
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

Strongly secure authenticated key exchange from supersingular Strongly secure authenticated key exchange from supersingular

isogenies isogenies

Xiu XU

Haiyang XUE
Singapore Management University, haiyangxue@smu.edu.sg

Kunpeng WANG

Ho Man AU

Song TIAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
XU, Xiu; XUE, Haiyang; WANG, Kunpeng; AU, Ho Man; and TIAN, Song. Strongly secure authenticated key
exchange from supersingular isogenies. (2019). Proceedings of the 25th International Conference on the
Theory and Application of Cryptology and Information Security Kobe, Japan, 2019 December 8-12,.
278-308.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9203

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Strongly Secure Authenticated Key
Exchange from Supersingular Isogenies

Xiu Xu1,2,4, Haiyang Xue1,2,3(B), Kunpeng Wang1,2,4, Man Ho Au3,
and Song Tian1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

haiyangxc@gmail.com
2 Data Assurance and Communications Security Research Center, Beijing, China

3 The Hong Kong Polytechnic University, Hung Hom, Hong Kong
4 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. This paper aims to address the open problem, namely, to find
new techniques to design and prove security of supersingular isogeny-
based authenticated key exchange (AKE) protocols against the widest
possible adversarial attacks, raised by Galbraith in 2018. Concretely,
we present two AKEs based on a double-key PKE in the supersingular
isogeny setting secure in the sense of CK+, one of the strongest security
models for AKE. Our contributions are summarised as follows. Firstly,
we propose a strong OW-CPA secure PKE, 2PKEsidh, based on SI-DDH
assumption. By applying modified Fujisaki-Okamoto transformation, we
obtain a [OW-CCA, OW-CPA] secure KEM, 2KEMsidh. Secondly, we pro-
pose a two-pass AKE, SIAKE2, based on SI-DDH assumption, using
2KEMsidh as a building block. Thirdly, we present a modified version
of 2KEMsidh that is secure against leakage under the 1-Oracle SI-DH
assumption. Using the modified 2KEMsidh as a building block, we then
propose a three-pass AKE, SIAKE3, based on 1-Oracle SI-DH assump-
tion. Finally, we prove that both SIAKE2 and SIAKE3 are CK+ secure
in the random oracle model and supports arbitrary registration. We also
provide an implementation to illustrate the efficiency of our schemes.
Our schemes compare favourably against existing isogeny-based AKEs.
To the best of our knowledge, they are the first of its kind to offer secu-
rity against arbitrary registration, wPFS, KCI, and MEX simultaneously.
Regarding efficiency, our schemes outperform existing schemes in terms
of bandwidth as well as CPU cycle count.

Keywords: Authenticated key exchange · Key encapsulation
mechanism · Supersingular elliptic curve isogeny · Post quantum

1 Introduction

Authenticated Key Exchange. Allowing two parties to agree on a common
shared key over a public but possibly insecure channel, key exchange (KE) is
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11921, pp. 278–308, 2019.
https://doi.org/10.1007/978-3-030-34578-5_11

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 279

a fundamental cryptographic primitive. Many studies have investigated how to
achieve KE protocols that provide authentication [4,6,12,27] and how to imple-
ment authenticated key exchange (AKE) with high efficiency [2,12,13,21,27–
29] based on classical assumptions. Different of security models have been pro-
posed, including BR model [4], CK model [6] and eCK model [27]. Introduced
in [22] and reformulated by Fujioka et al. [12], currently, CK+ security model is
known as one of the ‘strongest’ and most ‘desirable’ security notions. The CK+

model not only covers the security requirement in CK model, but also captures
some advanced attacks such as the key compromise impersonation (KCI) attack,
the maximal exposure (MEX) attack and the breaking of weak perfect forward
secrecy (wPFS).

Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH). Apart
from lattice, code, hash and multivariate cryptography, supersingular elliptic
curve isogeny is one of the most attractive candidates for post-quantum cryp-
tography. The best-known protocol is Jao and De Feo’s supersingular isogeny
Diffie-Hellman key exchange (SIDH) [8] based on the hard problem of comput-
ing isogenies between supersingular elliptic curves. There are several interesting
topics concerning SIDH in the literature. For example, computational efficiency
[7,10,23], key compression [5], adaptive attacks on SIDH [17], relationship of the
underlying complexity problems [9,19,32], signature schemes [16,31,35] and its
standardization [20,24].

Recently, several work [14,15,26] have studied the important problem of
designing AKE schemes from the basic SIDH primitive. As pointed out by Gal-
braith [15], there are several challenges in adapting the security proof of exist-
ing well-designed AKE schemes (most of them are based on discrete logarithm
assumption) to the SIDH case:

– Many AKE schemes based on discrete logarithm assumption, such as MQV
[28] and HMQV [22], require a richer algebraic structure the supersingular
isogeny does not possess.

– The protocols involving long-term/static secret keys are vulnerable to the
adaptive attack [17] aiming at the case where the static public key is used.
More precisely, suppose that in a protocol Alice sets EA as her static public
key, and EY is an ephemeral public value sent by Bob. Galbraith et al. [17]
showed that adversary Bob can send (EY , R′, S′) with maliciously-crafted
points R′ and S′ to gradually learn Alice’s static secret key.

– The gap assumption that holds in the discrete logarithm setting is crucial
for security proof. However, the gap assumption does not hold in the SIDH
setting when polynomial queries are submitted to an unlimited decisional
solver.

The State of the Art of SIDH AKE. Recently, there are many exciting
results on the generic and non-generic constructions of AKE over supersingu-
lar curves [14,15,26]. Galbraith [15] and Longa [26] showed how to adapt the
generic constructions of secure AKE from basic primitives like IND-CCA encryp-
tion/KEMs, MACs, PRFs etc, including the schemes proposed by Boyd, Cliff,

280 X. Xu et al.

Nieto and Paterson [2] (abbreviated as BCNP scheme), by Fujioka, Suzuki,
Xagawa and Yoneyama [13] (abbreviated as FSXY scheme) and by Guilhem,
Smart and Warinschi [18] (abbreviated as GSW scheme), to the SIDH setting
by inserting an IND-CCA secure KEM based on SIDH. Particularly, Longa [26]
showed how to use SIDH as basic building blocks to construct AKE schemes.
However, these transformations lead either to more isogeny computations or
increase in rounds of communication. The detailed analyses are examined and
summarized in Table 1 of [15]. Here we make a more concrete comparison among
these AKE schemes in the SIDH setting in Table 1.

With respect to non-generic constructions, Galbraith proposed two SIDH-
AKE protocols [15], one of which is based on the Jeong-Katz-Lee [21] scheme
TS2 (we call it Gal 1) and another is an SIDH variant of NAXOS scheme (we call
it Gal 2). Very recently, Fujioka et al. [14] gave two Diffie-Hellman like isogeny-
based AKEs, which we denote as FTTY 1 where the session key is extracted from
the combination of two Diffie-Hellman values, and FTTY 2 where the session key
is extracted from four Diffie-Hellman values, respectively. Unfortunately, all of
these schemes only provide security against adversaries with limited capabilities,
such as wPFS security (details are given in Sect. 1.3). Several known attacks are
not taken into account, including arbitrary registrant for static public keys, the
KCI attack, or the MEX attack. In an AKE system, the adversary-controlled
parties may register arbitrary public keys and arbitrary registrant allows any
party to register arbitrary public keys (even the same key with some other party)
without any validity checks. In fact, neither Gal 1-2 nor FTTY 1-2 scheme allows
the arbitrary registrant for the static public key. Otherwise, with malicious static
public keys, a target secret key can be learned bit by bit, which implies that Gal
1-2 and FTTY 1-2 are not resistant to the adaptive attack. Moreover, Gal 1 is
not resistant to the KCI attack and Gal 2 is not resistant to the MEX attack.
Detailed analyses on those attacks against Gal 1-2 and FTTY 1-2 are given in
the related works.

Thus, “to find new techniques to design and prove security of AKE protocols
in the SIDH setting, . . . give a full analysis of AKE that includes the widest
possible adversarial goals.”, a quote from Galbraith [15], is the main problem to
be addressed in the area of SIDH-based AKE. In this paper, we are motivated
to address such an open problem.

1.1 Our Contributions

In this paper, we present two AKEs based on a double-key PKE in the SIDH
setting and show that both of them allow arbitrary registrant and are CK+

secure in the random oracle model. Our results are summarized as follows.

– We propose a strong OW-CPA secure PKE, 2PKEsidh, based on SI-DDH
assumption. The strong OW-CPA security is exactly the [OW-CPA,·] secu-
rity formalized in [34] which states that the PKE is still OW-CPA secure even
if part of the public key is generated by the adversary. This construction may

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 281

be of independent interest. Through the modified Fujisaki-Okamoto transfor-
mation [34], we obtain a [OW-CCA, OW-CPA] secure KEM, 2KEMsidh, to be
used as the building block of our AKE.

– With 2KEMsidh as the basic tool, we propose a two-pass AKE, SIAKE2, based
on SI-DDH assumption. SIAKE2 is CK+ secure in the random oracle model
and supports arbitrary registration.

– We propose 1-Oracle SI-DH assumption, a strong version of the SI-DDH
assumption. Contrary to its analogue, Oracle Diffie-Hellman problem [1] in
the discrete logarithm setting, the 1-Oracle SI-DH problem only allows one
query to the oracle. We revisit 2PKEsidh and provide a modified version of
2KEMsidh, and show that under the 1-Oracle SI-DH assumption both of them
are still secure against leakage.

– Using the modified 2KEMsidh as the basic tool, we propose a three-pass AKE,
SIAKE3, based on 1-Oracle SI-DH assumption. We prove that it supports
arbitrary registration and is also CK+ secure in the random oracle model.

From Table 1, we can observe that both SIAKE2 and SIAKE3 achieve the
security against multiple possible adversaries, which to the best of our knowledge
covers the most extensive adversarial goals, including arbitrary registrant, wPFS,
KCI and MEX.

Table 1. Comparison of existing AKE protocols on supersingular isogeny. Key Reg.
represents registering the static public key. “Arbi” means arbitrary registrant is allowed
while “Honest” means only honest registrants is allowed. Assump. is the abbreviation
of assumptions. “1-OSIDH” is the abbreviation of 1-Oracle SI-DH assumption. Rd
denotes the number of protocol’s communication round. Init isog and Resp isog
represent the number of isogeny computation that the initiator and responder have to
perform respectively. Mess Size denotes the total message size. “�” indicates that the
scheme can resist this kind of attack while “×” indicates it cannot. n is the security
parameter.

