular language models of code, i.e.,
CodeBERT and GraphCodeBERT, on two popular tasks, i.e., vulner-
ability prediction and clone detection. We use Avatar to produce
optimized models with a small size (3 MB), which is 160× smaller
than the original large models. On the two tasks, the optimized
models significantly reduce the energy consumption (up to 184×
less), carbon footprint (up to 157× less), and inference latency (up
to 76× faster), with only a negligible loss in effectiveness (1.67%).

KEYWORDS

Language Models of Code, Configuration Tuning, Multi-Objective
Optimization
ACM Reference Format:

Jieke Shi♦, Zhou Yang♦, Hong Jin Kang♠, Bowen Xu♣, Junda He♦, and David
Lo♦. 2024. Greening Large LanguageModels of Code. In Software Engineering
in Society (ICSE-SEIS’24), April 14–20, 2024, Lisbon, Portugal.ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3639475.3640097

†Zhou Yang is the corresponding author.

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0499-4/24/04.
https://doi.org/10.1145/3639475.3640097

LAY ABSTRACT

Large language models of code have proven to be highly effective
for various software engineering tasks, such as spotting program
defects and helping developers write code. While many cloud ser-
vices built on these models (e.g., GitHub Copilot) are now acces-
sible, several factors, such as unreliable internet access (e.g., over
20% of GitHub Copilot’s issues are related to network connectiv-
ity [22]) and privacy concerns (e.g., Apple has banned the internal
use of external AI tools to protect confidential data [53]), hinder
developers from fully utilizing these services. Therefore, deploy-
ing language models of code on developers’ devices like laptops
appears promising. However, local deployment faces challenges:
(1) Consumer-grade personal devices typically lack sufficient mem-
ory and the high-performance CPUs/GPUs required for efficient
model execution; (2) Even if the hardware requirements are met,
deploying the models on many devices can result in considerable
energy consumption and carbon emissions, negatively impacting
environmental sustainability.

To address these challenges, we present Avatar, an innovative
approach that optimizes large language models of code and enables
their deployment on consumer-grade devices. Avatar can opti-
mize two popular models from a large size of 481 MB to a compact
size of 3 MB, resulting in significant reductions in inference time,
energy consumption, and carbon emissions by hundreds of times.
Our technique effectively lowers the entry barrier for leveraging
large language models of code, making them available to ordi-
nary developers without the need for high-performance computing
equipment. Furthermore, it also contributes to a more sustainable
and user-friendly software development environment.

1 INTRODUCTION

Recent years have seen a remarkable surge in Artificial Intelligence
(AI)-powered services for software engineering, such as GitHub
Copilot [23] and GitLab Auto DevOps [12]. This surge has brought
a new level of automation to the software development process,
significantly improving developer’s productivity and the quality
of software products. According to an economic analysis report
released by GitHub, AI-powered services for software development
could boost the global GDP by over $1.5 trillion by 2030 [13].

The foundation of these AI-powered services lies in large lan-
guage models of code [35, 49, 55, 56, 82]. These models have shown
superior performance in various software engineering tasks such
as vulnerability detection [7, 33] and code completion [9, 47]. How-
ever, the services that utilize language models of code are typi-
cally hosted in the cloud, giving rise to several issues such as data
leakage concerns [36, 48, 57, 80] and poor user experience due to
network fluctuations [22]. Therefore, there is a growing need for

This work licensed under Creative Commons Attribution International 4.0 License.

142

2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639475.3640097&domain=pdf&date_stamp=2024-06-06

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo

deploying these models within the integrated development envi-
ronments (IDEs) on developers’ local machines. However, recent
studies [65, 75] have highlighted several challenges associated with
deploying language models of code, including their large size, long
inference latency, high energy consumption, and considerable car-
bon footprint.

Typically, language models of code are large-sized with numer-
ous parameters. For example, CodeBERT [18] and GraphCode-
BERT [26], two popular language models of code, both have 125
million parameters, resulting in a file size of about 500 megabytes
(MB). The recently released Code Llama model is even larger at over
130 gigabytes (GB) [58]. However, real-world deployment experi-
ences, as observed by the Visual Studio team in deploying IDEs, have
emphasized a preference for compact models, which are typically
around 3 MB in size and can seamlessly function as IDE compo-
nents or editor plug-ins even on low-end hardware devices [70].
Meanwhile, language models perform billions of floating-point op-
erations (FLOPs) during inference. These massive computations
cause long inference latency, often taking over 1.5 seconds to re-
turn a prediction [65]. Such delays can disrupt developers’ work-
flow, ultimately resulting in a suboptimal user experience. Previous
studies [4, 70] suggest that for a model deployed in IDEs to offer
developers instantaneous assistance, its inference latency should
ideally be within a few tens of milliseconds at most. The inability
of language models of code to meet the above requirements gives
rise to usability issues, consequently impeding their widespread
deployment within developers’ IDEs.

Furthermore, and perhaps even more importantly, the billions
of FLOPs during inference entail significant energy consumption
and carbon footprint, raising concerns about environmental and
climate sustainability. Considering a CodeBERT deployed in IDEs,
a developer typically needs to run it thousands of times per day,
which is a common usage amount [31]. Such intensive usage results
in an energy consumption of 0.32 kilowatt-hours (kWh), while a
typical consumer-grade laptop has a battery capacity of around 70
watt-hours [40], i.e., 0.07 kWh. Consequently, a laptop’s battery
can only support a developer running CodeBERT for 0.22 hours,
which is far from sufficient for a typical workday. This would frus-
trate developers and also hinder their ability to work flexibly in
mobile environments. Moreover, the above energy cost of 0.32 kWh
can translate into a considerable carbon footprint, amounting to
approximately 0.14 kilograms of CO2 emissions. This carbon foot-
print is comparable to the emissions generated by driving a car
for 0.6 miles.1 With the expected widespread adoption of language
models of code by many software developers in the near future, the
cumulative carbon footprint stemming from model inference will
become an increasingly pressing issue.

To date, few approaches have emerged to address the above
issues [65, 75]. Shi et al. [65] propose Compressor, the state-of-
the-art approach that can compress language models of code down
to 3 MB and thereby improve their inference latency. Compres-
sor adopts the knowledge distillation technique [34] to transfer
knowledge from a large model to a tiny one with a well-crafted

1All of these calculations on energy consumption and carbon footprint are based
on the Machine Learning Emissions Calculator: https://mlco2.github.io/impact.

architecture searched by their proposed genetic algorithm. How-
ever, while Compressor excels at optimizing the model size and
inference latency, it does not encompass the optimization of two
other critical aspects, i.e., energy consumption and carbon footprint.
Additionally, Compressor’s search space for small model architec-
tures is limited solely to hyperparameters related to model size, like
the number of network layers. This limited scope excludes configu-
rations that can significantly affect a model’s effectiveness, like the
choice of tokenizer [39]. Consequently, it falls short of identifying
the optimal small model. These limitations necessitate our work.
Our work still follows the idea of using knowledge distillation to
optimize language models for the sake of size and inference latency,
but offers a novel take on simultaneously addressing the issues of
energy consumption and carbon footprint.

This paper proposes Avatar, a novel approach aimed at optimiz-
ing language models of code for real-world deployment. Avatar
accomplishes this by formulating the seeking of an optimal model
as a multi-objective configuration tuning problem, where the op-
timization objectives include the simultaneous minimization of
model size, inference latency, energy consumption, and carbon
footprint, while maintaining effectiveness (e.g., prediction accu-
racy) on downstream tasks.

Avatar starts by identifying the key configurations within lan-
guage models that impact the above objectives. It then innovatively
combines a Satisfiability Modulo Theories (SMT) solver with a tai-
lored multi-objective optimization algorithm to solve the configura-
tion tuning problem. The SMT solver is used to construct a config-
uration space that adheres to the 3 MB model size constraint, while
the multi-objective optimization algorithm identifies the Pareto-
optimal set of configurations, i.e., the set of configurations that
cannot be improved in one objective without making sacrifices in
another, thereby achieving the best trade-off among all objectives.
To efficiently obtain the effectiveness of models during optimization
without the need for expensive training and evaluation processes,
Avatar builds a regression model serving as an effectiveness indi-
cator. This indicator estimates a model’s effectiveness solely based
on its configurations, facilitating the quick identification of the
Pareto-optimal configurations. Finally, Avatar leverages knowl-
edge distillation to train a compact and environmentally-friendly
model using the configurations from the Pareto-optimal set.

