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Abstract

We study the design of contracts when the principal has limited statistical

information about the output distributions induced by the agent’s actions. In the

baseline model, we consider a principal who only knows the mean of the output

distribution for each action, and show that it is optimal for the principal to adopt

a monotone affine contract. We further show that the optimality of monotone

affine contracts persists even if the principal has access to other information about

the output distributions, such as the information that the output distribution

induced by each action has full support.
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1 Introduction

In traditional models of the principal-agent problem, it is typically assumed that
the principal has detailed information about the environment, such as the actions
available to the agent and the exact consequence of the agent taking these actions.
It has been well documented that the optimal contracts these models predict often
take complicated functional forms (see, for example, Grossman and Hart (1983) and
Bolton and Dewatripont (2005, Chapter 4)). Nevertheless, in many realistic settings,
the principal presumably only has access to some limited statistical information about
the environment, and theoretical conclusions derived from traditional models can be
fragile—contracts that are optimized to perform well when the assumptions are exactly
true may fail miserably in the much more frequent cases when the assumptions are
untrue.

This paper studies the design of contracts when the principal has limited statistical
information about the output distributions induced by the agent’s actions. As in
standard moral hazard models, the principal contracts with an agent, who is to take
a costly action that leads to a stochastic output. The action is not observable to the
principal; only the resulting output is. The principal incentives the agent using a
contract that specifies the payment to the agent for each level of output, and maximizes
her expected payoff—the output minus the wage paid to the agent. The set of actions,
the possible levels of output, and the cost for taking each action are assumed to be
common knowledge between the principal and the agent. The consequence of the agent
taking these actions—the output distribution for each action—is known to the agent
but not perfectly known to the principal. The principal ranks contracts according to
their payoff guarantee—the worst-case expected payoff where the worst case is taken
over all profiles of stochastic output that are perceived to be plausible. A contract is
optimal if it generates the highest payoff guarantee.

The situation in which the principal only has limited statistical information
about the output distributions is ubiquitous. For example, in the case of salesforce
compensation, the amount of data that firms can access for generating the exact demand
distribution is often limited. Firms face ambiguity regarding the influence of the sales
agent’s effort, and they often rely on accessible statistical information such as the mean
rather than the exact distribution to make decisions. The recent literature on robust
mechanism design also offers many motivations for limited statistical information about
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the prior distribution in various settings; see Carrasco, Luz, Kos, Messner, Monteiro,
and Moreira (2018), Koçyiğit, Iyengar, Kuhn, and Wiesemann (2020), Brooks and Du
(2021a), Suzdaltsev (2022), He and Li (2022), Zhang (2022), and Che (2022), among
many others.

In the baseline model, we assume that the principal knows the mean of the output
distribution for each action but does not have reliable information about other aspects
of the output distributions. The principal perceives a profile of stochastic output to
be plausible as long as it is consistent with the mean restrictions. In this setting, a
monotone affine contract, which pays the agent some nonnegative fraction of the output
plus a fixed payment, could perfectly hedge the principal’s uncertainty in the sense
that a monotone affine contract induces the same action for the agent and generates
the same expected payoff for the principal, regardless of the actual profile of output
distributions. Theorem 1 shows that it is optimal for the principal to adopt a monotone
affine contract.

Since a monotone affine contract generates the same expected payoff for the
principal regardless of the actual profile of stochastic output, to establish the optimality
of monotone affine contracts, it suffices to identify a plausible profile of stochastic
output against which a monotone affine contract is optimal in the Bayesian framework.
This is because, if such a profile exists, then the payoff guarantee of any feasible contract
cannot exceed its expected payoff against this profile, which in turn cannot exceed
the expected payoff of the optimal monotone affine contract against this profile. It
is straightforward to show that there exists a profile (where the output distribution
for each action has binary support) against which an affine contract is optimal in
the Bayesian framework. We proceed to show that (1) it is suboptimal to incentivize
the agent to choose an action that can be implemented by an affine contract but
cannot be implemented by a monotone affine contract, and (2) for any action that is
implementable by monotone affine contracts, the least expected cost of implementing
this action using affine contracts and monotone affine contracts are the same. Thus,
against this profile, it is optimal to use a monotone affine contract in the Bayesian
framework.

In the baseline model, the principal is assumed to only know the expected output
for each action. This allows for a large set of profiles of stochastic output, including the
binary support distributions used to prove Theorem 1. Nevertheless, there are various
scenarios in which the principal may have access to additional information about the
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output distributions. Such information imposes more restrictions on the set of plausible
profiles, which corresponds to a smaller ambiguity set that might rule out the binary
support distributions as plausible.

To accommodate additional information that might be available to the principal,
we conduct a more systematic analysis in Section 4. Adopting a duality approach, we
show in Theorem 2 that as long as the output distribution for the action with the
smallest mean satisfies a simple condition, there exists a profile consistent with the
mean restriction against which a monotone affine contract is optimal in the Bayesian
framework. In other words, Theorem 2 identifies a large collection of profiles that could
be used to establish the optimality of monotone affine contracts when the principal
only knows the mean.

Besides the simplicity of the condition, Theorem 2 serves as a toolbox to prove the
optimality of monotone affine contracts when there is additional information available to
the principal. In particular, we show that, very generally, even if we require the output
distribution induced by each action to have full support, the optimality of monotone
affine contracts remains. Clearly, if the output distribution for each action is required
to have full support, then the binary support distributions used to prove Theorem
1 would no longer be perceived to be plausible. Nevertheless, applying Theorem 2,
we could easily show the optimality of monotone affine contracts by identifying an
output distribution for the action with the smallest mean that satisfies the condition in
Theorem 2 and the full support requirement. We also present two more examples, on
additional information about variance and quantile respectively, to further illustrate
how Theorem 2 can be applied.

The remainder of this introduction discusses some related literature. Section 2
presents the notation, concepts, and the model. Section 3 establishes the optimality of
monotone affine contracts when the principal only knows the mean. Section 4 offers
a more systematic analysis that accommodates additional information that might be
available to the principal. Section 5 discusses the difference of our model from Diamond
(1998) and the knowledge of higher-order moments.

1.1 Related literature

This paper joins the recently growing literature exploring the design of contracts when
the principal does not have detailed information about the environment, starting with
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Hurwicz and Shapiro (1978), and more recently, Carroll (2015), Carroll and Meng
(2016a), Carroll and Meng (2016b), Li and Kirshner (2021), Kambhampati (2023),
among others.

Carroll (2015) considers a moral hazard problem where the principal is uncertain
as to what the agent can and cannot do: she knows some actions available to the agent,
but other, unknown actions may also exist. He shows that the optimal deterministic
contract is linear. Kambhampati (2023) shows that, at the same level of generality as
Carroll (2015), the principal can strictly increase her payoff guarantee by randomizing
over deterministic contracts. In our model, the principal faces a different kind of
uncertainty—the output distributions, and we establish the optimality of monotone
affine contracts. In particular, randomization will not benefit the principal in our
setting.

