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Abstract— We address the challenge of multi-LiDAR inter-
ference, an issue of growing importance as LiDAR sensors
are embedded in a growing set of pervasive devices. We in-
troduce a novel approach named D2SR, enabling decentralized
interference detection, mitigation, and recovery without explicit
coordination among nearby LiDAR devices. D2SR comprises
three stages: (a) Detection, which identifies interfered frames,
(b) Mitigation, which performs time-shifting of a LiDAR’s
active period to reduce interference, and (c) Recovery, which
corrects or reconstructs the depth values in interfered regions
of a depth frame. Key contributions include a lightweight
interference detection algorithm achieving an F1-score of 92%,
a simple yet effective decentralized de-synchronization mecha-
nism, and a lightweight depth recovery pipeline that preserves
high throughput processing on edge devices. Evaluation on
Nvidia Jetson devices demonstrates D2SR’s efficacy: under
static settings, D2SR accurately detects interference in 93%
of cases (recall=82%) and reduces the depth estimation error
by 27% (RMSE= 38.7 cm, compared to RMSE= 60.6 cm for a
baseline without D2SR). Furthermore, D2SR is able to reduce
the fraction of interfered frames by 75.1% and reduce the depth
estimation error (for interfered frames) by 24.9% even for a
moving robot scenario.

Index Terms— LiDAR Interference; Multi-Robot Systems

I. INTRODUCTION

LiDAR (Light Detection and Ranging) sensors have wit-
nessed a remarkable surge in its applications across various
fields, such as for autonomous vehicles [1], robotic nav-
igation [2], indoor mapping [3] and environmental moni-
toring [4]. When multiple LiDAR-equipped devices coexist
and operate in close proximity (such as multiple object
picking robots in a warehouse), they can generate mutual
interference–very specifically, a receiver may incorrectly
receive and process the light pulse emitted by another device.
As we shall quantify, such interference can lead to signif-
icant errors in depth estimation, thereby undermining the
reliability of LiDAR-based 3D sensing especially in indoor
environments.

While some of the consequent incorrect depth readings
manifest as outliers and can be mitigated partially through
preprocessing techniques (e.g., median filtering [5]), we shall
see that such interference often generates erroneous readings
over substantial parts of one or more captured depth frames.
This can significantly degrade tasks like object detection,
particularly for smaller objects (e.g., chairs, laptops) com-
monly found in indoor environments. Various DNN-based
strategies have been proposed to reconstruct erroneous depth

Fig. 1: D2SR’s High-level Architecture

estimation, using collocated RGB image data and “clean”
depth map values. However, a key challenge in applying such
DNN-based reconstruction is to separate such interference-
generated errors from the random errors that inevitably occur
due to environmental artifacts (e.g., reflectivity variations)
and sensor imperfections (e.g., noise).

In this work, we tackle this progressively-important prob-
lem of multi-LiDAR interference in indoor environments
and present a novel approach, called D2SR, that enables
decentralized (without any explicit coordination or signaling
among nearby scanning LiDAR devices) interference detec-
tion, mitigation, and recovery. D2SR conceptually involves
three distinct stages, illustrated in Figure 1: (a) the Detection
stage first identifies the individual frames that are sub-
ject to (unpredictable) interference-generated degradation;
(b) the Mitigation stage then uses a simple, but effective,
dynamic duty cycle phase adjustment strategy to partially
de-synchronize multiple emitter-receiver pairs, thereby re-
ducing (but not completely eliminating) the fraction of
interfered frames; and (c) the Recovery stage operates on
each individual interference-afflicted frame to first identify
the sub-regions (masks) distorted due to interference and
then estimate/generate the depth values for such regions,
thereby significantly reducing the overall depth estimation
error. D2SR’s design is notable not just for its ability to tackle
this problem of interference holistically, for a varying number
of collocated LiDARs, but also it is lightweight enough to
permit real-time, on device execution of the entire pipeline
on resource-constrained pervasive/edge devices.

We make the following key contributions:

• Lightweight Approach for Interference Detection: We pro-
pose a lightweight interference detection algorithm, based
on a convolutional neural network (CNN) architecture, that
effectively identifies the subset of interfered frames that a
LiDAR sensor experiences because of possible interfer-
ence with concurrent proximate LiDARs. We shall show



that this approach can accurately discriminate interfered
depth frames from genuine LiDAR data (F1-score= 92%),
enabling us to activate the subsequent stages of D2SR as
needed.

