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ABSTRACT
The size of Android applications is getting larger to fulfill the re-
quirements of various users. However, not all the features of the
applications are needed and desired by a specific user. The unnec-
essary and non-desired features can increase the attack surface
and consume system resources such as storage and memory. To
address this issue, we propose a framework, MiniMon, to debloat
unnecessary features from an Android app based on the logs of
specific users’ interactions with the app.

However, rarely used features may not be recorded during the
data collection, and users’ preferences may change slightly over
time. To address these challenges, we embed several solutions in our
framework that can uncover user-desired features by learning and
generalizing from the logs of how users interact with an application.
MiniMon first collects the application methods that are executed
when users interact with it. Then, given the collected executed
methods and the call graph of the application, MiniMon applies 10
techniques to generalize from logs. These include three program
analysis-based techniques, two graph clustering-based techniques,
and five graph embedding-based techniques to identify the addi-
tional methods in an app that are similar to the logged executed
methods. Finally, MiniMon generates a debloated application by
removing methods that are not similar to the executed methods. To
evaluate the performance of variants of MiniMon that use different
generalization techniques, we create a benchmark for a controlled
experiment. The results show that the graph embedding-based gen-
eralization technique that considers the information of all nodes in
the call graph is the best, and can correctly uncover 75.5% of the
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unobserved but desired behaviors and still debloat more than half
of the app. We also conducted a user study that uncovers that the
use of the intelligent (generalization) method of MiniMon boosts
the overall user satisfaction rate by 37.6%.
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1 INTRODUCTION
Android reigns in the mobile operating system market worldwide
nowadays, with a 71.95% market share in Q1 2023 [4]. With the
increasing performance of CPU and the storage of mobile devices,
Android applications (i.e., apps) are getting larger because develop-
ers would like to add more features (i.e., a feature is -functionality
that satisfies a certain requirement [59]) to fulfill the requirements
of various users. For example, the size of the Twitter (currently
known as X) app is 108 MB. Users can use Twitter to tweet, retweet,
reply, share, explore top trending topics, and even converse with
sound [6, 13].

However, not all the features of the apps are needed by users,
resulting in a bloated app. Prior studies showed that 80% of features
in average software products are rarely or never used [15]. These
unused features can increase the attack surface and cost additional
resources, such as storage or memory [22]. More specifically, while
certain features may be essential for some users, they may not be
as important for others. For example, Figure 1 shows that a user
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Figure 1: An example of a user complaining about a Twitter’s
feature. This example shows that different users have differ-
ent requirements for the “bookmark” feature.

complained about a Twitter’s feature. The bookmark feature is
helpful to some users but not useful to others. This indicates that
different users have different preferences.

To address the contradiction between developers’ desire to at-
tract more users with more features and users’ preference for using
only a subset of those features, prior studies proposed several solu-
tions to debloat Android apps, by removing a specific feature (e.g.,
at the granularity of Activity, Permission, and Modularity) [59], or
removing dead code statically [44] or dynamically [51]. Huang et
al. proposed a UI-based approach to remove user-specified unused
UI components and the corresponding backend code [43]. They
asked users to manually label the unwanted components. However,
identifying all unwanted components from all components in the
app is difficult because (1) components can be created dynamically
[14], and (2) it is difficult to fully explore the app to obtain all com-
ponents. The cutting-edge approach does not have a high coverage
at the activity level (i.e., 68%) [47], not to mention at the compo-
nents level. Therefore, there can be unwanted components never
explored by users. Users are not aware of the existence of these
features, let alone actively labeling them as unwanted components.
Therefore, this motivates us to ask users to actively label the desired
features, rather than labeling the unwanted components. Besides,
Huang et al.’s work requires developers to manually obtain the IDs
of the specified UI elements to map the component to the backend
code. This reduces the automation level of the tool. This motivates
us to automatically map the UI elements to the backend code.

To fill the gap, we propose MiniMon, which can preserve the
user-desired features and remove the ones not used by end users.
MiniMon first ❶ instruments apps statically. When users explore
the instrumented app, the executed appmethods are recorded in
the log. By doing so, we can (1) collect the user-desired features
and (2) the corresponding backend methods of the user-desired
features during the interaction. However, some user behaviors
may not be recorded during monitoring (e.g., the ones related to
rarely used features), and users’ preferences can be slightly changed
[66]. For example, Figure 1 shows that the user may not use the

“bookmark” feature during monitoring, but he/she may want to
use the “bookmark” feature in the future. This motivates us to
generate a debloated app that includes user-desired features that
are exercised by unseen user behaviors.

To identify the methods of user-desired features that are ex-
ercised by unseen user behaviors, MiniMon ❷ generates the call
graph (shortened as CG) of the apps. After this step, one way to
proceed is to employ semi-supervised learning to predict which
methods are related to the user-desired feature, using graph node
classification approaches [39, 45, 46, 50, 56, 60, 67, 70]. However, we
cannot apply these solutions because in the semi-supervised graph
nodes classification task, there is more than one label in the labeled
data, i.e., there are negative samples. Unfortunately, for our task,
we only have the methods that are executed when users explore the
app, and we do not have the methods that will never be executed.
Thus, ❸ given the CG and the methods of the features that are
recorded during monitoring, MiniMon needs to identify additional
methods of desired features using an unsupervised technique. After
that, MiniMon ❹ can remove the methods that are not related to
the execution of the desired features and generate a debloated app.

We refer to the component in MiniMon that identifies the meth-
ods of desired features asMethodGeneralizer. We need data to
build the model for MethodGeneralizer. However, there is no such
dataset that records the executed methods corresponding to a set
of similar user behaviors. To solve this problem, we create a bench-
mark recording the interaction of 214 similar user behaviors and the
corresponding executed methods in 45 Android apps with the help
of SARA [40]. We then evaluate the performance of MethodGeneral-
izer in a controlled experiment by considering a user behavior as an
unseen one and the others as the recorded ones. Given the executed
methods recorded during the monitoring of the 45 apps and their
corresponding CGs, we investigate three research questions:

• RQ1: How effective are different variants of MethodGener-
alizer in identifying methods of desired features?
We apply three program analysis-based techniques, two graph
clustering-based techniques, and five graph embedding-based tech-
niques as the technique in MethodGeneralizer components. We
empirically evaluate each MethodGeneralizer technique on our
benchmark in terms of Recall (ability to uncover methods of desired
features) and Debloating Rate (proportion of methods that are re-
moved), and the weighted harmonic mean of Recall and Debloating
Rate (i.e., 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 ). The evaluation results show that the four graph
embedding-based techniques (Node2Vec and inverse-document-
frequency techniques, except LSTM) outperform program analysis-
based techniques and graph clustering-based techniques in terms
of all metrics. MiniMon can debloat the apps by 58% on average
and can uncover 76% of methods of desired features using the best-
performing MethodGeneralizer technique.