Scheme Key Reg. Assum. Model wPFS KCI MEX Rd Init isog Resp isog Mess Size

Gal 1 [15] Honest SI-CDH CK � × × 2 3 3 108n

Gal 2 [15] Honest SI-CDH BR � � × 2 4 4 108n

FTTY 1 [14] Honest SI-DDH CK � × × 1 3 3 72n

FTTY 2 [14] Honest di-SI-DDH CK+ � � � 1 5 5 72n

GSW [18] Arbi. SI-DDH CK � × × 3 6 6 186n

BCNP [2,26] Arbi. SI-DDH CK � � × 2 6 6 148n

FSXY [13,26] Arbi. SI-DDH CK+ � � � 2 6 6 148n

SIAKE2 Arbi. SI-DDH CK+ � � � 2 6 5 114n

SIAKE3 Arbi. 1-OSIDH CK+ � � � 3 5 5 80n

1.2 Technique Overview

Our core ideas and techniques are illustrated in Fig. 1. Let E0 be the starting
curve, and (P1, Q1), (P2, Q2) be the base points. EA1 , EB2 , EX and EY are four

282 X. Xu et al.

intermediate curves which are part of static or ephemeral public keys. EA1Y ,
EXB2 and EXY are three final computing curves.

Let UA, UB be two parties in the AKEs. The SIDH works as follows: UA

chooses a secret, computes the isogeny φX : E0 → EX with kernel GX and pub-
lishes X = (EX , φX(P2), φX(Q2)). UB chooses a secret, computes the isogeny
φY : E0 → EY with kernel GY and publishes Y = (EY , φY (P1), φY (Q1)). They
both can compute EXY

∼= EX/φX(GY) ∼= EY /φY (GX). The strategy to provide
authentication with the static and ephemeral components is that every user regis-
ters a static public key such that UA’s static public key is pkA1 = (EA1 , φA1(P2),
φA1(Q2)) while UB ’s static public key is pkB2 = (EB2 , φB2(P1), φB2(Q1)).

Fig. 1. Illustration of the core idea of SIAKE2 and SIAKE3. The red dashed lines illus-
trate the core ideas of Gal 1 scheme [15]. In SIAKE2, EX and EX0 are two independent
curves. In SIAKE3, EX = EX0 and the dashed double arrow is included. (Color figure
online)

As shown in Fig. 1, there is a natural way to extract a session key from
four Diffie-Hellman values EA1B2 , EA1Y , EXB2 and EXY (Actually, this is what
FTTY2 scheme does). However, it is risky to take EA1B2 into account. Let us
recall the adaptive attack from Galbraith, Petit, Shani and Ti [17]. A malicious
user UB who registers his static public key EB2 with specified points R′, S′, can
learn one bit of the static secret key of UA if he can also query the session key.
As shown in Fig. 1 with dashed lines, Galbraith [15] involves EA1B2 and EXY

for the session key. Under the adaptive attack [17], adversary could gradually
learn the static secret key by malicious registrations. Thus, EA1B2 could not be
included in the session key when arbitrary registrant is allowed.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 283

Although now only EA1Y , EXB2 , and EXY are involved in the session key,
the adaptive attack can still be launched if the CK+ adversary (in case E2 in
Table 2) sends EY with specified points R′, S′ to UA. With the ephemeral secret
key for EX and the session key, the adversary could still extract one bit of
the static secret key. The problem can be tackled by a check of “validity” of
Y = (EY , R, S). Our solution is to employ the “re-encryption” technique used
in Fujisaki-Okamoto (FO) transformation [11]. Precisely, C = (Y, y1, y0) is the
ciphertext under public key pkA1 and X, where Y = (E0/〈P2 + [y]Q2〉, φY (P1),
φY (Q1)), y1 = h(j(EA1Y)) ⊕ m1, y0 = h(j(EXY)) ⊕ m0 and y = G(m1,m0)
for a hash function G, and the encapsulated key is KB = H(m1,m0, C). As
a byproduct, we obtain the chosen ciphertext (CCA) secure KEM by the FO
transformation and the “validity” of Y = (EY , R, S) can be checked by UA using
y = G(m1,m0) so that the adaptive attack fails to work.

Now the CCA secure KEM with “re-encryption” avoids the adaptive attack,
but it is still not sufficient for CK+ security. The CK+ adversary has the capa-
bility to adaptively send messages and adaptively query the session state and
session key of non-test sessions. The capability of adaptively sending messages
in the test session means that the adversary is allowed to choose one-part of
the challenge public key X∗ for (Y ∗, y∗

1 , y∗
0), while the capability of querying

the session state and session key of non-test sessions implies that the adver-
sary is also allowed to query the decapsulation oracle which decapsulates the
ciphertext under several other public keys X ′. This feature has been analyzed
by [34] and formalized as [OW-CCA, ·] security. The modified Fujisaki-Okamoto
[34] states that putting the public key in the hashing step when generating the
encapsulated key would be sufficient. Precisely, KB encapsulated in (Y, y1, y0) is
H(X,m1,m2, C).

The last challenge that we are facing is the relationship between X and Y,
which leads to the difficulty in simulating the CK+ game. In the test session,
on the one hand X is part of the public key (pkA1 ,X) under which the cipher-
text (Y, y1, y0) is computed. On the other hand X is part of the ciphertext
(X,x1, x0) in which KA is encapsulated under public key (pkB2 , Y). Precisely,
in the test session X = ((EX , R2, S2), x1, x0) is sent by AKE adversary A, and
the simulator S obtains challenge ciphertext (Y ∗, y∗

1 , y∗
0) from the [OW-CCA, ·]

challenger (which means the secret y in Y ∗ is unknown). But to simulate the
CK+ game, especially to maintain the consistency of hash lists, S should learn
h(j(EX/〈R2 + [y]S2〉)) to extract KA encapsulated in (X,x1, x0).

We propose two solutions for this problem. One method is to add an extra
X0 such that X0 is part of the public key (pkA1 ,X0) under which the ciphertext
(Y, y1, y0) is computed, while X is part of the ciphertext (X,x1) under public key
EB2 (we omit Y). The other solution is to strengthen the underlying assumption
as 1-Oracle SI-DH assumption such that h(j(EX/〈R2 +[y]S2〉)) could be leaked.

In consequence, the two solutions lead to two AKEs, namely, SIAKE2 and
SIAKE3.

– Solution 1: We add an extra X0 to take the position of X as part of the
public key (pkA1 ,X0) under which the ciphertext (Y, y1, y0) is computed,

284 X. Xu et al.

remove x2 and set (X,x1) as the ciphertext under public key EB2 rather than
(EB2 , Y). Then the value of h(j(EX/〈R2 + [y]S2〉)) is not needed during the
security proof. The drawback of this solution is that K ′

A can not be included
in the session state of UB . Solution 1 leads to SIAKE2.

– Solution 2: We strengthen the underlying SI-DDH assumption to the 1-
Oracle SI-DH assumption to allow the leakage of h(j(EX/〈R2 +[y]S2〉)). The
1-Oracle SI-DH assumption can be considered as a hashed SI-DDH assump-
tion where a one-time hashed SI-CDH oracle is allowed. Note that considering
〈R2 + [y]S2〉 = 〈[u]R2 + [y][u]S2〉 for any integer 1 ≤ u ≤ �e2

2 and coprime to
�2, we employ a simple trick of tailoring the hash function as h(Y, j(EXY))
in x2 and h(X, j(EXY)) in y2. This solution results in SIAKE3.

1.3 Related Works and Their Analysis

Galbraith [15] proposed two SIDH variants of AKE, namely, Gal 1 from Jeong-
Katz-Lee protocol [21] and Gal 2 from NAXOS protocol [27]. Considering the
adaptive attack on static secret keys, Gal 1 protocol only allows honest regis-
trants of static public keys and it is also vulnerable to the KCI attack. So far,
neither has there been any concrete MEX attack on Gal 1, nor any formal proofs
to show Gal 1 is resistant to the MEX attack. Gal 2 protocol is provably secure
in BR model, which only allows honest registrants of static public keys (if the
adversary gets the ephemeral secret key, like x, the adaptive attack still works),
and can not resist the MEX attack.

Very recently, Fujioka et al. [14] gave two Diffie-Hellman like isogeny-based
AKEs, namely, FTTY 1 and FTTY 2. FTTY 1 protocol, which is quite similar
to Gal 1 scheme, is CK secure in the quantum random oracle model, but it only
allows honest registrants and cannot resist the KCI attack. FTTY 2 is secure in
CK+ model, but it also only allows honest registrants.

Below we illustrate in detail the (in)capability of Gal 1-2 and FTTY 1-2 on
resisting the adaptive attacks (if the arbitrary registrant is allowed), the KCI
attack, and the MEX attack.

Adaptive Attacks If Arbitrary Registrant Is Allowed. Suppose that in a
protocol Alice sets EA1 , φA1(P2), φA1(Q2) as her static public key. The goal of
a malicious adversary is to compute Alice’s static secret key. As illustrated in
Fig. 1, the session key of Gal 1 is extracted from EXY and EA1B2 . By applying
the adaptive attacks [17], a malicious adversary can register (EB2 , R

′, S′) with
specified points R′ and S′, rather than φB2(P1) and φB2(Q1), as the static public
key for Bob. By checking whether the session key computed by Alice (which can
be obtained from SessionKeyReveal query) is equal to that computed by Bob,
one bit of Alice’s static secret key is determined. The adversary gradually learns
Alice’s static secret key by registering several valid static public keys according
to adaptive attacks. Such an attack can be applied to FTTY 1 directly and it
also works for FTTY 2 if the adversary also has the ephemeral secret key x of
Alice (which can be obtained by querying SessionStateReveal), which means that
FTTY 2 also does not allow arbitrary registrant. Gal 2 does not allow arbitrary

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 285

registrant either, since if the adversary has the ephemeral secret key x of Alice
(which can be obtained from SessionStateReveal query), by honestly registering
static public key for Bob, then sending (EY , R′, S′) with specified points R′ and
S′, and checking whether the session key computed by Alice is equal to that
computed by Bob, the adversary is able to learn one bit of Alice’s static secret
key.

KCI Attacks. KCI attacks state that if a static secret key is revealed, an
adversary can try to impersonate any other honest parties in order to fool the
owners of the exposed secret keys. Neither Gal 1 nor FTTY 1 are resistant to
the KCI attack since each session key is extracted from EXY and EA1B2 , and by
generating EY , φY (P1), φY (Q1) and sending it to Alice on behalf of Bob, with
Alice’s static secret key the adversary could compute the session key even if
Bob’s static secret key is unknown.