We evaluate Avatar using the same settings as the baseline
method [65]. Our evaluation focuses on optimizing two represen-
tative language models of code: CodeBERT [18] and GraphCode-
BERT [26]. We utilize two datasets for popular automated software
engineering tasks: vulnerability prediction and clone detection.
With Avatar, we produce optimized models with a compact size of
3 MB, a reduction of 160× compared to the original large language
models. Across both tasks, these optimized models show a remark-
able improvement in various aspects. They reduce inference latency
by up to 76× compared to the original models, optimize energy con-
sumption by up to 184× less, and reduce carbon footprint by up to
157× less. Importantly, these optimizations incur only a negligible
loss in effectiveness, averaging 1.67%. Notably,Avatar outperforms
the baseline method, Compressor, across all metrics. On average,
Avatar achieves a 0.75% higher prediction accuracy. Additionally,
it exhibits significant improvements in terms of inference latency
(44× faster on average), energy consumption (up to 8× less), and

143

Greening Large Language Models of Code ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

1 {
2 "tokenizer": "Byte-Pair Encoding",
3 "vocab_size": 50265,
4 "num_hidden_layers": 12,
5 "hidden_size": 768,
6 "hidden_act": "GELU",
7 "hidden_dropout_prob": 0.1,
8 "intermediate_size": 3072,
9 "num_attention_heads": 12,
10 "attention_probs_dropout_prob": 0.1,
11 "max_sequence_length": 512,
12 "position_embedding_type": "absolute",
13 "learning_rate": 1e-4,
14 "batch_size": 32
15 }

Listing 1: Typical tunable configurations of language models

of code.

carbon footprint (up to 7× less). Moreover, we also highlight the
benefits of Avatar in the context of cloud deployment, showing
that the optimized models can process up to 9.7× more queries per
second than the original large language models of code.

The contributions of this paper are summarized as follows:
• Insight: We are the first to propose optimizing language models
of code in terms of the energy consumption and carbon footprint
by tuning their configurations.

• Technique: We propose and implement Avatar, a novel ap-
proach that uses an SMT solver and a tailored multi-objective
optimization algorithm to optimize language models of code in
terms of model size, inference latency, energy consumption, and
carbon footprint, while maintaining effectiveness.

• Evaluation: We perform a thorough evaluation of Avatar, and
the results show thatAvatar effectively optimizes language mod-
els of code, greatly outperforming the state-of-the-art approach.

2 PRELIMINARIES

Language Models of Code and Their Configurations. The re-
cent development and adoption of language models of code have
enabled state-of-the-art results to be achieved on code-related
tasks [35, 49, 55, 56]. These powerful models are mainly built upon
the Transformer architecture [74] and trained on large datasets of
source code from various programming languages. Among these
models, a notable category is encoder-only models such as Code-
BERT [18] and GraphCodeBERT [26], which utilize solely the en-
coder component of Transformer and are specialized for program
understanding tasks such as vulnerability detection [7] and code
search [85]. These encoder-only models represent the software engi-
neering community’s early efforts at language models of code [35].
Due to their pioneering status, these models have long been used
in various real-world applications like the Akvelon code search
engine [2]. This has led to widespread popularity and social impact
and thus motivated our study to focus on these models.

Typically, encoder-only language models of code have a number
of configurations that can be tuned to achieve varying levels of
model performance. Listing 1 shows an example of tunable config-
urations from the Hugging Face’s implementation [15], with a total

1 input𝑀 : language model of code (teacher model)

2 input 𝑁 : small model (student model)

3 input 𝐷 : training dataset

4 input𝑇 : temperature parameter

5 for 𝑑 in 𝐷 :

6 𝑝 , 𝑞 =𝑀(𝑑), 𝑁 (𝑑)

7 𝑙𝑜𝑠𝑠 = softmax(𝑝
𝑇
) ∗ log

(
softmax(𝑞

𝑇
)
)
∗𝑇 2

8 𝑁 .update(𝑙𝑜𝑠𝑠)
9 return 𝑁

Listing 2: Algorithm of knowledge distillation.

number of 13. Six of these configurations directly impact model
size and inference latency, including the number of hidden layers,
hidden size (i.e., the dimension of hidden layers), number of atten-
tion heads, vocabulary size, intermediate size (i.e., the dimension of
feed-forward layers), and maximum sequence length. Larger values
in these configurations tend to result in larger model sizes and
longer inference latency, while smaller values may compromise
model effectiveness (e.g., prediction accuracy). Compressor [65]
focuses solely on tuning these configurations to optimize model
size and inference latency at the cost of effectiveness.

However, there exist seven additional configurations that also
contribute to model effectiveness. These include the choice of tok-
enizer, activation function for hidden layers, type of position embed-
dings, dropout rates for hidden layers and attention heads, learning
rate, and batch size. For example, the choice of a tokenizer can affect
a model’s ability to capture the semantics of source code [39, 42, 64],
thus impacting its overall effectiveness. In this study, we aim to
tune all 13 configurations to achieve the best trade-off between
model effectiveness and efficiency. We discuss the tuning space of
these configurations and how to tune them in Section 3.
Knowledge Distillation. Knowledge distillation has proven to
be an effective technique for optimizing large language models in
terms ofmodel size [41, 59, 65]. It compresses a largemodel (referred
to as the teacher model) by training a small model (the student
model) to mimic the behaviors of the large one (i.e., produces the
same output given the same input) [5, 24, 34].

In line with recent work [65], our study leverages a task-specific
distillation method introduced by Hinton et al. [34] to optimize
language models of code. The algorithm of this method is shown
in Listing 2. Specifically, given a language model of code that is
fine-tuned for a specific task and a small model to be trained, we
input training data into both models, collect the resulting output
probability values (line 15), and then update the parameters of the
small model (line 8) to minimize the training loss computed by the
function shown in line 7. The intuition behind minimizing this loss
function is to bring the outputs of the language and small models
closer together. 𝑝𝑖 and 𝑞𝑖 in this function denote the outputs of the
large and small models, respectively. 𝑇 is the softmax function’s
temperature parameter, as Hinton et al. [34] introduced. Note that
the language model producing 𝑝𝑖 is fixed during the distillation
process, while the small model producing 𝑞𝑖 is trained.

Note that the above loss function does not necessitate ground-
truth labels, only requiring the model’s outputs. Thus, we follow
Compressor [65] to use unlabeled data for training. This choice is

144

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo

1 {
2 "tokenizer": ["Byte-Pair Encoding", "WordPiece",

↩→ "Unigram", "Word"],
3 "vocab_size": range(1000, 50265),
4 "num_hidden_layers": range(1, 12),
5 "hidden_size": range(16, 768),
6 "hidden_act": ["GELU", "ReLU", "SiLU", "GELU_new"],
7 "hidden_dropout_prob": [0.1, 0.2, 0.3, 0.4, 0.5],
8 "intermediate_size": range(16, 3072),
9 "num_attention_heads": range(1, 12),
10 "attention_probs_dropout_prob": [0.1, 0.2, 0.3, 0.4,

↩→0.5],
11 "max_sequence_length": range(256, 512),
12 "position_embedding_type":["absolute", "relative_key",

↩→ "relative_key_query"],
13 "learning_rate": [1e-3, 1e-4, 5e-5],
14 "batch_size": [16, 32, 64]
15 }

Listing 3: The configuration space of small models. It

contains around 4.5 × 1019 plausible sets of configurations.

driven by the practical consideration that obtaining labeled data is
typically costly and challenging, while ample unlabeled data can be
readily collected from open-source software platforms like GitHub.