• RQ2: Can MiniMon effectively debloat apps?
We replay the interactions recorded in the benchmark, on the de-
bloated apps that are generated by the best-performing Method-
Generalizer. We also conduct a user study using 8 apps and collect
how users use the apps from 8 users. We find that 88.8% of the test
cases succeed to replay. The user study results demonstrate that the
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use of the intelligent (generalization) method of MiniMon boosts
the overall user satisfaction rate by 37.6%.

We also discuss the most important component for the best-
performingMethodGeneralizer techniques (graph embedding-based
techniques) using an ablation study. We find that considering all
nodes in the call graph is the most important component in graph
embedding-based techniques.

In summary, the contributions of this paper include:

• We build a benchmark with 214 user behaviors and the corre-
sponding executed methods of 45 Android apps.
• We implement a monitoring-based-debloating framework, Min-
iMon, to generate a debloated app that can cover as many user-
desired features as possible.
• We propose MethodGeneralizer, a component of MiniMon to
identify methods of desired features that are exercised by unseen
user behaviors, given the CG and the recorded executed methods
during monitoring. We apply 10 techniques in MethodGeneralizer
and empirically evaluate their performance. Results show that the
graph embedding-based technique that considers the global infor-
mation of the call graph can effectively identify additional methods
of the desired features.

The remainder of this paper is organized as follows: Section 2
describes the monitoring-based debloating framework MiniMon
and its usage scenarios. We elaborate on MethodGeneralizer which
identifies methods in an app corresponding to user-desired features
but are not logged during monitoring in Section 3. We describe
how we build our benchmark in Section 4. Section 5 presents the
evaluation settings. In Section 6, we present the evaluation results.
We discuss the most important component in the best-performing
MethodGeneralizer and the threats to validity in Section 7. After
a review of related work in Section 8, we conclude this paper and
point out future work in Section 9.

2 MINIMON: MONITORING-BASED
DEBLOATING FRAMEWORK

Figure 2 presents an overview of MiniMon, our monitor-based de-
bloating framework. MiniMon first instruments (i.e., insert code)
the Android app to monitor its execution, and users can explore the
instrumented app (Section 2.1). Meanwhile, MiniMon uses static
analysis to get the call graph of the app (Section 2.2). Based on the
call graph and the recorded executed methods, the MethodGen-
eralizer component identifies additional methods that the user is
also likely to use for the desired features (Section 3). Finally, Min-
iMon prunes the code instructions that are not necessary for the
execution of the desired features (Section 2.3).

2.1 Instrumenting Android Applications
To understand how users interact with the app, we collect the
exploration trace of the users by collecting the methods that are
executed in the exploration process. We do not collect it visually
(e.g., screen recording) because it may collect sensitive information
from users and may require more storage. Instead, we focus on the
methods that are executed during monitoring. This is because if
we focus on the class level, we cannot perform fine-grained app
debloating: many functions may only be related to a single method.

SMU Classification: Restricted
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Figure 2: Overview of monitor-based debloating

If we focus on the instruction level, we would need to record a lot
of information, which would require a lot of storage. We believe
that the method granularity is a suitable choice.

To do so, we statically instrument the Android apps. We cannot
use the real user monitoring tools that instrument on the source
code (e.g., Amplitude [18], and Dynatrace [1]) because we do not
have the source code of the app. Besides, we do not instrument the
apps dynamically because the dynamic instrumentation requires
a lot of technical work, i.e., (1) root access to the Android device,
and (2) connection to the computer when exploring the app [6].
However, we cannot request users to do such technical work as
they may know nothing about computer science. So, we use the
BodyTransformer class in Soot to statically instrument the app by
inserting the (1) method signature, (2) the time stamp, and (3) the
app name, before the first instruction of each method [7]. Once
the method is executed, the inserted code will be executed and
the method signature, the time stamp, and the app name will be
recorded in the log. In our controlled experiment, we use Logcat
to collect the log from the Android emulator. In practice, we ask
the user to install the Logcat record tools from Google Play, e.g.,
MatLog1. Similar to popular real-user monitoring tools (e.g., Am-
plitude [18], and Dynatrace [1]), the log would be buffered in the
RAM of the Android device and would be batch-written to the disk,
to minimize the impact on the performance of the app.

2.2 Generating Call Graph
We use FlowDroid to perform the static analysis to generate the
call graph (i.e., CG) [19]. The nodes in the CG represent meth-
ods, and the edges represent the relationship between methods
(caller→callee). Following prior studies, we use (1) lifecycle meth-
ods (e.g., onCreate(), onStop()) in Android components (e.g., Activ-
ity), and (2) callbacks (e.g., location updates or UI interactions), as
the entry points of an app [19, 59]. In Android, lifecycle methods
are the standard entry points to components. The execution of
callbacks in Android (updating the location or clicking the button
in an Activity) can trigger the execution of app code. After that, we
traverse the explicit method calls to build the CG [54].

However, Android apps also allow implicit method calls. For
reflection, to identify the target of the reflection, we identify all
propagated string constants [19]. For Inter-component Commu-
nication (i.e., ICC), we use ICCBot to detect ICC in an app [68].
Compared with traditional ICC resolution tools (e.g., Epicc [49]

1https://play.google.com/store/apps/details?id=com.pluscubed.matlog
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Figure 3: Open different file types, browse local files, and
connect to FTP features of Amaze File Manager app.

and IC3 [48]), ICCBot is a fragment-aware and context-sensitive
ICC resolution tool. For asynchronous task, we follow Tang et al.
[59] and add the following edges to CG: AsyncTask.execute() →
onPreExecute, and onPreExecute → doInBackground, etc.

2.3 Debloating Android Application
After identifying the to-keep methods and the to-remove methods
(in Section 3), we remove the to-remove methods from the Android
app using Soot. Following a prior study that debloat Java program
[27], for each to-remove method, we provide two options: (1) clear
the body of the method and change the return value to null (when
the return type is a class of the reference type of Java) or to 0 (when
the return type is a numeric class in Java), or (2) replace the method
bodywith code that notifies that the explored functionality has been
removed. Following a prior study [27], we use the first option by
default, and our results in Section 6 are for this option. Still, a user
may choose the other option. We did not change the UI elements of
the app so that users can see the original features of the app. Note
that the graph embedding-based method in Section 3 measures
the similarity between all app methods and the methods executed
during monitoring. We set a series of similarity thresholds. For each
threshold, we identify a set of similar methods. This indicates that
we have multiple sets of methods, with each set corresponding to a
similarity threshold. Therefore, for the embedding-based method in
Section 3, we will have multiple versions of the Android app with
different similarity thresholds.

