
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2024 

JIGSAW: Edge-based streaming perception over spatially JIGSAW: Edge-based streaming perception over spatially 

overlapped multi-camera deployments overlapped multi-camera deployments 

Ila GOKARN 
Singapore Management University 

Yigong HU 
University of Illinois 

Tarek ABDELZAHER 
University of Illinois 

Archan MISRA 
Singapore Management University, archanm@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems 

Commons, and the Graphics and Human Computer Interfaces Commons 

Citation Citation 
GOKARN, Ila; HU, Yigong; ABDELZAHER, Tarek; and MISRA, Archan. JIGSAW: Edge-based streaming 
perception over spatially overlapped multi-camera deployments. (2024). Proceedings of the IEEE 
Conference on Multimedia and Expo (ICME), Niagara Falls, Canada, 2024 July 15-19. 1-6. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9222 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


JIGSAW: Edge-based Streaming Perception over
Spatially Overlapped Multi-Camera Deployments

Ila Gokarn
Singapore Management University
ingokarn.2019@phdcs.smu.edu.sg

Yigong Hu
UIUC, USA

yigongh2@illinois.edu

Tarek Abdelzaher
UIUC, USA

zaher@illinois.edu

Archan Misra
Singapore Management University

archanm@smu.edu.sg

Abstract—We present JIGSAW, a novel system that performs
edge-based streaming perception over multiple video streams,
while additionally factoring in the redundancy offered by the spa-
tial overlap often exhibited in urban, multi-camera deployments.
To assure high streaming throughput, JIGSAW extracts and
spatially multiplexes multiple regions-of-interest from different
camera frames into a smaller canvas frame. Moreover, to ensure
that perception stays abreast of evolving object kinematics, JIG-
SAW includes a utility-based weighted scheduler to preferentially
prioritize and even skip object-specific tiles extracted from an
incoming stream of camera frames. Using the CityflowV2 traffic
surveillance dataset, we show that JIGSAW can simultaneously
process 25 cameras on a single Jetson TX2 with a 66.6% increase
in accuracy and a simultaneous 18x (1800%) gain in cumulative
throughput (475 FPS), far outperforming competitive baselines.

Index Terms—Edge AI, Machine Perception, Canvas-based
Processing

I. INTRODUCTION

Fast and accurate streaming machine perception is a corner-
stone for many real-time urban applications, such as camera
based vehicular tracking and real-time collision avoidance [1].
To ensure that the machine-perceived state does not lag
behind the state of the real world, such streaming perception
needs to optimize both inference accuracy and latency. In
fact, the recently proposed streaming perception paradigm [2]
proposes a novel streaming accuracy metric (Figure 1) that
balances object localization accuracy and latency, and shows
how selectively discarding frames can optimize this metric.
This task is especially challenging for multi-tenancy edge
computing deployments, where a single resource-constrained,
GPU-equipped edge device (e.g., a Jetson TX2) concurrently
executes DNN-based perception over video streams from
multiple N ≥2 vision sensors. While exemplar approaches
such as TETRIS [3] and, more recently, MOSAIC [4], utilize
the concept of spatial multiplexing, to mediate the contention
for shared GPU resources across such N streams, they are
unsuitable for multi-tenancy streaming perception, as they do
not directly consider the latency impacts of stream processing.

We propose a new edge computing paradigm, called JIG-
SAW, that explicitly optimizes DNN-based inference for multi-
camera streaming video applications, such as traffic surveil-
lance. While JIGSAW builds upon the conceptual model of
canvas frames introduced in MOSAIC [4], it possesses two
key novel features. (a) First, it significantly extends the notion
of canvas-based spatial multiplexing to support spatiotemporal

multiplexing, whereby frames arriving from multiple camera
sensors are pre-processed to not only share the pixels within
a single canvas frame, but are also differentially interleaved
in time (and even dropped) to optimally utilize pixels across
multiple consecutive canvas frames. (b) Second, it explicitly
accounts for the reality that multi-camera urban deployments
often exhibit non-trivial spatial overlap between cameras. JIG-
SAW monitors and exploits resulting object-level redundancy,
across the N camera views, to reduce the regions of interest
that must be squeezed within individual canvas frames, thereby
improving the system’s maximum camera capacity.