3 METHODOLOGY

3.1 Problem Formulation

As introduced in Section 1, we aim to optimize the model size,
inference latency, energy consumption, and carbon footprint of
language models of code while maintaining their effectiveness (e.g.,
prediction accuracy on downstream tasks). Among these objectives,
the inference latency, energy consumption, and carbon footprint
are all related to the model’s computational cost during inference.
We use floating-point operations (FLOPs) to measure computational
cost, following prior studies [29, 61, 65]. FLOPs count how many
multiply and accumulate operations the model performs for each
prediction. The more FLOPs a model has, the more time it will take
to make a prediction, the more energy it will consume, and the
more CO2 it will emit [61]. Therefore, we use FLOPs as the proxy
for these three objectives. Then, combined with the model size and
effectiveness, we formulate our optimization problem as follows:

min
𝑐

{size(𝑐), FLOPs(𝑐),−effectiveness(𝑐)}

s.t. 𝑐 ∈ C
(1)

where 𝑐 is a set of configurations, and C defines the configuration
space, as illustrated in Listing 3. Most of these configurations offer
a range of adjustable integer or decimal values. For instance, the vo-
cabulary size is adjustable to any integer value ranging from 1,000
to 50,265. Some others involve selecting from predefined options.
The tokenizer requires a choice among four popular tokenization
methods: Byte-Pair Encoding [62], WordPiece [76], Unigram [45],
and Word [42]. Additionally, we set the hidden activation function
and position embedding type as tunable configurations following
the Hugging Face’s implementation [15], which includes a few
more advanced options than the original implementation of lan-
guage models. The hidden activation function requires a choice

SMU Classification: Restricted

Configuration
Space

(Listing 3)

Pruned Space
(Listing 4)

Pruning
(Section 3.3)

Effectiveness
Indicator

(Section 3.4)

Multi-Objective
Optimization

(Section 3.5)

Sampling &
Training
(Listing 5)

Large Language
Model of Code

Compact and Green
Model of Code

Pareto-optimal
Configurations

Knowledge Distillation
 (Listing 2)

Configuration
Tuning

(Listing 6)

Figure 1: The workflow of Avatar.

from four options: Gaussian Error Linear Unit (GELU) [32], Recti-
fied Linear Unit (ReLU) [30], Sigmoid Linear Unit (SiLU) [14], and
a new GELU implementation (GELU_new) [15]. The position em-
bedding type offers three choices: absolute, relative_key [63], and
relative_key_query [37]. In total, the configuration space contains
about 4.5 × 1019 possible sets of configurations, which is much
larger than the one used by Compressor that only tunes 5 configu-
rations. Our configuration space is also extensible to include more
configurations or more options for existing configurations, such as
more tokenizer choices. Here we focus on the configuration space
shown in Listing 3 as studies [39, 65] and Hugging Face’s imple-
mentation [15] have explicitly shown that these configurations and
options have a significant impact on model effectiveness.

Solving the problem posed by Equation 1 is challenging for three
reasons: (1) the tuning space of configurations is quite huge, which
makes brute force impractical since evaluating all configurations is
computationally infeasible; (2) utilizing off-the-shelf Satisfiability
Modulo Theories (SMT) solvers that support solving constrained
optimization problems is not a viable approach for solving this
problem. This is because obtaining model effectiveness necessitates
training and testing the model. Such a process cannot be formulated
as a mathematical function of configurations that SMT solvers
can handle; (3) this multi-objective optimization problem comes
with objectives that conflict with others. For example, a larger
model typically has better effectiveness on downstream tasks but
incurs higher FLOPs. Thus, solving Equation 1 involves finding a
Pareto-optimal solution set, i.e., a set of trade-off solutions where
no solution can be improved in one objective without degrading
other objectives [10], rather than finding a single, unique solution.

3.2 Approach Overview

Pursuant to the above challenges, our approach, Avatar, is de-
signed to solve the problem through a multi-step process outlined
in Figure 1. First, we prune the configuration space using an SMT
solver, with the 3 MB model size constraint suggested by prior
studies [65, 70] as the pruning criterion (Section 3.3). This initial
step removes configurations that are irrelevant to our objectives,
thereby facilitating the subsequent identification of Pareto-optimal
configurations. Next, we sample a small number of configurations
from the pruned space and use them to train a regression model that
can predict the effectiveness of a model initialized by a given set
of configurations, i.e., build an effectiveness indicator (Section 3.4).
Subsequently, we use a multi-objective optimization algorithm,

145

Greening Large Language Models of Code ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

1 {
2 "tokenizer": ["Byte-Pair Encoding", "WordPiece",

↩→ "Unigram", "Word"],
3 "vocab_size": range(1000, 46000),

4 "num_hidden_layers": range(1, 12),
5 "hidden_size": range(16, 256),

6 "hidden_act": ["GELU", "ReLU", "SiLU", "GELU_new"],
7 "hidden_dropout_prob": [0.1, 0.2, 0.3, 0.4, 0.5],
8 "intermediate_size": range(32, 3072),

9 "num_attention_heads": range(1, 12),
10 "attention_probs_dropout_prob": [0.1, 0.2, 0.3, 0.4,

↩→0.5],
11 "max_sequence_length": range(256, 512),
12 "position_embedding_type":["absolute", "relative_key",

↩→ "relative_key_query"],
13 "learning_rate": [1e-3, 1e-4, 5e-5],
14 "batch_size": [16, 32, 64]
15 }

Listing 4: The pruned configuration space. It contains around

1.3× 1019 sets of configurations, 28.9% of the original one. The

underlined entries are pruned (Section 3.3).

assisted by the effectiveness indicator, to identify the set of Pareto-
optimal configurations within the pruned space (Section 3.5). Fi-
nally, we train a compact and environmentally-friendly model with
the configurations from the Pareto-optimal set using the knowl-
edge distillation technique that we have introduced in Section 2.
We describe these steps in detail below.

3.3 Pruning Configuration Space

The predefined configuration space shown in Listing 3 is incredibly
large, with quintillions of possible configuration sets. However, only
a fraction of them adhere to the constraints outlined in Section 1. For
example, setting the vocabulary size to its maximum value of 50,265
will result in a model size that exceeds the 3 MB constraint, even
with all other configurations minimized. Such configurations are
thus considered irrelevant to our objectives and should be omitted
from the configuration space to facilitate the subsequent process of
identifying Pareto-optimal configurations.

We prune the configuration space by formulating and solving
a constraint satisfaction problem using Microsoft Z3 [11], a state-
of-the-art SMT solver known for efficiently handling nonlinear
constrained optimization problems [6, 21]. While Z3 cannot di-
rectly solve our primary optimization problem, it performs well
at identifying and excluding configurations that violate specified
constraints. One crucial constraint is related to model size, as in-
troduced in Section 1, which specifies that the model size cannot
exceed 3 MB. This constraint is only explicit one suggested by prior
studies [65, 70] while acceptable standards for other objectives have
not been empirically specified. We formulate the constraint satis-
faction problem as follows, where C represents the configuration
space, and 𝑐 denotes a set of configurations:

size(𝑐) ≤ 3 MB s.t. 𝑐 ∈ C (2)

Solving this constraint satisfaction problem yields multiple sets of
configurations that satisfy the model size constraint, which can
then be merged to craft a new configuration space.

1 input C: pruned configuration space

2 input𝑀 : language model of code (teacher model)

3 input 𝐷 : training dataset

4 input𝑉 : validation dataset

5 input𝑇 : temperature parameter

6 input 𝑘 : number of sampled configurations

7 𝑐 = sample(C, 𝑘) , 𝑒 = { }

8 for 𝑖 in 𝑘 :

9 𝑁𝑖 = initialize(𝑐𝑖)
10 𝑁𝑖 = knowledge-distillation(𝑀,𝑁𝑖 , 𝐷,𝑇)
11 𝑒𝑖 = test(𝑁𝑖 ,𝑉)
12 return Bayesian-Ridge-Regression({𝑐, 𝑒 })

Listing 5: Algorithm for building an effectiveness indicator.

As pointed out in Section 2, a language model typically offers a
handful of tunable configurations that directly determine the model
size. Let 𝑣 denote the vocabulary size, 𝑙 denote the number of hidden
layers, ℎ denote the hidden size, 𝑖 denote the intermediate size, 𝑎
denote the number of attention heads, and 𝑠 denote the maximum
sequence length. Then the model size can be calculated as follows:

size(𝑐) = 4(𝑣 + 𝑠 + 3)ℎ
1024 × 1024

embedding layer

+ 4(4ℎ2 + (9 + 2𝑖)ℎ + 𝑖)𝑙
1024 × 1024

transformer layers

+ 2ℎ2 + 4ℎ + 2
1024 × 1024

classifier layer

(3)

The above formula follows the official implementation of Com-
pressor [65] to calculate the actual file size of a model in MB. It
breaks down a language model of code into three components: the
embedding, transformer, and classifier layers. By summing these
components, the formula calculates the total model size. Note that
this formula only considers the six configurations that directly
affect model size, while excluding other configurations like the
tokenizer from our constraint satisfaction problem-solving process.