MEX Attacks. In MEX, an adversary aims to distinguish the session key from
a random value under the disclosure of the ephemeral secret key of (at least)
one party of the test session. Gal 2 is not resistant to the MEX attack since
its session key is extracted from EXY , EXB2 , and EA1Y , thus it is easy for an
adversary to compute those curves with the ephemeral secret key corresponding
to EX and EY .

2 Preliminaries

2.1 SIDH and Crypto-Friendly Description

We recall briefly the SIDH protocol using the same notation as [8,20]. Let p
be a large prime of the form p = �e1

1 �e2
2 · f ± 1, where �1 and �2 are two small

primes, and f is an integer cofactor. Then we can construct a supersingular
elliptic curve E0 defined over Fp2 with order |E0(Fp2)| = (�e1

1 �e2
2 · f)2. Let Zm be

the ring of residue classes modulo m. The subgroup E0[m] of m-torsion points is
isomorphic to Zm×Zm for m ∈ {�e1

1 , �e2
2 }. Let P1, Q1 be two points that generate

E0[�e1
1] and P2, Q2 be two points that generate E0[�e2

2]. The public parameters
are (E0;P1, Q1;P2, Q2; �1, �2, e1, e2).

The SIDH, as depicted in Fig. 2, works as follows. Alice chooses her secret
key ka from Z�

e1
1

and computes the isogeny φA : E0 → EA whose kernel is the
subgroup 〈RA〉 = 〈P1 + [ka]Q1〉. She then sends to Bob her public key which

E0 EA = E0/〈RA〉

EB = E0/〈RB〉 EAB = E0/〈RA, RB〉

φA

φB φAB

φBA

Fig. 2. SIDH

286 X. Xu et al.

is EA together with the two points φA(P2), φA(Q2). Similarly, Bob chooses his
secret key kb from Z�

e2
2

and computes the isogeny φB : E0 → EB with kernel
subgroup 〈RB〉 = 〈P2 + [kb]Q2〉. He sends to Alice his public key which is EB

together with the two points φB(P1), φB(Q1). To get the shared secret, Alice
computes the isogeny φBA : EB → EBA with kernel subgroup generated by
φB(P1) + [ka]φB(Q1). Similarly, Bob computes the isogeny φAB : EA → EAB

with kernel subgroup generated by φA(P2) + [kb]φA(Q2). Since the composed
isogeny φAB ◦φA has the same kernel 〈RA, RB〉 as φBA ◦φB , Alice and Bob can
share the same j-invariant j(EAB) = j(EBA).

It will be helpful to have a crypto-friendly description of SIDH for the
presentation of our AKEs. We follow the treatment of Fujioka et al. [14]. In
what follows we assume {t, s} = {1, 2}, and denote the public parameters by
g = (E0;P1, Q1, P2, Q2) and e = (�1, �2, e1, e2). We define the sets of supersingu-
lar curves and those with an auxiliary basis as

SSECp = {supersingular elliptic curvesE overFp2 with E(Fp2)
 (Z�
e1
1 �

e2
2 f)2};

SSECA = {(E;P ′
t , Q

′
t)|E ∈ SSECp, (P ′

t , Q
′
t) is basis of E[�et

t]};
SSECB = {(E;P ′

s, Q
′
s)|E ∈ SSECp, (P ′

s, Q
′
s) is basis of E[�es

s]}.

Let a = ka and b = kb, then we define,

ga = (EA;φA(Pt), φA(Qt)) ∈ SSECA,

where RA = Ps + [ka]Qs, φA : E0 → EA = E0/〈RA〉;
gb = (EB ;φB(Ps), φB(Qs)) ∈ SSECB ,

where RB = Pt + [kb]Qt, φB : E0 → EB = E0/〈RB〉;
(gb)a = j(EBA),where RBA = φB(Ps) + [ka]φB(Qs),

φBA : EB → EBA = EB/〈RBA〉;
(ga)b = j(EAB), where RAB = φA(Pt) + [kb]φA(Qt),

φAB : EA → EAB = EA/〈RAB〉.
Using this notation, the SIDH looks almost exactly like the classical Diffie-
Hellman. That is, the public parameters are g and e. Alice chooses a secret
key a and sends ga to Bob, while Bob chooses a secret key b and sends gb to
Alice. The shared key is, as we expect, j = (gb)a = (ga)b.

2.2 Standard SIDH Assumptions

We describe two standard assumptions about supersingular isogeny based on the
crypto-friendly notation. Let s �= t and s, t ∈ {1, 2}.

Definition 1 (SI-CDH Assumption [8,14]). The SI-CDH problem is that,
given public parameters g and e, and ga, gb where a ← Z�ess , b ← Z�

et
t
, compute

the j-invariant (ga)b = (gb)a. For any PPT algorithm A, we define the advantage
of solving SI-CDH problem as

Advsicdh
A = Pr[j′ = (ga)b|j′ ← A(g, e, ga, gb)].

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 287

The SI-CDH assumption states: for any PPT algorithm A, the advantage of
solving SI-CDH problem is negligible.

Definition 2 (SI-DDH Assumption [8,14]). Let g and e be that defined in
SI-CDH assumption. Let D0 and D1 be two distributions defined as:

D1 :={e, g, ga, gb, (ga)b|a ← Z�ess , b ← Z�
et
t

}
D0 :={e, g, ga, gb, (gs)t|a, s ← Z�ess , b, t ← Z�

et
t

}

The SI-DDH problem is that given a random sample from Db depending on
b ← {0, 1}, guess b. The advantage of solving SI-DDH problem for any PPT
algorithm A is

Advsiddh
A = Pr[b′ = b|b′ ← A(db ← Db), b ← {0, 1}] − 1/2.

The SI-DDH assumption states: for any PPT algorithm A, the advantage of
solving SI-DDH problem is negligible.

2.3 CK+ Security Model

We recall the CK+ model introduced by [22] and later refined by [12], which
is a CK model [6] integrated with the weak PFS, resistance to KCI and MEX
properties. We focus on 3-pass and 2-pass protocols in this paper. For simplicity,
we only show the model specified to 2-pass protocols. As for 3-pass protocol, we
can extend it by adding an extra message in the matching session identifier and
Send definitions.

In an AKE protocol, Ui denotes a party indexed by i, who is modeled as
a probabilistic polynomial time (PPT) interactive Turing machine. We assume
that each party Ui owns a static pair of secret-public key (ski, pki), where the
static public key is related to Ui’s identity by a certification authority (CA).
No other actions by the CA are required or assumed. In particular, we make no
assumption on whether the CA requires a proof-of possession of the private key
from a registrant of a public key, and we do not assume any specific checks on
the value of a public key.

Session. Each party can be activated to run an instance called a session.
A party can be activated to initiate the session by an incoming message
of the form (Π, I, UA, UB) or respond to an incoming message of the form
(Π,R, UB , UA,XA), where Π is a protocol identifier, I and R are role identifiers
corresponding to initiator and responder. Activated with (Π, I, UA, UB), UA is
called the session initiator. Activated with (Π,R, UB , UA,XA), UB is called the
session responder.

According to the specification of AKE, the party creates randomness which
is generally called ephemeral secret key, computes and maintains a session state,
generates outgoing messages, and completes the session by outputting a session
key and erasing the session state. Note that Canetti-Krawczyk [6] defines session
state as session-specific secret information, but leaves it up to a protocol to

288 X. Xu et al.

specify which information is included in a session state. LaMacchia et al. [27]
explicitly set all random coins used by a party in a session as session-specific
secret information and call it ephemeral secret key. Here we require that the
session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initia-
tor UA creates a session state and outputs XA, then may receive an incoming
message of the forms (Π, I, UA, UB ,XA,XB) from the responder UB, and may
compute the session key SK. On the contrary, the responder UB outputs XB ,
and may compute the session key SK. We say that a session is completed if its
owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If
UA is the initiator, the session identifier is sid = (Π, I, UA, UB ,XA) or sid =
(Π, I, UA, UB ,XA,XB), which denotes UA as an owner and UB as a peer. If
UB is the responder, the session is identified by sid = (Π,R, UB , UA,XA,XB),
which denotes UB as an owner and UA as a peer. The matching session of
(Π, I, UA, UB ,XA,XB) is (Π,R, UB , UA,XA,XB) and vice versa.

Adversary. Adversary A is modeled as follows to capture real attacks in open
networks, including the control of communication and the access to some of the
secret information.

– Send(message): A sends messages in one of the forms: (Π, I, UA, UB), (Π,R,
UB , UA,XA), or (Π, I, UA, UB ,XA,XB), and obtains the response.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session
key SK for sid.

– SessionStateReveal(sid): A obtains the session state of the owner of sid if the
session is not completed. The session state includes all ephemeral secret keys
and intermediate computation results except for immediately erased informa-
tion, but does not include the static secret key.

– Corrupt(Ui): By this query, A learns all information of UA (including the
static secret, session states and session keys stored at UA). In addition, from
the moment that UA is corrupted, all its actions may be controlled by A.

Freshness. Let sid∗ = (Π, I, UA, UB ,XA,XB) or (Π, I, UA, UB ,XA,XB) be a
completed session between honest users UA and UB. If the matching session
of sid∗ exists, denote it by sid

∗
. We say session sid∗ is fresh if A does not

query: (1) SessionStateReveal(sid∗), SessionKeyReveal(sid∗), and SessionStateRe-

veal(sid
∗
), SessionKeyReveal(sid

∗
) if sid

∗
exists; (2) SessionStateReveal(sid∗) and

SessionKeyReveal(sid∗) if sid
∗

does not exist.

Security Experiment. The adversary A could make a sequence of the queries
described above. During the experiment, A makes the query of Test(sid∗), where
sid∗ must be a fresh session. Test(sid∗) select random bit b ∈ {0, 1}, and return
the session key held by sid∗ if b = 0; and return a random key if b = 1. The
experiment continues until A returns b′ as a guess of b. The adversary A wins
the game if the test session sid∗ is still fresh and b′ = b. The advantage of the
adversary A is defined as Advck+

Π (A) = Pr [A wins] − 1
2 .

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 289

Definition 3. We say that a AKE protocol Π is secure in the CK+ model if the
following conditions hold:
Correctness: If two honest parties complete matching sessions, then they both
compute the same session key except with negligible probability.
Soundness: For any PPT adversary A, AdvCK+

Π (A) is negligible for the test
session sid∗,

1. the static secret key of the owner of sid∗ is given to A, if sid
∗
does not exist.