2.4 Usage Scenario
Figure 3 shows the possible interaction in an example app (Amaze
FileManager) [3]. Consider a user Bob, who just wants to browse the
local files on Amaze FileManager.Without our tools, Bobwill install
the full Amaze File Manager APK. The user’s unwanted features,
e.g., connecting to the FTP, will be loaded into the memory. The
execution of these additional features will consume the battery and
the storage of Bob’s phone. If Bob uses our tools, Bob can install the
debloated APK, which only contains the features that Bob wants.
More specifically, Bob will need to install the instrumented APK

first, and then explore the app for daily use. Then, Bob sends the
log to our server, and our server will send back debloated Amaze
File Manager APKs that are debloated using different similarity
thresholds to Bob. The APK that Bob chooses to install will depend
on his risk profile and willingness to do trial and error. If Bob cares
a lot about security and app size, he can pick the APK that is the
most debloated. This may imply that he may need to pick another
APK if the debloating is overly restrictive. Otherwise, if Bob does
not want to do much trial-and-error, he can pick an APK that is
debloated conservatively, allowing Bob to perform behaviors that
are marginally related to the features.

3 METHODGENERALIZER: GENERALIZING
DESIRED METHODS

3.1 Our Task
Given a set of methods𝑀 which are all the methods in an app, a set
of the executed methods𝑚 that are collected when users explore
the app, our goal is to identify a set of methods𝑀′ which are the
methods of all user-desired features (our goal is not to label the
features from the methods recorded in traces [17, 20, 37, 65]). By
doing so, we can include the rare use but user-desired features that
are exercised by unseen user behaviors in the debloated app (i.e.,
generalization). More specifically, we have𝑚 ⊆ 𝑀′ ⊆ 𝑀 .

3.2 Our Techniques for MethodGeneralizer
Prior studies on program comprehension [16, 23, 41, 55, 58, 61]
have shown the effectiveness of using method-call relationships to
infer feature-relatedness (i.e., whether two methods are related to
the same feature). For example, Biggerstaff et al. [23] and Alanazi
et al. [16] used method-call relationships to identify the mappings
between source code and features. Motivated by these studies, we
use method-call relationships to infer feature-relatedness. Specifi-
cally, based on method-call relationships captured in a call graph
and a set of executed methods, MethodGeneralizer infer additional
feature-related methods. We consider three program analysis-based
techniques (i.e., forward-slicing, backward-slicing, and forward-
backward-slicing) [62], two graph clustering-based techniques (i.e.,
Louvain community detection [25], and Label propagation algo-
rithm [71]), and five graph embedding-based techniques (i.e., node2vec
[39], LSTM [42], OneHot Encoding, IDF-Encoding, and IDF-POS
encoding) as the candidate technique for MethodGeneralizer.

3.2.1 Program analysis-based techniques.

• Forward slicing: (shortened as FORWARD) Intuitively, if a
method𝑚 is currently executed, then the methods that are called by
𝑚 also can be executed in the future. For example, if two methods
are called by the same set of methods (e.g., invoked by the same en-
try point), they are likely to be similar (e.g., open different types of
files in Amaze file manager). More specifically, we add the methods
that are (in)directly called by the methods in𝑚 to𝑀′.
• Backward slicing: (shortened as BACKWARD) Intuitively, if a
method𝑚 is currently executed, then the methods that call𝑚 also
can be executed in the future (multiple entry points). Similarly, if
two methods call the same set of methods then they are likely to
be similar (e.g., use the FTP feature from FTP Activity, and FTP
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converting CG to sequences

connection button). More specifically, we add the methods that are
(in)directly call the methods in𝑚 to𝑀′.
• Forward and backward slicing: (shortened as BIDIRECTION)
The intuition is that if a method𝑚 is currently executed, then the
methods that are called by𝑚 and the methods that call𝑚 also can
be executed in the future. More specifically, we add the methods
that are reachable by the methods in𝑚 to𝑀′.

3.2.2 Graph clustering-based techniques.

• Louvain community detection algorithm: (shortened as LCD)
According to the principle of object-oriented programming, meth-
ods with high cohesion and low coupling (i.e., high modularity) can
be considered a module. We consider a module in a program to be
a feature for users and employ LCD Algorithm to identify modules.
LCD Algorithm first assigns every node to be in its community.
Then, it iteratively determines whether moving a node to its neigh-
bor communities can have better modularity. If so, the node would
be moved to its neighbor community.
• Label propagation algorithm: (shortened as LPA) The intu-
ition is that the method execution process is similar to the label
propagation, i.e., if its neighbors are executed, then the method
is likely to be executed. Therefore, we use LPA to identify similar
methods. More specifically, LPA initializes each node with a unique
label, then repeatedly sets the label of a node to be the label that
appears most frequently among the neighbors.

We follow the settings in Tang et al.’s work and set the weight of
an edge to be 0.5 or 1. 0.5 indicates that the invocation is unidirec-
tional (i.e., either m invokes n or n invokes m). 1 indicates that the
invocation is bidirectional (m invokes n and n invokes m). We apply
LCD and LPA to CG, with other parameters set to default[9, 10]. If
there is an executed method in the community generated by LCD
or LPA, we add all the methods in the community to𝑀′.

3.2.3 Graph embedding-based techniques. Here, we would like to
❶ generate the embedding for each method in CG and then ❷ use
these embeddings to identify the methods of user-desired features
that are exercised by unseen user behaviors. Intuitively, if we can
map the multitude of information in CG (e.g., structure information,
calling relationships) to a low-dimensional vector space, we can
leverage such information to better identify the methods of desired
features. We first explore how to generate the method embedding
by converting CG to sequences. Figure 4 shows the flow to generate
the method embedding by converting CG to sequences. Specifically,
to generate the embedding for each method in CG, we (1) first
convert the graph structure to sequences and (2) apply 4 techniques
(i.e., LSTM, One-hot, IDF, and IDF-POS) to generate the embedding

for each method in each sequence. Then, we (3) aggregate the
embeddings for each method across sequences to obtain the final
embedding of each method. We also use a generic graph embedding
technique, Node2Vec [39], to directly generate the embedding of
the nodes in the CG. Finally, given the embedding of methods in
CG, we use the cosine similarity to identify the additional methods
of user-desired features.
Generating Static Execution Path: We use the CG to obtain
the static execution path of each app. Static Execution Path is a
sequence of methods that are connected by the edges in a CG. The
first method in the static execution path is the entry point of the app
(the in-degree of each entry point method is 0). Then, we perform
a depth-first search (DFS) on the CG to obtain the static execution
path. To deal with recursion, each edge will only be added once.
Figure 4 shows an example CG and its static execution paths. By
doing so, we convert the graph structure of the CG into a sequence
structure and keep the CG topology. For example, the nodes in CG
with a higher degree of centrality, and the nodes that connect to
these nodes, are in more static execution paths. The static execution
path records all possible execution sequences.
Generating the Embedding of Each Method in Each Static
Execution Path: Since the static execution path embodies the
information of CG, we would like to obtain embeddings for the
methods in the CG using embeddings from the static execution
path. More specifically, we explore the following techniques:

• LSTM is a recurrent neural network that can learn long-term
dependencies in a sequence [42]. We consider the static execution
path as a sequence and use LSTM model to learn the long-term
dependencies between the methods in the execution path. We use
the last hidden state of the LSTM model as the embedding of the
execution path. Specifically, for each method in a static execution
path, we divide this path into two parts, i.e., the path that (in)directly
calls the method (i.e., caller path) and the path that is (in)directly
called by the method (i.e., callee path). Then, we use the LSTM
model to generate the embeddings of the caller path and the callee
path, respectively. Finally, we concatenate these embeddings as the
embedding of the method in this path.
• One-hot (shortened as Onehot) encoding takes all nodes in the
path into consideration. For each method in the path, its embedding
is considered with its context:

Embedding(𝑚𝑖 ) = [1(𝑚1), . . . ,1(𝑚𝑖−1), 0,1(𝑚𝑖+1), . . . ,1(𝑚𝑛)]

1(𝑚 𝑗 ) is the indicator function of the method𝑚 𝑗 . If the method
𝑚 𝑗 is in the context of𝑚𝑖 , then 1(𝑚 𝑗 ) = 1; otherwise, 1(𝑚 𝑗 ) = 0.
• IDF The intuition is if a method is commonly executed in the
static execution paths, then it should have a lower weight in the
embedding. For example, a utility method, e.g., the amaze file
app rewrites the ImmutableEntry class, is commonly executed in
static execution paths. ImmutableEntry class can be frequently
executed when the Map class is executed. When ImmutableEn-
try class is executed when using a certain feature, it does not
indicate that the user would like to use another feature. In con-
trast, the ⟨𝑐𝑜𝑚.𝑎𝑚𝑎𝑧𝑒.𝑓 𝑖𝑙𝑒𝑚𝑎𝑛𝑎𝑔𝑒𝑟 .𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠.𝑓 𝑡𝑝.𝐹𝑡-
𝑝𝑆𝑒𝑟𝑣𝑖𝑐𝑒 : 𝑣𝑜𝑖𝑑𝑟𝑢𝑛()⟩ method is rarely executed in the static execu-
tion paths (52 out of 12,363 static execution traces). The execution
of this method indicates the user is exploring the FTP connection
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feature. This motivates us to involve the method frequency in gen-
erating embeddings of methods. Inspired by IDF (inverse document
frequency) in information retrieval, we define the inverse docu-
ment frequency (IDF) of a method as IDF(𝑚) = log 𝑁

𝑛𝑚
. The

more static execution paths contain the method, the smaller the
IDF (i.e., importance) of the method. The embedding of a method is

Embedding(𝑚𝑖 ) = [1(𝑚1 ) × IDF(𝑚1 ), · · · ,1(𝑚𝑖−1 )×
IDF(𝑚𝑖−1 ), 0,1(𝑚𝑖+1 ) × IDF(𝑚𝑖+1 ), · · · ,1(𝑚𝑛 ) × IDF(𝑚𝑛 ) ]

• IDF-POS IDF-POS considers the position information relative to
the to-embedding nodes. If a method is executed, then the methods
closer to the to-embedding method are more likely to be executed
than the methods that are far away from the to-embedding method.
Therefore, we define the weight of a method𝑚𝑞 in the embed-
ding ofmethod𝑚𝑝 asWeight𝑚𝑞

𝑚𝑝
= 𝑞/𝑝 (if q<p) or (𝑛−𝑞+1)/(𝑛−

𝑝 + 1) (if q>p). Therefore, we have
Embedding(𝑚𝑖 ) = [1(𝑚1 ) × IDF(𝑚1 ) × Weight1𝑚𝑖

, · · · ,
1(𝑚𝑖−1 ) × IDF(𝑚𝑖−1 ) × Weight𝑖−1𝑚𝑖

, 0,1(𝑚𝑖+1 ) × IDF(𝑚𝑖+1 )
× Weight𝑖+1𝑚𝑖

,1(𝑚𝑛 ) × IDF(𝑚𝑛 ) × Weight𝑛𝑚𝑖
]

Aggregating Embedding From Each Path: However, Figure 4
shows that a method can be in different static execution paths. This
can lead to multiple embeddings of each method from different
static execution paths. Therefore, we aggregate the embeddings
from different static execution paths to obtain the embedding of a
specific method. To do so, we use the max value of the embeddings
of the methods in different static execution paths to obtain the
embedding of a specific method (i.e., max pooling). By doing so,
the embedding of a method is the most important method in the
context of the method in the static execution paths.
• Node2Vec (shortened as N2V) Node2Vec is a graph embed-
ding method that directly maps the nodes of a graph into a low-
dimensional vector space [39] (i.e., without using the steps de-
scribed in Figure 4). Different from the aforementioned techniques
that generate sequences using DFS, Node2Vec is based on a com-
bination of random walks to convert a graph to sequences. Then
it uses a neural network, e.g., Word2Vec, to generate embedding
based on sequence, which allows it to capture the properties of the
graph from the nearby k windows’ tokens. When the parameters of
Node2Vec are set to large enough, it will generate sequences from
the entry points to the end (same as ours), and the embedding of a
method can be obtained from the information of the whole graph
(same as ours, but with different embedding techniques: Node2Vec
employs Word2Vec, while we use IDF information). We use the
default settings of Node2Vec, and the input is the CG [31].
Finding Similar Methods: After obtaining the embeddings of
each method, we need to find the methods of user-desired features
𝑀′ given the executed methods𝑚 when monitoring. If we train
a prediction model using the (semi-)supervised-based approach,
then in the training dataset, the methods in𝑚 are labeled as 1, and
there is no data labeled as 0 (as there is no method that must be not
executed by the user). This motivates us to use the unsupervised
approach to find the methods𝑀′ to the methods in𝑚.

Moreover, different users have different perceptions of debloat-
ing. For example, some users may prefer to use different features
to achieve the same goal (e.g., users can use the FTP feature from

different entry points, such as FTP Activity, FTP connection button,
and FTP Fragment), or the same actions to the app correspond to
different features (e.g., open different types of files using amaze file
manager). This indicates that such users have more user behaviors
for the feature and we need to provide them with a larger 𝑀′. An-
other user may prefer to use the same feature as when we collect
the data. This indicates that such users have fewer user behaviors
for the feature and we need to provide them with a smaller𝑀′.

In our work, we identify the methods that are similar to the
executed methods𝑚 by calculating the Cosine similarity between
the embedding of the executed methods𝑚 and the embedding of all
the app methods. If we set different thresholds for Cosine similarity,
we can obtain different sets of 𝑀′ with different sizes. Thus, we
can provide different users with the debloated app with different
sizes of 𝑀′. Users can choose the debloated app that contains all
desired features. More specifically, if the Cosine similarity between
the embedding of a method and the embedding of the executed
methods𝑚 is larger than a threshold (thresholds range from 0 to
1 with step 0.1), then we consider the method is similar to the
executed methods𝑚, and we add the method to the set𝑀′. If there
is a method in𝑀′ but none of its callers in𝑀′, we involve the caller
with the highest similarity to𝑀′. By doing so, we can identify the
methods in𝑀′ with different similarity thresholds.