We then use the above formula and the raw configuration space
as inputs to Z3, to find the configurations for which the formula
evaluates to a value less than 3 MB. Considering that solving with
Z3 can slow down significantly when dealing with an overly large
configuration space [21, 73], we run Z3 by partitioning the configu-
ration space into several smaller subspaces and processing them in
parallel. Taking the vocabulary size as an example, we can partition
the original range of 1,000 to 50,265 into 50 subranges, i.e., 1,000
to 2,000, 2,000 to 3,000, etc. These 50 subranges are then combined
with the tuning ranges of other configurations, forming 50 sub-
spaces. Each subspace’s constraint satisfaction problem is treated
as an independent task and solved in parallel using separate Z3
threads. Once all tasks are completed, we aggregate the results to
form a new, pruned configuration space, as shown in Listing 4. The
underlined entries, i.e., the vocabulary size, hidden size, and inter-
mediate size, have been pruned. This process significantly reduces
the configuration space from 4.5×1019 to 1.3×1019, which accounts
for only 28.9% of the original space. Notably, the pruned configura-
tion space still contains a broad and diverse range of configurations,
providing sufficient space to identify Pareto-optimal solutions.

146

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo

3.4 Effectiveness Indicator

When tuning configurations, assessing the effectiveness of a model
that has a given set of configurations is essential to determine
whether it qualifies as a Pareto-optimal solution. However, obtain-
ing model effectiveness through training and testing is computa-
tionally expensive. Inspired by recent work in leveraging machine
learning techniques to predict the runtime performance of soft-
ware [20, 27, 28], we propose to construct a regression model as a
proxy for the training and testing process. Specifically, the regres-
sion model builds a computationally efficient function that maps a
model’s configurations to its effectiveness, enabling us to estimate
a model’s effectiveness using only the provided configuration as
input. Consequently, this approach eliminates the need for resource-
intensive model training and testing. We consider this regression
model as an effectiveness indicator.

We follow the procedures outlined in Listing 5 to develop an
effectiveness indicator. First, we randomly sample a set of configura-
tions from the pruned configuration space (line 7). Next, we utilize
the knowledge distillation technique introduced in Section 2 to train
a model for each of these sampled configurations (line 10). We then
evaluate the effectiveness of these models on the validation dataset
(line 11), which has a similar distribution to the test dataset, but re-
mains distinct and is not used for training. Subsequently, we use the
sampled configurations and the corresponding effectiveness values
to train a regression model that serves as our effectiveness indicator
(line 12). For this purpose, we employ Bayesian Ridge Regression
(BRR) [72]. BRR is a statistical regression method that combines
Bayesian principles [51] with linear regression techniques [67].
It trains regression models by minimizing the squared difference
between predicted and actual target values. BRR is particularly valu-
able when dealing with limited data points, which is the case for
our effectiveness indicator since we have only a few sampled con-
figurations. Note that the regression model usually takes numbers
as inputs, while some of our configurations are strings. For these
configurations, we use their corresponding indices in the tuning
range as inputs to the regression model. For example, the tokenizer
has four options, so we use 0, 1, 2, and 3 to represent them.

3.5 Multi-Objective Configuration Tuning

With the pruned configuration space and effectiveness indicator, we
are now ready to introduce our innovative multi-objective configu-
ration tuning algorithm, which is specifically designed to identify
the set of Pareto-optimal configurations in terms of size, FLOPs,
and effectiveness for optimizing large language models of code.

As presented in Listing 6, our algorithm takes the pruned con-
figuration space, the effectiveness indicator, and the number of
generations as inputs. It starts by generating an initial population
of configuration sets by an adaptive random initialization method
(line 5). These configurations are then assessed in terms of the three
objectives (line 6): the size and FLOPs are calculated with the imple-
mentation of Compressor [65], while the effectiveness indicator
predicts the effectiveness. The algorithm maintains an archive to
store the Pareto-optimal configurations (line 7). This archive is ini-
tialized as an empty set and is updated throughout the algorithm’s
execution. Subsequently, it enters an iterative loop that runs for a
specified number of generations. At each iteration, the algorithm

1 input C: pruned configuration space

2 input 𝐼 : effectiveness indicator
3 input 𝑔: number of generations

4 input 𝑝 : population size

5 𝑃 = adaptive-random-initialization(C, 𝑝)
6 𝑊 = calculate-objectives(𝑃, 𝐼)
7 𝐴 = update-archive(𝑃,𝑊 , ∅)
8 for 𝑖 = 0 to 𝑔:
9 𝑄 = two-point-crossover(𝑃)
10 𝑄 = boundary-random-mutation(𝑄)
11 𝑄 = correction(𝑄)
12 𝑊 = calculate-objectives(𝑄, 𝐼)
13 𝐴 = update-archive(𝑄,𝑊 ,𝐴)
14 𝑃 = tournament-selection(𝑃 ∪𝑄)
15 return 𝐴

Listing 6: Algorithm of multi-objective configuration tuning.

applies three operators, i.e., two-point crossover, boundary random
mutation, and correction, to generate new offspring from the popu-
lation (lines 9 to 11). These offspring are then evaluated, and the
archive of Pareto-optimal configurations is updated accordingly
(lines 12 to 13). The next generation of population is selected from
the current population and the offspring by a tournament selection
method (line 14). After the loop terminates, the algorithm returns
the archive of Pareto-optimal configurations (line 15). The main
operators and steps are described in detail below.
Adaptive Random Initialization. We aim to assemble an initial
population of highly diverse configuration sets, which can facilitate
more efficient exploration of the configuration space. To achieve
this, we employ adaptive random initialization [1, 50], an extension
of naive random search that attempts to maximize the Euclidean
distance between the selected configurations in the population.
Concretely, this method first randomly selects a configuration set
𝑐 from the configuration space. It then randomly selects another
configuration set 𝑐 ′ and compares the Euclidean distance between 𝑐
and 𝑐 ′ with the distance between 𝑐 and the other configuration sets
already present in the population. If the distance between 𝑐 and 𝑐 ′
exceeds those between 𝑐 and other configuration sets, 𝑐 ′ is added to
the population. Otherwise, 𝑐 ′ is discarded. This process continues
until the population reaches the desired size. Importantly, when
calculating the Euclidean distance, as when training the effective-
ness indicator, we replace the configuration in the form of strings
with its corresponding numerical index within the tuning range.
Two-Point Crossover. This operator, commonly used in meta-
heuristic algorithms such as genetic algorithms to solve optimiza-
tion problems [44, 66], aims to combine two parent configurations
to generate new offspring configurations. It begins by randomly
selecting two parent configurations and two crossover points. Sub-
sequently, it swaps the values of the two parent configurations
between these two crossover points to create two offspring con-
figurations. For instance, if the two parent configurations are de-
noted as 𝑐1 and 𝑐2, and the selected crossover points are 𝑝1 and
𝑝2, the resulting offspring configurations are computed as follows:
𝑐1 [0 : 𝑝1]+𝑐2 [𝑝1 : 𝑝2]+𝑐1 [𝑝2 :] and 𝑐2 [0 : 𝑝1]+𝑐1 [𝑝1 : 𝑝2]+𝑐2 [𝑝2 :].
Here, 𝑐1 [0 : 𝑝1] represents the values of 𝑐1 before 𝑝1, and 𝑐1 [𝑝2 :]

147

Greening Large Language Models of Code ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

represents the values of 𝑐1 from 𝑝2 to the end. The generated off-
spring configurations are then added to the population.
Boundary Random Mutation. This operator introduces random
modifications to the values of a configuration set, resulting in a new
offspring configuration. Following recent work utilizing genetic al-
gorithms for optimization problems [65, 79], we employ the bound-
ary random mutation operator to generate offspring configurations.
The process begins by randomly selecting a configuration from the
population. Subsequently, for each configuration value within this
selected configuration, a mutation rate 𝑟 is randomly chosen from
the range of [0, 1]. If 𝑟 falls below a predefined threshold, the se-
lected configuration value is set to a random value within its tuning
range, while ensuring that the modified solution remains within
the feasible configuration space, i.e., the boundary. The resulting
offspring configuration is then incorporated into the population.
Correction. The above crossover and mutation operators may
produce invalid offspring configurations that are unusable for ini-
tializing models. For example, according to the implementation
of Hugging Face [15], a model’s hidden size must be divisible by
the number of attention heads; otherwise, the model will fail to
initialize due to dimension misalignment errors. To address such
cases and rectify them, our tuning algorithm employs correction
operators. When it encounters invalid offspring configurations, it
discards their values and proceeds to randomly select new values
until the offspring configuration becomes valid.
Tournament Selection. The selection operator plays a key role
in constructing the next generation from the existing population
and the newly generated offspring. Using the tournament selection
method [17], a well-established technique in metaheuristic algo-
rithms, a fixed number of configurations are randomly selected
from the combined pool of the current population and offspring.
Then, the Pareto-optimal ones are selected from these configura-
tions and added to the next generation, ensuring that the most
promising candidates are retained for the next iteration.