• Simple but Effective Decentralized LiDAR De-
synchronization: To minimize the interference among
the LiDARs, we introduce a decentralized technique that
attempts to de-synchronize the active periods of different
LiDAR sensors without requiring any explicit signaling
among LiDAR devices (or even knowledge of the number
of interfering devices). The de-synchronization mechanism
effectively adjusts both a LiDAR device’s duty cycle,
as well as time-shifts the active period, to reduce the
likelihood of collision with other nearby LiDARs. We
shall show that this approach significantly reduces the
number of interfered frames (70.3% reduction when N=2
LiDARs, operating at half their frame rate), although its
efficacy understandably diminishes when the number of
interfering LiDARs increases (the reduction is only 3.5%
for N=5 LiDARs).

• Lightweight Depth Recovery Technique: For depth frames
that continue to suffer from interference, we present
a recovery mechanism that uses a multi-stage unified
DNN model to compute an interference mask (sub-regions
whose values were corrupted by interference) and then
recovers (or regenerates) the depth values for pixels within
each interference mask. Using a prototype implementation,
we show that this recovery pipeline is lightweight enough
to sustain high throughput processing on multiple edge-
class devices (163.9 fps on a Jetson AGX Orin, and 14.7
fps on a much more constrained Jetson Nano).

• Demonstrate Real-World Benefits of D2SR: We evaluate
D2SR’s performance on multiple Nvidia Jetson devices,
under varying levels of interference caused by stationary
LiDARs (N={1,2,. . .,5} devices), in three different indoor
environments. We also tested D2SR’s performance with
a LiDAR device mounted on a moving robotic platform.
Our studies show that, under static settings, (a) D2SR can
detect interference in 93% cases with a high precision of
99% and recall of 82% even under dynamically changing
environments, and (b) D2SR can reduce the depth estima-
tion error by 27% (RMSE= 38.7 cm, compared to RMSE=
60.6 cm for a baseline without D2SR). These gains persist
even for the moving robot, where D2SR can reduce the
fraction of interfered frames by 75.1% and reduce the
depth estimation error (for interfered frames) by 24.9%.

Overall, we contribute to addressing the challenge of inter-
ference that LiDAR-enabled devices will increasingly face in
smart factories, warehouses, and other environments where
multiple robots operate concurrently, as well as develop a
lightweight, integrated approach to mitigate and recover from
the impact of such interference.

II. RELATED WORK

We discuss prior works focusing on LiDAR interference
detection, characterization, and mitigation approaches.

Interference Detection & Characterization Studies: Mul-
tiple prior works [6]–[8] have studied the effect of mutual
interference among LiDARs operating in close proximity.
Martin et al. [6] examined the correlation of interference with
the relative sensor pose in commercial RGB-D sensors (such
as Kinect and Xtion RGB-D sensors). Their experiments
revealed that up to 95% of depth measurements in the
interference image region may disappear when two RGB-D
sensors interfere. Eom et al. [8] presented various mutual
interference scenarios involving off-the-shelf 2D LiDARs,
including direct interference between LiDAR scanners, indi-
rect interference caused by reflection from other objects, and
potential high density of interference sources. Curto et al. [9]
conducted a comparative assessment of depth measurements,
and the impact of random errors, using three RealSense
cameras (D415, SR305, and L515) for various transparent
and translucent objects. However, the impact of cross-LiDAR
interference was not explored. A recent study [10] examined
interference between different 360◦ LiDAR sensors.
Interference Mitigation Studies: Interference mitigation
in multi-LiDAR systems can draw from various wireless
scheduling techniques such as SDMA, FDMA, WDMA,
TDMA, and CDMA [11]. However, their direct applica-
tion is hindered by the challenge of centrally coordinat-
ing all sensors, particularly in uncontrolled environments.
Among direct ToF LiDARs, prior studies have explored
hardware/sensor-level modifications such as interference sup-
pression schemes by adding a variable delay between the
laser emissions [11], [12], modulated pulse scanning to add
information to distinguish self–vs.-other laser pulses [13],
and a chaotic laser-based architecture [14] that is resilient
to interference. Simple software-level solutions involve (a)
filtering methods to distinguish between direct and scat-
tered interference [15] and (b) interference cancellation tech-
niques [16]. Additionally, crosstalk effects between 3D spin-
ning LiDAR devices have been addressed using data-driven
spatiotemporal filtering [17]. However, these approaches do
not perform well as the number of LiDAR sensors grows and
are also unable to respond rapidly to changing interference
patterns, especially in dynamic and diverse indoor environ-
ments. There is also little prior work on recovery mechanisms
that are able to correct corrupted or missing LiDAR data
caused by interference.