As in this paper, Carroll and Meng (2016a), Carroll and Meng (2016b), Li and
Kirshner (2021) consider uncertainty about how the agent’s actions translate into
output. Carroll and Meng (2016b) consider a model in which the agent privately
observes the realization of some shock that affects output before choosing how much
effort to exert, while the principal only observes total output. The principal is uncertain
about the exact distribution of the additive shock and only knows its mean. There
are important differences between their model and ours. The principal in Carroll and
Meng (2016b) only has uncertainty about the distribution of additive noise, and the
output for all effect levels is affected by the same additive noise. In our baseline model
where we consider only the mean restrictions, the output distribution under each action
is only restricted to be consistent with the given mean. Furthermore, our analysis
covers additional information available to the principal, such as the information that
the output distribution for each action has full support. Carroll and Meng (2016a)
study a moral hazard problem in which the principal has local uncertainty about how
the agent’s actions translate into output. Li and Kirshner (2021) consider a moral
hazard problem with two-sided ambiguity, where both the principal and the agent face
uncertainty about the output distributions.

Diamond (1998, Section 5) establishes the optimality of linear contracts in the
environment in which the agent can either choose one action that produces a low
expected output or the other action that produces a higher expected output, and the
agent can freely distribute the probabilities in any way that preserves the expected
output of each action. The key difference of our paper from Diamond (1998) is that,
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while Diamond (1998) allows the agent to choose probability distributions to maximize
his own expected payoff, Nature chooses probability distributions to minimize the
principal’s expected payoff in our model. Section 5.1 presents a concrete example to
illustrate the difference between the agent-maximizing problem in Diamond (1998) and
the nature-minimizing problem in our model.

More broadly, our paper is related to the literature on robust mechanism design.
Among others, Chung and Ely (2007), Du (2018), Chen and Li (2018), Brooks and
Du (2021b), Yamashita and Zhu (2022), and Brooks and Du (2023) study a revenue
maximizing designer who knows the joint distribution of the agents’ payoff-relevant
information but has non-Bayesian uncertainty about their beliefs. To the best of our
knowledge, Carrasco, Luz, Kos, Messner, Monteiro, and Moreira (2018) offer the first
systematic analysis on the implications of moment conditions—they study the revenue
maximization problem of a seller who is partially informed about the distribution
of the buyer’s valuation, only knowing a finite number of moments. Neeman (2003),
Koçyiğit, Iyengar, Kuhn, and Wiesemann (2020), Brooks and Du (2021a), Suzdaltsev
(2022), He and Li (2022), Zhang (2022), and Che (2022) consider the robust auction
design problem where the auctioneer has limited statistical information about the join
distribution of the bidders’ valuations.

2 Preliminaries

A principal (she) contracts with an agent (he), who is to take a costly action that leads
to a stochastic output. Only the resulting output is observable to the principal and
can be contracted upon. Any contract must specify how much the agent is paid for
each level of output. We assume one-sided limited liability: the agent can never be
paid less than zero. Both parties are financially risk-neutral.

There are K ≥ 2 actions available to the agent, each corresponding to a different
level of effort the agent can exert. Let A = {a1, a2, . . . , aK} denote the set of actions.
There are N ≥ 3 levels of output that might be realized, denoted q1, q2, . . . , qN , where
0 ≤ q1 < q2 < . . . < qN . If the agent takes the action ak, then the agent incurs a cost
c(ak) ≥ 0, and the vector p(ak) = (p1(ak), p2(ak) . . . , pN(ak)) specifies the resulting
probability distribution over output, where pi(ak) ≥ 0 for all i = 1, 2, . . . , N and∑N
i=1 pi(ak) = 1. The agent has an outside option a0, which is costless for the agent

and generates zero output.
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The set of actions A, the possible levels of output {q1, q2, . . . , qN}, and the cost
function c : A → R+ are common knowledge between the two parties. The profile
of stochastic output P = {p(a1), p(a2), . . . , p(aK)} is known to the agent but not
perfectly known to the principal. In the baseline model, we consider a principal
who knows the mean m(ak) of the output distribution for each action ak and has
non-Bayesian uncertainty about other aspects of the profile of stochastic output. Let
m = (m(a1),m(a2), . . . ,m(aK)). For ease of exposition, we assume that q1 < m(a1) <
m(a2) < . . . < m(aK) < qN . From the principal’s perspective, a profile of stochastic
output is perceived to be plausible as long as it is consistent with m. We write

P(m) =
{
P = {p(a1), p(a2), . . . , p(aK)}

∣∣∣
p(ak) ∈ RN

+ ,
N∑
i=1

pi(ak) = 1, and
N∑
i=1

pi(ak)qi = m(ak), ∀k = 1, 2, . . . , K
}
.

to denote the collection of profiles of stochastic output that are consistent with m.

A contract w is a vector of N nonnegative numbers, specifying how much the
agent is paid for each level of output. The nonnegativity requirement captures the
one-sided limited liability constraint. For any given contract w, the agent selects an
action that maximizes his expected payoff under this contract. Formally, if the profile
of stochastic output is P , then the set of actions that the agent is willing to choose is

A∗(w|P ) = arg max
a∈A

( N∑
i=1

wipi(a)− c(a)
)

subject to
N∑
i=1

wipi(a)− c(a) ≥ 0.

If the agent is indifferent among several actions, as is standard in the literature, we
assume he maximizes the principal’s expected payoff. Thus, if the profile of stochastic
output is P , the principal’s expected payoff under a given contract w is

V (w|P ) = max
a∈A∗(w|P )

N∑
i=1

(qi − wi)pi(a).

Finally, since the principal only knows the mean of the output distribution for each
action, she ranks contracts according to their payoff guarantee—the worst-case expected
payoff where the worst case is taken over all profiles of stochastic output that are
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consistent with m:
V (w) = inf

P∈P(m)
V (w|P ).

We focus on the principal’s problem, namely to maximize V (w). Denote by V ∗

the principal’s highest payoff guarantee.

3 The baseline model

In the baseline model, we consider a principal who has no additional information about
the actual profile of stochastic output beyond the mean of the output distribution for
each action.

3.1 The Bayesian framework

As a preparation, we consider below the Bayesian framework in which the profile of
stochastic output P is also known to the principal. In this case, the principal solves
the following maximization problem:

max
a∈A,w

N∑
i=1

(qi − wi)pi(a) (grand max)

subject to
N∑
i=1

wi pi(a)− c(a) ≥
N∑
i=1

wipi(a′)− c(a′), ∀a′ ∈ A\{a},

N∑
i=1

wipi(a)− c(a) ≥ 0,

wi ≥ 0, ∀i = 1, 2, . . . , N.

Let V ∗(P ) denote the principal’s maximized payoff solved from (grand max).

Following Grossman and Hart (1983), we could solve the principal’s problem
(grand max) in two steps. We say that an action a is implementable against the profile
P if there exists some contract w such that

N∑
i=1

wipi(a)− c(a) ≥
N∑
i=1

wipi(a′)− c(a′), ∀a′ ∈ A\{a},

N∑
i=1

wipi(a)− c(a) ≥ 0.