Figure 2 illustrates the high-level operation of JIGSAW.
Frames from different camera sensors are processed, using
very lightweight techniques, to create a set of tiles (Fig-
ure 2(b)), indexed by each unique object in the sensing field,
that capture an object at multiple spatial scales and possibly
from multiple perspectives. A subset of such tiles, corre-
sponding to multiple different objects, are then packed into a
sequence of canvas frames (Figure 2(c)) after suitable curation
(including potentially discarding all tiles for some objects
that the system determines is best processed at a later time
instant) and resizing, with DNN inferencing then executed on
this sequence of composite canvas frames. JIGSAW effectively
enhances MOSAIC’s innovation in how to spatially apportion
a shared canvas frame across multiple object-specific tiles by
determining (a) when and (b) what regions of interest should
be multiplexed over a sequence of such canvas frames.
Key Contributions:
• Judiciously exploit multi-camera spatial overlap: By de-

veloping a utility maximizing formalism for tile curation
for environments where cameras exhibit varying degrees of
partial spatial overlap, JIGSAW offers a superior accuracy-
vs.-overhead calculus compared to prior extremes that either
(a) effectively partition the sensing field across cameras
(e.g., [5]), selecting only one tile and discarding others to
save computation, or (b) include all tiles across cameras
(e.g., [4]), to maximize perception accuracy while ignoring
computational cost. Empirical results on the benchmark
CityflowV2 [6] multi-view traffic surveillance dataset shows
that (i) compared to (b), JIGSAW effectively reduces the
number of tiles/pixels contending for DNN inferencing by
32% with a 4.3% gain accuracy, and (ii) compared to (a),
JIGSAW offers 9.55% improvement in task accuracy with
only 2.3 ms higher tile processing overhead on average.



Fig. 1. Streaming Perception: When DNN in-
ference completes with tinf latency, the car has
moved (green box) from its predicted location
(magenta box). Streaming perception queries
the state of the predicted world at time ti
and matches the groundtruth yti with the latest
available prediction i.e. ŷϕ(ti).

Fig. 2. JIGSAW’s Overall Functionality and Target Application: (a) Multiple spatially overlapped cameras
deployed at a traffic intersection are processed by a single edge device (b) At DNN inference time Ti,
estimated regions of interest (tiles) are extracted at their appropriate scale from the source camera frames
and (c) evaluated for their utility to the streaming perception task before being packed onto a canvas frame.

• Develop a spatiotemporal pipeline for maximizing multi-
camera streaming accuracy: We show how JIGSAW uses
a multi-stage, computationally lightweight pipeline to both
compute when object specific tiles should be scheduled for
DNN inferencing and how such tiles should be spatially
combined/squeezed into individual canvas frames. Exper-
imental studies on CityflowV2 show that, for N = 25
cameras, JIGSAW’s bin-packing achieves 28.7% greater
streaming object recall (sAR) compared to MOSAIC, which
naively packs all tiles from all cameras into a canvas frame.

• Quantify JIGSAW’s performance gains and flexibility:
We use an Nvidia Jetson TX2-based [7] implementation
of JIGSAW to quantify its superior performance. Using
CityflowV2, we show that, in contrast to a baseline FCFS
processing, JIGSAW can simultaneously process 25 cameras
on a single TX2 GPU with a 66.6% increase in accuracy
and a simultaneous 18x gain in throughput to 19 FPS per
camera. Likewise, in contrast to MOSAIC (where all incom-
ing frames are spatially multiplexed into a canvas frame),
JIGSAW achieves 42.3% increase in streaming perception
accuracy without any loss in throughput.

II. RELATED WORK

Recent work on real-time perception on resource-
constrained devices can be classified into three distinct cat-
egories.
1. Optimising DNN Model and Scheduling. This body of
work focuses on modification of DNN structure and operation
to reduce/optimise processing latency, including anytime or
progressive DNN execution [8], early exit [9], cloud-edge
partitioning [10], and models for streaming perception [11].
2. Input Sensor Stream Modifications. To reduce the volume
of input sensor streams and reduce computation demands, re-
searchers propose approaches such as explore adaptive content
masking [12], frame sampling at the camera for intelligent
frame transfer to the edge [13], and multi-resolution frame
transfer that preserves resolutions for regions of interest [14].