4 BENCHMARK CREATION
A user may only exercise a subset of behaviors that map to a de-
sired feature. MiniMon then needs to generalize from this subset
of behaviors to all the behaviors that belong to the desired feature.
To test the ability of MiniMon to do this generalization in a more
controlled setting involving a substantially large number of apps
and features, we build a benchmark.

In this benchmark, for each app, we define a set of features. For
each feature, we identify related user behaviors that map to the
feature. For example, “Open File” is a feature considered in the
leftmost part of Figure 3. For this feature, we have a set of user
behaviors, e.g., “open a PDF file”, “open a text file”, “open a PPT
file”, etc. For each such user behavior (test case), we execute the
behavior and collect a log of methods that are executed. To use the
benchmark to test the generalization ability of MiniMon, given a
target desired feature 𝐹 and its corresponding set of user behavior
logs (𝐿𝐹 ), we take a subset of logs in 𝐿𝐹 (𝐿𝐹 ′ ⊂ 𝐿𝐹 ) and input it
to MiniMon. We then observe the ability of MiniMon to uncover
methods that appear in 𝐿𝐹 \ 𝐿𝐹 ′. These correspond to methods
that are needed by the target desired feature but are not observed
during the prior interactions that the user has with the app.

We collect 45 apps from Google Play. These apps appear among
the top 40 apps in a category listed in AndroidRank.2 The apps have
an average of 15,318 lines of decompiled code and up to 67,312 lines
of decompiled code. This average is larger than the average lines
of code of applications in the benchmarks used to evaluate prior
debloating studies [27, 53]. Note that these apps can be considered
bloated if users only use some features; the unused features carry no
benefit to the users and can be omitted for security [24, 38, 52, 57]
and other reasons.

2https://www.androidrank.org/
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For each app, we want to collect executed methods of a set of
similar user behaviors. According to the Material Design guide [11],
widgets in the same Activity are more likely to be related to each
other [69]. Therefore, we consider the widgets in the same activity
as a set of similar user behaviors.

Based on the above heuristics, the authors create test cases cap-
turing related user behaviors exercising features of apps. These test
cases are created by manually exploring the app. We use SARA [40]
to record the test cases. SARA is a record-and-replay tool that (1)
records motion events based on screen coordinates, and (2) replays
recorded events based on both screen coordinates and widgets.

While exploring an app, the first or second author records the
app launch (i.e., opening the app). By doing so, we ensure that the
debloated apps can be opened. Then, the author launches one of
the activities and interacts with one of the widgets in that activity.
If that widget triggers a pop-up dialog box, the author chooses one
option in the dialog box or just closes it and stores the test case.
These are done randomly. If the option starts a new activity or does
not have any other pop-up, we will directly stop. We repeat for each
of the widgets in the activity to generate more test cases. Note that
each time we start generating a new test case, we reinstall the app
to avoid different initial conditions affecting the recorded test cases.
As a result, for each feature, we generate four to six test cases based
on the number of widgets within the target activity (214 in total).
For each app, it typically takes 30 minutes to explore, generate, and
record the test cases.

Finally, we use SARA to replay the user behaviors of instru-
mented apps and collect the executed methods while running.

5 EVALUATION SETUP
Here, we describe experiment settings and evaluation metrics.

5.1 Experiment Settings
MethodGeneralizer takes methods that are recorded during moni-
toring (i.e.,𝑚) as input, to identify methods of desired features (i.e.,
𝑀′). To evaluate the performance of MethodGeneralizer, we ran-
domly select the methods in one user behavior (except launching
the app) as the methods in unseen user behavior(𝑚𝑡𝑒𝑠𝑡 , i.e., test set).
Then, we use the methods in other user behaviors as the executed
methods that are recorded during monitoring (𝑚, i.e., input). We
iteratively select the test set and executed methods𝑚 for each app
until there are additional methods in the test set (i.e.,𝑚𝑡𝑒𝑠𝑡 ⊄𝑚).

5.2 Evaluation Metrics
Specifically, we use recall, debloating rate, and a weighted harmonic
mean of recall and debloating rate to evaluate the performance of
MethodGeneralizer in identifying methods of desired features.

When users explore unseen behaviors (𝑚𝑡𝑒𝑠𝑡 would be executed),
we would like to evaluate to what extent the methods in 𝑀′ can
satisfy users’ needs, i.e.,𝑚𝑡𝑒𝑠𝑡 ⊂ 𝑀′. This motivates us to use recall
as one of the evaluation metrics. The recall of an approach is defined
as the ability of an approach to identify the correct methods in𝑀′:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑚𝑡𝑒𝑠𝑡 ∩𝑀 ′ |

|𝑚𝑡𝑒𝑠𝑡 |
(1)

Intuitively, we want to maximize the recall value, in order to include
methods of desired features that were unobserved before.

Similarly, the debloating rate is defined as the ability of an ap-
proach to remove the methods in𝑀 :

𝑑𝑒𝑏𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
|𝑀 | − |𝑀 ′ |

|𝑀 | (2)

Intuitively, we want to maximize the debloating rate, so that we
can remove as many methods as possible. We do not consider the
precision value, because we do not have the ground truth of the
methods that are not related to the user-desired features (if we have,
we can just remove these methods). Therefore, we cannot calculate
the precision value and use debloating rate as a proxy of precision.

Note that there is a trade-off between recall and debloating rate.
That is, identifying more methods that are related to the user-
desired features may result in a lower debloating rate. In our work,
we want to balance the recall and debloating rate.Among the two
metrics, recall is more important than debloating rate, because
we want to include all methods that are related to the user-desired
features so that the app will not crash when using the debloated app.
Following the definition of standard 𝐹𝛽 score (i.e., 𝑓𝛽 = (1 + 𝛽2) ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 ), we define the 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 score as the weighted
harmonic mean of recall and debloating rate. We set the 𝛽 value to
1/2 so that we can give more weight to the recall value:

𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 =
5 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑑𝑒𝑏𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

4 × 𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑑𝑒𝑏𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (3)

A higher 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 score means that we can achieve a higher recall
value and a higher debloating rate at the same time, while we attach
more importance to the recall value.

6 EVALUATION RESULT
6.1 How effective are different variants of

MethodGeneralizer in identifying methods
of desired features?

Motivation: We investigate whether MethodGeneralizer can ef-
fectively identify the additional methods of user-desired features
that are exercised by unseen user behaviors.
Design: We evaluate and compare the performance of eachMethod-
Generalizer technique as well as a baseline without generalization
(i.e., removes the unexecuted methods, shortened as EXECUTED)
on our benchmark in terms of recall, debloating rate, and 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 .