Let AP denote the set of actions implementable against the profile P . We consider first,
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for each implementable action, the least expected cost of implementing this action. For
each action a ∈ AP , let Ψ(a|P ) be the least expected cost of implementing a against
the profile P . Formally, Ψ(a|P ) is solved from the following minimization problem:

min
w

N∑
i=1

wipi(a) (min)

subject to
N∑
i=1

wipi(a)− c(a) ≥
N∑
i=1

wipi(a′)− c(a′), ∀a′ ∈ A\{a},

N∑
i=1

wipi(a)− c(a) ≥ 0,

wi ≥ 0, ∀i = 1, 2, . . . , N.

We then consider which action should be implemented, that is, we solve for the action
that generates the highest expected payoff for the principal. The principal’s maximized
payoff can be derived as follows:

V ∗(P ) = max
a∈AP

{m(a)−Ψ(a|P )}

3.2 Payoff guarantee of monotone affine contracts

A special class of contracts is the class of affine contracts. An affine contract takes the
form wi = αqi − β for constants α, β ∈ R for all i. We are particularly interested in
affine contracts that have nonnegative slopes (α ≥ 0). We call such contracts monotone
affine contracts.

Notably, any affine contract generates the same expected payoff to the principal,
regardless of the actual profile of stochastic output, as long as it is consistent with m.
To wit, fix an arbitrary affine contract wi = αqi − β. For any P ∈ P(m), the agent’s
expected payoff from an action a is

N∑
i=1

wipi(a)− c(a) =
N∑
i=1

(αqi − β) pi(a)− c(a) = αm(a)− β − c(a),

which depends on the profile of stochastic output only through m. Thus, the set of
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actions that the agent is willing to choose is the same for any P ∈ P(m) and given by1

A∗(w) = arg max
a∈A

(
αm(a)− β − c(a)

)
subject to αm(a)− β − c(a) ≥ 0.

Consequently, regardless of the actual profile of stochastic output, the principal would
obtain the same expected payoff:

V (w) = V (w|P ) = max
a∈A∗(w)

(
(1− α)m(a) + β

)
, ∀P ∈ P(m).

If the principal can only choose from the class of affine contracts, then her payoff
guarantee maximization problem reduces to:

max
a∈A,α,β

(1− α)m(a) + β (grand max-Affine)

subject to αm(a)− c(a) ≥ αm(a′)− c(a′), ∀a′ ∈ A\{a},

αm(a)− β − c(a) ≥ 0,

αq1 − β ≥ 0,

αqN − β ≥ 0.

If the principal can only choose from the class of monotone affine contracts, then her
payoff guarantee maximization problem reduces to:

max
a∈A,α,β

(1− α)m(a) + β (grand max-Monotone)

subject to αm(a)− c(a) ≥ αm(a′)− c(a′), ∀a′ ∈ A\{a},

αm(a)− β − c(a) ≥ 0,

αq1 − β ≥ 0,

α ≥ 0.

Denote by V ∗A (resp. V ∗M) the principal’s highest payoff guarantee from choosing an
affine contract (resp. a monotone affine contract). Clearly, V ∗ ≥ V ∗A ≥ V ∗M .

We say that an action a is implementable by affine contracts (resp. monotone

1Here, we write A∗(w) rather than A∗(w|P ) to highlight that this set of actions does not depend
on the actual profile of stochastic output.
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affine contracts) if there exists some affine contract (resp. monotone affine contract)
such that

αm(a)− c(a) ≥ αm(a′)− c(a′), ∀a′ ∈ A\{a},

αm(a)− β − c(a) ≥ 0.

Let AA (resp. AM) denote the set of actions implementable by affine contracts (resp.
monotone affine contracts). The above arguments also imply that the least expected
cost of implementing an action using affine contracts or monotone affine contracts
depends on the profile of stochastic output only through m. Thus, for notational
simplicity, we drop the dependence on P . For each action a ∈ AA, let ΨA(a) denote the
least expected cost of implementing a using affine contracts, solved from the following
cost minimization problem:

min
α,β

αm(a)− β (min-Affine)

subject to αm(a)− c(a) ≥ αm(a′)− c(a′), ∀a′ ∈ A\{a},

αm(a)− c(a)− β ≥ 0,

αq1 − β ≥ 0,

αqN − β ≥ 0.

For each action a ∈ AM , let ΨM (a) be the least expected cost of implementing a using
monotone affine contracts, solved from the following cost minimization problem:

min
α,β

αm(a)− β (min-Monotone)

subject to αm(a)− c(a) ≥ αm(a′)− c(a′), ∀a′ ∈ A\{a},

αm(a)− c(a)− β ≥ 0,

αq1 − β ≥ 0,

α ≥ 0.

Following Grossman and Hart (1983), the highest payoff guarantee from choosing an
affine contract and a monotone affine contract can be derived as follows:

V ∗A = max
a∈AA

{m(a)−ΨA(a)}, and V ∗M = max
a∈AM

{m(a)−ΨM(a)}.
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3.3 Optimality of monotone affine contracts

Since for any monotone affine contract, the principal would obtain the same expected
payoff, regardless of the actual profile of stochastic output, one might expect that there
exists a monotone affine contract that maximizes V . Theorem 1 below shows exactly
this.

Theorem 1. There exists a monotone affine contract that maximizes V . Formally,

V ∗ = V ∗M .

To prove Theorem 1, it suffices to identify a particular profile of stochastic output
P ∈ P(m) against which a monotone affine contract is optimal. This is because, if there
exists such a profile of stochastic output, then the payoff guarantee of any contract
obviously cannot exceed its expected payoff against this particular profile of stochastic
output, which in turn cannot exceed the expected payoff of the optimal monotone affine
contract against this particular profile of stochastic output. But the expected payoff
of the optimal monotone affine contract against this particular profile of stochastic
output is simply its payoff guarantee, since any monotone affine contract generates the
same expected payoff for the principal against every P ∈ P(m).

The structure of the proof is as follows. Step (1) identifies a profile of stochastic
output against which an affine contract is optimal. This step is rather straightforward
and follows from the following observation. Since the principal perceives any profile
P ∈ P(m) to be plausible, from the principal’s perspective, it could well be the case
that for any action a, only two levels of output q1 and qN can be realized. Against this
profile of stochastic output, only the wages following q1 and qN matter for the agent’s
incentive. Therefore, the principal can simply choose an affine contract. Formally, Step
(1) shows V ∗ = V ∗A . We are left to show that V ∗A = V ∗M . Recall that

V ∗A = max
a∈AA

{m(a)−ΨA(a)}, and V ∗M = max
a∈AM

{m(a)−ΨM(a)}.

Step (2) shows that it is suboptimal to incentivize the agent to choose an action that can
be implemented by an affine contract but cannot be implemented by a monotone affine
contract. Step (3) shows that for any action that is implementable by monotone affine
contracts, the least expected costs of implementing this action using affine contracts
and monotone affine contracts are the same. Thus, V ∗A = V ∗M . The detailed proof can
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be found in Appendix A.