3. System-level Optimizations. With no modification to the
model or the sensor input stream, these systems employ at-
tention scheduling to differentially process regions/sections of
the input stream [15]. While such work utilizes parallelization
of GPU resources and task batching, systems such as MO-
SAIC [4] and TETRIS [3] extend the philosophy of attention
scheduling to curate and extract regions of interest for joint
processing on a single GPU. Another body of work in explores
the utilization of cross-camera spatiotemporal similarities, for
multi-camera deployments, at the edge during computation [5].

Our work cuts across the above three categories, with
JIGSAW selectively discarding frames from multiple camera
input streams, scheduling the creation of the canvas frame for
inference with spatiotemporal multiplexing, and ensuring that
the evaluated state of the world (as observed from multiple
sensors) remains temporally aligned with the physical world.

III. JIGSAW

We now describe JIGSAW’s edge-based, spatiotemporally
aware streaming perception pipeline. Figure 3 (best viewed in
colour) illustrates the components.

A. Design Choices

To achieve its goal of maximizing the streaming accuracy
metric under diverse real-world artifacts, JIGSAW evaluates the
state of the observed world just prior to canvas construction
to determine the marginal utility of including specific objects
in the canvas frame. Such a design is accommodating of
hardware or network heterogeneity, which can require JIGSAW
to support camera streams with varying frame rates and also
generalizes across different deployment characteristics (e.g.,
observer-object distance and object velocity). JIGSAW also
makes no a-priori assumption on the presence/absence of
overlap between cameras and can operate seamlessly under
different deployment conditions.

B. Dynamic Scheduler

The Dynamic Scheduler (DS) orchestrates the execution
of other sub-components to support canvas-based streaming



Fig. 3. JIGSAW’s system block diagram (Best viewed in colour). JIGSAW processes spatially overlapped
multi-camera streams (such as from a traffic intersection) with Per-Camera (in orange) and Cross-Camera
(in green) run-time operations, with assistance from databases (in blue) built offline prior to deployment

Fig. 4. Conceptual schedule of JIGSAW’s edge-
based streaming perception components

Fig. 5. JIGSAW’s System Test Bed with 2x
NVIDIA Jetson TX2 devices

perception across the N cameras. DS is based on the key
observation [2] that the physical world changes dynamically
during DNN inference, and that streaming perception is thus
often enhanced by skipping prior, stale frames and instead
running timely inference on more recent frames. Accordingly,
to minimize processing latency, DS occasionally performs
idle-wait, preserving GPU cycles for anticipated fresher frames
(instead of processing stale frames). Figure 4 illustrates the
non-work conserving DS operation where it uses estimated
DNN inference latency to decide whether or not to (a) stitch
a new canvas frame from N cameras, (b) discard stale frames
after the initial processing described in Section III-C, or (c)
idly wait for the imminent arrival of fresher frames.

C. Per Camera Operation

JIGSAW uses a per-camera frame ingest pipeline (orange
components in Figure 3) to pre-process frames from N cam-
eras in parallel. The ith ingest pipeline receives the latest
frame transmitted from camera Ci and prepares it for down-
stream canvas-based inferencing, while also maintaining a per-
frame representation of the perceived state of the physical
world. Objects in motion are estimated using a background
subtraction mechanism and the resulting bounding boxes are
updated using a Kalman Filter-based Centroid tracker. The
tracker maintains a memory function over the last N time-
stamps (N=5 by default) and retains objects in memory even
if are missed by the background subtraction mechanism (e.g.,
if they are briefly stationary).
Tiling Scales per Camera: JIGSAW adopts MOSAIC’s [4]
mechanism of decomposing each frame into a bag of tiles (at
multiple spatial scales), each of which may contain objects of
interest (OoI). This tiling operation is performed on-demand,
once DS decides to proceed with canvas construction, using
the freshest (most recent) camera frames. The number of
tiles and their scale dimensions are re-computed periodically
during a periodic profiling phase. This phrase, executed every
T minutes and depicted in blue in Figure 3) uses full-frame
detection, on a subset of frames from camera Ci, to profile the
observed OoI size (i.e. {height, width}) distribution, followed
by K-means clustering and computation of cluster centroids
to determine k distinct tiling scales (similar to [4]). Note that

a single OoI may be contained in multiple tiles, at different
scales, while a single tile can contain multiple objects.

