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Abstract

Text watermarking has emerged as a pivotal
technique for identifying machine-generated
text. However, existing methods often rely on
arbitrary vocabulary partitioning during decod-
ing to embed watermarks, which compromises
the availability of suitable tokens and signifi-
cantly degrades the quality of responses. This
study assesses the impact of watermarking on
different capabilities of large language mod-
els (LLMs) from a cognitive science lens. Our
finding highlights a significant disparity; knowl-
edge recall and logical reasoning are more
adversely affected than language generation.
These results suggest a more profound effect
of watermarking on LLMs than previously un-
derstood. To address these challenges, we in-
troduce Watermarking with Mutual Exclusion
(WatME), a novel approach leveraging linguis-
tic prior knowledge of inherent lexical redun-
dancy in LLM vocabularies to seamlessly in-
tegrate watermarks. Specifically, WatME dy-
namically optimizes token usage during the
decoding process by applying a mutually ex-
clusive rule to the identified lexical redundan-
cies. This strategy effectively prevents the
unavailability of appropriate tokens and pre-
serves the expressive power of LLMs. We
provide both theoretical analysis and empirical
evidence showing that WatME effectively pre-
serves the diverse capabilities of LLMs while
ensuring watermark detectability. Our code
will be released to facilitate future research. via
https://github.com/ChanLiang/WatME.

1 Introduction

The advent of large language models (Ouyang et al.,
2022; OpenAI, 2023a) with human-level genera-
tive capabilities presents tremendous opportunities
across diverse domains (Deng et al., 2023; Li et al.,
2024; Wang et al., 2023). However, their ability to
synthesize high-quality text also raises widespread
concerns about potential misuse, including the dis-
semination of misinformation (Zellers et al., 2019;

Figure 1: An illustration of WatME’s advantage for loss-
less watermarking. The left panel depicts a vanilla LM
with all words available during generation. The middle
panel exposes the flaw in vanilla watermarking, which
may assign all suitable tokens (e.g., ’ocean’ and ’sea’)
to the red list, diminishing text quality. The right panel
underlines how WatME exploits lexical redundancy by
applying a mutual exclusion rule between such words,
ensuring at least one suitable word remains on the green
list, thereby improving text quality.

Chen et al., 2023a) and the facilitation of academic
dishonesty (Stokel-Walker, 2022). This neces-
sitates developing techniques to reliably attribute
generated text to AI systems.

Existing approaches typically fall into two main
paradigms. The first type attempts to distinguish
machine-generated text by hunting for inductive
statistical or linguistic patterns (Gehrmann et al.,
2019; Mitchell et al., 2023; Zellers et al., 2019;
OpenAI, 2023b), employing methods that span
from basic manual feature engineering to the in-
tricate training of complex classifiers. However,
as generative models continue improving, their
outputs increasingly resemble the pattern of hu-
man writing, rendering statistical detectors inef-
fective (Dou et al., 2022; Sadasivan et al., 2023;
Chakraborty et al., 2023). The second paradigm
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promotes a more proactive approach, advocating
for direct intervention in the generative process
to actively watermark model outputs (Kirchen-
bauer et al., 2023; Christ et al., 2023; Zhao et al.,
2023). This strategy embeds identifiable finger-
prints within machine-generated text, enabling
provenance verification. As LLMs’ capabilities
continue to grow, this approach is more effective
in detecting LLM-generated text (Sadasivan et al.,
2023). However, introducing watermarks during
text generation can significantly impact output qual-
ity, which has been a consistent challenge for model
developers - how to effectively watermark while
preserving text quality.

Recent studies have attempted to improve text
quality by ensuring unbiased output distributions
in watermarking (Kuditipudi et al., 2023; Hu et al.,
2024), while employing pseudorandomness-guided
perturbations or reweighting to adjust the original
output distributions of LLMs. However, an unbi-
ased distribution in expectation does not guarantee
high text quality, and the use of these techniques
reduces the effectiveness of watermark detection,
especially in models that have undergone alignment
training (Kuditipudi et al., 2023), thereby diminish-
ing the practical utility of these methods.

In this paper, we introduce a novel approach to
text watermarking by leveraging engineered lexi-
cal redundancy during the decoding phase of lan-
guage generation. Our method utilizes the com-
prehensive set of tokens available to a language
model, clustering them based on overlapping se-
mantic or syntactic functionalities to create sets
of interchangeable tokens. This process simulates
redundancy within the lexical space, akin to the
surplus pixels in images that facilitate watermark-
ing in multimodal data (Nikolaidis and Pitas, 1999;
Samuel and Penzhorn, 2004). The motivation for
this strategy arises from the challenge of applying
traditional watermarking techniques to textual data.
In contrast to the inherent redundancy found in
images, the discrete and succinct nature of textual
data offers little to no native redundancy, making
it challenging to exploit redundancy in the textual
space (Zhou et al., 2021; He et al., 2022). By en-
gineering lexical redundancy, our method not only
surmounts the limitations imposed by the inherent
properties of natural language but also paves the
way for secure and efficient text watermarking.

After exploring these redundancies, we exploit
them via our novel algorithm, WatME, which en-

hances text quality by integrating a mutual exclu-
sivity rule within the context of lexical redundancy
during the watermarking process. Specifically,
WatME refines the decoding process by explicitly
assigning words within each redundant cluster to
distinct ’green’ or ’red’ teams, ensuring that no sin-
gle cluster is wholly allocated to one team. Our
approach confers two main advantages: (1) it en-
ables the ’green’ team to capture a broader array
of semantics, thereby boosting the model’s expres-
sive power; and (2) it increases the probability that
the LLM selects the most appropriate word at each
decoding step, e.g., in Figure 1, vanilla watermark-
ing can assign all suitable words to the ’red’ list,
thus severely impairing performance. In contrast,
our approach guarantees the presence of at least
one appropriate word, thus preserving the model’s
expressiveness. Building on these methodologi-
cal advances, extensive theoretical and empirical
evidence supports their effectiveness without com-
promising detection capabilities. These improve-
ments significantly bolster the emergent abilities
of large models under watermarks, surpassing the
performance of baseline methods.