4 The general analysis

In the baseline model, the principal is assumed to only know the expected output for
each action. This allows for a large set of profiles of stochastic output—any P ∈ P(m)
is perceived to be plausible, including the binary support distributions used in the proof
of Theorem 1. Nevertheless, there are various scenarios in which the principal may
have access to additional information about the output distributions. Such information
imposes more restrictions on the set of plausible profiles, which corresponds to a smaller
ambiguity set that might rule out the binary support distributions as plausible.

In this section, we extend our analysis in the baseline model and provide more
systematic analysis to show the optimality of monotone affine contracts for a worst-case
minded principal when she is uncertain about the actual profile of stochastic output.
This analysis provides a foundation for the use of monotone affine contracts even when
there is additional information available to the principal.

In Section 4.1, we adopt a duality approach and establish conditions under which
there exists a monotone affine contract that maximizes V . In Section 4.2 and Section
4.3, we illustrate how this condition can be applied under different kinds of additional
information. Section 4.2 shows that, very generally, even if we require the output
distribution induced by each action to have full support, the optimality of monotone
affine contracts remains. In Section 4.3, we present two more examples, on additional
information about variance and quantile respectively, to further illustrate how the
condition can be applied.

Throughout this section, we make the following assumption about the cost function
c(·) and the mean restriction m(·).

Assumption 1. (1) For any a, a′ ∈ A, we have

c(a′)− c(a)
m(a′)−m(a) > 0, (1)

(2) For any a, a′, a′′ ∈ A ∪ {a0} such that m(a′′) > m(a′) > m(a), we have

c(a′′)− c(a′)
m(a′′)−m(a′) >

c(a′)− c(a)
m(a′)−m(a) . (2)

13



m(·)

c(·)

0 m(a)

c(a)

m(a′)

c(a′)

m(a′′)

c(a′′)

Figure 1: Assumption 1

Loosely speaking, Assumption 1 says that the cost function c(a) can be viewed as
a strictly increasing and strictly convex function of m(a); see Figure 1 for an illustration.

Assumption 1 ensures that every action can be implemented using a monotone
affine contract. Recall that an action ak is implementable by monotone affine contracts
if there exists some constants α ≥ 0, β such that

αm(a)− c(a) ≥ αm(a′)− c(a′), ∀a′ ∈ A\{a},

αm(a)− c(a)− β ≥ 0.

Assumption 1 implies that for any a, a′, a′′ ∈ A∪{a0} such that m(a′′) > m(a′) >
m(a), we have2

c(a′′)− c(a′)
m(a′′)−m(a′) >

c(a′′)− c(a)
m(a′′)−m(a) >

c(a′)− c(a)
m(a′)−m(a) . (3)

It is straightforward to verify that any action ak with k < K can be implemented by
the monotone affine contract

α = c(ak+1)− c(ak)
m(ak+1)−m(ak)

> 0, β = 0,

2This is purely algebraic. For any x, y, z, w > 0,

x

y
>

z

w
=⇒ x

y
>

x + z

y + w
>

z

w
.

To get (3), set x = c(a′′)− c(a′), y = m(a′′)−m(a′), z = c(a′)− c(a), and w = m(a′)−m(a).
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and the action aK can be implemented by the monotone affine contract

α = c(aK)− c(aK−1)
m(aK)−m(aK−1) > 0, β = 0.

4.1 Optimality of monotone affine contracts

The implementability of any action a ∈ A using monotone affine contracts greatly
simplifies the comparison of the principal’s optimization problems between using any
feasible contract and using only monotone affine contracts. Against a given profile of
stochastic output P , the principal’s maximized payoff V ∗(P ) solved from (grand max)
can be derived as follows:

V ∗(P ) = max
a∈A
{m(a)−Ψ(a|P )}.

The optimal monotone affine contract generates the following expected payoff:

V ∗M = max
a∈A
{m(a)−ΨM(a)}.

Theorem 2 below presents a condition on the profile of stochastic output P̃ that
guarantees the equivalence of the least expected costs Ψ(a|P̃ ) and ΨM (a) for all a ∈ A.
Subsequently, we can establish the optimality of monotone affine contract against P̃ in
the Bayesian framework.

Theorem 2. Let P̃ denote the collection of profiles constructed as follows: (1) p̃(a1)
is a probability distribution that satisfies

N∑
i=1

qip̃i(a1) = m(a1),

p̃1(a1) ≥ m(aK)−m(a1)
m(aK)− q1

, and

(2) p̃(ak) for any k > 1 is derived from p̃(a1) as follows:

p̃1(ak) = m(ak)− q1

m(a1)− q1
p̃1(a1)− m(ak)−m(a1)

m(a1)− q1
,

p̃i(ak) = m(ak)− q1

m(a1)− q1
p̃i(a1), ∀i = 2, 3, . . . , N.
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We have P̃ ⊆ P(m). Under Assumption 1, V ∗(P̃ ) = V ∗M for any P̃ ∈ P̃.3

Theorem 2 has several appealing features. First, the condition is extremely easy
to check because it merely imposes certain requirements on the output distribution
induced by a1 (the output distributions for the other actions are completely pinned
down by the output distribution induced by a1). Second, we can use Theorem 2 as a
toolbox to handle various kinds of additional information beyond the mean restriction.
To wit, suppose that in addition to the mean restriction, the principal has additional
information that the actual profile of stochastic output must also lie in some set P̄.
We can readily establish the optimality of monotone affine contracts if P̃ ∩ P̄ 6= ∅.
Indeed, as we show in the next section, if the principal has additional information
that the output distribution induced by each action has full support, then a monotone
affine contract maximizes the principal’s payoff guarantee. We further illustrate how
to utilize this theorem when the principal has other kinds of additional information
such as variance and quantile information in Section 4.3.

4.2 Full support output distributions

Suppose that, in addition to the mean restriction, the principal knows that the output
distribution p(a) for each action a ∈ A has full support. That is, the principal perceives
any P ∈ P(m) ∩ P(F ) to be plausible, where

P(F ) =
{
P = {p(a1), p(a2), . . . , p(aK)}

∣∣∣
p(ak) ∈ RN

+ ,
N∑
i=1

pi(ak) = 1, ∀k = 1, 2, . . . , K,

pi(ak) > 0, ∀k = 1, 2, . . . , K, ∀i = 1, 2, . . . , N
}
.

Obviously, the binary support distributions used to prove Theorem 1 is no longer
plausible. Nevertheless, applying Theorem 2, we could establish the optimality of
monotone affine contracts by showing that P̃ ∩ P(F ) 6= ∅.

Theorem 3. Under Assumption 1, there exists a profile of stochastic output P̃ ∈
P(m) ∩ P(F ) such that V ∗(P̃ ) = V ∗M .

By Theorem 2, it suffices to show that P̃ ∩ P(F ) 6= ∅. We explicitly construct a

3Clearly, the binary support distributions used to prove Theorem 1 is contained in P̃.
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probability distribution p̃(a1) (contained in Appendix C) such that

N∑
i=1

qip̃i(a1) = m(a1),

p̃1(a1) > m(aK)−m(a1)
m(aK)− q1

,

p̃i(a1) > 0, ∀i = 2, 3, . . . , N.