2. the ephemeral secret key of the owner of sid∗ is given to A, if sid
∗
does not

exist.
3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid

∗

are given to A, if sid
∗
exists.

4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid
∗
are given

to A, if sid
∗
exists.

5. the static secret key of the owner of sid∗ and the static secret key of the peer
of sid∗ are given to A, if sid

∗
exists.

6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗

are given to A, if sid
∗
exists.

As indicated in Table 2, the CK+ model captures all non-trivial patterns of
exposure of static and ephemeral secret keys listed in Definition 3, and these ten
cases cover wPFS, resistance to KCI, and MEX attacks.

Table 2. The behavior of AKE adversary in CK+ model. sid
∗

is the matching session
of sid∗, if it exists. “Yes” means that there exists sid

∗
and “No” means not. skA (resp.

skB) means the static secret key of A (resp. B). ekA (resp. ekB) is the ephemeral
secret key of A (resp. B) in sid∗ or sid

∗
if there exists. “

√
” means the secret key may

be revealed to adversary, “×” means the secret key is not revealed. “-” means the secret
key does not exist.

Event Case sid∗ sid
∗

skA ekA ekB skB Security

E1 1 A No
√ × - × KCI

E2 2 A No × √
- × MEX

E3 2 B No × -
√ × MEX

E4 1 B No × - × √
KCI

E5 5 A or B Yes
√ × × √

wPFS

E6 4 A or B Yes × √ √ × MEX

E7-1 3 A Yes
√ × √ × KCI

E7-2 3 B Yes × √ × √
KCI

E8-1 6 A Yes × √ × √
KCI

E8-2 6 B Yes
√ × √ × KCI

290 X. Xu et al.

2.4 2-Key PKE and KEM

In this section, we provide the definitions of 2-key PKE and 2-key KEM, as well
as the modified Fujisaki-Okamoto transformation proposed by Xue et al. [34].

A 2-key PKE with a plaintext space M and a ciphertext space C consists of
a quadruple of PPT algorithms 2PKE=(KeyG1, KeyG0, Enc, Dec) described as
follows:

– KeyG1(n, pp): on input a security parameter n and public parameter pp, out-
put a pair of public and secret keys (pk1, sk1).

– KeyG0(n, pp): on input a security parameter n and public parameter pp, out-
put a pair of public and secret keys (pk0, sk0).

– Enc(pk1, pk0,m; r): on input public keys pk1, pk0 and a plaintext m ∈ M,
output a ciphertext C ∈ C.

– Dec(sk1, sk0, C): on input secret keys sk1, sk0 and a cipheretext C ∈ C, output
a plaintext m.

Correctness. For (pk1, sk1) ← KeyG1(n, pp), (pk0, sk0) ← KeyG0(n, pp) and
C ← Enc(pk1, pk0,m; r), then we have Dec(sk1, sk0, C) = m.

Game [OW-CPA, ·] on pk1 Game [·,OW-CPA] on pk0
01 (pk1, sk1) ← KeyG1(n, pp); 07 (pk0, sk0) ← KeyG0(n, pp);
02 (state, pk∗

0) ← A1(pk1); 08 (state, pk∗
1) ← B1(pk0);

03 m ← M; 09 m ← M;
04 c∗ ← Enc(pk1, pk∗

0 ,m); 10 c∗ ← Enc(pk∗
1 , pk0,m);

05 m′ ← A2(state, c∗); 11 m′ ← B2(state, c∗);
06 return m′ ?= m 12 return m′ ?= m

Fig. 3. The [OW-CPA, ·] (resp. [·, OW-CPA]) game of 2PKE for adversaries A (resp. B).

The security games of 2PKE are formalized in Fig. 3. We define the advantage
of A winning in the game [OW-CPA, ·] as Adv[OW-CPA,·]

2PKE (A) = Pr[[OW-CPA, ·]A ⇒
1], and the advantage of B in the game [·, OW-CPA] as Adv[·,OW-CPA]

2PKE (B) =
Pr[[·,OW-CPA]B ⇒ 1], respectively.

The 2-key key encapsulation (2-key KEM) 2KEM is defined similarly.

– KeyGen1(n, pp): on input a security parameter n and public parameter pp,
output a pair of public-secret keys (pk1, sk1). In order to show the randomness
that is used, we denote key generation algorithm as KeyGen1(n, r).

– KeyGen0(n, pp): on input a security parameter n and public parameter pp,
output a pair of public and secret keys (pk0, sk0).

– Encaps(pk1, pk0): on input public keys pk1, pk0, output a ciphertext c and
encapsulated key k in key space K. Sometimes, we explicitly add the ran-
domness r and denote it as Encaps(pk1, pk0; r).

– Decaps(sk1, sk0, c): on input secret keys sk1, sk0 and a ciphertext c, output a
key k.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 291

Correctness. For (pk1, sk1) ← KeyGen1(n, pp), (pk0, sk0) ← KeyGen0(n, pp)
and (c, k) ← Encaps(pk1, pk0), it holds that Decaps(sk1, sk0, c) = k.

Game [OW-CCA, ·] on pk1 Game [·, OW-CPA] on pk0
01 (pk1, sk1) ← KeyGen1(n, pp); 07 (pk0, sk0) ← KeyGen0(n, pp);
02 L0 = {(−,−,−)}; 08(state, pk∗

1) ← B1(pk0);
03 (state, pk∗

0) ← AOcca,Oleak0
1 (pk1); 09 (c∗, k∗) ← Encaps(pk∗

1 , pk0);
04 (c∗, k∗) ← Encaps(pk1, pk∗

0); 10 k′ ← B2(state, c∗);
05 k′ ← AOcca,Oleak0

2 (state, c∗); 11 return k′ ?= k∗

06 return k′ ?= k∗

Fig. 4. The [OW-CCA, ·] (resp. [·, OW-CPA]) game of 2KEM for adversaries A (resp.
B). The oracles Oleak0 and Occa are defined in the following.

The security games of 2KEM are formalized in Fig. 4. On the i-th query
of Oleak0 , the challenger generates (pki

0, sk
i
0) ← KeyGen0(ri

0), sets L0 = L0 ∪
{(pki

0, sk
i
0)} and returns (pki

0, sk
i
0) to adversary A. Occa(pk′

0, c
′) works as follows:

If pk′
0 ∈ [L0]1 and (c′, pk′

0) �= (c∗, pk∗
0), compute and return the corresponding

k′ ← Decaps(sk1, sk
′
0, c

′), otherwise return ⊥.
We define the advantage of A winning in the game [OW-CCA,·] as

Adv[OW−CCA,·]
2KEM (A) = Pr[[OW-CCA, ·]A ⇒ 1],

and the advantage of B winning in the game [·, OW-CPA] as:

Adv[·,OW-CPA]
2KEM (B) = Pr[[·,OW-CPA]B ⇒ 1].

According to [34], the modified Fujisaki-Okamoto transformation in Fig. 5
builds a [OW-CCA, OW-CPA] secure 2-Key KEM from any [OW-CPA, OW-CPA]
secure 2-key PKE. Note that in [34] they consider the decryption failure, but we
do not take the decryption failure into account here since the encryption scheme
based on SI-DDH is perfectly correct.

Lemma 1 (Theorem 7 [34]). For any [OW-CCA, ·] adversary C, or [·, OW-
CPA] adversary D against 2KEM with at most qH queries to random oracle H,
there are [OW-CPA, ·] adversary A, or [·, OW-CPA] adversary B against 2PKE,
that make at most qH (resp. qG) queries to random oracle H (resp. G) s.t.

Adv[OW-CCA,·]
2KEM (C) ≤ qH

2n
+ qH · Adv[OW-CPA,·]

2PKE (A),

Adv[·,OW-CPA]
2KEM (D) ≤ Adv[·,OW-CPA]

2PKE (B).

292 X. Xu et al.

KeyGen1(n) KeyGen0(n)
(pk′

1, sk
′
1) ← KeyG1 (pk′

0, sk
′
0) ← KeyG0

s1 ← {0, 1}n sk0 = sk′
0

sk1 = (sk′
1, s1) pk0 = pk′

0

pk1 = pk′
1 return (K, c)

Encaps(pk1, pk0); Decaps(sk1, sk0, c)
m ← M m′ = Dec(sk′

1, sk
′
0, c)

c ← Enc(pk1, pk0,m;G(m)) c′ = Enc(pk1, pk0,m′;G(m′))
K = H(pk0,m, c) if c �= c′, let m′ = s1
return (K, c) return K = H(pk0,m′, c)

Fig. 5. The modified Fujisaki-Okamoto from [OW-CPA, OW-CPA] secure 2-key PKE
to [OW-CCA, OW-CPA] secure 2-key KEM 2KEM.

3 [OW-CCA, OW-CPA] Secure KEM from SIDH

We now propose a [OW-CCA, OW-CPA] secure 2-key KEM from supersingu-
lar isogeny. It is the core building block for our AKEs. At first, we propose a
[OW-CPA, OW-CPA] 2-key PKE from supersingular isogeny, and then apply the
modified Fujisaki-Okamoto transformation to obtain a 2-key KEM.

Choose p = �e1
1 �e2

2 · f ± 1, E0, {P1, Q1}, {P2, Q2} as above. Let h : {0, 1}∗ →
{0, 1}n be a random hash function from pair-wise independent hash function
families H. Let g = (E0;P1, Q1, P2, Q2) and e = (�1, �2, e1, e2) be public param-
eters. Let {s, t} = {1, 2}. The [OW-CPA, OW-CPA] 2-key PKE 2PKEsidh is built
as follows.

– KeyG1(n,pp): on input security parameter and public parameter, randomly
choose a secret a1 ← Z�ess and compute ga1 . Then output

sk1 := a1, pk1 := ga1 .

– KeyG0(n,pp): on input security parameter and public parameter, randomly
choose a secret a0 ← Z�ess and compute ga0 . Then output

sk0 := a0, pk0 := ga0 .

– Enc(pk1, pk0,m): on input public keys and a message m = m1||m0 ∈ {0, 1}2n,
randomly choose b ← Z�

et
t

and compute gb, h((ga1)b)⊕m1 and h((ga0)b)⊕m0.
The ciphertext is

c :=
(
gb, h

(
(ga1)b

) ⊕ m1, h
(
(ga0)b

) ⊕ m0

)
.

– Dec(sk1, sk0, c): on input secret keys sk1 = a1, sk0 = a0 and ciphertext
c = (c1, c2, c3), compute m1 := c2 ⊕ h (ca1

1) and m0 := c3 ⊕ h (ca0
1). The

plaintext is m = m1||m0.