Note that when using the graph embedding-based technique,
MethodGeneralizer can generate different sets of 𝑀′ and each
of them corresponds to a similarity threshold. For each graph
embedding-based technique, we select the 𝑀′ set with the highest
𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 as the final result of this app. This version is the best ver-
sion of the debloated app that can satisfy current users’ needs for
this new feature and minimize the number of methods to be kept.
Results: Figure 5 shows the 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 , recall, and debloating rate of
each technique on each app. The dot · indicates the average value.
As a result, we observe that graph embedding-based techniques
(except LSTM) outperform all other techniques in terms of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 ,
recall, and debloating rate on all the apps, and the differences are
statistically significant with a large margin (p-value < 0.05 and ef-
fect sizes are large).3 Besides, if we remove the unexecuted methods
3We use Wilcoxon signed-rank test to compare the performance of MiniMon variants
and use the Bonferroni correction to adjust the p-value [33, 63]. We calculate Cliff’s
delta to measure the effect size [30]. Bonferroni correction is used to counteract the
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(a) 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡
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(c) Debloating rate

Figure 5: The distribution of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 , recall, and debloating rate of each technique on each app. · indicates the average value.

during monitoring, the debloated apps cannot have the methods of
user-desired features that are exercised by unseen user behaviors.
However, there are no significant differences between the graph
embedding-based techniques (except LSTM). The average 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡
of N2V, Onehot, IDF, and IDF-POS are 62.82%, 64.44%, 64.77%, and
64.95%, respectively. This indicates that these features do not have
a significant impact on this task. However, considering the im-
provement in the average 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 , we take IDF-POS as the best
methodGeneralizer technique.

We also investigate the worst case of IDF-POS, when the Cosine
similarity threshold is 0.1. The average 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 , recall, and debloat-
ing rate are 52.89%, 77.24%, and 37.16%, resp., which is still better
than techniques that are not based on graph embeddings. This
shows the advantage of graph embedding-based techniques
on this task, no matter how nodes are embedded (whether
use idf information or use word2vec). Future researchers
should continue along this direction to generate better graph
embedding-based representations of the methods in CG.

Apart from graph embedding-based techniques, BIDIRECTION
performs the best in terms of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 (42.64% on average). This
indicates that simply involving all reachable methods in the CG is
an intuitive but effective idea. However, BIDIRECTION involves
too many methods that are not related to the user-desired fea-
tures, which leads to a low debloating rate. In contrast, FORWARD
achieves the worst performance. This indicates that when deter-
mining whether two methods are similar, the methods that
call these twomethods aremore important than themethods
that are called by these two methods..

Apart from embedding-based techniques, LCD, the approach
adopted in Tang et al’s work, is the second-best technique in terms
of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 (35.20% on average) with a high recall (66.30% on aver-
age). This indicates that the modularity of the app can effectively
identify the methods related to user-desired features. However,
modules identified by LCD are too coarse-grained, which leads to
a low debloating rate. LPA performs worse than LCD in terms of
𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 . This is because LPA only considers the local neighborhood,
which may not reflect the correct method execution order.

LSTM is one of the worst-performing MethodGeneralizer vari-
ants in terms of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 and debloating rate. This is because LSTM

problem of multiple comparisons. Cliff’s delta is a non-parametric effect size measure
to evaluate the amount of difference between two groups. Romano et al. define an
absolute delta of less than 0.147, between 0.147 and 0.33, between 0.33 and 0.474 and
above 0.474 as “Negligible”, “Small”, “Medium”, “Large” effect size, respectively [30].

aims to capture the pattern of the occurrence of methods in the
static execution path, rather than the weight of each method in the
execution path. Our result shows that the pattern of methods
occurrence in the static execution path has limited contri-
bution when identifying similar methods, as LSTM has the
lowest debloating rate (keeps almost everything).

Graph embedding-based generalization technique is the best,
and can correctly uncover 75.5% of the unobserved but desired
behaviors and still debloat more than half of the app.

6.2 Can MiniMon effectively debloat apps?
Motivation: Here, wewould like to evaluate whether the debloated
apps of the best technique can satisfy users’ needs, i.e., can the
debloated apps support the original and additional user behaviors?
We also would like to understand the debloated apps generated by
which series of MethodGeneralizers can satisfy users’ needs.
Approach: To understand the benefit of debloating, in addition to
the method level removal rate reported in Section 6.1, we would
like to report the proportion of lines of decompiled code that are
removed in the best-performing MethodGeneralizer (i.e., IDF-POS).
To evaluate whether the debloated apps still can be used as usual,
we use SARA to replay the interactions recorded in Section 4 on
the debloated apps and compare the results with the original apps.

We also conduct a user study to investigate our approach’s effec-
tiveness. We advertise the user study to people in our institution
through various means, e.g., internal chat channels. This process is
similar to a prior study [35]. For each person who expressed inter-
est, we present the 8 apps used in our user study and recruit only
users who have used these apps (or other similar apps). 8 graduate
students (5 Master students, and 3 Ph.D. students) participated in
the user study. All of them are Android users with an average of
more than 5 years of Android usage experience and have used all
of these apps (or similar apps) before. The scale of our user study
and the characteristics of our participants are similar to many prior
studies [21, 28, 29, 34–36]. We first explained the concept of de-
bloating to them, to ensure they understood the goal of their task.
Then, we selected 8 apps and followed the procedure in Section 3
to instrument the apps. Finally, we have a total of 8 × 8 = 64 data
points collected from real users, which is larger than the data points
considered in the evaluation dataset used in the previous studies
[43, 51]. We provide informative tutorials and instructions to help
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Table 1: The average scores obtained from our user study of
different perspectives. For each perspective, the highest score
is highlighted in bold while the lowest is highlighted with
underlining. The higher the score, the higher the satisfaction.

EXECUTED BIDIRECTION LCD IPF-POS

Usability 3.46 3.89 3.93 4.17
Size 4.30 2.00 1.93 4.22
Generalization 2.05 2.89 3.00 3.03
Overall 3.35 2.98 3.02 3.76

users collect logs, and ask each user to use each app for 5 minutes
in 3 days (5 minutes is longer than the typical average app session,
i.e., 71.56 seconds [26]. This time interval is the same as in prior
studies [21, 29]). On the first day, they are asked to freely explore
the instrumented apps to understand the features of the apps. On
the second and the third day, they are asked to use the instrumented
apps with their desired features. Then we use the executed methods
collected on the second day and the third day to debloat the apps
using the 3 best-performing techniques in each family (i.e., LCD,
BIDIRECTION, and IDF-POS). For IDF-POS, similarity thresholds
are set to 0.3, 0.6, and 0.9 to minimize the human effort. Then, we
ask users to use the debloated apps for 5 minutes (we show them the
debloating rate so that they know which is the slimmer one). Users
have no idea about how these techniques work, so they cannot
figure out which debloated app is generated by which technique.