Since p̃(a1) satisfies the condition in Theorem 2, the profile P̃ constructed as follows is
contained in P̃ :

p̃1(ak) = m(ak)− q1

m(a1)− q1
p̃1(a1)− m(ak)−m(a1)

m(a1)− q1
, ∀k > 1

p̃i(ak) = m(ak)− q1

m(a1)− q1
p̃i(a1), ∀k > 1, ∀i = 2, 3, . . . , N.

Since p̃1(a1) > m(aK)−m(a1)
m(aK)−q1

,

p̃1(ak) = m(ak)− q1

m(a1)− q1
p̃1(a1)− m(ak)−m(a1)

m(a1)− q1
>
m(aK)−m(ak)
m(aK)− q1

≥ 0,∀k > 1.

Since p̃i(a1) > 0, ∀i = 2, 3, . . . , N , we have

p̃i(ak) = m(ak)− q1

m(a1)− q1
p̃i(a1) > 0, ∀k > 1, ∀i = 2, 3, . . . , N.

Thus, P̃ ∈ P̃ ∩ P(F ).

4.3 Additional information on variance/ quantile

In many settings, the principal could have access to some statistical features of the
output distributions. In this section, we present two examples to further illustrate
how to apply Theorem 2 to establish the optimality of monotone affine contracts with
different kinds of additional information. Example 1 considers the scenario in which the
principal has additional knowledge on the upper bound of the variance of the output
distribution for each action, and Example 2 considers the scenario in which there are
some restrictions on the quantile of each output distribution.

The two examples share the same basic environment. There are three output
levels: q1 = 0.5, q2 = 1, and q3 = 2. There are two actions available to the agent:
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c(a1) = 0.25,m(a1) = 0.7 and c(a2) = 1.65,m(a2) = 1.8.

Let p̃(a1) be a probability distribution consistent with m(a1). Since ∑3
i=1 p̃i(a1) =

1 and ∑3
i=1 p̃i(a1)qi = m(a1), we have

p̃1(a1) = 1
q2 − q1

(
(q3 − q2)p̃3(a1) + q2 −m(a1)

)
,

p̃2(a1) = 1
q2 − q1

(
m(a1)− q1 − (q3 − q1)p̃3(a1)

)
.

For p̃(a1) to satisfy the condition in Theorem 2, we must have

max
{

0, (m(a1)− q1)(m(a2)− q2)
(m(a2)− q1)(q3 − q2)

}
≤ p̃3(a1) ≤ m(a1)− q1

q3 − q1
.

For any such p̃3(a1), the profile P̃ constructed as follows is contained in P̃ :

p̃1(a1) = 1
q2 − q1

(
(q3 − q2)p̃3(a1) + q2 −m(a1)

)
,

p̃2(a1) = 1
q2 − q1

(
m(a1)− q1 − (q3 − q1)p̃3(a1)

)
,

p̃1(a2) = m(a2)− q1

m(a1)− q1
p̃1(a1)− m(a2)−m(a1)

m(a1)− q1
,

p̃i(a2) = m(a2)− q1

m(a1)− q1
p̃i(a1), ∀i = 2, 3.

Example 1 (Upper bound on variance). Besides the mean restriction, the principal
has additional information that for each action, the variance of the output distribution
cannot exceed an upper bound: var(a1) ≤ 0.25, var(a2) ≤ 0.2. Let PV ar denote the
collection of profiles that are consistent with these variance requirements.

It is easy to check that the binary support distributions used in the proof of
Theorem 1 would no longer be plausible. Nevertheless, by Theorem 2, we can establish
the optimality of monotone affine contracts by showing that P̃ ∩ PV ar 6= ∅. For the
profile P̃ constructed above to be contained in P̃, we need 8

65 ≤ p̃3(a1) ≤ 2
15 . For the

profile P̃ to be contained in PV ar, we need p̃3(a1) ≤ 19
150 . Therefore, P̃ ∩ PV ar 6= ∅. For

instance, one such profile is as follows:

(p̃1(a1), p̃2(a1), p̃3(a1)) =
(17

20 ,
1
40 ,

1
8

)
,

(p̃1(a2), p̃2(a2), p̃3(a2)) =
( 1

40 ,
13
80 ,

13
16

)
.
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Example 2 (Quantile). Besides the mean restriction, the principal also has access to
some quantile information. In particular, the probability of the highest output level p3

satisfies that p3(a1) ≥ 0.13 and p3(a2) ≤ 0.91. Let PQ denote the collection of profiles
that are consistent with these quantile requirements.

It is easy to check that the binary support distributions used in the proof of
Theorem 1 would no longer be plausible. Nevertheless, we show that P̃ ∩ PQ 6= ∅. By
Theorem 2, this further implies that a monotone affine contract maximizes the principal’s
payoff guarantee. For the profile P̃ to be contained in P̃, we need 8

65 ≤ p̃3(a1) ≤ 2
15 .

For the profile P̃ to be contained in PQ, we need 0.13 ≤ p̃3(a1) ≤ 0.14. Therefore,
P̃ ∩ PQ 6= ∅. For instance, one such profile is as follows:

(p̃1(a1), p̃2(a1), p̃3(a1)) = (0.86, 0.01, 0.13),

(p̃1(a2), p̃2(a2), p̃3(a2)) = (0.09, 0.065, 0.845).

5 Discussion

5.1 Comparison with Diamond (1998)

Diamond (1998, Section 5) considers a model in which the agent can either take one
action that produces a low expected output ml without cost or the other action that
produces a higher expected output mh with a cost c > 0. It is assumed that only
inducing mh is worthwhile for the principal. Given a contract w, for each action, the
agent can freely distribute the probabilities in any way that preserves the expected
output of this action. Therefore, the agent chooses among all possible probability
distributions that are consistent with the given mean to maximize his own expected
payoff. That is, the agent solves the following maximizing problem:

max
p

N∑
i=1

wipi − c

subject to
N∑
i=1

pi = 1,

N∑
i=1

qipi = mh,

pi ≥ 0,∀i = 1, 2, . . . , N.
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In both Diamond (1998, Section 5) and our baseline model, the principal is
assumed to know only the mean of the output distribution induced by each action. While
Diamond (1998, Section 5) allows the agent to choose among all plausible probability
distributions to maximize his own expected payoff, in our model, Nature chooses
among all plausible probability distributions to minimize the principal’s expected
payoff. Example 3 below demonstrates the difference between the agent-maximizing
problem in Diamond (1998, Section 5) and the nature-minimizing problem in our
model.

Example 3. There are three output levels: q1 = 0, q2 = 1, q3 = 2, and there are
two actions available to the agent: c(a1) = 0,m(a1) = 1

2 and c(a2) = 0.1,m(a2) = 1.
Consider the following contract: w1 = w2 = 0, w3 = 1.

We first consider the agent-maximizing problem. Since the payment to the agent
is positive at a single output level q3, it is easy to see that the agent will choose the
action a2 and the distribution that puts probability 1

2 on q1 and probability 1
2 on q3.

The agent obtains an expected payoff of 2
5 . The principal obtains an expected payoff of

1
2 .