The correctness of 2PKEsidh is straightforward due to the correctness of SIDH.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 293

Lemma 2. Under the SI-DDH assumption, 2PKEsidh is [OW-CPA, OW-CPA]
secure. Precisely, for any PPT [OW-CPA, ·] (resp. [·, OW-CPA]) adversary A
(resp. C), there exists algorithm B (resp. D) such that

Adv[OW-CPA,·]
2PKEsidh

(A) ≤ 2Advsiddh
B + 1/2n + negl,

(resp. Adv[·,OW-CPA]
2PKEsidh

(C) ≤ 2Advsiddh
D + 1/2n + negl).

Proof. We reduce the [OW-CPA, ·] security to the underlying SI-DDH assump-
tion. It is analogous for the [·, OW-CPA] security. We prove the [OW-CPA, ·]
security via a sequence of games.
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. We denote
the event that the adversary wins the games as Succ0.
Game 1: In this game we modify [OW-CPA, ·] challenge game by requiring that
the adversary wins the game if m′

1 = m1. We denote this event as Succ1 (In Game
i (i ≥ 1), we denote this event as Succi). Note that in Game 0, the adversary
wins only if both m′

1 = m1 and m′
0 = m0. Thus, we have Pr[Succ0] ≤ Pr[Succ1].

Game 2: In this game, we modify the computation of challenge ciphertext.
Specifically, (gb)a1 is replaced by a random j-invariant j∗. We construct an
algorithm B to solve the SI-DDH problem given an instance (g, g1, g2, j), if there
exists an algorithm A to distinguish Game 1 and Game 2.

B(e, g, g1, g2, j)

01 pk1 ← g1
02 pk∗

0 , state ← A(pk1)
03 m1 ← {0, 1}n

04 c∗1 = g2, c
∗
2 = h(j) ⊕ m1, c

∗
3 ← {0, 1}n

05 c∗ = (c∗1, c
∗
2, c

∗
3)

06 m′
1||m′

0 ← A(state, c∗)
07 If m′

1 = m1, b
′ = 1, else b′ ← {0, 1}.

If (g, g1, g2, j) is an SI-DDH tuple, B perfectly simulates Game 1, else B
perfectly simulates Game 2. In the SI-DDH challenge, we have

Advsiddh
B = Pr[b = b′] − 1/2

= 1/2(Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0])
= 1/2(Pr[b′ = 1|Game 1] − Pr[b′ = 1|Game 2])
= 1/2(Pr[Succ1] − Pr[Succ2]).

Game 3: In this game, we modify the computation of the challenge ciphertext.
Specifically, h(j∗) is replaced by a random string h∗. Now c∗

2 is a completely
random string. Thus, the advantage to compute m1 is Pr[Succ3] = 1/2n. Note
that, since h is a pairwise independent hash function, by the leftover hash lemma,
|Pr[Succ2] − Pr[Succ3]| is negligible.

To sum them up, we have that Pr[Succ0] ≤ 2Advsiddh
B + 1/2n + negl. ��

294 X. Xu et al.

Remark 1: By setting pk0 and sk0 to be empty and the ciphertext to be c1, c2,
the scheme is exactly the ElGamal scheme and is OW-CPA secure under the
SI-DDH assumption.

Applying the modified Fujisaki-Okamoto in Fig. 5, we get a [OW-CCA, OW-
CPA] secure 2-key KEM 2KEMsidh in Fig. 6. Let G : {0, 1}2n → {0, 1}∗ and
H : {0, 1}∗ → {0, 1}2n be hash functions. Note that there is a subtle difference
between the Fig. 6 and the modified Fujisaki-Okamoto in Fig. 5 that the “re-
encryption” only needs to check the correctness of c1.

KeyGen1 KeyGen0
a1 ← Z�

es
s
, s1 ← {0, 1}2n a0 ← Z�

es
s

pk1 := ga1 , sk1 := (a1, s1) pk0 := ga0 , sk0 := a0

Encaps(pk1, pk0) Decaps(sk1, sk0)
m1,m0 ← {0, 1}n, b := G(m1,m0) m′

1 := c2 ⊕ h(ca11)
c1 = gb, c2 = h((ga1)b) ⊕ m1 m′

0 := c3 ⊕ h(ca01)
c3 = h((ga0)b) ⊕ m0 b := G(m′

1,m
′
0)

c := (c1, c2, c3) If c1 �= gb, m1||m0 = s1
K := H(pk0,m1||m0, c) K := H(pk0,m1||m0, c)

Fig. 6. The [OW-CCA, OW-CPA] secure 2KEMsidh.

Theorem 1. Under the SI-DDH assumption, 2KEMsidh is [OW-CCA, OW-CPA]
secure in the random oracle model. Precisely, for any PPT [OW-CCA, ·] (resp.
[·, OW-CPA]) adversary A (resp. C) with at most qH queries to H oracle, there
exists algorithm B (resp. D) solving SI-DDH problem such that

Adv[OW-CCA,·]
2KEMsidh

(A) ≤ qH

22n
+ qH ·

(
2Advsiddh

B + 1/2n + negl
)

,

(resp. Adv[·,OW-CPA]
2KEMsidh

(C) ≤ 2Advsiddh
D + 1/2n + negl).

Proof. According to Lemma 1, the [OW-CCA, OW-CPA] security of 2KEMsidh

is guaranteed by the [OW-CPA, OW-CPA] security of 2PKEsidh. By applying
Lemma 2, the [OW-CCA, OW-CPA] security is finally reduced to the underlying
SI-DDH assumption. ��
Remark 2: By setting pk0 and sk0 to be empty, the message space to be {0, 1}n,
the input of G to be (m1,−) and the ciphertext to be c1, c2, the scheme is exactly
the FO transformed ElGamal scheme and is OW-CCA secure under the SI-DDH
assumption.

4 Two-Pass SIAKE

In this section, we propose a two-pass AKE based on SI-DDH assumption. The
two-pass AKE SIAKE2 is shown in Fig. 7.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 295

UA UB

skA1 := (a1 ∈ Z�
e1
1
, sA1 ← {0, 1}2n) skB2 := (b2 ∈ Z�

e2
2
, sB2 ← {0, 1}2n)

pkA1 := ga1 pkB2 := gb2

skA2 := (a2 ∈ Z�
e2
2
, sA2 ← {0, 1}2n) skB1 := (b1 ∈ Z�

e1
1
, sB1 ← {0, 1}2n)

pkA2 := ga2 pkB1 := gb1

rA ← Z�
e1
1
, n1 ← g(rA, a1)

x ← G(n1), x0 ← Z�
e1
1
. rB ← Z�

e2
2
, m1||m0 ← g(rB , b2)

X0 := gx0 y ← G(m1,m0)

X := gx, x1 := h((gb2)x) ⊕ n1 X,x1, X0 Y := gy, y1 := h((ga1)y) ⊕ m1

KA := H(n1, X, x1) y0 := h((gx0)y) ⊕ m0

m′
1 := y1 ⊕ h((gy)a1) Y, y1, y0 KB := H(X0,m1,m0, Y, y1, y0)

m′
0 := y0 ⊕ h((gy)x0)

y′ ← G(m′
1,m

′
0) n′

1 := x1 ⊕ h((gx)b2 , x′ ← G(n′
1)

If Y �= gy
′
, m′

1||m′
0 := sA1 If X �= gx

′
, n′

1 := sB2

K′
B := H(X0,m

′
1,m

′
2, Y, y1, y0) K′

A := H(n′
1, X, x1)

SK := Ĥ(sid,KA,K
′
B) SK := Ĥ(sid,K′

A,KB)

Fig. 7. A Compact 2-pass AKE SIAKE2 Based on SI-DDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, X0, Y, y1, y0
)
.

Public Parameters: Let e = (�1, �2, e1, e2) and g = (E0;P1, Q1, P2, Q2). Let
g : {0, 1}∗ → {0, 1}2n, h : {0, 1}n → {0, 1}n, G : {0, 1}2n → {0, 1}∗, H :
{0, 1}∗ → {0, 1}2n, Ĥ : {0, 1}∗ → {0, 1}n be hash functions.

Register: Any user registers two sets of public-secret keys. One set of keys is
assigned by the user as initiator, and another set is assigned as responder. For
user UA, it first chooses skA1 := (a1 ∈ Z�

e1
1

, sA1 ← {0, 1}2n) and computes
pkA1 := ga1 , then chooses skA2 := (a2 ∈ Z�

e2
2

, sA2 ← {0, 1}2n) and computes
pkA2 := ga2 .

Phase 1: User UA randomly chooses rA, x0 ← Z�
e1
1

as two ephemeral random-
ness. Let n1 ← g(rA, a1), x := G(g(rA, a1)). Then UA computes X0 := gx0 ,
X := gx, x1 := h((gb2)x) ⊕ n1, and sends X0,X, x1 to UB . UA computes
KA := H(n1,X, x1).

Phase 2: User UB randomly chooses rB ← Z�
e2
2

as the ephemeral randomness
and computes m1||m0 ← g(rB , sb), y ← G(m1,m0), and Y := gy. On receiving
(X0,X, x1) from UA, UB computes y1 := h((ga1)y) ⊕ m1, y0 := h((gx0)y) ⊕ m0,
KB := H(X,m1,m0, Y, y1, y0), and sends (Y, y1, y0) to UA. UB decrypts X,x1

to extract n′
1 and x′ ← G(n′

1). If X �= gx, set n′
1 := sB2. Let K ′

A := H(n′
1,X, x1).

The session key is SK := Ĥ(sid,K ′
A,KB) where sid is

(
UA, UB , pkA1 , pkB2 ,X,

x1, X0, Y, y1, y0

)
.

296 X. Xu et al.

Phase 3: On receiving (Y, y1, y0) from UB, UA computes m′
1 := y1 ⊕ h((gy)a1),

m′
0 := y0 ⊕ h((gy)x0) to extract y′ ← G(m′

1,m
′
0). If Y �= gy, set m′

1||m′
0 := sA1.

Let K ′
B := H(X0,m

′
1,m

′
0, Y, y1, y0). The session key is SK := Ĥ(sid,KA,K ′

B)
where sid is

(
UA, UB , pkA1 , pkB2 ,X, x1,X0, Y, y1, y0

)
.

The session state owned by UA consists of the ephemeral secret key rA, x0,
the decapsulated key K ′

B and the encapsulated key KA. The session state owned
by UB consists of the ephemeral secrete key rB and the encapsulated key KB ,
but not the decapsulated key K ′

A.