III. IMPACT OF LIDAR INTERFERENCE

Mutual interference arises when a LiDAR receiver receives
a foreign signal (laser pulses) generated by the emitter
component of other LiDARs [18]. In future scenarios with
multiple LiDAR-equipped robots or wearable devices, such
interference poses a significant challenge. Consider a bustling
restaurant where robot waiters, each equipped with a LiDAR
for navigation, converge near tables or cross paths while
serving customers. This interference may cause navigation
errors, service delays, or even robot collisions, disrupting
restaurant operations.

There are two types of mutual interference: (a) Direct
Interference, occurring when two LiDAR sensors face each



other, coupling one sensor’s signal to the other’s receiver, and
(b) Indirect/Scattering Interference, where a LiDAR receiver
captures scattered/reflected signals from another LiDAR’s
emitter. Additionally, LiDAR sensors employing Avalanche
Photodiodes (APDs) often exhibit random errors [19]. These
errors cause fluctuations in depth image sequences captured
by stationary cameras, particularly in static environments.
The extent of these errors depends on the reflective properties
of encountered surfaces. Further details on this issue will be
discussed in Section V-C.1.

(a) Angle between two LiDARs (b) Varying number of LiDARs

Fig. 2: The experimental setups to study the impact of
interference of a scanning LiDAR

We first investigate the effects of two distinct types of
interference on a scanning LiDAR system, selected due to
their superior precision in depth estimation and heightened
susceptibility compared to other LiDAR systems (e.g., flash
LiDAR). This evaluation is conducted within a controlled
experimental setup, wherein two LiDAR devices are situated
in a static environment featuring a singular object (a chair)
positioned in their field of view. As depicted in Figure 2a, one
LiDAR (LiDAR 1) remains stationary while the other (Li-
DAR 2) is systematically adjusted to vary the angle between
their lines of sight. The Root Mean Squared Error (RMSE)
between reference depth images and interfered depth images
captured by LiDAR 1 is used to quantify interference impact.
Reference depth images are generated by averaging pixel
values across 300 consecutive depth images (dampening
the effect of random errors) acquired over a 10-second
baseline interference-free period. Subsequently, sequences of
300 depth images are captured at four distinct angles: {45,
90, 135, 180} degrees. RMSE values, depicted in Figure 3a,
peak at 135◦, where both types of interference are most
pronounced. Also, the error due to scattering interference
is observed to be higher compared to direct interference, as
indicated by the lower RMSE values observed at 180◦, where
the scattering interference is minimal.

Next, we study the influence of scattering interference
across a varying number of spatially and temporally over-
lapping LiDAR systems. Our setup, depicted in Figure 2b,
closely mirrors the methodology employed in the previous
study. We obtained sequences of 300 depth images for three
distinct scenarios: utilizing 1, 3, and 5 concurrently operating
LiDARs. Each scenario is assessed under two conditions:
one with a singular object (chair) and the other with four
objects (chairs) present in the environment. RMSE variations,
shown in Figures 3b and 3c, increase with the number of
interfering LiDARs and environmental clutter. When there

(a) Different angles (b) Single object (c) Multiple objects

Fig. 3: Comparison of RMSE for Different LiDAR Config-
urations and Environmental Complexity

is only a single LiDAR operating, the RMSE with the
reference frame is about 65 cm which signifies the influence
of the random error. For instance, with 3 concurrent LiDARs,
RMSE rises by 13.3% from 90 cm (for one object) to 102
cm with increased clutter (for three objects), emphasizing
interference’s dependency on spatial and temporal overlap
of LiDAR units and environmental complexity.