Evaluating Tile Utility: After creating such per-object, OoI-
tile mappings, JIGSAW next evaluates the marginal utility of
each tile for each contained object. Given the desire to both
maximize accuracy and minimize the inference latency, we
split the calculation of such a marginal utility into two sub-
operations. Within the the per-camera pipeline, the first-half of
the utility function estimates the object detection confidence
that can be achieved for each tile (and its contained OoI(s))
from camera Ci if it were to be included onto the canvas frame,
without being squeezed. We define the tile utility as the ratio
of this estimated confidence of the OoI-tile pair to the area
consumed by the tile without any squeeze on a canvas frame.
This enables JIGSAW to prioritize those tiles that provide the
highest detection confidence for an encapsulated object while
also moderating the object’s canvas utilization, allowing fair
space allocation across all selected tiles during canvas frame
construction. JIGSAW also estimates the tile-specific spatial
sizing bounds (min & max) for any subsequent squeezing or
upscaling–this is empirically set to (1x, 1.1x) for the smallest-
scale tile, (0.7x, 1.2x) for the next/medium scales and (0.5x,
1x) for the largest-scale tile. The second-half of the utility
function, described later in Section III-D, seeks to minimize
per-object processing latency by prioritizing “older” objects
(for which DNN inference has not been executed recently),
across all N cameras, for inclusion on the canvas frame.

Predicting OoI-Tile Detection Confidence: To estimate the
detection confidence for every OoI-tile pair, we utilize a
Random Forest Regressor (RFR) trained offline using the
following ground-truth features from he CityflowV2 dataset:
(i) OoI width, height and area, (ii) ratio of OoI width to OoI
height (iii) tile width, height and area, (iv) ratio of object
width—height—area to tile width—height—area, respectively,
(v) tile coordinates in the original camera frame (i.e. tilexmin

& tileymin), and (vi) object class. The RFR estimates an
object’s detection confidence, assuming the use of a YOLOv5s
model (the default model in our JIGSAW implementation). Our
model achieves an accuracy of 91.46% and a Mean Absolute
Error (MAE) of 5% for the predicted detection confidence per



object-tile pair.
At runtime, JIGSAW evaluates the OoI-tile mappings from

camera Ci to estimate the detection confidence per OoI-
tile pair, the resulting tile utility relative to canvas frame
utilization, and the spatial sizing bounds of the tile. Every
camera Ci then opportunistically submits the per-object top-
k (user-defined, default k = 1) tiles of the highest utility to
JIGSAW for canvas construction, representing its best possible
estimation of the physical world in its FoV.

D. Cross Camera Operation

Cross-Camera Tile Mapping Database: Once the per-
camera pipelines have culminated, JIGSAW collates the OoI-
tile mappings across all N cameras. A Cross-Camera Tile
Mapping database therefore assists JIGSAW in matching
potential tiles, corresponding to the same object but cap-
tured from different perspectives, across all N cameras. This
database (depicted in blue in Figure 3) is pre-computed prior to
system deployment by applying object-ReID algorithms over
time-synchronized frames across each of the

(
N
2

)
camera pairs.