Our main contributions are as follows:

• Motivated by multimedia data’s inherent redun-
dancy and the precise conciseness of text, we
propose two distinct approaches for mining lexi-
cal redundancy.

• We develop the WatME algorithm, which em-
beds mutual exclusion rules within the lexical
space for text watermarking. Theoretical anal-
ysis is presented to validate its effectiveness in
preserving the quality of text responses.

• Experimental results show that WatME effec-
tively outperforms existing methods in retain-
ing the emergent capabilities of LLMs, notably
knowledge recall and logical reasoning, within
the conceptual framework of Cattell’s cognitive
theory, without compromising detectability.

2 Related Work

Early works on AI-generated text detection develop
post-hoc detection methods to analyze machine-
generated text by treating the problem as a binary
classification task (OpenAI, 2019; Jawahar et al.,
2020; Mitchell et al., 2023). For instance, Ope-
nAI has fine-tuned RoBERTa (Liu et al., 2019) to
distinguish between human and GPT-2 generated
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texts (OpenAI, 2019). However, existing detectors
are found to be fragile against adversarial attacks
(Wolff, 2020) and biased towards non-native En-
glish writers (Liang et al., 2023). Moreover, as
LLMs continue to advance, their generated outputs
more closely resemble human-written text, render-
ing these methods progressively less effective.

On the other side, watermarking, traditionally
a copyright marking method (Adi et al., 2018;
Rouhani et al., 2018), involves developers, users,
and regulatory entities. Developers choose an al-
gorithm to subtly embed hidden modifications into
data, which can be altered during user transmission.
Regulatory bodies can later extract this information
to trace and regulate AI-generated content (Atal-
lah et al., 2001; Wilson et al., 2014; Hacker et al.,
2023). In the context of natural languages, water-
marking typically involves modifying content or
structure. For example, rule-based methods (Stefan
et al., 2000) or carefully designed neural encoders
(Yang et al., 2022; Ueoka et al., 2021) encrypt mes-
sages into text, which are then extracted using the
corresponding rules and neural decoder. The dis-
crete nature of natural language, however, presents
a considerable challenge to this approach, as mod-
ifications can unintentionally degrade text quality
or alter its intended meaning.

For the detection of LLM-generated texts, a pi-
oneering watermarking technique (Kirchenbauer
et al., 2023) partitions tokens into ’green’ and ’red’
lists, biases output distribution towards ’green’ to-
kens, and creates patterns that are detectable yet im-
perceptible to humans. Nevertheless, while yield-
ing promising detection results, these methods may
still degrade the textual quality and be vulnerable to
the paraphrase attack. Current efforts (Christ et al.,
2023; Fernandez et al., 2023; Zhao et al., 2023) in
this field aim to develop more robust watermarking
methods capable of defending various user attacks.

Apart from improving robustness, a few studies
have recognized the importance of enhancing the
quality of text produced by watermarked LLMs.
(Kuditipudi et al., 2023) utilizes Gumbel softmax
to incorporate pseudorandomness-based random-
ness into the output distribution of language mod-
els. While this technique alters the probability
distribution, the Gumbel softmax ensures that the
expected distribution remains approximately un-
changed, thus rendering the watermarking process
unbiased. Recent work (Hu et al., 2024) also shares
a similar philosophy of employing reweighting

technology for unbiased output distribution trans-
formations, preserving the expected distribution
unbiased. However, unbiased distribution can not
guarantee unaffected text quality. Furthermore,
these methodologies have shown a marked de-
crease in detection performance, particularly for
aligned LLMs (Kuditipudi et al., 2023). Address-
ing these shortcomings, our research introduces a
novel paradigm that exploits the intrinsic redun-
dancy in the text generation process of LLMs to
create more lossless watermarks, with a special
emphasis on LLMs’ emergent capabilities, thereby
offering a watermarking solution that is both loss-
less and consistently detectable.

3 Method

In this section, we begin by providing a summary
of the preliminaries related to text watermarking.
Subsequently, we delve into an investigation of re-
dundancy in the lexical space and demonstrate how
this redundancy can be leveraged to develop a wa-
termarking algorithm that achieves a higher degree
of losslessness for large language models. Finally,
we employ mathematical analysis to elucidate the
benefits of our proposed method.

3.1 Preliminary

The watermarking process is composed of two fun-
damental procedures: watermark encoding and wa-
termark detection. The encoding procedure is car-
ried out by developers to insert a watermark into an
output natural language sequence y, generated by a
LLM M for a given prompt x. While the detection
procedure, performed by regulators, involves the
extraction and identification of the watermark from
the sequence y for the purpose of monitoring the
output from model M. The algorithms that detail
these procedures are described in the Appendix A.

The watermark encoding process is guided by
two parameters: γ and δ. At each decoding step t,
it uses a hash key, which could be the index of the
previous token, to partition the vocabulary V into
two subsets: a green list Gt which encourages us-
age, and a red list Rt which discourages usage. The
parameter γ determines the size of the green list,
while δ specifies the degree of encouragement for
the green list, the increase in current logits ℓt before
performing softmax, as Eq.1. As δ rises, the water-
mark becomes more detectable in the subsequent
detection process, but it may also compromise the
quality of the generation. In real-world regulatory
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scenarios, where high detectability is required, a
large δ value is generally preferred.