Next, we consider the nature-minimizing problem. We show that the principal’s
payoff cannot exceed 1

4 . To see this, consider the strategy of nature such that (1) under
action a1, the distribution puts probability 3

4 on q1 and probability 1
4 on q3, and (2)

under action a2, the distribution puts probability 1 on q2. It is straightforward to check
that in this case, the agent will choose action a1. The agent’s expected payoff is 1

4 , and
the principal’s expected payoff is 1

4 .

Thus, the principal’s expected payoff is 1
2 in the agent-maximizing problem, and

the principal’s payoff guarantee cannot exceed 1
4 in the nature-minimizing problem.

This demonstrates that the two problems are different.

This should not come as a surprise. In the nature-minimizing problem, the
principal and Nature have extremely opposing interests, whereas in the agent-
maximizing problem, their interests could be partially aligned.

5.2 Higher-order moments

The optimal contracts that traditional models of the principal-agent problem predict
often take complicated functional forms (see, for example, Grossman and Hart (1983)

20



and Bolton and Dewatripont (2005, Chapter 4)). Nevertheless, our baseline model
establishes the optimality of monotone affine contracts when the principal only knows
the mean of the output distribution for each action. We could interpret these two
settings as two extreme cases of information available to the principal. One may
wonder whether monotone affine contracts still generate the highest payoff guarantee
when the principal has access to information about some higher-order moments of the
output distributions. The following example illustrates that even when the principal
has information about only the first two moments, monotone affine contracts might
not be optimal.

Example 4. Suppose that there are four levels of output: q1 = 0.5, q2 = 1, q3 = 2, and
q4 = 2.5. There are two actions {a1, a2} available to the agent with c(a1) = 0.2 and
c(a2) = 1.5. The principal knows the mean and variance of the output distribution
for each action. Let m(a1) = 0.8,m(a2) = 2.2 and σ2(a1) = 0.85, σ2(a2) = 5.05, where
σ2(a) = ∑N

i=1 q
2
i pi(a) is the second-order moment of the output distribution p(a) for

the action a. The principal perceives any profile of stochastic output to be plausible as
long as it is consistent with these mean and second-order moment restrictions. The
principal chooses a contract to maximize her payoff guarantee.

As before, any monotone affine contract generates the same expected payoff for
the principal, regardless of the actual profile of stochastic output, as long as it is
consistent with m. It is straightforward to calculate that the least expected costs
of implementing a1 and a2 using monotone affine contracts are ΨM(a1) = 0.2 and
ΨM (a2) = 1.58 respectively. Thus, the highest payoff guarantee from using a monotone
affine contract is m(a2)−ΨM(a2) = 0.62.

Now consider the class of quadratic contracts, which take the form wi = αq2
i +

βqi − γ for constants α, β, γ ∈ R for all i. Since the principal knows m(·) and σ2(·),
we can apply the same arguments as in Section 3.2 and show that, for any quadratic
contract, the agent always exerts the same action and the principal obtains the same
expected payoff for all plausible profiles of stochastic output. Consider a particular
quadratic contract

wi = 0.262q2
i + 0.143qi − 0.137, ∀i.

Given this contract, the agent chooses the action a2 and the principal obtained the
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expected payoff

−0.262σ2(a2) + (1− 0.143)m(a2) + 0.137 = 0.6993,

which is strictly higher than the payoff guarantee from the optimal monotone affine
contract.

This example shows that when there is more information on higher-order moments
available to the principal, monotone affine contracts may not attain the highest payoff
guarantee. This is not surprising since the knowledge on higher moments greatly reduce
the nature’s freedom to choose the profile of stochastic output. Besides affine contracts,
there are other kinds of contracts (such as quadratic contracts in this example) that
can perfectly hedge the principal’s uncertainty.

A Proof of Theorem 1

Step (1) There exists a profile P ∈ P(m) against which V ∗(P ) = V ∗A. Subsequently,
V ∗ = V ∗A .

When comparing the two maximizations problems (grand max) and (grand max-
Affine), we observe that if the output distribution for any action only puts positive
probability on q1 and qN , then these two maximization problems are essentially the
same. Indeed, consider the following profile of stochastic output P̃ ∈ P(m): for each
a ∈ A,

p̃1(a) = qN −m(a)
qN − q1

, p̃N(a) = m(a)− q1

qN − q1
, p̃i(a) = 0, ∀i 6= 1, N.

Against P̃ , the principal’s maximization problem (grand max) reduces to:

max
a∈A,α̃,β̃

(1− α̃)m(a) + β̃

subject to α̃m(a)− c(a) ≥ α̃m(a′)− c(a′) ∀a′ ∈ A\{a},

α̃m(a)− β̃ − c(a) ≥ 0,

α̃q1 − β̃ ≥ 0,

α̃qN − β̃ ≥ 0,
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where
α̃ = wN − w1

qN − q1
and β̃ = q1wN − qNw1

qN − q1
.

Thus, without loss of optimality, the principal chooses from the class of affine contracts.
We have V ∗(P̃ ) = V ∗A. It follows that V ∗ ≤ V ∗(P̃ ) = V ∗A. Since clearly V ∗A ≤ V ∗, we
have V ∗ = V ∗A .

We still have to show that V ∗A = V ∗M . Recall that AA (resp. AM) is the set of
actions implementable by affine contracts (resp. monotone affine contracts), and

V ∗A = max
a∈AA

{m(a)−ΨA(a)}, V ∗M = max
a∈AM

{m(a)−ΨM(a)}.

Step (2). If a ∈ AA \ AM , then there exists some â ∈ AM such that m(â) −
ΨA(â) > m(a)−ΨA(a).

Intuitively, if an action is implementable by affine contracts but not implementable
by monotone affine contracts, then implementing this action cannot be optimal for
the principal. Since the agent can only be incentivized to take this action by an affine
contract with a negative slope, under which he prefers to generate low levels of output,
the principal’s expected payoff presumably will improve if she implements some other
action. In what follows, we prove this intuition rigorously.

Let ae be the action with the lowest cost among all the actions.4 In Step (2.1),
we show that ae is implementable by monotone affine contracts, and the principal’s
highest expected payoff from implementing ae using affine contracts or monotone affine
contracts is m(ae)−c(ae). Fix an action a that is implementable by affine contracts but
not implementable by monotone affine contracts. Step (2.2) shows that m(a) < m(ae),
and Step (2.3) shows that the highest expected payoff from implementing any such a
using an affine contract must be strictly less than the highest expected payoff from
implementing ae using an affine contract.

Step (2.1) ae ∈ AM and ΨA(ae) = ΨM(ae) = c(ae).

Since c(ae) ≤ c(a) for any a ∈ A \ {ae}, the monotone affine contract α = 0, β =
−c(ae), which pays the agent a constant wage c(ae) regardless of his action, can be
used to implement ae. Clearly, the least expected cost of implementing the action ae
using any feasible contract is at least c(ae). Thus, ΨA(ae) = ΨM(ae) = c(ae), and the

4If there are multiple actions with the lowest cost, let ae be the action with the highest mean
among these actions.
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associated expected payoff for the principal is m(ae)− c(ae).

Step (2.2) If a ∈ AA \ AM , then m(a) < m(ae).