At runtime (depicted in green in Figure 3), JIGSAW as-
sembles the cross-camera mapping for each object with pair-
wise evaluation of cameras (using a computationally efficient
quadtree-based indexing technique) that have valid super-
region tuples (120 × 120 pixel blocks across camera pairs
that are observed to have at least one common object). As a
single tile may contain multiple OoIs, JIGSAW then uses SIFT
descriptors to find the closest matching unique object in such
tiles, eventually deriving, for each unique OoI, a collection of
tiles (across multiple camera views) containing the object.
Tile Prioritization: For every unique OoI, JIGSAW classifies
the tile providing the highest utility (out of all the OoI-tile
mappings collected across N cameras) as the mandatory tile,
with the other tiles being labeled as optional. The resulting
elements of the set of mandatory tiles (with cardinality equal
to the set of unique objects) are then prioritized in decreasing
order of the “object age” metric maintained by the object
tracker. This age is computed as the difference between
the timestamp of the last DNN inference performed on any
instance of the OoI and the timestamp at which the object’s
location was last approximated using background subtraction.
Canvas Frame Construction: JIGSAW then uses a meta-
heuristic approximation of an Inverse Bin Packing algo-
rithm [16] to squeeze as many tiles, across the N cameras,
onto the canvas frame of fixed volume. When bin-packing
tiles, JIGSAW operates by prioritizing mandatory tiles with
higher age, thereby assuring that the tracking latency does not
degrade dramatically for any object. JIGSAW attempts to pack
all mandatory tiles, and as many additional optional tiles as
feasible, into a canvas frame. This reflects the balance between
the desire to improve object accuracy (likely to improve when
multiple tiles/perspectives are incorporated) while avoiding
excessively squeezing individual tile dimensions. Additionally,
if JIGSAW is unable to pack all mandatory tiles (e.g., when
the total number of objects is very high), the age metric will
be updated for all the ‘starved’ objects, thereby prioritizing

those objects in the subsequent round of canvas construction
and DNN inference.
DNN Inference and Post Processing: The constructed canvas
frame is then submitted to the edge device’s GPU for DNN-
based inference. JIGSAW then asynchronously translates the
detections (output of the DNN) to their original camera
frame coordinates and performs per-camera Non Maximum
Suppression on the bounding boxes to handle cases where
a single OoI was included in multiple tiles from the same
camera frame. The cross-camera database is also used to
additionally create ’virtual bounding boxes’ on the frames of
other overlapping cameras that may not have been included
in the canvas frames with the maximum detection confidence
available per-object across the included tiles. Finally, JIGSAW
also updates all associated per-camera trackers with these post-
processed detections and the DNN inference timestamp (thus,
updating their ‘age’ metric).

IV. EVALUATION METHODOLOGY

We now describe the prototype JIGSAW implementation and
the process for evaluating its effectiveness for a multi-camera
streaming perception task.
Evaluation Platform and Model: We implemented JIGSAW
on the NVIDIA Jetson TX2 device, an edge computing
platform that features a 256-core NVIDIA Pascal GPU and
a dual CPU unit. The two TX2 devices (the primary edge
platform and a secondary backup device to handle transient
demand spikes) are connected to a desktop transmitting the
camera streams using both wired and wireless connections,
illustrated in Figure 5. JIGSAW’s default DNN is a half-
precision TensorRT optimised YOLOv5s model, containing
7.2M parameters operating at 16.5 FLOPs for an image size
of 640x640. We size all canvas frames at 640× 640 for DNN
inference in a batch size b = 1 (unless specified otherwise);
on the TX2, this yields an inference latency of ∼ 52ms per
canvas frame (i.e., a throughput of 19 canvas FPS).
Benchmark Dataset: We evaluate JIGSAW using the
CityflowV2 dataset [6], where camera clusters exhibit spatial
overlap as illustrated in Figure 2. It features 3 hours of syn-
chronised video, comprising a mix of residential and highway
traffic conditions, at 10 FPS from 40 cameras installed across
10 intersections. We principally use four scenarios that exhibit
diversity in object density and kinematic properties. Scenario
‘S01’ and ‘S02’ observe higher density and velocity in the
“highway” setting with an observed object density per second
of 10.8 and 10.96 respectively, and new object arrival per
second of 0.6 and 1.24 across N = 5 and N = 4 cameras
respectively. On the other hand, scenario ‘S03’ and ‘S04’
observe lower density and velocity in the “residential” setting
with an observed object density per second of 3.65 and 5.58
respectively, and new object arrival per second of 0.15 and
0.39 across N = 6 and N = 25 cameras respectively.
Evaluation Metrics: We principally utilize the metrics of
streaming average precision (sAP) and streaming object recall
(sAR), introduced in [2]. Both these metrics differ from
the standard object detection evaluation metrics of Average