As mentioned above, the algorithm manages and continuously
updates an archive of Pareto-optimal configurations throughout
its execution. When evaluating a configuration set, the algorithm
compares it with the configurations already present in the archive.
If the evaluated configuration set is not dominated by any other
configuration set in the archive, it secures its place within the
archive. Additionally, if any configuration set in the archive is found
to be dominated by the new configuration set, it will be excluded
from the archive. This process ensures the archive contains only
non-dominated configurations, i.e., Pareto-optimal solutions. The
algorithm terminates when the specified number of generations
is reached, at which point it returns the archive of Pareto-optimal
configurations. We then select a configuration set from the archive
to train a compact and green model using knowledge distillation.

4 EMPIRICAL EVALUATION

Our evaluation aims to answer the following research questions:
• RQ1 (Effectiveness): How effective is Avatar in optimizing
language models of code?

• RQ2 (Comparison): How does Avatar compare to the state-of-
the-art method in optimizing language models of code?

Table 1: Overview of datasets used in our experiments.

Dataset

Labeled/Unlabeled

Val/Test

Language Source

Devign [86]

10,927/10,927

2,732/2,732

C

FFmpeg

Qemu

BigCloneBench [69]

45,051/45,051

4,000/4,000

Java

SourceForge

Google Code

4.1 Experimental Setup

Tasks and Datasets. Following the evaluation settings in the prior
work [65], we assess the performance of Avatar on two popular
software engineering tasks: vulnerability prediction and clone de-
tection. Table 1 provides an overview of the datasets used in our
experiments. These datasets encompass different programming lan-
guages and sizes, allowing for a thorough evaluation of Avatar.
More details on the tasks and datasets are provided below.

The vulnerability prediction task involves determining whether
a given code snippet is vulnerable or not. Integrating vulnerability
prediction models into an IDE can significantly assist developers in
identifying critical program defects early, thus enhancing software
quality and reducing maintenance costs. For our experiment, we
utilize the Devign dataset [86], which was released by Zhou et al. It
contains 27,318 functions from two popular open-source C libraries,
i.e., FFmpeg and Qemu. The dataset was constructed by manually
annotating whether these functions contain vulnerabilities or not.
We first follow the CodeXGLUE [49] benchmark for dataset splitting,
allocating 80% for training, 10% for validation, and 10% for testing.
To facilitate knowledge distillation, which requires unlabeled data,
we follow Compressor [65] to evenly divide the training set into
two mutually exclusive halves. One half is used for fine-tuning the
language models, while the other, with erased labels, serves to train
the model with configurations generated by Avatar.

The clone detection task aims to identify whether two given
functions are code clones, assisting in recognizing redundant im-
plementations of the same functionalities during software mainte-
nance. For evaluating Avatar’s effectiveness in clone detection, we
select the widely-used BigCloneBench dataset [69]. This dataset is
collected by mining the clones of specific functionalities in 25,000
Java projects sourced from SourceForge and Google Code plat-
form. It includes over 6,000,000 pairs of cloned Java methods, along
with 260,000 non-clone pairs. We follow recent studies [65, 79] to
randomly select 90,102 examples (i.e., 10% of the original training
dataset) for training and reserve 4,000 for validation and testing.
Then, we divide the training data into labeled and unlabeled por-
tions of equal size, which are for fine-tuning large models and
training optimized models, respectively.
Language Models of Code. To evaluate Avatar, we follow Shi et
al. [65] to use two popular encoding-only language models of code:
CodeBERT [18] and GraphCodeBERT [26]. These two models share
the same architecture and have been language on the CodeSearch-
Net dataset [38]. CodeBERT undergoes pre-training with two tasks:
masked language modeling, which predicts masked tokens in in-
put texts, and replaced token detection, which identifies whether
a token in a given input has been replaced. GraphCodeBERT also
uses masked language modeling, but also incorporates code graph

148

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo

Table 2: Results of Avatar and the original language models on the two tasks. “CB” and “GCB” denote CodeBERT and

GraphCodeBERT, respectively. “ACC” is the prediction accuracy. “LAT” is the inference latency. “E” is the energy consumption.

“CO2” is the CO2 emission, i.e., the carbon footprint.

Model

Vulnerability Prediction Clone Detection

ACC (%) LAT (ms) E (kWh) CO2 (kg) GFLOPs ACC (%) LAT (ms) E (kWh) CO2 (kg) GFLOPs

CB (481 MB) 61.82 1394 0.32 0.14 138.4 96.10 1963 0.65 0.28 138.4

CB-Avatar (3 MB) 60.87 (-0.95) 29 (48×) 0.006 (53×) 0.003 (47×) 0.64 (216×) 93.69 (-2.41) 19 (103×) 0.006 (108×) 0.003 (93×) 1.14 (121×)
GCB (481 MB) 61.57 1139 0.26 0.11 138.4 96.85 1539 0.52 0.22 138.4

GCB-Avatar (3 MB) 61.12 (-0.45) 15 (76×) 0.005 (52×) 0.002 (55×) 0.67 (207×) 94.00 (-2.85) 10 (154×) 0.002 (260×) 0.001 (220×) 0.80 (173×)
Average Loss/Gain -0.70 62× 53× 51× 212× -2.63 129× 184× 157× 147×

structure information by predicting masked nodes in data flow
graphs during pre-training. After pre-training, both CodeBERT and
GraphCodeBERT can be fine-tuned on downstream tasks, enabling
them to achieve state-of-the-art performance [49, 56, 82].

To fine-tune CodeBERT, we use the hyperparameter settings
from the CodeXGLUE benchmark [49]. In the case of GraphCode-
BERT, we follow the hyperparameter settings described in the
GraphCodeBERT paper [26]. All models deliver results comparable
to those reported in the previous study [82].
EvaluationMetrics.After obtaining themodel trainedwith config-
urations tuned by Avatar, we compare it with the language model
and the model generated by our baseline method, Compressor, us-
ing six metrics: effectiveness, model size, inference latency, energy
consumption, carbon footprint, and Giga floating-point operations
(GFLOPs). Effectiveness is evaluated by prediction accuracy on the
two downstream tasks, following prior studies [65, 79]. Model size
is quantified in megabytes (MB). For inference latency, which is
measured in milliseconds (ms), we standardize experimental con-
ditions by limiting all models to use only 8 CPU cores, simulating
running on a typical consumer-grade laptop. The testing datasets
are used to query the models, and the average inference latency is
calculated for each data example. Note that we use a batch size of
1 to replicate real-world scenarios where models are deployed on
laptops and only process a single input at a time.

To evaluate energy consumption and carbon footprint, we use
the Machine Learning Emissions Calculator2, developed by Lacoste
et al. [46]. The tool requires the total running time of a model as
input and outputs the energy consumption and carbon footprint,
measured in kilowatt-hours (kWh) and kilograms (kg), respectively.
We record the total running time of the models on the testing
datasets as input to the tool, and consistent with our inference
latency evaluation, we use a batch size of 1. Additionally, as men-
tioned in Section 3, GFLOPs are commonly used to quantify the
computational cost of a model, which is closely related to energy
consumption and carbon footprint. Thus, we also report GFLOPs to
illustrate how Avatar contributes to environmental sustainability
by reducing the computational cost of language models of code.
Implementation. We run all experiments on an Ubuntu 18.04
server equipped with an Intel Xeon E5-2698 CPU, 504 GB of RAM,
and 8 Tesla V100 GPUs. To prune the configuration space with Z3,
we partition it into 25,600 subspaces and execute Z3 in parallel
across 80 CPU cores. For training the effectiveness indicator, we
sample 20 sets of configurations from the pruned configuration

2https://mlco2.github.io/impact/#compute

space. In the multi-objective tuning algorithm, we configure the
population size to be 20, with 50 generations. The crossover and
mutation rates were set to 0.6 and 0.1, respectively.