Theorem 2. Under the SI-DDH assumption, SIAKE2 is CK+ secure in the ran-
dom oracle model. Precisely, if the number of users is N and there are at most l
sessions between any two users, for any PPT adversary A against SIAKE2 with
q times of hash oracle queries, there exists B s.t.

AdvCK+

SIAKE2
(A) ≤ 1/2 + N2 · l · q ·

(
4AdvsiddhB +

q + 1
2n

+ negl

)
.

Proof sketch: Obviously, UA sends X0 and a OW-CCA secure ciphertext X,x1

under public key pkB2 to UB . UB responds with a [OW-CCA, OW-CPA] secure
ciphertext Y, y1, y0 under public keys pkA1 and X0 to UA. We first assume that
the AKE adversary only has the capability to Send message and does not query
SessionKeyReveal and SessionStateReveal on non-test sessions. Then under the
assumption of [OW-CPA, OW-CPA] security, SIAKE2 is secure. Take the event E3

(one of the behaviors presented in Appendix A Table 6) as an example, where
the adversary may send X0 in the test session and he/she knows b2 but not
a1 or rB . Since the adversary does not know a1 and y, the [OW-CPA, OW-
CPA] security guarantees that KB encapsulated in (Y, y1, y0) is secure (thus SK
is random assuming Ĥ is a random oracle) even the adversary chooses part
of the public key X0. Note that to simulate the CK+ game and reduce the
advantage of the AKE adversary to the advantage of solving underlying [OW-
CPA, ·] game, the simulator does not hold the static secret key a1 of UA. It is safe
if the adversary does not make SessionKeyReveal and SessionStateReveal queries.
However if the adversary makes SessionKeyReveal queries that involves UA, the
simulator fails to compute the encapsulated key and session key. Nevertheless,
when the underlying KEM is [OW-CCA, OW-CPA] secure, the simulator could
query the strong decapsulation oracle to get the encapsulated key and session
key, so the reduction works. In other events, the proof proceeds similarly.

Proof. We give representative security proof in two cases E5 and E3 in Table 2,
where one is wPFS and the other is the MEX attack. The other cases can be
easily extended or modified from the proof of E3, so they are omitted here.
Table 3 presents the outline of reduction.

wPFS E5. The proof of this case proceeds via a sequence of games, i.e. Game 0
to 2. In this case, the test session sid∗ (with owner as responder or initiator) has
a matching session sid

∗
. Both static secret keys of the initiator and the responder

are leaked to A. We denote the event that the AKE adversary A outputs b′ such
that b = b′ as Succi in Game i.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 297

Table 3. The outline of security reduction for SIAKE2.

Assumption 2-Key PKE 2-Key KEM Cases in Table 2

SI-DDH [·, OW-CPA], pk0 = gx0 [·, OW-CPA], pk0 = gx0 E5

SI-DDH [OW-CPA, ·], pk1 = ga1 [OW-CCA, ·], pk1 = ga1 E3, E4, E6, E7-2, E8-1

SI-DDH OW-CPA OW-CCA, pk1 = gb2 E1, E2, E7-1, E8-2

Game 0: This is the original CK+ game in case E5. In the test session, the
adversary owns all the static secret keys, i.e. a1, a2, b1, b2 asssuming the test
session is between UA and UB .
Game 1: In this game, we change the way to generate m1||m0 in the test session
by replacing m1||m0 ← g(rB , b2) with m1||m0 ← {0, 1}2n. Since g is a random
oracle, Pr[Succ0] − Pr[Succ1] ≤ N2 · l · q

2n .
Game 2: In this game, we change the session key in the test session by replacing
Ĥ(sid,K ′

A,KB) with a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.
We construct an algorithm B to solve the [·, OW-CPA] security of 2KEMsidh,

if there exists an algorithm A to distinguish Game 1 and Game 2.
On receiving the public key pk0 from the [·, OW-CPA] challenger, to simulate

the CK+ game, B randomly chooses two parties UA, UB and the i-th session
as a guess of the test session with success probability 1/N2l. B computes and
sets all the static secrets and public key pairs by himself for all N users UP as
both responder and initiator. Particularly, B sets the static secret and public key
pair (pkB2 , skB2) for UB as responder, and sets pkA1 for UA as initiator. B sends
pkA1 to [·, OW-CPA] challenger and receives the challenge ciphertext C∗. Then B
simulates all the communications and SessionStateReveal and SessionKeyReveal
as those in Game 1 except the test session. In the test session, B sets X0 = pk0

and responds (Y, y1, y0) = C∗.
Finally, B checks the hash list queried by A. If there exists some

(UA, UB , pkA1 , pkB2 ,X, x1,X0, C
∗,KA,KB) in the list such that KA is the key

encapsulated in (X,x1) (since (X,x1) is honestly generated by B, it can compute
KA), B chooses a random one and outputs KB , otherwise ⊥. Denote flag as the
event that A explicitly queries (UA, UB , pkA1 , pkB2 ,X, x1,X0, C

∗,KA,KB) to
the oracle Ĥ such that KA is the key encapsulated in (X,x1) and KB is the key
encapsulated in C∗. If flag does not happen, B perfectly simulates both Game 1
and Game 2. Thus,

Pr[Succ1] − Pr[Succ2] ≤ Pr[flag] ≤ N2 · l · Adv[·,OW-CPA]
2PKEsidh

(C).

By Lemma 2, Pr[Succ0] ≤ 1/2 + N2 · l ·
(

q
2n + 2Advsiddh

B + 1/2n + negl
)
.

MEX E3. In this case, the test session sid∗ with its owner as responder does
not have a matching session which means that X,x1,X0 is sent by adversary.
And the randomness rB are leaked to A. It is more complicated than E5. At
first, (X,x1,X0) in the test session is generated by A rather than B. However,
(X,x1) is the ciphertext under public key pkB2 , and the encapsulated key KA can

298 X. Xu et al.

be extracted with skB2 . Furthermore, the challenge public key that the security
relies upon is the static public key, and this will affect the simulation of answering
SessionStateReveal and SessionKeyReveal queries. Fortunately, 2PKEsidh provides
a strong decapsulation oracle to answer those queries.

The proof also proceeds via a sequence of games, i.e., Game 0 to 2. We denote
the event that A outputs b′ such that b = b′ as Succi in Game i.
Game 0: This is the original CK+ game in case E3. In the test session, rB is
leaked to the adversary assuming the test session is between UA and UB.
Game 1: In this game, we change the way to generate m1||m0 in the test session
by replacing m1||m0 ← g(rB , b2) with m1||m0 ← {0, 1}2n. Although rB is leaked
to A, since g is a random oracle, A will not find this change without querying
g with rB , b2. We denote Askg as the event A queries g with rB , b2. If event
Askg happens, we can extract b2 and utilize it to solve the underlying SI-DDH
problem. Precisely, given (g, g1, g2, j), B randomly chooses UB as a guess of the
responder in the test session with success probability 1

2N . B sets pkB2 := g2.

When event Askg happens, B uses b2 to output j
?= gb2

1 .

Pr[Succ0] − Pr[Succ1] ≤ 2N · Advsiddh
B .

Game 2: In this game, we change the session key in the test session by replacing
Ĥ(sid,K ′

A,KB) with a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.
We construct an algorithm B to solve the [OW-CCA, ·] security of 2KEMsidh,

if there exists an algorithm A to distinguish Game 1 and Game 2.
On receiving the public key pk1 from the [OW-CPA, ·] challenger, to simulate

the CK+ game, B randomly chooses two parties UA, UB and the i-th session as
a guess of the test session with success probability 1/N2l. B computes and sets
all the static secret and public key pairs on his own for all N users UP as both
responder and initiator except the static public key for UA as initiator.

– Specifically, B sets the static secret and public key pair (pkA2 , skA2) that
invloves UA as responder, and sets pk1 (receiving from the [OW-CPA, ·] chal-
lenger) for UA as initiator.

– In the test session, on receiving (X,x1,X0) from A, B sends pk∗
0 = X0 to

the [OW-CCA, ·] challenger and receives the challenge ciphertext C∗. Then B
returns C∗ to A as response.

– B simulates all the communications and SessionStateReveal and SessionKeyRe-
veal queries as those in Game 1 except that involves UA as initiator (since B
does not know skA1).

– For those SessionStateReveal and SessionKeyReveal queries involves UA as
initiator (for example, UA honestly sends out X ′, x′

1,X
′
0 and receives

(Y ′, y′
1, y

′
0)), B queries the O oracle with (X ′

0;Y
′, y′

1, y
′
0) provided by the [OW-

CCA, ·] challenger to extract the encapsulated key and maintains the consis-
tency of the Ĥ list with SessionStateReveal and SessionKeyReveal queries.

Finally, B checks the hash list queried by A. If there exists some
(UA, UB , pkA1 , pkB2 ,X, x1,X0, C

∗,KA,KB) in the list such that KA is the key
encapsulated in (X,x1) (since (X,x1) is honestly generated by B, it can compute

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 299

KA), B chooses a random one and outputs KB , otherwise ⊥. Denote flag as the
event that A explicitly queries (UA, UB , pkA1 , pkB2 ,X, x1,X0, C

∗,KA,KB) to
the oracle Ĥ such that KA is the key encapsulated in (X,x1) and KB is the key
encapsulated in C∗. If flag does not happen, B perfectly simulates both Game 1
and Game 2. Thus,

Pr[Succ1] − Pr[Succ2] ≤ Pr[flag] ≤ N2 · l · Adv[OW-CCA,·]
2KEMsidh

(C).

By Theorem 1, to sum up,

Pr[Succ0] ≤ 1/2 + N2 · l · q ·
(
4Advsiddh

B + 1/2n + negl
)

. ��

5 Three-Pass SIAKE

We first enhance the SI-DDH assumption to 1-Oracle SI-DH assumption, and
analyze its reliability. Based on this assumption, we propose the three-pass
SIAKE3.

5.1 1-Oracle SI-DH and Implied 2-Key KEM

The 1-Oracle SI-DH assumption is inspired by the Oracle Diffie-Hellman assump-
tion over classical group given by Abdalla, Bellare and Rogaway [1] for analyzing
DHIES. Let G :=< g > and |G| = p be a prime. The Oracle Diffie-Hellman
assumption states that, given (g, ga, gb, h), it is difficult to decide whether
h = H(gab) or not (where H is a hash function), even the solver could make
polynomial queries to an oracle HB(·) which will return H(vb) with v ∈ G sat-
isfying v �= ga. Under the Oracle Diffie-Hellman assumption, the DHIES scheme
is chosen ciphertext secure [1].