Fig. 6. sAP@0.5 vs. FPS per Cam-
era in ‘S01’; N = 5; Density: 10.8
obj/sec; Arrival: 0.58 obj/sec

Fig. 7. sAP@0.5 vs. FPS per Cam-
era in ‘S02’; N = 4; Density: 10.9
obj/sec; Arrival: 1.25 obj/sec

Fig. 8. sAP@0.5 vs. FPS per Cam-
era in ‘S03’; N = 6; Density: 3.65
obj/sec; Arrival: 0.15 obj/sec

Fig. 9. sAP@0.5 vs. FPS per Cam-
era in ‘S04’; N = 25; Density: 5.58
obj/sec; Arrival: 0.39 obj/sec

Precision (AP) and Average Recall (AR) in that the streaming
detections are aligned for evaluation by the time of DNN
inference rather than the input frame index. In other words,
streaming evaluation compares (yt, ˆyϕ(t)) where ϕ(t) is the
prediction timestamp of the most recent prediction before
time t–i.e., argmax

j
sj < t, where sj are the time-stamps of

preceding predictions. We set the sAP@0.5 threshold as 0.3
specifically for JIGSAW operation, below which the system
offloads dense camera streams to the secondary edge device.
Evaluation Baselines: We compare JIGSAW’s performance
against the following baselines:
1. N -GPU Streaming FCFS b = 1: The evaluation baseline
represents the maximum achievable streaming metric value
when N cameras are mapped to N GPUs (an ‘infinite’ GPU
setting) to process fresh frames available from the camera Ci

in a First Come First Served (FCFS) fashion.
2. 1-GPU Streaming FCFS – Batching b = N : Fresh frames
received from N cameras are batched together for DNN
inference by a single GPU task and evaluated for streaming
accuracy and recall. The batch size b equals the number of
cameras i.e. b = N , and represents a strategy where all N
frams are processed for inference in parallel.
3. 1-GPU MOSAIC b = 1: We compare JIGSAW against
MOSAIC [4] which packs all available tiles from fresh frames
across N cameras onto a single canvas frame for processing.
For this baseline, we choose the streaming canvas-based
evaluation setting with batch size b = 1.
4. 1-GPU JIGSAW b = 1: JIGSAW (with batch size b = 1 by
default) attempts to pack onto the canvas frame all mandatory
and as many optional tiles across N cameras, but prioritized
by object-specific cross-camera spatiotemporal utility values
tuned to the streaming perception task.

V. EVALUATION

We first evaluate the streaing accuracy vs. throughput trade-
off achieved for N cameras on a single GPU, before addi-
tionally exploring the impact of wireless network artifacts on
JIGSAW’s performance.

A. Streaming Accuracy vs. Throughput

JIGSAW’s system design jointly leverages (i) the canvas-
based processing paradigm to maximise the object detection

accuracy across N cameras, and (ii) the streaming perception
paradigm to maximise the perception throughput to consis-
tently sustain 19 FPS per camera (i.e. the expected canvas
processing throughput) across N cameras on the Jetson TX2.
Figures 6, 7, 8, and 9 show that for all evaluated scenarios
‘S01’, ‘S02’, ‘S03’, and ‘S04’, each with distinct object
density and arrival patterns, JIGSAW consistently outperforms
the 1-GPU FCFS Batching baseline by 57.9%, 57.4%, 37.7%,
and 66.62% respectively in streaming AP (sAP) metric within
each scenario. The results show that batching frames from N
cameras to support their simultaneous streaming perception
on a single GPU provides almost no benefit. For the 1-
GPU FCFS Batching baseline, a larger N implies higher
resource contention due to larger batch sizes (i.e. b = N )
and proportionately higher latency, which in turn causes the
perception pipeline to lag behind the real world dynamics.
It is important to note here that there is no linearity in the
relationship between the number of cameras N and sAP
(which evaluates how the physical world has changed during
DNN inference), and is instead a function of {N , new object
arrivals rate/kinematics} which is distinct across the evaluated
scenarios. In general, this is reflected in sAP for ‘S01’ and
‘S02’ (faster object arrival rate/kinematics) and ‘S04’ (higher
N ), when compared to sAP for ‘S03’ which has a lower object
arrival rate across a smaller N .