4.2 Effectiveness of Avatar (RQ1)

After obtaining the Pareto-optimal configurations using Avatar,
we select the configuration with a model size closest to 3 MB for
training the optimized model. This results in a model that is ap-
proximately 160× smaller than the original language model of code
for each task. Table 2 shows the experimental results comparing
the optimized models with the original ones. On the two tasks,
the optimized models exhibit an average decrease in accuracy of
only 1.67% (≈ (0.70% + 2.63%)/2) compared to the original large
models. This accuracy result illustrates that Avatar significantly
optimizes model size with only a negligible loss in effectiveness
on downstream tasks. Furthermore, the inference latency of the
optimized models sees a substantial reduction on both tasks, with
an average reduction of 62× for vulnerability detection and 129×
for clone detection. Prior research [52] has suggested that software
practitioners are willing to accept a small sacrifice in effectiveness
in exchange for a significant improvement in usability. Therefore,
we consider the reduced accuracy of the optimized models to be
acceptable in practical applications.

Table 2 also presents results of optimizing language models in
terms of environmental sustainability. We employ the Machine
Learning Emissions Calculator [46] to calculate the energy con-
sumption and carbon footprint of the optimized models, comparing
them to the original ones. Note that these results are calculated
using a single NVIDIA Tesla V100 GPU and encompass the cost of
running the entire testing dataset rather than a single query. On
both tasks, the energy consumption of the optimized models sees
a significant reduction, averaging 53× and 184× less, respectively.
This reduction extends to a corresponding decrease in carbon foot-
print, ranging from 51× to 157× less. Additionally, we observe a
notable reduction in GFLOPs for the optimized models, with an
average reduction of 212× and 147× on the two tasks, respectively.
These results underscore the sustainability benefits that the opti-
mized models can offer in real-world deployments.

Answers to RQ1:Avatar effectively optimizes languagemod-
els of code in terms of model size (160× smaller), inference
latency (up to 76× faster), energy consumption (up to 184×
less), and carbon footprint (up to 157× less), with only a negli-
gible loss in effectiveness (1.67% on average).

149

Greening Large Language Models of Code ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Results of Avatar and Compressor on the two tasks. “CB” and “GCB” denote CodeBERT and GraphCodeBERT,

respectively. “ACC” is the prediction accuracy. “LAT” is the inference latency. “E” is the energy consumption. “CO2” is the CO2
emission, i.e., the carbon footprint.

Model

Vulnerability Prediction Clone Detection

ACC (%) LAT (ms) E (kWh) CO2 (kg) GFLOPs ACC (%) LAT (ms) E (kWh) CO2 (kg) GFLOPs

CB-Compressor (3 MB) 59.11 521 0.012 0.006 2.25 95.40 601 0.02 0.01 2.25

CB-Avatar (3 MB) 60.87 (+1.76) 29 (18×) 0.006 (2×) 0.003 (2×) 0.64 (4×) 93.69 (-1.71) 19 (32×) 0.006 (3×) 0.003 (3×) 1.14 (2×)
GCB-Compressor (3 MB) 59.99 702 0.016 0.007 2.25 92.15 747 0.025 0.011 2.25

GCB-Avatar (3 MB) 61.12 (+1.13) 15 (47×) 0.005 (3×) 0.002 (4×) 0.67 (3×) 94.00 (+1.85) 10 (75×) 0.002 (13×) 0.001 (11×) 0.80 (3×)
Average Loss/Gain +1.45 33× 3× 4× 4× +0.07 54× 8× 7× 3×

4.3 Avatar vs. Compressor (RQ2)

As the baseline for our experiments, we employ the approach, Com-
pressor, proposed by Shi et al. [65]. To ensure a fair comparison,
we directly utilize the models available in the official repository of
Compressor. The models produced using Compressor and Avatar
have a similar size at 3 MB. The evaluation results comparing these
approaches are presented in Table 3.

Compared to the models optimized by Compressor, the models
produced by Avatar exhibit a slightly higher accuracy, with an av-
erage improvement of 0.75% (≈ (1.45%+ 0.07%)/2) on the two tasks.
These results suggest that Avatar can optimize language models
of code more effectively without compromising effectiveness as
much as Compressor. More importantly, the models optimized by
Avatar demonstrate significant improvements in inference latency
on both tasks. Compressor produces models with an inference
latency in the hundreds of milliseconds range, while the optimized
models obtained by our approach have a maximum latency of 29
ms. On average, the inference latency of the models optimized by
Avatar is 44× (≈ (33+ 54)/2) faster than that of the ones produced
by Compressor, which highlights the effectiveness of Avatar in
enhancing the usability of language models compared to the state-
of-the-art approach.

Avatar also improves the energy consumption of the optimized
models by 3× and 8× compared to Compressor on vulnerability
prediction and clone detection, respectively. These reductions also
translate into a corresponding decrease in carbon footprint, with
reductions of 4× and 7× on the two tasks. Overall, except for model
size, the models optimized by Avatar outperform the ones opti-
mized by Compressor across all metrics.

Answers to RQ2:Avatar significantly outperformsCompres-
sor (i.e., the state-of-the-art approach) in terms of prediction
accuracy (0.75% on average), inference latency (44× faster
on average), energy consumption (up to 8× less), and carbon
footprint (up to 7× less).

5 DISCUSSIONS

5.1 Efficiency of Avatar

We investigate the time taken by Avatar to optimize language
models of code, breaking it down into four parts: pruning the con-
figuration space, building the effectiveness indicator, executing the
configuration tuning algorithm, and training optimized models.

In our experimental setup, the parallel execution of pruning the
configuration space takes just 5 minutes to complete. After that,

Table 4: Usefulness of Avatar in cloud deployment. The

results show how many queries that the models can process

per second when deployed on a cloud server.

Model Vulnerability Prediction Clone Detection

CodeBERT 58 64

CodeBERT-Avatar 171 (2.9×) 476 (7.4×)
GraphCodeBERT 79 48

GraphCodeBERT-Avatar 390 (4.9×) 570 (11.9×)
Average Improvements 3.9× 9.7×

Avatar uses a single 16 GB Tesla V100 GPU to train 20 models for
constructing the effectiveness indicator, consuming approximately
10 hours. Note that this overhead is only rarely incurred, e.g., the
first time optimizing a language model for deployment, which may
occur only on a monthly or yearly basis. Because of the carefully
pruned configuration space and the specialized optimization algo-
rithm, Avatar efficiently returned Pareto-optimal configurations
in about 2 minutes. Subsequently, the knowledge distillation phase
required more time, with Avatar taking an average of 14.9 and 18.3
minutes to train an optimized model for the vulnerability prediction
and clone detection tasks, respectively. These results underscore
the fact that Avatar can produce well-performing optimized mod-
els with much less time cost than fine-tuning or pre-training large
language models, which often takes a few hours or days [65].

5.2 Usefulness in Cloud Deployment

The primary goal of Avatar is to optimize language models of code
for deployment on developers’ personal devices like laptops. As
mentioned in Section 1, we hold this perspective due to privacy
concerns [36, 48, 57, 80] and the need for use under poor network
conditions. Deploying models on cloud servers may not be a viable
option because it requires sending code to third-party vendors,
which is prohibited by some companies that consider code bases to
be important intelligent properties. Also, cloud deployment may
result in more inference latency for developers in some regions with
poor bandwidth or Internet coverage. However, we acknowledge
that cloud deployment is a common practice today, offering more
computing resources and scalability to support a larger user base.
Therefore, it would be worthwhile to also discuss the benefits of
optimized models in the context of cloud deployments.

We run experiments assuming that the models process queries in
batch mode with a batch size of 100. These experiments are run on a
server equippedwith a Tesla V100GPU.We send the queries directly

150

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo

from the GPU’s host machine to eliminate any potential impact
from network fluctuations, and then measure howmany queries the
models can process per second. The experimental results, presented
in Table 4, show that compared to the original language models
of code, the optimized models can process on average 3.9× and
9.7× more queries per second on the two tasks, respectively. These
results highlight the advantages of using Avatar for deploying
large language models of code in cloud servers.

5.3 Threats to Validity

One potential threat to internal validity is the randomness inherent
in the configuration tuning algorithms used in our experiments.
To address this concern, we have run each experiment 10 times
and reported the average results, as recommended by Arcuri and
Briand [3]. Regarding external validity, a potential threat is that our
results may not be generalizable to other models and tasks beyond
the ones we have studied. To ensure the generalizability of our
work, we have carefully selected two representative encoder-only
language models of code and two popular downstream tasks with
different characteristics for our evaluation. This ensures that our
results are unbiased and our method potentially applies to a broad
context. While we have not yet applied our method to other types
of language models, such as decoder-only models, which have also
recently gained popularity, we plan to extend our study on those
models to further validate our work’s generalizability in the future.
One threat to construct validity is that the evaluation metrics may
not fully capture the performance of our Avatar and the baseline
in enhancing the usability and sustainability of language models of
code. To mitigate it, we use a total of five widely-used evaluation
metrics to compare the effectiveness of Avatar and the baseline
from a comprehensive set of perspectives.