However, the Oracle Diffie-Hellman assumption can not be directly extended
in the supersingular isogeny setting. As we have presented several times before,
the adaptive attack [17] would allow extraction of every bit of b with polynomial
queries to HB(·) with specified points, implying the analogue of Oracle Diffie-
Hellman problem in the supersingular isogeny setting could be solved. Moreover,
in the classical group, if v �= ga, then vb �= (ga)b. However, in the supersingular
isogeny setting, even if v �= ga ∈ SSECA, it is possible that vb is equal to (ga)b.

Fortunately, only one query to HB(·) with v �= ga is needed for our purpose and
the adaptive attack does not work. Furthermore, when HB(v) = H(v, vb), even if
v �= ga, the case H(v, vb) = H(ga, (ga)b) occurs with negligible probability.

Definition 4 (1-Oracle SI-DH Assumption). Let H : {0, 1}∗ → {0, 1}n

be a hash function. Let e and g be public parameters as defined in SI-DDH
assumption. Let D0 and D1 be two distributions:

D1 :={e, g, ga, gb,H(ga, (ga)b)|a ← Z�ess , b ← Z�
et
t

}
D0 :={e, g, ga, gb, h|a ← Z�ess , b ← Z�

et
t

, h ← {0, 1}n}

300 X. Xu et al.

The 1-Oracle SI-DH problem is, given a random sample from Db depending on
b ← {0, 1}, and a one-time oracle HB, guessing b. The one-time oracle HB can
be queried only one time with y ∈ SSECA and y �= ga, and it will return H(y, yb).
The advantage of A to solve the 1-Oracle SI-DH problem is

Adv1osidh
A = Pr[b′ = b|AHB(·)(db ← Db) = b′, b ← {0, 1}] − 1/2.

The 1-Oracle SI-DH assumption states that for any PPT algorithm A, Adv1osidh
A

is negligible.

We emphasize that the adversary is allowed to query the hashed SIDH oracle
HB only once with y �= ga. If there are polynomial queries, the 1-Oracle SI-DH
problem can be solved by the adaptive attack in [17]. Please also notice that the
hash function involves ga or y as input besides the j-invariant. Otherwise the
1-Oracle SI-DH problem is easy. Let ga = (EA, φA(Pt), φA(Qt)). Since 〈φA(Ps)+
[y]φA(Qs)〉 = 〈[u]φA(Ps)+[y][u]φA(Qs)〉 for any integer 1 ≤ u ≤ �es

s and coprime
to �s, the attacker sets EY = EA, R = [u]φA(Ps), S = [u]φA(Qs) and y =
(Y,R, S). Then (ga)b and yb will produce the same j-invariant. However, when
taking ga or y as input of H, any query with y �= ga to HB will get a completely
different value.

1-Gap SI-DH problem is similar to the SI-CDH problem but the adversary
is given access to a highly restricted SI-DDH oracle.

Definition 5 (1-Gap SI-DH Assumption). Let e and g be public parameters.
The 1-Gap SI-DH problem is that, given ga, gb (where a ← Z�ess , b ← Z�

et
t
), and

an oracle Osiddh(y, ·), compute the j-invariant (ga)b = (gb)a. Here, y ∈ SSECA

is chosen by the adversary A at any time before its first queries to Osiddh(y, ·).
Osiddh(y, j) will return 1 if j = yb, and 0 otherwise. For any PPT algorithm A,
we define the advantage of solving 1-Gap SI-DH problem as

Adv1gsidh
A = Pr[j′ = (ga)b|AOsiddh(y,·)(g, e, ga, gb) → (y, j′)].

The 1-Gap SI-DH assumption states: for any PPT algorithm A, the advantage
of solving 1-Gap SI-DH problem is negligible.

We emphasize that if the adversary is allowed to query Osiddh(·, ·) with unlimited
numbers of y, 1-Gap SI-DH problem can be solved using the adaptive attack in
[17]. However, here Osiddh(·, ·) oracle only allows to be queried once with y of
adversary’s choice.

Discussion. These two assumptions are “non-standard” for supersingular
isogeny. The adaptive attack [17] and its extension can not easily break these
new assumptions. We encourage more works on the analysis of the hardness of
these two problems.

The following theorem shows that the 1-Gap SI-DH assumption implies the
1-Oracle SI-DH assumption when the hash function H is modeled as a random
oracle.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 301

Theorem 3. For any algorithm A against the 1-Oracle SI-DH problem there
exists an algorithm B against the 1-Gap SI-DH problem such that

Adv1osidhA,H (n) ≤ qH · Adv1gsidhB (n),

where qH is the number of times to query Osiddh(y, ·).
Proof. Let A be any algorithm solving the 1-Oracle SI-DH problem. We con-
struct an algorithms B to solve the 1-Gap SI-DH problem using A as a sub-
routine in Fig. 8. The challenge is how to maintain the hash list so as to keep the
consistency with the one-time Oracle HB . Actually, the limited oracle Osiddh(·, ·)
would help B to fix it.

Algorithm BOsiddh(·,·) e, g, ga, gb
)

01 h0, h1 ← {0, 1}n One time HB(y)
02 b ← {0, 1} 01 Choose y as the base of Osiddh

03 Run AHB(·),H(g, ga, gb, hb) 02 if ∃(y, j′, h′) ∈ LH ∧ Osiddh(y, j′) = 1
04 a. For one-time query HB 03 return h′

05 do as one-time HB 04 else h′′ ← {0, 1}n, LH = LH ∪ {y, j′, h′′}
06 b. For the H-query 05 return h′′

07 do as H(x, j′) H(x, j′)
08 c. Let b′ be the output of A 01 if ∃(x, j′, h′) ∈ LH return h′

09 return (·, j, ·) ← LH 02 otherwise h ← {0, 1}n, LH = LH ∪ {(x, j′, h)}
10 return j 03 return h

Fig. 8. Algorithm B for attacking the 1-Gap SI-DH problem.

Note that in Fig. 8, if HB(y) is asked at first and returns a random h, then
when (y, j′) is queried to H such that Osiddh(y, j′) = 1, it will return h. If H(y, j′)
is asked at first and returns a random h, then when y is asked to HB such that
Osiddh(y, j′) = 1, it will return that h.

Let Ask be the event that (ga, (ga)b) is queried to H and Ask be the comple-
ment of Ask. If Ask does not happen, there is no way to tell whether hb is equal
to H(ga, (ga)b) or not. Thus we have that

Adv1osidh
A,H = Pr[AHB(·)(b ← Db) = b] − 1/2

= Pr[AHB(·)(b ← Db) = b ∧ Ask] + Pr[AHB(·)(b ← Db) = b ∧ Ask] − 1/2

= Pr[AHB(·)(b ← Db) = b ∧ Ask]

≤ Pr[Ask] ≤ qH · Adv1gsidh
B .

��
We now modify the 2PKEsidh and denote the new scheme as 2PKE1osidh. The

key generation algorithms are the same. In the encryption algorithm, h
(
(gb)a1

)

is replaced by h
(
gb, (gb)a1

)
and h

(
(gb)a0

)
is replaced by h

(
gb, (gb)a0

)
. Thus

the ciphertext is c :=
(
gb, h

(
gb, (gb)a1

) ⊕ m1, h
(
gb, (gb)a0

) ⊕ m0

)
.

302 X. Xu et al.

Lemma 3. The following holds.

– Under the 1-Oracle SI-DH assumption, the scheme 2PKE1osidh is [OW-CPA,
·] secure even H(pk∗

0 , pk∗b
0) is given to the adversary besides the challenge

ciphertext c∗ = (c∗1 = gb, c1, c2).
– If the [OW-CPA, ·] game is changed as that pk∗

0 is generated by the challenger
and the corresponding sk∗

0 is leaked to the adversary, then under the SI-DDH
assumption, 2PKE1osidh satisfies this [OW-CPA, ·] security even H(pk∗

0 , pk∗b
0)

is given to the adversary besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
– Under the SI-DDH assumption, the scheme 2PKE1osidh is [·, OW-CPA] secure.

Proof. The [·, OW-CPA] security is the same with that in Lemma 2. We reduce the
[OW-CPA, ·] security with leakage to the underlying 1-Oracle SI-DH assumption.
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. We denote
the event that the adversary wins the games as Succ0.
Game 1: In this game, we modify the computation of challenge ciphertext.
Specifically, h(gb, (gb)a1 is replaced by a random bit h ← {0, 1}n. We con-
struct an algorithm B to solve the 1-Oracle SI-DH problem given an instance
(g, g1, g2, h), and a one-time oacle HB(·), if there exists an algorithm A to dis-
tinguish Game 0 and Game 1.

BHB(·)(e, g, g1, g2 = gb, h)

01 pk1 ← g1
02 pk∗

0 , state ← A(pk1)
03 m1 ← {0, 1}n, m0 ← {0, 1}n

04 Query HB with pk∗
0 and get pk∗b

0

04 c∗1 = g2, c
∗
2 = h ⊕ m1, c

∗
3 = h(pk∗

0 , pk
∗b
0) ⊕ m0

05 c∗ = (c∗1, c
∗
2, c

∗
3)

06 m′
1||m′

0 ← A(state, C∗)
07 If m′

1 = m1, b
′ = 1, else b′ ← {0, 1}.

If (g, g1, g2, h) is a 1-Oracle SI-DH tuple, B perfectly simulates Game 0, else
B perfectly simulates Game 1. In the 1-Oracle SI-DH challenge, we have

Adv1osidh
B = Pr[b = b′] − 1/2

= 1/2(Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0])
= 1/2(Pr[b′ = 1|Game 0] − Pr[b′ = 1|Game 1])
= 1/2(Pr[Succ0] − Pr[Succ1]).

Note that in this game, the [OW-CPA, ·] advantage is less than 1/2n. To Sum
up, we have that, Pr[Succ0] ≤ 2Advsiddh

B + 1/2n. ��
Similarly, we make the same modification to the 2KEMsidh and denote the

new scheme as 2KEM1osidh.

Theorem 4. The following holds in the random oracle model.

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 303

– Under the 1-Oracle SI-DH assumption, the scheme 2KEM1osidh is [OW-CCA,
·] secure in the random oracle model, even h(pk∗

0 , pk∗b
0) is given to the adver-

sary besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
– If the [OW-CCA, ·] game is changed as that pk∗

0 is generated by challenger
and the corresponding sk∗

0 is leaked to the adversary, then under the SI-DDH
assumption, 2KEM1osidh satisfies this [OW-CPA, ·] security even H(pk∗

0 , pk∗b
0)

is given to the adversary besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
– Under the SI-DDH assumption, the scheme 2KEM1osidh is [·, OW-CPA]

secure.