We note that MOSAIC and JIGSAW have comparable per-
formance when the number of cameras/objects packed onto the
canvas frame is low. Figures 6, 7, and 8 all show that for N =
(5, 4, 6) for Scenario ‘S01’, ‘S02’, and ‘S03’ respectively,
JIGSAW and MOSAIC achieve comparable results due to the
fact that JIGSAW is able to squeeze all mandatory and most
optional tiles onto the canvas frame. Qualitatively, we observe
that JIGSAW packs ∼ 32% less tiles than MOSAIC due to the
cross-camera per-object matching and utility evaluation, thus
allowing each packed tile to acquire slightly larger dimensions,
which in turn results in a ∼ 1 − 4% accuracy gain over
MOSAIC across Scenarios ‘S01’, ‘S02’, and ‘S03’. On the
other hand, when the number of cameras/objects mapped to
a canvas frame is high (Scenario ‘S04’, where N = 25),
Figure 9 shows that JIGSAW outperforms MOSAIC signifi-
cantly, achieving 42.3% higher streaming AP (even though
both achieve 19 FPS per camera throughput). As anticipated,



‘S01’ N = 5 ‘S02’ N = 4 ‘S03’ N = 6 ‘S04’ N = 25
sAP@0.5 FPS sAP@0.5 FPS sAP@0.5 FPS sAP@0.5 FPS

FCFS N -GPU 0.548
(↓ 0.15)

18
(↓1)

0.434
(↓ 0.199)

18
(↓1)

0.861
(↓ 0.045)

18
(↓1)

0.708
(↓ 0.11)

18
(↓1)

FCFS
Batching
1 GPU

0.144 5 0.065 6 0.517 4 0.025 1

MOSAIC
1 GPU

0.532
(↓ 0.148)

16
(↓3)

0.421
(↓ 0.169)

16
(↓3)

0.849
(↓ 0.038)

16
(↓3)

0.197
(↓ 0.071)

15
(↓4)

JIGSAW
1 GPU

0.557
(↓ 0.166)

16
(↓3)

0.436
(↓ 0.203)

16
(↓3)

0.857
(↓ 0.037)

16
(↓3)

0.676
(↓ 0.015)

15
(↓ 4)

TABLE I
JIGSAW’s WIRELESS SYSTEM DESIGN: ACHIEVABLE STREAMING
ACCURACY AND THROUGHPUT - VALUES IN BRACKETS INDICATE

DIFFERENCES WITH WIRED SYSTEM RESULTS

MOSAIC’s inability to discriminate and differentially sched-
ule/discard tiles causes it to unfairly squeeze each tile beyond
its spatial size bounds, thereby leading to a significant loss
in object detection confidence. In contrast, JIGSAW strikes
a fine balance between the need to achieve high detection
accuracy and maintain streaming throughput, taking advantage
of cross-camera overlap to often avoid redundant processing.
In effect, JIGSAW is able to achieve accurate detection/tracking
with a far higher camera capacity (at least 4-fold) than any
prior technique employing either FCFS scheduling or spatial
multiplexing on a single edge device.

Finally, we observe that JIGSAW’s performance (where
N = 25 camera streams are multiplexed on a single GPU)
is roughly comparable to that achieved by the 25-GPU FCFS
baseline, with only a < 0.127 loss in sAP.

B. JIGSAW’s Performance in Wireless Networks

We evaluate JIGSAW’s performance over a wireless net-
work, which is subject to artifacts such as variable wireless
transmission (empirically varying between ∼ 47− 52ms) and
video decoding latency (avg=∼4.05 ms)). In suh an environ-
ment, the edge device requests frames from the cameras when
the DS desires to construct a new canvas frame.