IV. SYSTEM DESIGN

We now outline the design goals and the high-level archi-
tecture of our system.

A. Design Goals

Low Computational Complexity: We aim to develop a
solution that can be bundled as a middleware component on
the pervasive device containing the embedded LiDAR sensor.
Accordingly, we require the computational complexity of
D2SR to be low enough to permit execution on resource-
constrained hardware (e.g., Jetson AGX Orin), without caus-
ing any drop in the the LiDAR frame rate.
Decentralized Operation: D2SR must operate
autonomously and independently across multiple LiDAR
devices in a decentralized manner–i.e., it cannot utilize any
centralized or inter-device communication for coordinating
the sensing behavior of individual LiDAR devices.
Robust Recovery Mechanism: The recovery mechanism of
D2SR should be robust enough to reduce the interference-
induced error in the depth frames, across a variety of
environmental context (e.g., varying number of interfering
LiDARs, stationary vs. moving operation).
Precision in Interference Detection: Our solution functions
as a closed-loop control system, strategically engineered to
identify and reduce interference-inducted errors. Maintaining
high precision in interference detection is critical to prevent
unwarranted false positives that could unnecessarily trigger
the recovery pipeline, adding undue processing latency and
also introducing errors in the resulting depth images.

B. System Architecture

For efficient concurrent operation, it is essential to ensure
that the operating schedules of different sensors are suffi-
ciently de-conflicted. However, this is challenging without
direct communication. Even if communication was possible,
localizing sensors relative to each other remains challenging
without techniques such as point cloud registration. Addi-
tionally, broadcasting sensor depth images to neighboring
LiDAR devices will require significant wireless bandwidth.



Fig. 4: Interference Detection Model
To address these challenges, we propose D2SR, a closed-

loop control system. It autonomously detects interference and
optimizes resource sharing among LiDAR units, eliminating
the need for inter-device coordination or communication.
D2SR aims to consistently deliver low-error depth images
while minimizing interference. Illustrated in Figure 1, our
solution comprises three key stages.
1) Interference Classification: Initially, the interference clas-

sification model identifies any interference present within
a given depth image.

2) Hardware Sync Control: The second stage involves the
hardware synchronization controller, which dynamically
adjusts the duty cycle’s period while maintaining a con-
stant pulse width. This ensures efficient resource alloca-
tion, with reduced conflicts, across multiple sensors.

3) Recovery Model: The final stage encompasses the recov-
ery process, which serves a dual purpose: (a) identifying
interfered regions within the depth image, and (b) refining
the depth values for these identified interfered regions.

V. D2SR’s KEY COMPONENTS

In this section, we delve into the technical details of the
key components comprising D2SR.

A. Interference Detection Model

The interference detection model classifies individual
depth frames as either “interfered” or “clean”. It is a pivotal
component of D2SR as it not only triggers the recovery
stage for “interfered” images but also impacts the duty cycle
adjustments performed by the de-synchronization stage.

Illustrated in Figure 4, our neural network-based model
comprises convolutional layers, each followed by Leaky
ReLU activation, with the final layer utilizing a sigmoid func-
tion for activation. Interference pattern detection involves
scanning the entire image to identify potential interference
noise patterns, as it is hard to differentiate random vs.
interference noise within smaller patches. While increasing
the receptive field through additional convolutional layers
could enhance performance, it would concurrently increase
computational demands and diverge from our on-device, high
throughput design objective. Consequently, we have opted
to modify the filter size to an asymmetric shape of (118,
1) in the final convolutional layer, which improved model
performance without significantly increasing computational
complexity.

To train the model, we compiled a dataset containing
frames from multiple Intel L515 LiDARs, This dataset
comprises 7,945 images acquired from three distinct environ-
ments: office, meeting room, and a university lab space, with
people moving around naturally. Within these environments,
four LiDARs remained stationary while one LiDAR moved
to capture depth images, both with and without interfering
with the others. We partitioned the dataset into 80% for

training and 20% for testing, using BinaryCrossEntropyLoss
as the loss function for training.

We evaluate the model’s performance using F1-score,
precision, and recall. The model should exhibit higher pre-
cision, as it functions as a gating mechanism within the
pipeline. Conversely, enhancing recall may lead to more
frequent invocation of the recovery stage, thereby potentially
increasing the computational overhead of D2SR. Our model
achieves high performance on both the training and test sets,
with F1-scores of 90% and 89%, precision of 99% and 98%,
and recall of 83% and 82% respectively.