ℓ̂t[i] := ℓt[i] + δ, i ∈ Gt

p̂t = softmax(ℓ̂t)
(1)

The watermark detection process counts the
number of green list tokens within y, denoted by
|y|G, using Eq.2. This process begins with the
null hypothesis H0: The text sequence is gener-
ated without adherence to the green list rule. A
z-statistic is then computed by Eq.3. If the z-score
surpasses a pre-specified threshold, the null hypoth-
esis is rejected, and the watermark is identified.

|y|G =
∑n

t=1
1(yt ∈ Gt), (2)

zy = (|y|G − γ|V|) /
√
|V|γ(1− γ). (3)

3.2 Explore the Redundancy in Lexical Space
Concept of Lexical Redundancy Inspired by the
success of image watermarking, we hypothesize
that identifying redundancy within data can enable
watermarking that doesn’t compromise text qual-
ity. We thus explore the same opportunities within
textual data, a challenging task given the discrete
nature of natural language.

To address this challenge, we introduce a related
concept in NLP: lexical redundancy. This phe-
nomenon arises during text generation when the
most appropriate word is selected from a large, pre-
constructed vocabulary. Often, this vast vocabulary
includes numerous words with similar semantic
and syntactic functions — a feature that makes
these words interchangeable, thereby resulting in
the inherent redundancy in the lexical space.

Our interest in exploring lexical redundancy is
grounded in the understanding that interchangeable
synonyms, even when used in varied contexts, can
deliver similar or identical semantic or syntactic
functions. This insight assists in preserving the
quality of text generation through an optimized
watermark encoding method. For instance, if a suit-
able word is allocated to the red list, while its syn-
onym is placed in the green list, then the language
model can still express the intended semantics or
accomplish the necessary syntactic functions. This
understanding forms the primary motivation for
investigating lexical redundancy.

Constructing Redundant Lexical Clusters To
this end, we now focus on the construction of lex-
ical redundancy. This process involves automati-
cally grouping tokens—each with similar semantic

or syntactic functions—from the language model’s
vocabulary into clusters. Each cluster, made up of
interchangeable tokens, is designed to express a
specific semantic or syntactic unit.

To obtain high-quality redundant lexical clusters,
we propose the following two different methods:
the dictionary-based method, and the prompting-
based method:

• Dictionary-Based Method: Utilize external dic-
tionaries, such as WordNet (Miller, 1992) and
Youdao Dictionary, to discover synonyms within
the vocabulary. These synonyms often can be
substituted for each other, although there are in-
evitably some cases where they cannot be in-
terchanged due to polysemy. This method is
beneficial for exploiting established synonym re-
lationships but is limited to complete words due
to its dependency on external resources.

• Prompting-based Method: We prompt large
language models, such as LLaMA2 (Touvron
et al., 2023), to infer synonyms for a given to-
ken by utilizing in-context learning techniques
(Brown et al., 2020a), with the demonstrations be-
ing annotated manually by us. Detailed prompts
are deferred to Appendix B.

To acquire higher-quality clusters with fully in-
terchangeable tokens, we employed two strategies
during the mining process:

Handling Subword Tokenization Subword to-
kenization blends word and character-based ap-
proaches (Sennrich et al., 2016; Schuster and Naka-
jima, 2012; Kudo and Richardson, 2018), chal-
lenges the mining of redundant lexical clusters in
neural text processing. This technique typically re-
tains common words as full units and decomposes
rare words into subunits. Our research mitigates
these challenges by concentrating on intact, fre-
quently used words during preprocessing, thereby
diminishing noise and simplifying the algorithm.

Incorporating Grammatical Factors In the con-
text of English, the identification of interchange-
able words demands consideration of grammatical
factors—tense, voice, and number—alongside se-
mantic similarity. For instance, ’car’ and ’vehicles’
differ in number, affecting interchangeability. Our
method addresses these issues by implementing
a rule set that screens for grammatical inconsis-
tencies, ensuring the generation of coherent and
high-quality lexical clusters for subsequent use.
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These strategies yield lexical clusters, with each
row in Figure 1’s bottom right panel representing a
cluster of interchangeable tokens. Cluster quality
is manually evaluated in Section 6.1.

3.3 WatME: Exploit the Lexical Redundancy
Having constructed redundant clusters within the
lexical space, we now turn to exploit these for a
lossless watermark algorithm.

To facilitate the description of our algorithm,
we provide some definitions: A subset S ⊆ V
is defined within the vocabulary V of a language
model M. This subset specifically comprises com-
plete tokens that share synonyms within the vocab-
ulary. We then denote a collection of redundant
lexical clusters we mined as C = {Ci | i = 1..n}
such that

⋃n
i=1Ci = S. Each cluster, Ci, is rep-

resented as a token collection Ci = {sij | j =
1..mi, sij ∈ S} for i = 1..n, and any pair of to-
kens sij , sik ∈ Ci are interchangeable. We propose
to implement our understanding of lossless wa-
termarks by introducing a mutual exclusion rule
building on the identified lexical clusters: inter-
changeable tokens are mutually exclusive during
partitioning. In other words, if a fraction of to-
kens A, representing a certain semantic or syntac-
tic function, is assigned to the red list, then their
remaining synonyms B should be placed on the
green list, and vice versa.

We then detail the WatME encoding process,
outlined in Alg. 1, which employs a two-step par-
titioning process to form a green and red list. The
first partition occurs within the redundant lexical
clusters C that we have identified within S, while
the second takes place among the remaining part
in the vocabulary denoted as V \ S. We use γ to
determine the number of tokens from the mined
clusters that are allocated to the green list G′

t in
the first partition. The remaining tokens, based on
the principle of mutual exclusivity, are assigned to
the red team R′

t. The second partition continues
to allocate words to the green list Gt from the re-
maining vocabulary until the combined size of the
green teams from both steps reaches the predefined
limit, γ. The rest of the process follows the steps
outlined in the vanilla watermarking of Alg. 2.

The WatME detection algorithm is unchanged,
except the green list calculation now uses Alg. 2.