Fix some action a ∈ AA. We show that if m(a) > m(ae), then a ∈ AM . This
is because any affine contract (α, β) that implements a must satisfy the following
constraint in the implementation problem

αm(a)− c(a) ≥ αm(ae)− c(ae) =⇒ α ≥ c(a)− c(ae)
m(a)−m(ae)

≥ 0.

Thus, a is also implementable by monotone affine contracts.

Step (2.3) m(ae)−ΨA(ae) > m(a)−ΨA(a) for any a ∈ AA \ AM .

Fix an action a ∈ AA \ AM . By construction, c(ae) ≤ c(a). From Step (2.2), we
know that m(ae) > m(a). It follows that m(ae)− c(ae) > m(a)− c(a). Since the least
expected cost of implementing a is at least c(a), the principal’s highest expected payoff
from implementing a using any feasible contract cannot exceed m(a)− c(a). From Step
(2.1), we know that the principal’s highest expected payoff from implementing a using
affine contracts is m(ae)− c(ae).

This completes the proof of Step (2). We have

V ∗A = max
a∈AA

{m(a)−ΨA(a)} = max
a∈AM

{m(a)−ΨA(a)}

Step (3). If a ∈ AM , then ΨA(a) = ΨM(a).

Fix an action a that is implementable by monotone affine contracts. We show
that the least expected cost of implementing such an action does not increase if the
principal is restricted to choosing from the class of monotone affine contracts rather
than from the class of affine contracts.

First, if there exists some action a′ such that m(a′) < m(a) and c(a′) ≤ c(a), then
any affine contract (α, β) that implements a must be monotone, since (α, β) necessarily
satisfies the following constraint in the implementation problem

αm(a)− c(a) ≥ αm(a′)− c(a′) =⇒ α ≥ c(a)− c(a′)
m(a)−m(a′) ≥ 0.

Thus, ΨA(a) = ΨM(a).

Now consider the case in which any action with a lower mean than m(a) has a
higher cost than c(a). Since a is implementable by monotone affine contracts, it must
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also be that c(a) ≤ c(a′) for any a′ with a higher mean than m(a). Otherwise, there
exists some action a′ with m(a′) > m(a) and c(a′) < c(a), and any affine contract (α, β)
that implements a must satisfy the following constraint in the implementation problem

αm(a)− c(a) ≥ αm(a′)− c(a′) =⇒ α ≤ c(a′)− c(a)
m(a′)−m(a) < 0,

which contracts that a is implementable by monotone affine contracts. Since the
action a has the smallest cost among all the actions, we know from Step (2.1) that
ΨA(a) = ΨM(a).

Thus,

V ∗ = V ∗A = max
a∈AM

{m(a)−ΨA(a)} = max
a∈AM

{m(a)−ΨM(a)} = V ∗M ,

where the first equality follows from Step (1), the second equality follows from Step (2),
and the third equality follows from Step (3). This completes the proof of Theorem 1.

B Proof of Theorem 2

It is straightforward to verify that P̃ ⊆ P(m). This step is purely algebraic and we
omit the details.

We show that for any P̃ ∈ P̃, Ψ(a|P̃ ) = ΨM(a) for any action a. Clearly, we
have ΨM(a1) = Ψ(a1|P ) = c(a1) for any P ∈ P(m). This is because (1) since a1 has
the smallest cost among all the actions, the monotone affine contract with α = 0 and
β = −c(a1), which pays the agent a constant wage c(a1) regardless of his action, can
be used to implement a1, and (2) the least expected cost of implementing a1 using any
feasible contract is at least c(a1) regardless of the profile of stochastic output. Without
loss, in what follows, we assume that a 6= a1.

Given the cost minimization problems (min) and (min-Monotone) for implement-
ing an action ak ∈ A, k > 1, we shall work with their corresponding dual problems.
The strong duality holds, since any action a ∈ A is implementable by monotone affine
contracts and the least expected costs from (min) and (min-Monotone) are both finite.
Thus, each dual problem induces the same optimal value as the corresponding primal
problem.

We first consider the least expected cost of implementing ak ∈ A, k > 1 using
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monotone affine contracts. We derive the dual maximization problem (dual-Monotone)
as follows:

max
λM ,ηM ,νM

∑
k′ 6=k

λM(ak, ak′)
(
c(ak)− c(ak′)

)
+ ηMc(ak) (dual-Monotone)

subject to
∑
k′ 6=k

λM(ak, ak′)
(
m(ak)−m(ak′)

)
+ ηMm(ak) + νMq1 ≤ m(ak), (4)

ηM + νM = 1, (5)

λM(ak, ak′) ≥ 0, ∀k′ 6= k,

ηM ≥ 0,

νM ≥ 0,

where λM(ak, ak′) is the multiplier on the constraint of preferring ak to ak′ , ηM is the
multiple on the participating constraint, and νM is the multiplier on the limited liability
constraint in the primal problem (min-Monotone).

We simplify this maximization problem using a series of observations. We claim
that (4) must bind at an optimum. Suppose to the contrary, (4) holds with strict
inequality at an optimum (λ∗M , η∗M , ν∗M). Then we can increase the value of λ∗M(ak, a1)
by a sufficiently small ε > 0, while keeping the other variables unchanged. The new
set of variables would still satisfy all the constraints, and the value of the objective
function increases. This contradicts the optimality of (λ∗M , η∗M , ν∗M).

Furthermore, all the multipliers on the constraints of preferring ak to ak′ for
k′ > k must be zero at an optimum (λ∗M , η∗M , ν∗M ). Suppose to the contrary, there exists
some k1 > k such that λ∗M(ak, ak1) > 0. Note that (4) (which must be binding at an
optimum) and (5) imply that

∑
k′ 6=k

λ∗M(ak, ak′)
(
m(ak)−m(ak′)

)
= ν∗M

(
m(ak)− q1

)
≥ 0. (6)

It follows from (6) that there exists some k2 < k such that λ∗M(ak, ak2) > 0. Let

λ̄∗M(ak, ak1) = λ∗M(ak, ak1)− ε and λ̄∗M(ak, ak2) = λ∗M(ak, ak2) + m(ak)−m(ak1)
m(ak)−m(ak2) ε

for some sufficiently small ε > 0, while keeping all other variables unchanged. The new
set of variables would still satisfy all the constraints, and the change in the value of
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the objective function is

−ε
(
c(ak)− c(ak1)

)
+ ε

m(ak)−m(ak1)
m(ak)−m(ak2)

(
c(ak)− c(ak2)

)
.

It follows from Assumption 1 that this change is positive, contradicting the optimality
of (λ∗M , η∗M , ν∗M).

With the above observations, the maximization problem (dual-Monotone) reduces
to the following:

max
λM ,ηM ,νM

∑
k′<k

λM(ak, ak′)
(
c(ak)− c(ak′)

)
+ ηMc(ak)

subject to
∑
k′<k

λM(ak, ak′)
(
m(ak)−m(ak′)

)
+ ηM

(
m(ak)− q1

)
= m(ak)− q1,

λM(ak, ak′) ≥ 0, ∀k′ < k,

0 ≤ ηM ≤ 1.