B. Decentralized De-Synchronization
Our proposed decentralized de-synchronization approach

seeks to reduce (but not eliminate) the interference between
LiDAR sensors, thereby increasing the fidelity of individual
depth frames. However, such increased fidelity will come at
the expense of a lower frame rate, as an individual LiDAR
will be actively emitting pulses less often.

Our approach involves dynamically adjusting the sensor’s
duty cycle phase by monitoring the fraction of interfered
frames over a predefined observation period. In D2SR, we
configure this period to last one second. During this period,
we carefully analyze the output of the interference detection
model to facilitate adjustments to the duty cycle, with the
goal of minimizing the occurrence of interfered frames.

Fig. 5: An Example of Dynamic Duty Cycle Algorithm

Algorithm 1 Dynamic Duty Cycle
n← 12
total frames← 24
tstart ← random(0, total frames− n)
loop
δ =

∑n/2
i=1 buffer[i]−

∑n
i=n/2 buffer[i]

tstart = max(0,min(n, tstartt + δ)
tend = max(0, total frames− tstart − n)
sleep(tstart)
laser on()
sleep(n)
laser off()
wait(tend)

end loop

Let total frames be the maximum number of frames the
sensor can capture per second, and n be the number of frames
captured during the active period (i.e., predetermined target
frame rate). A buffer will store the output of the inter-
ference detection model for these n frames. Following each



Fig. 6: Architecture of Recovery Model

observation period, the duty cycle is adjusted by δ, calculated
as per Algorithm 1. This δ represents the difference in the
number of interfered frames between the first and second
halves of an active period. In the initial observation period,
the active period starts after a random offset.

The dynamic duty cycle algorithm (Algorithm 1) is illus-
trated in Figure 5 and seeks to de-conflict LiDAR devices by
essentially time-shifting the active period for each individual
device. Let’s consider a scenario involving two LiDAR units
(L1, L2) that overlap spatially and temporally. We set n to
12, corresponding to a frame rate of 12 frames per second.
For simplicity, let’s assume that the observation periods of
both LiDARs are synchronized, although achieving such
alignment may not be feasible in real-world scenarios.

In the initial observation period, both LiDARs encounter
a combined total of 8 interfered frames, with L1 and L2
experiencing 6 interfered frames, respectively, in the first and
second halves of their active period. As a result, L1’s duty
cycle will be adjusted backward by 4 frames, while L2’s duty
cycle will be adjusted forward by 4 frames for the subsequent
observation period, thereby deconflicting their active periods.
Consequently, no further adjustments will be made to the
duty cycles of either LiDAR unit. In implementing D2SR,
we leverage a feature of the Intel L515 sensor allowing laser
control via an external trigger1, enabling laser activation and
deactivation as needed.

C. Recovery of Depth Images

Refining interfered depth images involves a two-step pro-
cess: (a) identifying the interference-affected regions and (b)
estimating depth values for these areas using available data.
The effectiveness of our recovery models depends heavily
on the interference classification model’s performance. Er-
roneous triggers (false positives, generated due to similarity
between random and interference noise patterns) can degrade
overall recovery performance. Since the recovery model is
only trained to recover the interference error, false positives
can lead to inaccurate depth value reconstruction for such
regions, thereby increasing the overall reconstruction RMSE.
Hence, precise interference classification is crucial for ensur-
ing recovery process reliability.

As depicted in Figure 6, the recovery component uses a
streamlined version of the UNet model [20]. Our approach

1https://dev.intelrealsense.com/docs/lidar-camera-l515-multi-camera-
setup

Fig. 7: Thresholds Comparison for Interference/Random Er-
ror Mask Estimation

integrates two heads that serve two functions: segmenting in-
terference masks and regressing missing or inaccurate depth
estimations within those masks. Consequently, our model
functions as a unified system, performing both classification
and regression tasks within a single backbone architecture.