3.4 Theoretical Analysis
We provide a mathematical analysis demonstrating
how WatME outperforms the conventional method,

Algorithm 1 WatME Encoding
Input: prompt x1 · · ·xm, green list size γ ∈ (0, 1), water-
mark strength δ > 0.
for t = 0, 1, · · · , T − 1 do

1. Get the logit ℓt ∈ R|V| from M.

2. Use seed from the last token, split each cluster Ci

in parallel into green list G′
it (of size |Ci|γ) and

red list R′
it (of size (1−γ)|Ci|) . Let G′

t = ∪iG
′
it

and R′
t = ∪iR

′
it.

3. Partition the remaining part V \ S into a green list
Gt of size γ|V | − |G′

t| and a red list Rt of size
(1− γ)|V | − |R′

t|.
4. Merge lists from the previous two steps: Gt =

Gt ∪G′
t and Rt = Rt ∪R′

t.

5. Add δ to the elements of logit ℓt corresponding to
the green list, then softmax.

p̂t = softmax(ℓt[i] + δ), i ∈ Gt

6. Sample the next token yt+1 from p̂t.
end for
Output: watermarked text y1 · · · yT .

focusing on the ’green’ team’s expressiveness and
the probability of high-quality sampling.

Definition 3.1 (Semantic Entropy) Let V repre-
sent the vocabulary of a language model. We define
the semantic entropy of V , denoted by Hsem(V),
as the entropy of the semantic distribution across
V . This entropy quantifies the diversity and rich-
ness of meanings expressible by V . Consequently,
a higher value of Hsem(V) signifies a vocabulary
with greater semantic richness.

Definition 3.2 (Intrinsic Expressiveness) It is
assumed that a language model M, with a vocab-
ulary V characterized by high semantic entropy
as indicated by Hsem(V), possesses an enhanced
intrinsic expressive capacity. This capacity is
unaffected by the output distribution of M and
is due to the extensive semantic capabilities of V ,
which endow M with the potential for stronger
expressive abilities.

Assumption 3.3 We consider practical scenarios
that require high detectability, and thus a large
value of δ. In such a strong watermarking scenario,
tokens from the green list are more probable to be
used than those from the red list.

Note: Assumption 3.3 establishes the founda-
tional premise of text watermarking’s effectiveness.

Building upon the Definitions and Assumption,
we derive the following theorem.

Theorem 3.4 Consider that pt ∈ R|V| represents
the predicted distribution of the model M at de-
coding time t. Let wi denote the token with the ith
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highest probability in pt. The higher the rank of
a token (i.e., the smaller i is), the more suitable it
is to be selected. Under the conditions of Assump-
tion 3.3, the WatME watermarking method is more
likely to select a suitable token compared to the
vanilla watermarking method.

Theorem 3.5 Given a fixed proportion γ of the
green team, the expressive power of a language
model M employing the WatME exceeds that of
one utilizing a vanilla watermarking approach.

These theorems highlight two advantages of
WatME; their proofs are in the Appendix C.

4 Impact on Emergent Abilities

The majority of research on text watermarking uti-
lizes the C4 dataset (Dodge et al., 2021) as a basis
for testing perplexity (PPL). However, watermark-
ing not only impacts the fluency of text generation
but also holds the potential to influence LLMs on
a broader scale, such as emergent abilities. These
unique abilities intrinsic to LLMs garner significant
interest from users and stimulate curiosity within
the research community. However, they are often
overlooked in the field of text watermarking.

Although a consensus definition is lacking, emer-
gent abilities are typically characterized in many
studies (Brown et al., 2020b; Wei et al., 2022; Yu
et al., 2023) as a model’s capacity to perform spe-
cific tasks without training. In light of this, we
propose to test and compare the performance of
WatME and Vanilla watermark algorithms on dif-
ferent tasks using prompting technologies.

To comprehensively test the impact of water-
marking on these abilities, we attempt to catego-
rize it into different scenarios for a more exhaus-
tive examination. Specifically, we draw upon Cat-
tell’s cognitive theory (Cattell, 1963), which bifur-
cates intelligence into crystallized and fluid intel-
ligence. Crystallized intelligence corresponds to
the model’s utilization of learned knowledge and
experience, while fluid intelligence involves logical
thinking and solving problems. Correspondingly,
we propose to examine crystallized intelligence
through an assessment of the model’s knowledge
capabilities, and fluid intelligence through its abil-
ity to reason and solve mathematical problems.

Knowledge Capability. To evaluate the model’s
mastery of world knowledge, we employ Truth-
fulQA (Lin et al., 2022), a benchmark designed to

test if LLMs can generate truthful and informative
answers. We select the generation setting.

Reasoning Capability. We employ the GSM8K
dataset to assess the model’s chain-of-thought rea-
soning. Comprising 8K arithmetic and math prob-
lems, it provides a platform for evaluating rea-
soning performance. Aligned with the CoT Hub
prompt (Fu et al., 2023), our evaluations include
few-shot scenarios that prompt the model to demon-
strate reasoning and generate thought chains.

5 Experiments

5.1 Experimental Setups

Evaluation Metrics To evaluate detection perfor-
mance, following previous work, we use the Area
Under the Receiver Operating Characteristic curve
(AUROC), a well-established metric for binary clas-
sifiers. For mathematical reasoning tasks, we use
Accuracy to assess the correctness of the model’s
solutions. In our evaluation of the TruthfulQA
dataset, following Lin et al. (2022), we use the
trained GPT-Truth and GPT-Info scorers, assessing
the model’s capacity to generate both truthful and
informative responses. Given the potential trade-
off between these two perspectives, the product of
Truth and Information (Truth.*Info.) is commonly
used as an overall measure of performance. On the
C4 dataset, we report Perplexity (PPL).

