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Abstract—We demonstrate criticality-aware canvas-based pro-
cessing of multiple concurrent camera streams at the re-
source constrained edge to show substantial improvement in the
accuracy-throughput trade-off. The proposed system focuses the
available computation resources on select Regions of Interest
(RoI) across all the camera streams by (i) extracting RoI from
the input camera stream (ii) 2D bin packing the RoI on a canvas
frame and (iii) batching and inferring upon these constructed
composite canvas frames with a YOLOv5 object detection model.
Our experiments show that such canvas-based processing can (i)
sustain real-time processing throughput of 23 FPS per camera
across 6 concurrent input camera streams (cumulatively 138 FPS)
on a single NVIDIA Jetson TX2 representing a 475% increase
in throughput, with (ii) negligible loss in accuracy as compared
to a First Come First Serve (FCFS) baseline running full frame
detections on the input camera streams.

Index Terms—Edge Computation, Canvas-based Processing,
Multi-Camera Systems

I. INTRODUCTION

Modern real-time applications for machine visual percep-
tion (such as traffic surveillance and autonomous navigation,
Figure 1) rely on the efficient and accurate processing of
multiple simultaneous sensor streams, often at the resource
constrained edge, due to their mission-critical and {latency,
bandwidth, energy} sensitive nature. Such edge systems are
challenged by a fundamental observation - modern high
resolution sensor streams and deep learning vision models
with their high computation resource demands and incurred
latency are not optimised for real-time machine visual per-
ception tasks [1]. This gap widens on resource constrained
computation devices typically deployed in edge systems. One
conventional approach to address this challenge is to deploy
smaller/lighter models on resource constrained edge devices.
This reduces computation latency and conversely increases
processing throughput, while incurring an unfavourable re-
duction in detection accuracy. A second approach is input
modification or down sampling of the sensor stream to reduce
computation latency by sacrificing high sensing fidelity. The
last approach is to over-provision the edge device by utilizing
expensive GPUs with higher memory and greater number of
cores. This reliance on expensive hardware is wasteful and
arises, in part, because the conventional perception pipeline

processes each frame, in its entirety, in a first-come first-served
(FCFS) fashion, processing all bits/pixels of a single frame at
the same priority. Such an approach fails to incorporate the
reality that different regions of the sensing field may have
different priority or criticality [1].

Fig. 1. Target applications: multi-sensor edge-based traffic surveillance in
different deployments (a) stationary (left) and (b) drone-based (right).

In light of this accuracy-throughput trade-off, exemplar
works have proposed two distinct approaches (i) Criticality
Aware Processing where selected Regions of Interest (RoI) are
processed with higher fidelity either by batching [2], patching
or tiling [3], [4], or offloading to a more powerful device [5]
for DNN inference, and (ii) Selective DNN Computation such
as preemptive or anytime computation [6] that exit DNN
computation when sufficient object detection confidence has
been achieved. These approaches however, do not (i) exploit
the concept of criticality holistically across multiple simul-
taneous sensor streams that must be concurrently processed,
nor (ii) address the reality that RoI across all input camera
streams must share the available computation resource despite
the fact that perceived scene characteristics (i.e. number of
objects and their dimensions) may vary dramatically across
camera streams.

To address this gap, we present a prototype system for
Criticality-Aware Canvas-based Processing that is centered on
the concept of a canvas frame [7], [8] - a blank image unit of
fixed dimensions C ×C. The canvas frame dimension C ×C
is evaluated as the largest image size that can inferred upon
by a selected DNN model on a representative edge device
while maintaining real-time inference or processing latency.
To populate the blank canvas frames, the system processes N
camera streams in parallel to decompose each input frame into
a set of tiles. These tiles are extracted at camera-specific scales
or “crop” dimensions and jointly represent RoI of different
sizes across all N cameras. Selected tiles that completely en-
compass the RoI(s) are evaluated for criticality and Inverse 2D
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Fig. 2. System Prototype Design of Sub-Components Operating at a Single Jetson TX2 Edge Device (Note: best viewed in colour)

bin packed onto the canvas frame for inference. The system’s
bin packing or canvas construction mechanism is designed
to ensure that RoI tiles are proportionately squeezed onto
the canvas frame based on RoI-specific criticality and spatial
constraints, thus providing equitable sharing of canvas space
for all RoI. The system additionally leverages batched infer-
ence of canvas frames to best optimize resource utilization.
Our prototype evaluations on a NVIDIA Jetson TX2 [9] edge
device show that compared to a full-frame FCFS inference
baseline, canvas based processing with a batch size of 4 yields
a 4.75× (or 475%) increase in processing throughput to 23
FPS per-camera across N = 6 camera streams (cumulatively
138 FPS) for a pedestrian detection application with marginal
≤ 1% loss of accuracy.

II. EMPIRICAL RESULTS

A. System Design

We first describe the prototype system design which com-
prises of five fundamental components working in tandem on
an edge device, illustrated in Figure 2.

1) A periodic re-stabilization phase initialises the system
by running batched full-frame detections across all N
camera streams for a user-defined T number of frames
every M minutes. This operation has a dual purpose of (i)
detecting stationary objects to be maintained in memory
and (ii) determining tiling scales and dimensions for
subsequent system operations. The number of tiling scales
and their dimensions are determined per-camera using
K-means clustering of the {height, width} distributions
of detected objects in each camera stream. An elbow
detection method yields the k value or the number of
clusters/tiling scales, and the centroid of each cluster
yields the tiling scale dimensions. Camera-specific tile
scales allow the system to adapt to varying object or scene
characteristics and ensure that each RoI will be enclosed
or captured by at least one tile at its required/appropriate
tiling dimension.