This is isomorphic to a utility maximization problem of a consumer who gains marginal
utility c(ak)−c(ak′) for consuming good k′ < k and marginal utility c(ak) for consuming
good k, faces the price m(ak) −m(ak′) for good k′ < k and the price m(ak) − q1 for
good k, and has a budget constraint of m(ak)− q1. It follows from Assumption 1 that
at an optimum, it must be that λ∗M(ak, ak′) = 0 for any k′ 6= k − 1. We still have two
cases to consider.

Case 1. If c(ak)−c(ak−1)
m(ak)−m(ak−1) >

c(ak)
m(ak)−q1

, then

λ∗M(ak, ak−1) = m(ak)− q1

m(ak)−m(ak−1) , λ
∗
M(ak, ak′) = 0, ∀k′ 6= k − 1, and η∗M = 0.

Case 2. If c(ak)−c(ak−1)
m(ak)−m(ak−1) ≤

c(ak)
m(ak)−q1

, then one optimum is

η∗M = 1, and λ∗M(ak, ak′) = 0, ∀k′.

We then consider the least expected cost of implementing ak ∈ A, k > 1 using
any feasible contract. For a given profile of stochastic output P , the dual of the cost
minimization problem (min) is derived as follows:

max
λ,η

∑
k′ 6=k

λ(ak, ak′)
(
c(ak)− c(ak′)

)
+ ηc(ak) (dual)
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subject to
∑
k′ 6=k

λ(ak, ak′)
(
pi(ak)− pi(ak′)

)
+ ηpi(ak) ≤ pi(ak),∀i = 1, 2, . . . , N,

λ(ak, ak′) ≥ 0,∀k′ 6= k,

η ≥ 0,

where λ(ak, ak′) is the multiplier on the constraint of preferring ak to ak′ , η is the
multiplier on the participating constraint in the primal problem (min-Monotone).

We now identify conditions under which, for any action ak ∈ A, k > 1, the
solution for (dual-Monotone) is feasible for (dual). This guarantees the equivalence of
Ψ(a|P̃ ) and ΨM(a) for all a ∈ A.

Fix an action ak, k > 1. If c(ak)−c(ak−1)
m(ak)−m(ak−1) ≤

c(ak)
m(ak)−q1

, then the optimal solution

η∗M = 1, and λ∗M(ak, ak′) = 0, ∀k′

is feasible for the maximization problem (dual) for all P . If c(ak)−c(ak−1)
m(ak)−m(ak−1) >

c(ak)
m(ak)−q1

,
then for the optimal solution

λ∗M(ak, ak−1) = m(ak)− q1

m(ak)−m(ak−1) , λ
∗
M(ak, ak′) = 0, ∀k′ 6= k − 1, and η∗M = 0

to be feasible for the maximization problem, P̃ must be such that

m(ak)− q1

m(ak)−m(ak−1)
(
p̃i(ak)− p̃i(ak−1)

)
≤ p̃i(ak), ∀i = 1, 2, . . . , N.

Suppose that P̃ satisfies

m(ak)− q1

m(ak)−m(ak−1)
(
p̃i(ak)− p̃i(ak−1)

)
≤ p̃i(ak), ∀k > 1, ∀i = 1, 2, . . . , N.

Thus, for any k > 1,

εi(ak) := m(ak)− q1

m(ak−1)− q1
p̃i(ak−1)− p̃i(ak) ≥ 0, ∀i = 1, 2, . . . , N.

The requirement that P̃ ∈ P(m) imposes the following restrictions on εi(ak): ∀k > 1,

N∑
i=1

εi(ak) = m(ak)−m(ak−1)
m(ak−1)− q1

, and
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N∑
i=1

qiεi(ak) = q1
m(ak)−m(ak−1)
m(ak−1)− q1

.

Thus, ∑N
i=1 qiεi(ak) = ∑N

i=1 q1εi(ak), ∀k > 1. This can only be true if

ε1(ak) = m(ak)−m(ak−1)
m(ak−1)− q1

, and εi(ak) = 0, ∀k > 1, ∀i = 2, 3, . . . , N.

Through some algebraic manipulation, we can represent p̃(a) for each action a ∈ A in
terms of only p̃(a1): for any k > 1,

p̃1(ak) = m(ak)− q1

m(a1)− q1
p̃1(a1)− m(ak)−m(a1)

m(a1)− q1
, (7)

p̃i(ak) = m(ak)− q1

m(a1)− q1
p̃i(a1), ∀i = 2, 3, . . . , N. (8)

Therefore, p̃(a1) must satisfy the following conditions (besides being a probability
distribution):

N∑
i=1

qip̃i(a1) = m(a1), (9)

p̃1(a1) ≥ m(aK)−m(a1)
m(aK)− q1

, (10)

where (10) is derived from the requirement that p̃(ak) is a probability distribution for
any k > 1.

For any probability distribution p̃(a1) such that (9) and (10) are satisfied, using
(7) and (8), we could construct a profile of stochastic output P̃ ∈ P(m) such that
Ψ(a|P̃ ) = ΨM(a) for all a ∈ A. Subsequently, V ∗(P̃ ) = V ∗M . This completes the proof
of Theorem 2.

C Proof of Theorem 3

As argued in the main text, to prove Theorem 3, it suffices to show that there exists a
probability distribution p̃i(a1) such that

N∑
i=1

qip̃i(a1) = m(a1),

p̃1(a1) > m(aK)−m(a1)
m(aK)− q1

,
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p̃i(a1) > 0, ∀i = 2, 3, . . . , N.

Since ∑N
i=1 p̃i(a1) = 1 and ∑N

i=1 qip̃i(a1) = m(a1), we have

p̃1(a1) = 1
q2 − q1

( N∑
i=3

(qi − q2)p̃i(a1) + q2 −m(a1)
)
,

p̃2(a1) = 1
q2 − q1

(
m(a1)− q1 −

N∑
i=3

(qi − q1)p̃i(a1)
)
.

For p̃1(a1) to be larger than m(aK)−m(a1)
m(aK)−q1

, we need

N∑
i=3

(qi − q2) p̃i(a1)
m(a1)− q1

>
m(aK)− q2

m(aK)− q1
.

For p̃2(a1) to be larger than 0, we need

N∑
i=3

(qi − q1) p̃i(a1)
m(a1)− q1

< 1.

Lastly, we need

p̃i(a1) > 0, ∀i = 3, . . . , N.

These three conditions can be satisfied by the following output distribution p(a1):

p1(a1) = 1
q2 − q1

( N∑
i=3

(qi − q2)pi(a1) + q2 −m(a1)
)
,

p2(a1) = 1
q2 − q1

(
m(a1)− q1 −

N∑
i=3

(qi − q1)pi(a1)
)
,

pi(a1) = (m(a1)− q1)(q2 − q1)(qN −m(aK))
4(m(aK)− q1)(qN − q2)∑N−1

i=3 (qi − q1)
, ∀i = 3, 4, . . . , N − 1,

pN(a1) = (m(a1)− q1)(m(aK)− q2)
2(m(aK)− q1)(qN − q2) + m(a1)− q1

2(qN − q1) .

This completes the proof of Theorem 3.
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