Finally, we ask each user to assign a score from 1 (very unsat-
isfied) to 5 (very satisfied) to each debloated app, in terms of (1)
Usability (to what extent the debloated apps keep the desired fea-
tures); (2) Generalization (to what extent the debloated apps allow
them to perform behaviors that were not executed before but belong
to the desired features); (3) Size (to what extent they are happy with
the debloated apps’ size reduction), and (4) Overall Satisfaction.
Results: We observe that the debloated apps have 38.8% fewer
lines of decompiled code than the original apps on average. This
indicates that our approach can effectively debloat apps in terms of
the number of methods and lines of code omitted. Among all 214 test
cases, 88.8% of the test cases succeeded to replay on the debloated
apps generated by the best-performing MethodGeneralizer (i.e.,
IDF-POS) (24 test cases in 10 apps fail). We carefully investigate
these 10 apps and find that there is no intersection between the
static execution path of the methods in𝑚 and the methods in𝑚𝑡𝑒𝑠𝑡 .
In this case, the similarity between these methods is 0, so they are
not added to𝑀′. One possible reason is that there can be flakiness
when users use the app. Some of the methods are accidentally not
triggered and thus cannot be recorded (e.g., turning off the Wi-Fi
feature is not triggered when Wi-Fi is already turned off).

Table 1 shows the average scores assigned by the users. We also
apply the statistics test described in Section 6.1. The results show
that users have significantly higher satisfaction with the debloated
apps generated by the IPF-POS in all aspects (p < 0.05 with non-
negligible effective size) except the Size aspect. The use of the
intelligent (generalization) method of MiniMon boosts the overall
user satisfaction rate by 37.6%. In terms of Usability, users are the
most satisfied with the debloated apps generated by the IPF-POS.
Users are also satisfied with the debloated apps generated by the
BIDIRECTION and LCD in terms of generalizing desired features

Table 2: 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 , recall, and debloating rate of the variants of
IDF-POS and N2V

𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 Recall Debloating Rate

IDF-POS 64.95% 75.52% 57.18%

IDF-POS-PART 59.08% 69.67% 53.41%
IDF-POS-CLU 62.42% 75.12% 54.26%
N2V 62.82% 77.18% 44.32%

N2V-PART 44.87% 74.96% 27.24%
N2V-CLU 61.66% 78.32% 43.60%

(p < 0.05 with medium effect size, compared with EXECUTED).
Users are least satisfied with the debloated apps generated by the
BIDIRECTION and LCD in terms of the size of the debloated apps
(p < 0.05 with large effect size, compared with EXECUTED and IPF-
POS). In summary, the debloated apps generated by the IDF-POS
are the most satisfying to the users.

88.8% of the test cases succeeded in replaying the debloated
apps generated by the best-performing MethodGeneralizer.
The use of the intelligent (generalization) method of MiniMon
boosts the overall user satisfaction rate by 37.6%.

7 DISCUSSION
7.1 Analysis of the Best MethodGeneralizer
Weanalyze the effects of themain components in the best-performing
MethodGeneralizer, i.e. the graph embedding-based techniques.
Specifically, we would like to investigate IDF-POS (the best Method-
Generalizer), and the N2V. Other embedding-based techniques are
variants of IDF-POS, and the N2V is a popular one.

Section 3.2.3 shows that the graph embedding-based techniques
first (1) uses all nodes in CG to generate the embedding of the
methods. Then it (2) directly considers two methods with similarity
score higher than a specific threshold to be similar. However, we do
not know which component is the most important. We, therefore,
investigate the effects of each component in MiniMon.

We compare each MethodGeneralizer with its 2 variants:
• MethodGeneralizer-PART uses one-third (rather than all) of
the nodes in the neighbor in each static execution path to generate
the embedding of the methods.
• MethodGeneralizer-CLU uses hierarchical clustering to iden-
tify similar methods (rather than directly adding the nearest neigh-
bors with similarity score between them higher than the threshold).
Each hierarchy with a certain similarity level (following the settings
in Section 3, the similarity levels are set from 0 to 1 with step 0.1)
hosts a set of clusters. For each hierarchy, if there are executed
methods in the cluster, we would add all the methods in the cluster
to𝑀′.
Such comparisons can help us understand the impacts of the com-
ponents on MethodGeneralizer’s performance.

Table 2 shows the results of our comparison. We see that IDF-
POS and N2V outperform all their variants in terms of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡
and debloating rate. This indicates that IDF-POS and N2V can both
effectively identify the methods of unseen user behavior in desired
features and remove the methods of undesired features.
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IDF-POS and N2V outperform their MethodGeneralizer-PART
variants indicating that global information of the graph (i.e.,
considering all nodes in the graph) is the most important
component in identifying the methods that are related to the
user-desired features both in IDF-POS and N2V. Considering
two 𝑜𝑛𝑐𝑙𝑖𝑐𝑘 () methods in two different UI components, they invoke
different methods, but after a long chain in CG, both eventually
call FTP-related methods. If only the local information in CG is
considered, these two methods are not similar because they invoke
different methods. However, if the entire call information is taken
into account, these two 𝑜𝑛𝑐𝑙𝑖𝑐𝑘 () methods are similar because they
eventually call FTP-related methods. Furthermore, when we only
consider one-third of the nodes in the neighbor in each static exe-
cution path, the performance drops significantly, especially in N2V.
This indicates that when the window size in Node2Vec cannot
cover the whole graph, the performance of N2V drops sig-
nificantly. Future researchers should take all nodes (with a large
enough window size) in CG to generate the embedding of methods.

Moreover, the clustering method is not as effective as simply
adding the nearest neighbors to𝑀′. One possible reason is that the
clustering methods identify all the methods in the cluster as similar
methods, which may introduce more noise.

7.2 Limitations and Threats to Validity
The findings in this paper may not generalize to all apps. For ex-
ample, similar to prior work [43, 59], we have not considered the
apps with tampering detection mechanisms and the features im-
plemented in native code. We cannot modify apps with tampering
detection mechanisms, because these apps would detect the modifi-
cation and stop working [5]. Besides, we focus on dex files in this
paper. The features implemented in native code are not available
in dex files and need additional effort to analyze and instrument.
We believe that once we obtain the CG of these applications, the
MethodGeneralizer component of our work can also be generalized
to these applications. In the future, we plan to evaluate our work on
more apps and investigate how to debloat the apps with tampering
detection mechanisms and the features implemented in native code.

We employ some heuristics whenwe are building the benchmark.
For example, our benchmark is created by authors with an assump-
tion that widgets in the same activity are likely to be related to the
same feature (based on guidelines given in [11, 69]), rather than by
real users. Still, there are likely to be apps that do not follow these
guidelines. We acknowledge that the benchmark creation process
is not perfect, yet, there is no other alternative benchmark. Even
the current benchmark that we create requires much manual work.
To mitigate the threats from an imperfect benchmark, we evaluate
our proposed approach through a user study, where we collect real
users’ interactions with apps.