5.2 A Three-Pass AKE Based on 1-Oracle SI-DH Assumption

The three-pass AKE SIAKE3 is shown in Fig. 9. The public parameters and
register are the same with those for SIAKE2.

Phase 1: User UA chooses ephemeral randomness rA. Let n1||n0 ← g(rA, a1)
and x ← G(n1, n0). Then UA computes X := gx, x1 := h(gb2 , (gb2)x) ⊕ n1, and
sends X,x1 to UB.

Phase 2: User UB chooses ephemeral randomness rB ← Z�
e2
2

, computes
m1||m0 ← g(rB , b2), y ← G(m1,m0), and Y := gy. On receiving (X,x1,X0)
from UA, if X := pkB2 , aborts, else UB computes y1 := h(ga1 , (ga1)y) ⊕ m1,
y0 := h(X, (gx)y)⊕m0,KB := H(X,m1,m0, Y, y1, y0), and sends (Y, y1, y0) toUA.

Phase 3: On receiving (Y, y1, y0) from UB , if Y := pkA1 , aborts, else UA decrypts
Y, y1, y0 to extract m′

1||m′
0 and y′ ← G(m′

1,m
′
0). If Y �= gy, then m′

1||m′
0 :=

sA1. UA computes K ′
B := H(X,m′

1,m
′
0, Y, y1, y0) and the session key as SK :=

Ĥ(sid,KA,K ′
B), where sid is

(
UA, UB , pkA1 , pkB2 ,X, x1, x0, Y, y1, y0

)
.

Phase 4: If X := pkB2 , then aborts, else UB decrypts X,x1, x0 to extract
n′

1, n
′
0 and r′ ← G(n′

1, n
′
0). If X �= gr

′
, then n′

1||n′
0 := sB2. Let K ′

A :=
H(Y, n′

1, n
′
0,X, x1, x0). The session key is computed as SK := Ĥ(sid,K ′

A,KB)
where sid is

(
UA, UB , pkA1 , pkB2 ,X, x1, Y, y1, y0, x0

)
.

The session state of UA consists of rA, K ′
B and KA. The session state of UB

consists of rB , KB and K ′
A.

Theorem 5. Under the 1-Oracle SI-DH assumption, SIAKE3 is CK+ secure in
the random oracle model. Precisely, if the number of users is N and there are at
most l sessions between any two users, for any PPT adversary A against SIAKE3

with q times of hash oracle queries, there exists B s.t.

AdvCK+

SIAKE3
(A) ≤ 1/2 + N2 · l · q ·

(
4Adv1osidhB +

q + 1
2n

+ negl

)
.

Please refer full paper [33] for the concrete proof. We only give the proof sketch
here: Obviously, UA sends [OW-CCA, OW-CPA] secure X,x1, x0 under public keys
pkB2 and Y to UB. UB responds with [OW-CCA, OW-CPA] secure ciphertexts
Y, y1, y0 under public keys pkA1 and X0 to UA. The proof of wPFS security is

304 X. Xu et al.

UA UB

skA1 := (a1 ∈ Z�
e1
1
, sA1 ← {0, 1}2n) skB2 := (b2 ∈ Z�

e2
2
, sB2 ← {0, 1}2n)

pkA1 := ga1 pkB2 := gb2

skA2 := (a2 ∈ Z�
e2
2
, sA2 ← {0, 1}2n) skB1 := (b1 ∈ Z�

e1
1
, sB1 ← {0, 1}2n)

pkA2 := ga2 pkB1 := gb1

rA ← Z�
e1
1
, n1||n0 ← g(rA, a1) rB ← Z�

e2
2
, m1||m0 ← g(rB , b2)

x ← G(n1, n0) y ← G(m1,m0)

X := gx, x1 := h(gb2 , (gb2)x) ⊕ n1 X,x1 Y := gy, y1 := h(ga1 , (ga1)y) ⊕ m1

If X := pkA1 ,⊥
If Y := pkB2 ,⊥ Y, y1, y0 y0 := h(X, (gr)y) ⊕ m0

x0 := h(Y, (gy)x) ⊕ n0 KB := H(X,m1,m0, Y, y1, y0)
KA := H(Y, n1, n0, X, x1, x0) x0

m′
1 := y1 ⊕ h((gy)a1) n′

1 := x1 ⊕ h((gx)b2

m′
0 := y0 ⊕ h(X, (gy)x) n′

0 := x0 ⊕ h(X, (gx)y)
y′ := G(m′

1,m
′
0) r′ :← G(n′

1, n
′
0)

If Y �= gy
′
, m′

1||m′
0 := sA1 If X �= gr

′
, n′

1||n′
0 := sB2

K′
B := H(X,m′

1,m
′
2, Y, y1, y0) K′

A := H(Y, n′
1, n

′
0, X, x1, x0)

SK := Ĥ(sid,KA,K
′
B) SK := Ĥ(sid,K′

A,KB)

Fig. 9. A Compact 3-pass AKE SIAKE3 based on SIDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, x0, Y, y1, y0
)
. The boxed arguments are the main differences with SIAKE2.

Besides, the input of h includes the first part of the public key.

exactly the same as that of SIAKE2, but different for other security cases. The
main observation is the same: since the underlying KEM is [OW-CCA, ·] secure,
the simulator could query the strong decapsulation oracle to get the encapsulated
key and session key and simulate the SessionKeyReveal and SessionStateReveal.
However, this is not sufficient. Take E3 for example, given Y ∗, y∗

1 , y∗
0 as the

challenge ciphertext, the simulator obviously does not know the randomness of
Y ∗, but in the test session Y ∗ is the public key of (X,x1, x0). Fortunately, the
underlying 1-Oracle SI-DH assumption provides this capability to encapsulate
one ciphertext.

6 Implementation and Comparison

We implement SIAKE2 and SIAKE3, and compare their performance with [13],
[2,26] and the lattice-based Kyber-AKE [3].

We adopt the curve SIKEp751 in SIKE [20] that is proceeding the sec-
ond round of NIST’s post-quantum standardization. The performance is bench-
marked on an Intel(R) Core i7-6567U CPU @3.30 GHz processor supporting the

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 305

Skylake micro-architecture. Kyer-AKE is an AKE based on lattice and others
are all considered in the SIDH setting. The comparison of bandwidth is shown
in Table 4. The comparison of efficiency is shown in Table 5.

Table 4. Comparison of message sizes. “-” stands for no messages to be transmitted.
The message sizes are counted in byte.

Scheme A → B B → A A → B total(byte)

Kyber-AKE [3] 2272 2368 4640

FSXY [13] 1160 1160 – 2320

BCNP [2,26] 1160 1160 – 2320

SIAKE2 1160 628 – 1788

SIAKE3 596 628 32 1176

Table 5. Comparison of cycle counts. Cycle counts are rounded to 106 cycles by taking
the average of 1,000 trials.

Scheme A(initial) B A(end) B(end) total

FSXY [13] 6,238 14,779 10,124 31,141

BCNP-Lon [2] 11,146 20,092 9,563 40,801

SIAKE2 6,828 13,917 6,641 27,386

SIAKE3 5,966 4,429 4,922 9,575 24,892

7 Conclusion and Open Problem

We propose two AKEs based on supersingular isogeny assumptions. Both of
them achieve CK+ security and support arbitrary registration in the classical
random oracle model. However, to fully explain their quantum-resistance, their
security in the quantum random oracle model should be analyzed. We leave it
as an open problem and future work.

Acknowledgements. Haiyang Xue is supported by the National Natural Science
Foundation of China (No. 61602473, No. 61672019), and the National Cryptography
Development Fund MMJJ20170116. Xiu Xu is supported by the National Natural Sci-
ence Foundation of China (No.61872442). Man Ho Au is supported by the Research
Grant Council of Hong Kong (Grant No. 25206317). Song Tian is supported by the
National Natural Science Foundation of China (No. 61802401).

306 X. Xu et al.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 6

3. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE Symposium on Security and Privacy, pp. 353–367 (2018)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

5. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 24

6. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

7. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

8. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptology 8(3), 209–247 (2014)

9. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

10. Faz-Hernádnez, A., López, J., Ochoa-Jimenez, E., Rodŕıguez-Henŕıquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2018)

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

12. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

13. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
AsiaCCS 2013, pp. 83–94 (2013)

14. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny
Diffie–Hellman authenticated key exchange. In: Lee, K. (ed.) ICISC 2018. LNCS,
vol. 11396, pp. 177–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-12146-4 12

Strongly Secure Authenticated Key Exchange from Supersingular Isogenies 307

15. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint
Archive 2018/266

16. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

17. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

18. Guilhem, C.D.S., Smart, N.P., Warinschi, B.: Generic forward-secure key agree-
ment without signatures. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol.
10599, pp. 114–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69659-1 7

19. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. IACR Cryptology ePrint Archive 2017/774

20. Jao, D., Azarderakhsh, R., Campagna, M., et al.: Supersingular Isogeny
Key Encapsulation. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions

21. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24852-1 16

22. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

23. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: A high-performance and
scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Com-
put. 67, 1594–1609 (2018)

24. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Fail-
ure is not an option: standardization issues for post-quantum key agreement. In:
Workshop on Cybersecurity in a Post-Quantum World (2015)

25. LeGrow, J.: Post-quantum security of authenticated key establishment protocols.
Master’s thesis, University of Waterloo (2016)

26. Longa, P.: A note on post-quantum authenticated key exchange from supersingular
isogenies. IACR Cryptology ePrint Archive 2018/267

27. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

28. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing
mutual implicit authentication. In: Selected Areas in Cryptography (1995)

29. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key-distribution
systems. IEICE Trans. (1976–1990) 69(2), 99–106 (1986)

30. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 29

31. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier
signature from isogenies. In: INCoS 2012, pp. 292–296 (2012)

32. Urbanik, D., Jao, D.: SoK: the problem landscape of SIDH. IACR Cryptology
ePrint Archive 2018/336

308 X. Xu et al.

33. Xu, X., Xue, H., Wang, K., Liang, B., Au, H., Tian, S.: Strongly secure authenti-
cated key exchange from supersingular isogenies, IACR Cryptology ePrint Archive
2018/760

34. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via
double-key key encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11273, pp. 158–189. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3 6

35. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7 9

	Strongly secure authenticated key exchange from supersingular isogenies
	Citation

	tmp.1723525699.pdf.k0PRb