6 RELATEDWORK

In recent years, both the natural language processing and software
engineering communities have dedicated their efforts to optimizing
language models. However, unlike our work, which seeks to simul-
taneously optimize multiple aspects of language models of code,
most existing studies focus on reducing model size only, thereby
indirectly mitigating other related issues such as inference latency.
These existing studies typically fall into three main categories:
model pruning, model quantization, and knowledge distillation.

Model pruning and quantization involve directly altering model
parameters to reduce model size. Model pruning replaces certain
parameters with zeros, or removes network components like hid-
den layers [16, 54]. Model quantization converts a model’s 32-bit
floating-point parameters into lower-bit fixed-point values [19, 43,
81]. These techniques have proven effective in reducing model size
to a level suitable for deployment in scenarios with less stringent
requirements. A recent study has also demonstrated their potential
to reduce the computational cost and carbon footprint of language
models of code [75], offering a promising avenue for future research.
However, these techniques fall short of meeting the 3 MB model
size recommendation put forth by Svyatkovskiy et al. [70] within
the context of software engineering. As a result, we have chosen
not to include them in our pipeline and comparison experiments.

We have introduced knowledge distillation in Section 2, an es-
sential step in Avatar and the baseline. While several knowledge
distillation methods have been proposed, most of them typically
result in models ranging from 100 to 200 MB [41, 60, 68, 77]. Some
studies [8, 71, 78, 84] have successfully optimized language models
into sizes ranging from 20 to 40 MB. Notably, only Compressor [65]
has achieved the remarkable feat of optimizing a large language
model of around 500 MB into a compact 3 MB model. Therefore,
we only compare Avatar with Compressor in our experiments.

The software engineering research community has also explored
alternative methods for optimizing language models of code. For
example, Grishina et al. [25] propose using only the initial layers of
language models during inference to reduce resource consumption.
Additionally, Zhang et al. [83] introduce a technique to simplify
the input programs for CodeBERT, significantly reducing compu-
tational cost without compromising model performance. Despite
these efforts, there are still gaps in optimizing language models
of code to simultaneously improve usability and environmental
sustainability. To the best of our knowledge, our study is the first
to address both aspects concurrently.

7 CONCLUSION AND FUTUREWORK

This paper proposes Avatar, a novel approach that can optimize
large language models of code in terms of model size, inference
latency, energy consumption, and carbon footprint without sacri-
ficing effectiveness (e.g., prediction accuracy on downstream tasks)
by much, thereby improving the usability and environmental sus-
tainability of language models of code. The key idea of Avatar
is to formulate the optimization of language models as a multi-
objective configuration tuning problem and solve it with the help
of SMT solvers and a tailored optimization algorithm. We evaluate
Avatar with two state-of-the-art language models, i.e., CodeBERT
and GraphCodeBERT, on two popular tasks, i.e., vulnerability pre-
diction and clone detection. We use Avatar to produce optimized
models with a small size (3 MB), which is 160× smaller than the
original large models. On the two tasks, the optimized models
can significantly reduce the energy consumption (up to 184× less),
carbon footprint (up to 157× less), and inference latency (up to
76× faster), with only a negligible loss in effectiveness (1.67% on
average). Compared with the state-of-the-art approach, Avatar
optimizes language models of code more effectively in all metrics.

In the future, we plan to further investigate the effectiveness
and efficiency of our proposed approach Avatar by experimenting
with more large language models of code beyond those considered
in this paper, such as the generative language models of code.

Replication Package: The code, datasets, and documentation
for this work, along with all obtained models, are available
via this link: https://github.com/soarsmu/Avatar.

ACKNOWLEDGMENTS

This research / project is supported by the National Research Foun-
dation, under its Investigatorship Grant (NRF-NRFI08-2022-0002).
Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore.

151

Greening Large Language Models of Code ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES

[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C Briand, and
Thomas Stifter. 2018. Testing autonomous cars for feature interaction failures
using many-objective search. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 143–154.

[2] Akvelon. 2023. Code Search: a Closer Look at Akvelon’s Source Code Search
Engine — akvelon.com. https://akvelon.com/code-search-a-closer-look-at-
akvelons-source-code-search-engine/. [Accessed 28-09-2023].

[3] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Proceedings of
the 33rd international conference on software engineering. 1–10.

[4] Gareth Ari Aye and Gail E Kaiser. 2020. Sequence model design for code comple-
tion in the modern IDE. arXiv preprint arXiv:2004.05249 (2020).

[5] Lei Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems-Volume 2. 2654–2662.

[6] Nikolaj Bjørner. 2013. SMT in verification, modeling, and testing at microsoft.
In Hardware and Software: Verification and Testing: 8th International Haifa Verifi-
cation Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected
Papers 8. Springer, 3–3.

[7] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[8] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding,
Hongbo Deng, Jun Huang, Wei Lin, and Jingren Zhou. 2020. AdaBERT: Task-
Adaptive BERT Compression with Differentiable Neural Architecture Search.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020. 2463–2469.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[10] Tao Chen and Miqing Li. 2023. The weights can be harmful: Pareto search versus
weighted search in multi-objective search-based software engineering. ACM
Transactions on Software Engineering and Methodology 32, 1 (2023), 1–40.

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[12] GitLab Auto DevOps. 2023. Top 10 ways machine learning may help De-
vOps — about.gitlab.com. https://about.gitlab.com/blog/2022/02/14/top-10-ways-
machine-learning-may-help-devops/. [Accessed 22-09-2023].

[13] Thomas Dohmke, Marco Iansiti, and Greg Richards. 2023. Sea Change in Software
Development: Economic and Productivity Analysis of the AI-Powered Developer
Lifecycle. arXiv preprint arXiv:2306.15033 (2023).

[14] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning. Neural
networks 107 (2018), 3–11.

[15] Hugging Face. 2023. Configurations of Encoder-only Models — hug-
gingface.co. https://huggingface.co/docs/transformers/model_doc/roberta#
transformers.RobertaConfig. [Accessed 25-09-2023].

[16] Angela Fan, Edouard Grave, and Armand Joulin. 2020. Reducing Transformer
Depth on Demand with Structured Dropout. In 2020 8th International Conference
on Learning Representations.

[17] Yongsheng Fang and Jun Li. 2010. A review of tournament selection in ge-
netic programming. In International symposium on intelligence computation and
applications. Springer, 181–192.

[18] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547.

[19] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan
Sajjad, Preslav Nakov, Deming Chen, and Marianne Winslett. 2021. Compressing
Large-Scale Transformer-Based Models: A Case Study on BERT. Transactions of
the Association for Computational Linguistics 9 (09 2021), 1061–1080.

[20] Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2023.
Runtime performance prediction for deep learning models with graph neural
network. In 2023 IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 368–380.

[21] Yanjie Gao, Yonghao Zhu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2021.
Resource-guided configuration space reduction for deep learning models. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
175–187.

[22] GitHub. 2023. GitHub Copilot Community. https://github.com/orgs/community/
discussions/categories/copilot?discussions_q=category%3ACopilot+network.
[Accessed 03-10-2023].

[23] GitHub. 2023. GitHub Copilot · Your AI pair programmer — github.com. https:
//github.com/features/copilot/. [Accessed 22-09-2023].

[24] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021),
1789–1819.

[25] Anastasiia Grishina, Max Hort, and Leon Moonen. 2023. The EarlyBIRD Catches
the Bug: On Exploiting Early Layers of Encoder Models for More Efficient Code
Classification. arXiv preprint arXiv:2305.04940 (2023).

[26] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCode{BERT}: Pre-training Code Representations with
Data Flow. In 2021 9th International Conference on Learning Representations.

[27] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
efficient performance learning for configurable systems. Empirical Software
Engineering 23 (2018), 1826–1867.

[28] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance prediction for
configurable software with deep sparse neural network. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 1095–1106.

[29] Mirazul Haque, Yaswanth Yadlapalli, Wei Yang, and Cong Liu. 2022. EREBA:
Black-Box Energy Testing of Adaptive Neural Networks. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 835–846.

[30] Kazuyuki Hara, Daisuke Saito, and Hayaru Shouno. 2015. Analysis of function of
rectified linear unit used in deep learning. In 2015 international joint conference
on neural networks (IJCNN). IEEE, 1–8.