Baselines We compared our model with four es-
tablished baselines. First, KGW-Mark (Vanilla
watermarking) (Kirchenbauer et al., 2023), which
categorizes teams into ’red’ and ’green’ to facili-
tate detection. Second, Gumbel-Mark (Kuditipudi
et al., 2023), which employs a Gumbel-Softmax
distribution to introduce stochasticity into the wa-
termarking process. Third, Unbiased-Mark (Hu
et al., 2024), which implements reweighting tech-
niques to maintain the expected output distribution
of the LLM during watermarking. Lastly, Provable-
Mark (Zhao et al., 2023), which uses a fixed hash
key during watermarking to achieve provably better
performance.

Models We utilized two distinct types of LLMs
for experimentation: the non-aligned Llama2
model (Touvron et al., 2023), and the aligned Vi-
cuna v1.5 model (Chiang et al., 2023). The ma-
jority of the results reported in this paper were
obtained using the 7B version of the models.

Further setup details are in Appendix E.
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Model GSM8K TruthfulQA C4

Acc. AUROC True. Info. True.*Info. AUROC PPL AUROC

LLAMA2-7B 11.22 - 95.10 92.78 88.23 - 4.77 -

+ KGW-MARK 5.61−50.0% 0.8886 57.16−39.9% 84.33−9.1% 48.20−45.4% 0.8416 7.00 0.9724
+ GUMBEL-MARK 7.28−35.1% 0.9121 45.90−51.7% 92.78−0.0% 42.59−51.7% 0.4931 39.93 0.9422
+ UNBIASED-MARK 10.24−8.7% 0.5478 44.06−53.7% 93.76+1.1% 41.43−53.0% 0.5051 15.62 0.5451
+ PROVABLE-MARK 5.16−54.01% 0.9052 64.14−32.6% 91.68−1.2% 58.80−33.4% 0.9555 10.21 0.9623

+ WATMEdictionary 9.17−18.3% 0.8995 69.28−27.2% 88.25−4.9% 61.14−30.7% 0.8848 5.32 0.9804
+ WATMEprompting 5.84−48.0% 0.9128 55.83−41.3% 95.10+2.5% 50.39−42.9% 0.8659 6.89 0.9724

VICUNA-V1.5-7B 17.51 - 93.88 87.27 81.92 - 10.77 -

+ KGW-MARK 13.87−20.8% 0.7870 74.05−21.1% 87.52+0.3% 64.81−20.1% 0.7417 11.62 0.9679
+ GUMBEL-MARK 9.02−48.5% 0.7077 68.30−27.2% 87.27−0.0% 59.61−27.2% 0.4647 48.93 0.8617
+ UNBIASED-MARK 17.89+2.2% 0.5508 70.38−25.0% 88.86+1.8% 62.54−23.7% 0.4855 19.93 0.5000
+ PROVABLE-MARK 12.21−30.27% 0.8020 74.42−20.7% 96.70+10.8% 71.96−12.2% 0.8796 10.21 0.9582

+ WATMEdictionary 14.78−15.6% 0.8044 78.95−15.9% 97.43+11.6% 76.92−6.1% 0.7897 10.96 0.9582
+ WATMEprompting 16.22−7.4% 0.7843 69.65−25.8% 97.45−11.5% 67.87−17.2% 0.7396 11.54 0.9519

Table 1: Performance comparison of Llama2-7B and Vicuna-v1.5-7B under different watermarking algorithms.

5.2 Main Results

Greater Impact on Emergent Abilities than Flu-
ency The experimental evidence suggests that
watermarking notably hinders the emergent abili-
ties of LLMs much more than fluency (see Table 1).
Specifically, the non-aligned Llama2 model experi-
enced a decline in performance exceeding 50% on
both the GSM8K and TruthfulQA benchmarks. In
contrast, the aligned model, Vicuna, demonstrated
relative resilience but still incurred performance
reductions greater than 20% on these benchmarks.
This demonstrates the adverse impact of Vanilla
Watermarking on the knowledge and reasoning
capabilities of LLMs, with reasoning showing a
marginally greater susceptibility.

Superiority of WatME over baselines in Preserv-
ing Emergent Abilities Across all models and
benchmarks, the WatME consistently outperformed
baseline watermarking methods. For the Llama2
model, WatME mitigated performance degradation
by 16.8% on GSM8K and by 14.7% on TruthfulQA
compared to the strongest baseline. Similarly, for
the Vicuna model, the reductions were 13.4% and
14.0%, respectively. These outcomes underscore
WatME’s significant effectiveness in preserving the
emergent capabilities of LLMs without compromis-
ing performance as significantly as other methods.

Comparable Detection Performance of WatME
Despite the trade-off between text quality and
detection performance, WatME’s detection effi-
cacy matched that of the Vanilla Watermark while
also enhancing model capabilities, as evidenced

by similar AUROC scores—suggesting our algo-
rithm attained a better equilibrium than the baseline.
In contrast, the Gumbel-Mark method noticeably
compromised detection performance, particularly
in aligned models and when generating short re-
sponses (TruthfulQA). Additionally, more perfor-
mance results under different watermark strengths
are presented in Discussion 6.3.
Distinct Advantages of WatME Variations It
is evident that different WatME variations exhibit
unique strengths; The ’dictionary’ variant outper-
formed in the Accuracy and Truthfulness scores,
while the ’prompting’ variant excelled in the Infor-
mativeness. The integration of these variants may
offer a fruitful avenue for future research. For a
comprehensive understanding, a manual analysis
of lexical clusters derived from these methods is
presented in the Discussion 6.1.
Alignment Diminishes Watermark Effectiveness
Surprisingly, aligned models showed significantly
greater resistance to watermarking effects than non-
aligned models. Specifically, Vicuna 1.5’s perfor-
mance dipped 30% less than Llama2’s across all
benchmarks, coupled with a 10% lower watermark
detection performance. To understand the underly-
ing reasons for these differences, we analyzed the
output distribution discrepancies between aligned
and unaligned models in the Discussion 6.4.