Let xi and yi represent the input (noisy) and the ground
truth depth images, mi and m̂i denote the ground truth and
estimated interference masks, and x̂i represent the regression
output of the recovery model. The output depth image ŷi is
computed using the formula ŷi = x̂i ∗ m̂i + xi ∗ (1 − m̂i).
SmoothL1Loss function minimizes the error between yi and
ŷi and BinaryCrossEntropyLoss minimizes the loss between
mi and m̂i.

1) Ground Truth Interference Mask: The key challenge
in the recovery task stems from generating accurate ground
truth interference mask, especially in small regions where
they resemble other noise patterns. To tackle this challenge,
we employ a two-step approach for generating the ground
truth.

We collect data in a stationary environment utilizing a
fixed set of LiDARs. Each LiDAR captures a sequence last-
ing approximately 20 seconds, consisting of interference-free
depth images. Following this, we capture multiple sequences
of depth images while activating combinations of 2, 3, 4,
and 5 LiDAR sensors simultaneously. This enables us to
gather a varied set of interference patterns. We repeat this
procedure across six unique layouts, each featuring variations
in furniture arrangement and LiDAR placement within a
static environment. In total, we gathered a dataset comprising
78,000 interfered depth images.

Masks for random errors are initially created, comprising
pixels with higher depth variation under interference-free
operation, for each stationary LiDAR position. To create
such masks, the median depth image for a fixed field of
view is computed by finding the pixel-wise median depth
value across the sequence. Subsequently, the mean pixel-
wise error is calculated between the median frame and each
frame within the sequence, and outliers are identified from
the distribution of these errors by applying different standard
deviation (σ) based thresholds. Figure 7 depicts the variation
of the random error mask based on different thresholds
{µ, µ+ σ, µ+ 2σ} of the pixel-wise error distribution.

Next, we compute the error between the same median
frame and the interfered frames from other sequences cap-



tured for the same field of view. Utilizing identical thresh-
olds, an error mask is generated, encompassing both random
error and interference error. Then, the interference mask for
each image is obtained by removing the intersection of the
random error mask and the error mask calculated for each
depth image. The final output for different thresholds is
shown in the last row of Figure 7.

2) Ground Truth Depth Images: For each noisy depth
image, the ground truth depth image is sampled from its
corresponding interference-free sequence. However, as ran-
dom errors fluctuate across frames, zero values can inflate
the final computed RMSE. To address this issue, we employ
a technique where zero-valued pixels outside the interference
mask in the noisy depth image are matched with the corre-
sponding locations in its ground truth image, and vice-versa,
ensuring consistency during the RMSE calculation.

D. Training and Evaluation

As seen in Figure 6, the number of filters (C) in the
recovery model doubles in each subsequent convolution layer
of the encoder, while it correspondingly reduces in successive
blocks of the decoder. We consider three recovery models
with different numbers of first-layer filters, evaluating them
based on the F1-score for interference mask estimation and
RMSE (Table I) between reconstructed and ground truth
depth images.

Model F1 Score (%) RMSE (cm)
Train Test Train Test

Identity - - 80.73 80.74
UNet32 0.86 0.86 39.60 39.78
UNet16 0.84 0.84 42.93 43.06
UNet8 0.80 0.80 47.89 48.07

TABLE I: Recovery models’ performance

The influence of the random error has been removed from
the dataset. Consequently, the reported RMSE reflects the
error from the interference. The Identity model refers to the
error between the ground truth depth image and the input
(interfered) depth image. Increasing the input channels of
the initial convolution layer reduces the RMSE by 40.5%,
46.7%, and 50.7% for 8, 16, and 32 channels, respectively.

VI. EVALUATION

This section outlines our experimental setup, the dataset
collected, and the suite of evaluation metrics utilized for a
comprehensive performance evaluation of D2SR.
Experiment Setup: To evaluate the performance of D2SR,
we conduct multiple experiments in two different settings.
• Stationary LiDARs: We place five static LiDARs (at an
elevation of 90 cm from the ground) in an arc (as shown in
Figure 8a). Each LiDAR spatially overlaps with every other
LiDAR.
• Moving Robot’s LiDAR: A robot platform with a LiDAR
mounted at a height of 80 cm (see Figures 8b and 8c) moves
around the test area. An additional four stationary LiDAR
units are strategically positioned in the vicinity to interfere
with the LiDAR on this robot.