2) The system processes each camera input stream in paral-
lel and on a per-frame basis to identify potential RoI using
background subtraction. This mechanism prioritizes ob-
jects in motion as stationary objects are already accounted
for in the previous step.

3) The input frame is then tiled at the determined camera-
specific scales to yield a “bag of tiles” that jointly
represent the RoI at different scales or “crop” dimensions.

4) Tiles that fully enclose the RoI are evaluated for criticality
and spatial sizing constraints based on their tile/object
dimensions and cost to canvas (i.e. its canvas utilization)

5) The selected tiles representing all RoI across N camera
streams are then 2D Inverse Bin Packed proportional to
the determined RoI/tile criticality and squeezed within its
(re)sizing constraints onto the canvas frame for inference.

B. Prototype Evaluation Design

Edge Device: We implement the prototype on an NVIDIA
Jetson TX2 [9] edge device which features a 256 CUDA-core
PASCAL GPU and an ARMv8 multi-CPU architecture.
DNN Model: We use a pre-trained YOLOv5s [10] model that
is optimised to run on a half-precision TensorRT engine and
fine-tuned for drone-based overhead views of pedestrians. We
map selected RoI tiles from ith input frame from N cameras to
the ith canvas frame for inference. We empirically determine
that a canvas size of 640× 640 and a batch size of b = 4 best
balances optimizes GPU utilization while also maintaining a
sufficiently low inference latency of ∼ 170ms or conversely
high inference throughput 24 canvas frames per second. With
RoI tiles from N cameras mapped to each canvas frame, this
yields 24 FPS inference throughput per camera. The periodic
re-stabilization phase that runs for T = 10 frames every M =
30 seconds performs batched full frame detections incurring
a latency of 2.5s every cycle, thus tempering the achievable
throughput to 23 FPS for each of the N camera frames that
are mapped to a single canvas frame.
Dataset: We employ Okutama-Action [11], a drone-based
pedestrian detection dataset to evaluate our prototype func-
tionality. This dataset features 43 video sequences captured
by drones flying overhead a group of pedestrians, recorded at
30 FPS and 4K resolution.
Choosing N cameras for Canvas-Based Processing: We
evaluate canvas-based processing of

(
43
N

)
cameras at a time,

with N chosen as a function of (i) the maximum number of
camera streams that can be decomposed into tiles in parallel
during the asynchronous inference of the previous canvas
frame i.e. the next batch of canvas frames must be constructed
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For batch size
b = 4

mAP@0.5 FPS
per Camera

Cumulative
FPS for
N = 6

FCFS Baseline 0.798 4 24
Naive Uniform Packing
of N input frames 0.704 24 144

Ours 0.785 23 138

TABLE I. Comparison of canvas-based processing against baselines

before the previous batch completes processing, and (ii) the
maximum number of dataset-specific chosen tiles from N
cameras that can be squeezed within their spatial constraints
on a single canvas frame. We empirically choose N = 6 for
the Okutama-Action dataset.
Metric: We observe the impact of canvas-based processing on
both throughput and accuracy to validate our hypothesis that
tiling RoI from N camera frames onto a composite canvas
frame can increase camera processing throughput with no loss
to accuracy. To this end, we discuss the mean average precision
(mAP) of the YOLOv5s model at an IoU threshold of 0.5 i.e.
mAP@0.5 and the achievable inference throughput, both per-
camera and cumulatively across N camera streams for a batch
size of b = 4.
Baselines: We evaluate the system performance against two
opposing baselines:
1. FCFS baseline which assumes that a single GPU performs
full frame inference on input frames from a single camera
stream. For fairness, we evaluate resize and box pad each input
frame to fit into a canvas frame of size 640×640. This baseline
describes the maximum achievable object detection accuracy
for the chosen task and dataset.
2. Naive bin-packing baseline where input images from
N camera streams are uniformly resized in its entirety (i.e.
without decomposing into RoI tiles) and packed onto a can-
vas frame. This baseline describes the maximum achievable
throughput for processing N camera streams concurrently and
allows us to evaluate the cost or overhead of canvas-based
processing.

C. Prototype Evaluation

We now evaluate the achievable throughput and accuracy
using canvas-based processing on our system prototype and
compare it against the FCFS baseline. As seen in Table I,
our system prototype for canvas-based processing is able to
substantially moderate the throughput-accuracy trade-off by
ensuring the efficient and accurate processing of N = 6
camera input streams on a single Jetson TX2 device. When
compared to the FCFS baseline, our system prototype reports
significant gains of 4.75× or 475% in throughput with a
negligible ≤ 1% loss in accuracy. On the other hand, when
compared to the naive uniform packing baseline, our system
prototype reports a gain of 8% in object detection accuracy
with a minor loss in throughput (i.e. 24 FPS down to 23
FPS per camera). This is due to the overhead of the periodic
re-stabilization phase which determines the most-recent RoI
dimensions and tiling scales, while also detecting and main-
taining stationary objects in memory.

III. CONCLUSION

We demonstrate the components of criticality-aware canvas-
based processing of multiple concurrent camera streams on a
single edge device. Our system prototype implemented on a
single NVIDIA Jetson TX2 shows dramatic improvement of
the throughput-accuracy trade-off against evaluation baselines
with the concurrent processing of N = 6 camera streams
for a pedestrian detection task. We leave workload and object
{appearance, motion} adaptive canvas-based processing for fu-
ture work to further improve the achievable camera processing
capacity and throughput.
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