Threats to construct validity relate to the evaluation metrics that
we use. We use debloating rate, recall, and 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 to evaluate our
approach. We do not report the actual app size reduction because
the resources in each app take up a lot of space, and we focus
on removing the code (i.e., methods) in this paper. We perform
experiments with real-world apps on a real device by humans. The
second threat is related to the limitations of the user study. We only
have 8 participants in the user study. However, this study size is

also followed by prior work [21, 28, 29, 34–36]. These reduce the
threat to construct validity.

8 RELATEDWORK
Debloating Android apps is a known topic in the Android commu-
nity. Google proposed approaches to reduce the size of Android
apps. For example, developers can (1) use R8 to statically detect and
remove dead code and its library dependencies, (2) remove unused
resources, and (3) shorten the names of classes and members to
reduce the DEX file sizes [12]. Developers can also configure App
Bundle or use the on-demand delivery so that only the code and
resources that are needed for a specific device or feature are down-
loaded [2, 8]. These approaches have become the default settings
for Android app development, and are complementary to MiniMon.
MiniMon can be run before or after R8. We leveraged the settings
from Bruce et al.’s work [27], to check whether the apps in our
experiments could be further debloated by these methods. Bruce et
al. compared their approach (i.e., JShrink) with ProGuard (using the
same settings as R8) and other static analysis-based approaches. We
found that no methods could be removed. This means that develop-
ers are already using static tools like R8 to debloat Android apps
during the build phase. Despite this, our study shows that there are
still a large number of methods that a specific user does not need
in these apps, and our work is needed for better user-specific app
debloating.

Researchers proposed approaches to reduce Android apps’ size.
Xie et al. debloated apps to minimize the bandwidth of mobile net-
works [64]. Jiang et al. removed dead code based on static analysis
[44]. Tang et al. debloated apps at the granularity of Activity, Permis-
sion, and Modularity [59]. To debloat apps at the Modularity level,
they considered each module to be a feature.They used Louvain
community detection to identify the modules in CG. Following their
work, we also use LCD as one of our techniques. Our results show
that LCD is inferior to the other graph embedding-based techniques
in identifying the methods related to user-desired features.

Pilgun et al. removed the unexecuted instruction during testing
[51]. We try to compare MiniMon with Pilgun’s work [51] at the
instruction level, but faced difficulties (we can only replicate their
results on two examples apps). Though being in contact with the
authors, we were unable to fix the issues. Pilgun promised to run
their tool on more apps but has not delivered when we submit-
ted our paper. Therefore, we implement a baseline that removes
the unexecuted methods (i.e., EXECUTED). Our results show that
MiniMon outperforms EXECUTED in terms of 𝐹𝑑𝑒𝑏𝑙𝑜𝑎𝑡 and Recall.

Huang et al. proposed a method to remove unused UI compo-
nents [43]. They asked users to specify components to remove and
use forward/backward slicing to identify instructions related to UI
components. They eliminated instructions that are only relevant to
the relevant components. However, our work aims to preserve all
executed methods and generalize them to user behaviors in the fu-
ture. Unlike Huang et al., we do not know which UI components are
unnecessary. Therefore, our approach and Huang et al.’s approach
have different goals, and we cannot directly compare our method
to theirs. Nevertheless, we believe that the EXECUTED baseline
method, which records log information from the instrumented app
to identify the methods related to UI components, to some extent
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embodies Huang et al.’s approach to finding UI component-related
methods. Additionally, our program analysis-based techniques also
partially leverage Huang et al.’s approach in terms of backward
slicing and forward slicing. We are confident that we have made
the most relevant comparisons to Huang et al.’s method.

Qian et al. [53] and Xin et al. [66] proposed approaches to debloat
C/C++ programs, e.g., UNIX utilities, based on the usage profile of
an individual user. They first collect the log of statements executed
when a C/C++ program is used. Then, they employ some augmen-
tation techniques to identify program elements that are related to
the executed one. The executed and related program statements
are kept, while the rest are deleted. Although the motivation of
our work and that of the two studies are similar, there are differ-
ences that make the works complementary. First, the augmentation
techniques employed by Qian et al. and Xin et al. require instru-
mentation at the statement level. On the other hand, our proposed
approach (MiniMon) only requires instrumentation at the method
level, which is more lightweight and results in performance over-
head that is acceptable to Android phone users. Moreover, due to
the different levels of instrumentation considered, heuristics em-
ployed in the augmentation techniques of the two papers cannot be
easily applied to MiniMon. For example, Qian et al.’s augmentation
techniques include 4 strategies: adding additional branches, as well
as reachable instructions, reachable functions within the same bi-
nary or executed external functions, and reachable library functions
with the same functionalities. It is unclear how these heuristics can
be applied to MiniMon to identify related methods. We believe that
the FORWARD technique, which considers all invoked methods
as the methods of user-desired features, to some extent embodies
Qian et al.’s approach. Also, the computation of flexibility in Xin et
al.’s augmentation technique (CovA) requires the counting of the
number of unique sets of executed statements in a C/C++ function.

Our work is also related to feature location. Existing works pri-
marily focus on facilitating program comprehension [32, 55]. In
our work, we use the features that are collected during monitor-
ing, to find the methods corresponding to all user-desired features.
We believe that many of the works in the feature location can be
adapted to our task. We have already compared our approach with
some feature location approaches used in our field [59]. In the fu-
ture, we plan to explore other feature location works (if based on
unsupervised learning) to further enhance the performance.

9 CONCLUSION AND FUTUREWORK
In this paper, we aim to debloat Android apps based on how users
use them. To address this task, we implement a monitoring-based
debloating framework MiniMon that (1) can collect the executed
methods when monitoring. Then, together with the app call graph,
the MethodGeneralizer component in MiniMon (2) adopts three
program analysis-based techniques, two graph clustering-based
techniques, and five graph embedding-based techniques to iden-
tify additional methods of desired features. Finally, MiniMon (3)
generates the debloated apps by removing the remaining methods.
For evaluation, we manually create a benchmark that collects the
methods executed by each feature. Controlled experiments using
this benchmark highlight that the embedding-based generalization
technique that considers the information of all nodes in the call

graph is the best, and can correctly uncover 75.5% of additional
methods of desired features and debloat more than half of the app.
Our user study that using the intelligent (generalization) method
of MiniMon boosts the overall user satisfaction rate by 37.6%.

In the future, we plan to other Android-specific characteristics
to identify the methods related to the user’s desired features. We
also plan to enlarge the benchmark using more apps and test cases.

DATA AVAILABILITY
MiniMon’s replication package, including the dataset and the source
code, is publicly available at https://zenodo.org/doi/10.5281/zenodo.
8201782.
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