(a) Stationary LiDAR setup

(b) Setup with Moving robot (c) The robot platform

Fig. 8: Experiment Setup: Stationary & Moving Robot Li-
DARs
Data Collection: For the stationary LiDAR experiment, we
adopt an approach similar to that used to train the recovery
model. To obtain the ground truth interference masks and
depth images, we first capture a sequence of depth images
without interference. Subsequently, we record two sequences
for different numbers of spatially overlapped LiDARs (e.g.,
2, 3, 4, and 5) and at five distinct frame rates (e.g., 25, 20,
15, 10, and 6), resulting in a total of 45 sequences.

In the second scenario with the moving robot, data
collection occurs in two phases to independently evaluate
the de-synchronization and recovery models. Sequences are
recorded with different spatially overlapped LiDAR con-
figurations (e.g., 1 to 5 LiDARs) and three frame rates
(30, 15, and 6), totaling 12 sequences. Only the moving
LiDAR’s stream is utilized for evaluation in each combi-
nation, lasting around 30 seconds along a predetermined
trajectory. Obtaining ground truth interference masks and
depth images for the moving LiDAR is essential for assessing
the recovery process. However, collecting this data while the
LiDAR is in motion and synchronized with other LiDARs
poses challenges. Therefore, the robot pauses at four different
locations along the trajectory, capturing one interference-free
sequence and two sequences involving varying numbers of
spatially overlapped LiDARs (e.g., 2, 3, 4, and 5) at 30 fps
at each stop.
Evaluation Metrics: We establish the following metrics to
assess the performance of our system.
1) Interference Ratio: This metric quantifies the proportion
of interfered frames relative to the total number of frames
per sequence.
2) Frame Rate: Defined as the total number of frames
divided by the sequence duration.
3) F1-Score: Utilized to assess the performance of interfer-
ence mask segmentation during the recovery phase.
4) Root Mean Squared Error (RMSE): Measures the dispar-
ity between the predicted and ground truth depth images.

A. Dynamic Duty Cycle Algorithm’s Performance

We illustrate the performance of the dynamic duty cycle
algorithm by evaluating the interference ratio (fraction of
interfered frames) under different frame rates. The trade-
off between interference ratio and frame rate is shown for



stationary LiDARs and LiDAR setups on a moving robot
in Figure 9. While our system operates without assuming
the number of LiDARs, optimal duty cycle adjustment (i.e.,
timesharing) requires knowledge of the LiDAR counts. For
instance, with two spatially overlapped LiDARs at a frame
rate of 15, the interference ratio is 29.7%, including duty
cycle adjustment duration. As both the frame rate and
number of LiDARs increase, the interference ratio escalates
due to greater temporal overlap among the duty cycles of
multiple devices.

Both the stationary LiDARs and the LiDAR on the moving
robot exhibit comparable performance. However, with certain
static LiDAR combinations and moving LiDAR, the spatial
overlap may not be consistent throughout the trajectory.
Hence, the interference ratio might not consistently reach
1 at the highest frame rate, often dropping below stationary
LiDAR setups. This mimics real-world scenarios where con-
tinuous spatial and temporal overlap among moving LiDARs
is not guaranteed.

(a) Stationary LiDARs (b) Moving robot’s LiDAR

Fig. 9: Interference Ratio vs. (Frame Rates, No. of LiDARs)

B. Recovery Performance

Table II presents the F1-score for interference mask
segmentation and the RMSE difference in the stationary
LiDAR setup. A minor performance decline is observed
compared to the training dataset, attributed to its limited
size. The RMSE improvement ranges from 31.6% to 36.0%
(max reduction ≈21.85 cm) compared to the identity model,
indicating overfitting of the large model. Similarly, the recov-
ery performance, varying between 11.5%–24.9%, diminishes
(compared to the stationary training set) for the moving
robot’s LiDAR. This decline is primarily due to reduced
F1-score in interference mask segmentation, evident in Fig-
ure 10’s cumulative distribution plot for pixel-wise absolute
error. Notably, approximately 80% of interfered pixels are
rectified by the recovery models. However, false positives in
the estimated mask have increased the overall RMSE. It’s
important to note that the reconstruction process currently
relies solely on a single depth image; further improvements,
potentially using a sequence of such images and additional
RGB images may be explored in the future.