[31] Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Alberto Bacchelli.
2019. When code completion fails: A case study on real-world completions. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
960–970.

[32] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[33] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. 2022. LineVD:
Statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories.
596–607.

[34] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge
in a Neural Network. In 2015 NIPS Deep Learning and Representation Learning
Workshop.

[35] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu
Luo, David Lo, John Grundy, and Haoyu Wang. 2023. Large Language Mod-
els for Software Engineering: A Systematic Literature Review. arXiv preprint
arXiv:2308.10620 (2023).

[36] Yizhan Huang, Yichen Li, Weibin Wu, Jianping Zhang, and Michael R Lyu. 2023.
Do Not Give Away My Secrets: Uncovering the Privacy Issue of Neural Code
Completion Tools. arXiv preprint arXiv:2309.07639 (2023).

[37] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. 2020. Improve Trans-
former Models with Better Relative Position Embeddings. Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020 (2020).

[38] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[39] Yasir Hussain, Zhiqiu Huang, Yu Zhou, Izhar Ahmed Khan, Nasrullah Khan,
and Muhammad Zahid Abbas. 2023. Optimized Tokenization Process for Open-
Vocabulary Code Completion: An Empirical Study. In Proceedings of the 27th
International Conference on Evaluation and Assessment in Software Engineering.
398–405.

[40] Apple Inc. 2023. MacBook Pro 14- and 16-inch - Tech Specs — apple.com. https:
//www.apple.com/sg/macbook-pro-14-and-16/specs/. [Accessed 03-10-2023].

[41] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language Un-
derstanding. In Findings of the Association for Computational Linguistics: EMNLP
2020. 4163–4174.

[42] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and
Andrea Janes. 2020. Big code!= big vocabulary: Open-vocabulary models for
source code. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 1073–1085.

[43] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
2021. I-BERT: Integer-only BERT Quantization. In Proceedings of the 38th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 139). PMLR, 5506–5518.

[44] Padmavathi Kora and Priyanka Yadlapalli. 2017. Crossover operators in genetic
algorithms: A review. International Journal of Computer Applications 162, 10
(2017).

[45] Taku Kudo. 2018. Subword Regularization: Improving Neural Network Transla-
tion Models with Multiple Subword Candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics.

152

ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo

[46] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.
2019. Quantifying the Carbon Emissions of Machine Learning. arXiv preprint
arXiv:1910.09700 (2019).

[47] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-
trained language model for code completion. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 473–485.

[48] David Lo. 2023. Trustworthy and Synergistic Artificial Intelligence for Software
Engineering: Vision and Roadmaps. arXiv preprint arXiv:2309.04142 (2023).

[49] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, MING GONG, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. In 35th Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

[50] Sean Luke. 2009. Essentials of metaheuristics.
[51] David JC MacKay. 1992. Bayesian interpolation. Neural Computation 4, 3 (1992),

415–447.
[52] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin

Sadowski, Lori Pollock, and James Clause. 2016. An Empirical Study of Practi-
tioners’ Perspectives on Green Software Engineering. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). 237–248.

[53] Ivan Mehta. 2023. Apple reportedly limits internal use of AI-powered tools
| TechCrunch. https://techcrunch.com/2023/05/19/apple-reportedly-limits-
internal-use-of-ai-powered-tools-like-chatgpt-and-github-copilot. [Accessed
03-10-2023].

[54] Paul Michel, Omer Levy, and Graham Neubig. 2019. Are Sixteen Heads Really
Better than One?. In Advances in Neural Information Processing Systems, Vol. 32.
Curran Associates, Inc.

[55] Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. 2022. Deep Learning Meets
Software Engineering: A Survey on Pre-Trained Models of Source Code. In Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 5546–
5555.

[56] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin Luo.
2023. An Empirical Comparison of Pre-Trained Models of Source Code. In 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023. IEEE, 2136–2148.

[57] Liang Niu, Shujaat Mirza, Zayd Maradni, and Christina Pöpper. 2023.
{CodexLeaks}: Privacy Leaks from Code Generation Language Models in
{GitHub} Copilot. In 32nd USENIX Security Symposium (USENIX Security 23).
2133–2150.

[58] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[59] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[60] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[61] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. Green ai.
Commun. ACM 63, 12 (2020), 54–63.

[62] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In 54th Annual Meeting of the As-
sociation for Computational Linguistics. Association for Computational Linguistics
(ACL), 1715–1725.

[63] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with
Relative Position Representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers). Association for Computational
Linguistics.

[64] Jieke Shi, Zhou Yang, Junda He, Bowen Xu, and David Lo. 2022. Can identifier
splitting improve open-vocabulary language model of code?. In 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 1134–1138.

[65] Jieke Shi, Zhou Yang, Bowen Xu, Hong Jin Kang, and David Lo. 2022. Compress-
ing pre-trained models of code into 3 mb. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–12.

[66] Seung Yeob Shin, Shiva Nejati, Mehrdad Sabetzadeh, Lionel C Briand, and Frank
Zimmer. 2018. Test case prioritization for acceptance testing of cyber physical
systems: a multi-objective search-based approach. In Proceedings of the 27th acm
sigsoft international symposium on software testing and analysis. 49–60.

[67] Jeffrey M Stanton. 2001. Galton, Pearson, and the peas: A brief history of linear
regression for statistics instructors. Journal of Statistics Education 9, 3 (2001).

[68] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient Knowledge Dis-
tillation for BERT Model Compression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Association for
Computational Linguistics, Hong Kong, China, 4323–4332.

[69] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Moham-
mad Mamun Mia. 2014. Towards a Big Data Curated Benchmark of Inter-project
Code Clones. In 2014 IEEE International Conference on Software Maintenance and
Evolution. 476–480.

[70] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vi-
cente Franco, and Miltiadis Allamanis. 2021. Fast and Memory-Efficient Neural
Code Completion. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). 329–340.

[71] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin.
2019. Distilling task-specific knowledge from bert into simple neural networks.
arXiv preprint arXiv:1903.12136 (2019).

[72] Michael E Tipping. 2001. Sparse Bayesian learning and the relevance vector
machine. Journal of machine learning research 1, Jun (2001), 211–244.

[73] Takahisa Toda and Takehide Soh. 2016. Implementing efficient all solutions SAT
solvers. Journal of Experimental Algorithmics (JEA) 21 (2016), 1–44.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc.

[75] Xiaokai Wei, Sujan Gonugondla, Shiqi Wang, Wasi Ahmad, Baishakhi Ray,
Haifeng Qian, Xiaopeng LI, Varun Kumar, Zijian Wang, Yuchen Tian, Qing Sun,
Ben Athiwaratkun, Mingyue Shang, Murali Krishna Ramanathan, Parminder
Bhatia, and Bing Xiang. 2023. Towards greener yet powerful code generation via
quantization: An empirical study. In ESEC/FSE 2023.

[76] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[77] Canwen Xu, Wangchunshu Zhou, Tao Ge, FuruWei, and Ming Zhou. 2020. BERT-
of-Theseus: Compressing BERT by Progressive Module Replacing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Online, 7859–7869.

[78] Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu.
2021. NAS-BERT: Task-Agnostic and Adaptive-Size BERT Compression with
Neural Architecture Search. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (Virtual Event, Singapore). Association
for Computing Machinery, New York, NY, USA, 1933–1943.

[79] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-
Trained Models of Code. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Com-
puting Machinery, New York, NY, USA, 1482–1493.

[80] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun
Han, and David Lo. 2023. What Do Code Models Memorize? An Empirical Study
on Large Language Models of Code. arXiv preprint arXiv:2308.09932 (2023).

[81] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
Gobo: Quantizing attention-based nlp models for low latency and energy ef-
ficient inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 811–824.

[82] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An Extensive Study on Pre-Trained Models for Program
Understanding and Generation. In Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA
2022). Association for Computing Machinery, New York, NY, USA, 39–51.

[83] Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code
is healthy: Simplifying programs for pre-trained models of code. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1073–1084.

[84] Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny Zhou. 2021. Extremely
Small BERT Models from Mixed-Vocabulary Training. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguis-
tics: Main Volume. Association for Computational Linguistics, Online, 2753–2759.

[85] Xin Zhou, DongGyun Han, and David Lo. 2021. Assessing generalizability of
codebert. In 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 425–436.

[86] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Advances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

153

	Greening large language models of code
	Citation
	Author

	Greening Large Language Models of Code