6 Discussion

6.1 Analysis of Clustering Methods
To analyse redundant clusters from diverse meth-
ods, we set evaluation criteria to ensure analytical
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Figure 2: (a) Human evaluation for the quality of clus-
ters mined by varied methods and (b) testing detection
robustness against substitution attacks.

rigour. These criteria spanned semantic consis-
tency, contextual appropriateness, and grammati-
cal consistency, which are essential aspects of clus-
ter quality. Two annotators used a rating scale of
0, 1, 2 to annotate the clusters. A score of ’2’
indicated high or ideal consistency, ’1’ denoted
moderate or usable consistency, and ’0’ identified
low or unusable consistency within a cluster. The
kappa value for the annotations is 0.657. Figure
2(a) shows both methods met usability, but fell
short of ideal effectiveness. The dictionary ap-
proach was superior in semantic coherence due
to its utilization of lexical databases. Conversely,
the prompting method outperformed in contextual
and grammatical consistency, reflecting the varied
linguistic corpus training of LLMs. This suggests
the potential benefits of a combined approach, a
topic reserved for future research.

6.2 Robustness Against Attacks
In addition to affecting the performance of LLMs,
watermarks are also vulnerable to attacks aimed
at their removal. To evaluate the robustness of
our method, we conducted tests against two preva-
lent types of attacks: substitution attacks and para-
phrase attacks. For the substitution attack, we
evaluated 200 examples from GSM8k, with var-
ious token replacement ratios. As shown in Figure
2(b), WatME consistently outperformed the base-
line method in the robustness of detection across
different levels of token replacement. For para-
phrase attacks, we use a powerful paraphraser,
llama-2-chat-13B, to extensively rewrite the wa-
termarked text generated by llama-2-7b. We pro-
vided it with the prompt: "Please paraphrase the
following text, altering the wording significantly
yet preserving the original meaning and length."
We then subjected our system to these rewritten
samples using 200 entries from both GSM8k and
TruthfulQA. The results are presented in Tables 2.

Method Dataset Original Para. Attack

KGW-Mark GSM8k 0.885 0.745
WatME 0.955 0.910

KGW-Mark TruthfulQA 0.924 0.528
WatME 0.949 0.673

Table 2: Detection robustness against paraphrasing at-
tacks.

We offer two perspectives to understand the ro-
bustness of WatME: (1) Intuitively, for substitution
attacks, the effect on watermarking depends on
whether it triggers a token swap between the ’red’
and ’green’ teams: a swap affects the detection,
while no swap means the watermark remains in-
tact. With KGW-Mark, semantically similar tokens
may be allocated to one team, resulting in a sub-
stitution invariably causing a swap. In contrast,
WatME is intentionally designed to prevent this
scenario. Therefore, the likelihood of a red-green
swap—and consequently the impact on the water-
mark—is reduced in WatME compared to KGW.
(2) From an encryption viewpoint, whereas KGW-
Mark relies on a single division between teams,
WatME employs multiple divisions—the number
of clusters plus one (|C|+1), as outlined in Algo-
rithm 2. Though these multiple partitions are com-
putationally equivalent to a single partition due to
efficient parallel matrix operations (explained in
Appendix D), they introduce a higher level of com-
plexity and robustness to the encryption process.

6.3 Performance Trade-offs at different Delta

The efficacy of the Watermark is influenced by
the hyperparameter, Delta, which controls the wa-
termark strength. An increase in Delta facilitates
easier watermark detection but at the cost of sev-
erer impact on the LLMs. We analyse the Truth-
fulQA and GSM8K datasets. Figure 3 shows
WatME consistently achieved a more favourable
balance between watermark robustness and LLM
performance across various Delta settings, surpass-
ing Vanilla Watermark. Notably, the performance
curves of WatME are strictly better than that of
Vanilla, indicating that at equivalent watermark
strengths, WatME always maintains superior per-
formance compared to Vanilla Watermark.

6.4 Aligned vs Unaligned Models

Our examination of the response sensitivity to wa-
termarking in aligned and unaligned models in-
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Figure 3: Performance trade-offs comparison between
WatME and Vanilla Watermark on TruthfulQA and
GSM8K at different Delta (∆) values.

Figure 4: Token-level entropy distributions for aligned
(green) and unaligned (blue) models on GSM8K and
TruthfulQA benchmarks.

volved analyzing their output distributions on the
TruthfulQA and GSM8K datasets. We computed
the average entropy for tokens in the generated
answers and found that aligned models exhibit
markedly lower entropy, suggesting more deter-
ministic response patterns, as illustrated in Figure
4. This pronounced certainty in aligned models’
outputs presents a challenge for watermarking be-
cause of the limited variability that is essential for
effective watermark encoding.

7 Conclusion

This study explores the impact of watermarking
on the emergent abilities of LLMs—an aspect of-
ten neglected in the field. Our findings highlight
the considerable adverse effects of traditional wa-
termarking methods on LLMs’ emergent abilities,
including knowledge recall and logical reasoning.

In response, we introduced WatME—a novel
watermarking approach that leverages lexical re-
dundancy. Theoretical analysis and comprehen-
sive empirical results indicate WatME consistently
preserves the expressive power of LLMs without
compromising detection performance, enabling de-
velopers to encode watermarks with less disruption
to user experience.

The advancements with WatME mark a stride

in lossless watermarking, enabling developers to
encode watermarks with less disruption to user ex-
perience. We hope to promote a better equilibrium
between regulatory compliance and user satisfac-
tion in LLM development.

Limitations

In this section, we discuss the limitations of this
work from two perspectives.