C. Latency

We present the latency of interference detection and re-
covery models on diverse pervasive devices, such as Jetson

Stationary LiDARs Moving Robot’s LiDAR
Model F1-score RMSE (cm) F1-score RMSE (cm)
Identity 60.64 53.89
UNet8 0.75 38.79 0.65 40.45
UNet16 0.74 40.72 0.63 43.78
UNet32 0.73 41.47 0.59 47.66

TABLE II: Performance of the recovery Models for station-
ary and moving robot’s LiDARs setups

(a) Stationary LiDARs (b) Moving Robot’s LiDAR

Fig. 10: Cumulative Distribution of RMSE for Recovery
Model in Stationary and Moving Robot Setup

Nano 4GB, Jetson Xavier NX 6GB, and Jetson AGX Orin
32GB. Table III depicts the inference times for each model.

Our interference detection models achieve impressive pro-
cessing rates: the Jetson Nano 4GB, Jetson Xavier NX
6GB, and Jetson AGX Orin 32GB devices reach 52, 170,
and 379 fps, respectively, exceeding the camera’s real-time
operation of 30 frames per second and facilitating faster
decision-making for the duty cycle algorithm. Additionally,
accelerated frame rates are feasible across all recovery model
variants, with the Jetson AGX Orin achieving rates ranging
from 63 to 164 fps. However, the Jetson Nano devices
achieve lower frame rates of 9 and 14 fps for UNet8 and
UNet16 variants, respectively, due to memory constraints.

Model AGX Orin 32GB Xavier NX 6GB Nano 4GB
UNet8 6.1 15.2 67.9
UNet16 8.8 25.0 117.2
UNet32 15.7 60.2 -
Interference Detection 2.6 5.9 19.1

TABLE III: Inference Time (msec) of the recovery model
variants and the interference detection model

Our results show that we are able to achieve to efficient
interference mitigation across a variety of pervasive devices
via a judicious, resource-aware selection of interference de-
tection and recovery models. In resource-rich environments,
advanced models achieve accelerated frame rates and robust
interference suppression, while resource-constrained settings
benefit from lower-demand models for optimal performance.

VII. DISCUSSION

Recovery of missing depth images: To optimize dynamic
duty cycling efficiency, configuring the frame rate below the
sensor’s maximum threshold is crucial. We can extend the
UNet model to reconstruct missing depth images by fusing
features from a prior depth image and the current color
image. However, performance degradation is likely when the



Fig. 11: Reconstruction
RMSE: Synthetic vs. Prior
Captured depth image

Fig. 12: Impact of Interfer-
ence on ArduCAM ToF Li-
DARs

LiDAR deviates from the FoV associated with the prior depth
image. Figure 11 illustrates an increase in reconstruction
RMSE with expanding frame intervals. We see that RMSE
is reduced by using the synthetic (generated) depth image
from the preceding step as an input for the current frame.
Evaluating interference impact on a Flash LiDAR: While
D2SR is tailored for scanning LiDARs, we investigated inter-
ference effects on a low-cost flash LiDAR, ArduCAM ToF2.
The flash LiDARs are susceptible to interference when their
flashes synchronize, although the flash duration is shorter
than scanning time. Using a scene with five differently sized
boxes on a tabletop, we evaluated RMSE (following previous
methods) shown in Figure 12 for configurations with 1, 3,
and 5 LiDARs simultaneously. We see that the performance
degradation due to interference occurs even in flash LiDARs.

VIII. CONCLUSION

We have demonstrated the feasibility and performance of
D2SR, addressing key challenges in shared LiDAR environ-
ments. Through rigorous evaluation, we have demonstrated
the adaptability and effectiveness of our approach across
diverse scenarios. Specifically, experimental results reveal
that D2SR achieves: (a) a reduction of 70.3% in interfered
frames with two LiDAR units operating at half their frame
rate, (b) a significant improvement in depth estimation ac-
curacy by 27%, and (c) a 75.1% reduction in interfered
frames and a 24.9% decrease in depth estimation error for a
moving robotic platform. These findings underscore D2SR’s
capability to mitigate interference and recover interfered
frames among multiple LiDAR units, both in stationary
and mobile environments. Overall, our study highlights how
decentralized techniques can enhance the robustness and re-
liability of multi-LiDAR systems in real-world applications.
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