For such wireless operations, we observe (see that Table I)
that JIGSAW continues to outperform baselines, although the
overheads from (i) wireless RTT and (ii) wait time at the
camera for a fresher frame effectively reduce the achievable
JIGSAW throughput to 15-16 FPS per camera with minor
≤ 1% reduction in achievable streaming AP. We also note that
the impact of wireless overheads on sAP are felt more keenly
for faster-moving dense highway-based traffic in Scenarios
‘S01’ and ‘S02’, with less dramatic impact for the less dense
and stationary residential traffic scenarios ‘S03’ and ‘S04’.

ACKNOWLEDGEMENTS

This work was supported by National Research Foundation,
Prime Minister’s Office, Singapore under both its NRF Inves-
tigatorship grant (NRF-NRFI05-2019-0007), and its Campus
for Research Excellence and Technological Enterprise (CRE-
ATE) program. The Mens, Manus, and Machina (M3S) is
an interdisciplinary research group (IRG) of the Singapore
MIT Alliance for Research and Technology (SMART) centre.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore.

This work was also funded in part by DEVCOM ARL un-
der Cooperative Agreement W911NF-17-2-0196 (ARL IoBT
CRA). The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S.Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein.

REFERENCES

[1] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
2021 IEEE 27th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE, 2021, pp. 169–
178.

[2] M. Li, Y. Wang, and D. Ramanan, “Towards streaming perception,”
ECCV, 2020.

[3] T. Stone, N. Stone, P. Jain, Y. Jiang, K.-H. Kim, and S. Nelakuditi, “To-
wards scalable video analytics at the edge,” in 2019 16th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON). IEEE, 2019, pp. 1–9.

[4] I. Gokarn, H. Sabbella, Y. Hu, T. Abdelzaher, and A. Misra, “Mosaic:
Spatially-multiplexed edge ai optimization over multiple concurrent
video sensing streams,” in Proceedings of the 14th Conference on ACM
Multimedia Systems, 2023, pp. 278–288.

[5] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi: cross-
camera region of interest optimization for efficient real time video
analytics at scale,” in Proceedings of the 12th ACM Multimedia Systems
Conference, 2021, pp. 186–199.

[6] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Ku-
mar, D. Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale benchmark
for multi-target multi-camera vehicle tracking and re-identification,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8797–8806.

[7] NVIDIA, “Jetson tx2 developer kit,” NVIDIA, 2022. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-tx2

[8] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2018, pp. 67–79.

[9] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” in International Conference on Ma-
chine Learning. PMLR, 2017, pp. 527–536.

[10] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: Speeding up neural network inference
by trading edge computation for network latency,” in Proceedings of
the 18th Conference on Embedded Networked Sensor Systems, 2020,
pp. 476–488.

[11] M. Li, Y.-X. Wang, and D. Ramanan, “Towards streaming perception,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part II 16. Springer, 2020, pp.
473–488.

[12] S. Liu, T. Wang, J. Li, D. Sun, M. Srivastava, and T. Abdelzaher,
“Adamask: Enabling machine-centric video streaming with adaptive
frame masking for dnn inference offloading,” in Proceedings of the 30th
ACM International Conference on Multimedia, 2022, pp. 3035–3044.

[13] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155–168.

[14] J.-Y. Wu, V. Subasharan, T. Tran, and A. Misra, “Mrim: Enabling mixed-
resolution imaging for low-power pervasive vision tasks,” in 2022 IEEE
International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2022, pp. 44–53.

[15] S. Liu, T. Wang, H. Guo, X. Fu, P. David, M. Wigness, A. Misra, and
T. Abdelzaher, “Multi-view scheduling of onboard live video analytics
to minimize frame processing latency,” in 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2022,
pp. 503–514.

[16] Y. Chung and M.-J. Park, “Notes on inverse bin-packing problems,”
Information Processing Letters, vol. 115, no. 1, pp. 60–68, 2015.


	JIGSAW: Edge-based streaming perception over spatially overlapped multi-camera deployments
	Citation

	tmp.1724663281.pdf.186EO