Firstly, although WatME represents a step to-
ward lossless watermarking, it is not entirely loss-
free. The introduction of a controlled bias, inherent
to watermarking methods, subtly alters the gen-
erated data. This compromise is a critical conse-
quence as it diverges from the ideal of a completely
lossless system. This deviation poses a dilemma for
developers weighing the benefits of watermarking
against potential user experience and regulatory
trade-offs. Future work aims to bridge this gap,
enhancing the WatME method to maintain output
integrity and broaden its appeal for practical imple-
mentation.

Secondly, while our method is designed to be
language-agnostic, the empirical validation pre-
sented in this work is limited to models process-
ing the English language. We acknowledge that
the applicability of watermarking across various
linguistic contexts is critically important. Future
investigations will endeavour to broaden the scope
to include more languages, ensuring the general-
izability and effectiveness of our approach in a
multilingual context.

Thirdly, the challenge of watermarking in low-
entropy scenarios remains an open problem. Our
dataset encompasses a range of scenarios, includ-
ing low-entropy situations where outcomes are
more predictable and our methodology remains
effective. However, embedding watermarks in text
with universally recognized, low-entropy answers
poses significant challenges, highlighting the need
for further investigation into constructing and test-
ing methodologies for low-entropy corpora.

Lastly, our LLMs-based cluster generation ap-
proach is influenced by the robustness of the
prompting methods. Different prompt construc-
tions can lead to varying outcomes (Zhao et al.,
2021; Chen et al., 2023b, 2024), represents a lim-
itation that warrants further discussion and explo-
ration in future work.

Despite these limitations, we believe our work
serves as a significant catalyst for the field, con-
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tributing positively to the advancement of more
lossless and detectable text watermarking tech-
niques.

References

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. 2018. Turning your weak-
ness into a strength: Watermarking deep neural net-
works by backdooring.

Mikhail J Atallah, Victor Raskin, Michael Crogan,
Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001. Natural lan-
guage watermarking: Design, analysis, and a proof-
of-concept implementation. In Information Hiding:
4th International Workshop, IH 2001 Pittsburgh, PA,
USA, April 25–27, 2001 Proceedings 4, pages 185–
200. Springer.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020a. Language models are few-shot learners.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020b. Language models are few-shot learn-
ers. CoRR, abs/2005.14165.

Raymond B. Cattell. 1963. Theory of fluid and
crystallized intelligence: A critical experiment.
Journal of Educational Psychology, 54(1):1–22.
ShortDOI: 10/fs6ptd KerkoCite.ItemAlsoKnownAs:
10.1037/h0046743 10/fs6ptd 1963-07991-001
2339240:TGQK3VJY 2405685:C8ZBFK3U.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu,
Bang An, Dinesh Manocha, and Furong Huang. 2023.
On the possibilities of ai-generated text detection.

Liang Chen, Yatao Bian, Li Shen, and Kam-Fai Wong.
2024. Simple permutations can fool LLaMA: Permu-
tation attack and defense for large language models.
In ICLR 2024 Workshop on Secure and Trustworthy
Large Language Models.

Liang Chen, Yang Deng, Yatao Bian, Zeyu Qin, Bingzhe
Wu, Tat-Seng Chua, and Kam-Fai Wong. 2023a. Be-
yond factuality: A comprehensive evaluation of large
language models as knowledge generators. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6325–
6341, Singapore. Association for Computational Lin-
guistics.

Liang Chen, Hongru Wang, Yang Deng, Wai Chung
Kwan, Zezhong Wang, and Kam-Fai Wong. 2023b.
Towards robust personalized dialogue generation via
order-insensitive representation regularization. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 7337–7345, Toronto,
Canada. Association for Computational Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. arXiv
preprint arXiv:2306.09194.

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang,
Wenqiang Lei, and Tat-Seng Chua. 2023. Prompt-
ing and evaluating large language models for proac-
tive dialogues: Clarification, target-guided, and non-
collaboration. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
10602–10621, Singapore. Association for Compu-
tational Linguistics.

Jesse Dodge, Maarten Sap, Ana Marasović, William
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Appendix

A Algorithms of Watermark

This section presents detailed algorithms for the
watermark encoding and detection processes as
outlined in (Kirchenbauer et al., 2023). Algorithm
2 delineates the procedure for encoding a water-
mark into the output sequence generated by a lan-
guage model. Conversely, Algorithm 3 explicates
the method for detecting and confirming the water-
mark’s presence within generated sequences.

Algorithm 2 Vanilla Watermark Encoding

Input: prompt x1 · · ·xm,
green list size γ ∈ (0, 1),
watermark strength δ > 0.

for t = 0, 1, · · · , T − 1 do
1. Get the logit ℓt ∈ R|V| from M.

2. Use the hash of the previous token as the
random seed to partition the vocabulary
of M into a “green list” Gt of size γ|V|,
and a “red list” Rt of size (1− γ)|V|.

3. Add δ to each green list logit and then
apply softmax to the modified logits.

ℓ̂t[i] := ℓt[i] + δ, i ∈ Gt

p̂t = softmax(ℓ̂t)

4. Sample a next token yt+1 from p̂t.
end for
Output: watermarked text y1 · · · yT .

B Prompt for Cluster Mining

To facilitate the generation of synonym clusters,
we employed Llama2-13B-chat. The approach in-
volved crafting a prompt (Figure 5) that combines
a clear task description with a set of demonstra-
tions designed to illustrate the desired task. By
presenting the model with a few-shot example, we
primed Llama2-13B-chat to understand and per-
form the specific task of synonym generation. The
few-shot prompt was crucial for the model to rec-
ognize the pattern and replicate it for new target
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Algorithm 3 Vanilla Watermark Detection
Input: text y, detection threshold τ .
1. Use the previous token to find the “green list”
Gt at the step t as in Alg. 2.
2. Calculate the number of green tokens in y as
|y|G =

∑n
t=1 1(yt ∈ G).

3. Compute the z-statistic:

zy = (|y|G − γ|V|) /
√
|V|γ(1− γ).

4. if zy > τ then return 1 (watermarked).
5. else return 0 (unwatermarked).
Output: 0 or 1

words, thus enabling the mining of synonym clus-
ters effectively.

C Proofs of Theorems

In this section, we present the detailed proofs of
the theorems introduced before. Each theorem is
treated in its respective subsection.

C.1 Proof of Theorem 3.4
Proof We begin the proof by considering i = 1, 2.
Case I: where w1 is in the green list (Gt):

If w1 ∈ Gt, then both watermarking methods are
lossless because they can select the most suitable
token w1.
Case II: where w1 is in the red list (Rt):

We consider w2, which may or may not be a
synonym of w1:

Sub-case i: w2 is not a synonym of w1.
If w1 /∈ Gt and ̸ ∃ Ci ∈ C s.t. w1, w2 ∈ Ci, then

according to Algo. 1 we have:

PWatME(w2 ∈ Gt) = Pwatermark(w2 ∈ Gt).

In this case, the two methods are the same.
Sub-case ii: w2 is a synonym of w1.
If w1 /∈ Gt and ∃Ci ∈ C s.t. w1, w2 ∈ Ci, then

according to Algo. 1 we have:

PWatME(w2 ∈ Gt) > Pwatermark(w2 ∈ Gt).

Based on Assumption 3.3, WatME is more likely
to select the suitable token. Combining these cases,
the theorem is proven. It should be noted that while
this proof explicitly considers the cases for i = 1, 2,
the logic extends to any arbitrary value of i.

C.2 Proof of Theorem 3.5
Proof Let us define the vocabulary V with syn-
onym clusters S = {C1, . . . , Cn}, where C̄ rep-
resents the set of non-synonymous, unique words.

According to Algs 2 and 1, WatME maintains a con-
stant number of distinct semantic representations,
quantified as n+ γ · |C̄|. In contrast, the semantic
token count of standard watermarking algorithms
is lower than this figure. According to Definition
3.1 the disparity in semantic entropy between the
two methodologies is thus evident. Given Defini-
tion 3.2, the increased semantic entropy inherent to
WatME confirms the theorem.

D Time Complexity Analysis

The conventional algorithm necessitates a partition
of the vocabulary per decoding operation, which re-
sults in a time complexity of O(|V |). Our method
incorporates two partitioning stages: initially tar-
geting the redundant cluster, followed by the re-
maining vocabulary. During the first stage, we pad
the cluster into a 2D matrix and conduct parallel
sampling. The subsequent stage aligns with the pro-
cedures of the Vanilla algorithm. Consequently, the
time complexity of our method remains at O(|V |).

E Setup Details

In our experiments, we used prompts from the CoT
hub (Fu et al., 2023) for the GSM8K dataset and
the original prompts from TruthfulQA (Lin et al.,
2022). The Llama2 model was evaluated using
its original prompt format to maintain consistency.
Greedy decoding was employed as the strategy for
all tasks, with maximum decoding lengths set at
128 tokens for GSM8K and 50 tokens for Truth-
fulQA, which allowed for the complete generation
of answers within the datasets.

To account for the differing answer lengths in the
GSM8K and TruthfulQA datasets, we fine-tuned
the watermark hyperparameters. For GSM8K, with
its longer answers aiding detection, we used a
milder watermark intensity, setting gamma at 0.3
and delta at 3.0. Conversely, the brevity of answers
in TruthfulQA complicates detection, necessitating
a stronger watermark intensity—again with gamma
at 0.3, but with delta increased to 4.0 to achieve sat-
isfactory detection performance (AUROC > 0.7).

Evaluation metrics were carefully chosen: AU-
ROC was calculated using the ‘sklearn‘ library, and
for the assessment of GPT-Truth and GPT-Info, we
utilized a fine-tuned Llama2-13B-chat model that
demonstrated an accuracy above 93% on the valida-
tion set. All model implementations were executed
using the ‘transformers‘ library.

The hardware employed for these experiments
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Figure 5: Few-Shot Demonstration of Synonym Generation using LLMs.

consisted of a 40GB A100 GPU and a 32GB V100
GPU, ensuring sufficient computational power for
model training and evaluation.

F Examples of Redundant Clusters

We present some examples of mined clusters at 3.

G Multilingual Performance Testing

We expand our evaluation to include the Chi-
nese Long Text Summarization Dataset (CLTS)
and a bilingual Large Language Model (LLM),
ChatGLM3-6b. This model employs Byte Pair En-
coding (BPE) tokenization with a vocabulary size
of 65k—double that of the Llama 2 model which
has a 32k vocabulary size. Synonym mining, a
critical step in our process, was conducted using
the ChatGLM3-13B model. The performance of
different watermarking methods was evaluated us-
ing the ROUGE-L and AUROC metrics, as shown
in Table 4. The results highlight that watermark-
ing with WatME considerably enhances detection
robustness compared to the baseline method, main-
taining effectiveness despite varying levels of to-
ken replacement. This improvement underscores
WatME’s capability to integrate seamlessly with-
out compromising the natural language generation
quality.
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Dictionary-based Method LLM-based Method

’should’, ’must’, ’would’ ’must’, ’ought’, ’should’
’job’, ’pursuit’, ’operation’, ’profession’, ’career’, ’employment’, ’behavior’ ’job’, ’task’, ’work’
’inside’, ’in’ ’_inside’, ’_inner’, ’_within’

Table 3: Examples of Redundant Clusters.

Method ROUGE-L AUROC

ChatGLM 3-6b 11.29 -
+KGW-Mark 8.89 0.8415
+WatME_prompting 10.23 0.8514

Table 4: CLTS Results
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