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In STOC 2008, Peikert and Waters introduced a powerful primitive called lossy trapdoor 
functions (LTFs). In a nutshell, LTFs are functions that behave in one of two modes. In 
the normal mode, functions are injective and invertible with a trapdoor. In the lossy 
mode, functions statistically lose information about their inputs. Moreover, the two modes 
are computationally indistinguishable. In this work, we put forward a relaxation of LTFs, 
namely, regular lossy functions (RLFs). Compared to LTFs, the functions in the normal mode 
are not required to be efficiently invertible or even unnecessary to be injective. Instead, 
they could also be lossy, but in a regular manner. We also put forward richer abstractions 
of RLFs, namely all-but-one regular lossy functions (ABO-RLFs) and one-time regular lossy filters
(OT-RLFs).
We show that (ABO)-RLFs admit efficient constructions from both a variety of number-
theoretic assumptions and hash proof system (HPS) for subset membership problems 
satisfying natural algebraic properties. Thanks to the relaxations on functionality, the 
constructions enjoy much compact key size and better computational efficiency than that 
of (ABO)-LTFs.
We demonstrate the utility of RLFs and their extensions in the leakage-resilient cryptogra-
phy.

• As a special case of RLFs, lossy functions imply leakage-resilient injective one-way 
functions with optimal leakage rate 1 − o(1).

• ABO-RLFs (or OT-RLFs) immediately imply leakage-resilient one-time message authen-
tication code (MAC) with optimal leakage rate 1 − o(1).

• ABO-RLFs together with HPS give rise to leakage-resilient chosen-ciphertext (CCA) 
secure key encapsulation mechanisms (KEM) (this approach extends naturally to the 
identity-based setting). Combining the construction of ABO-RLFs from HPS, this gives 
the first leakage-resilient CCA-secure public-key encryption (PKE) with optimal leakage 
rate based solely on HPS, and thus goes beyond the barrier posed by Dodis et al. 
(Asiacrypt 2010). Our construction also applies to the identity-based setting, yielding 
LR-CCA secure IB-KEM with higher leakage rate than previous works.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In STOC 2008, Peikert and Waters [39] introduced a powerful primitive called lossy trapdoor function (LTF). Informally, 
LTF is a collection of functions F = { fek} whose evaluation key (i.e., function index or code) is created in one of two modes. 
One is injective (i.e., normal) mode: given a suitable trapdoor td for ek, the entire input x can be efficiently recovered from 
fek(x). The other is lossy mode: fek statistically loses a significant amount of information about its input. Moreover, the two 
modes are computationally indistinguishable: given just ek, no efficient adversary can tell whether fek is injective or lossy. 
They also introduced a richer abstraction called all-but-one lossy trapdoor functions (ABO-LTFs). A collection of ABO-LTFs is 
associated with a set B called branches. The key generation algorithm takes a given branch b∗ ∈ B as an extra parameter, 
and outputs an evaluation key ek and a trapdoor td. The function fek,b(·) is injective and invertible with td for any branch 
b �= b∗ , while the function fek,b∗(·) is lossy. Moreover, the lossy branch b∗ is computationally hidden by ek.

Using LTFs and ABO-LTFs, Peikert and Waters [39] develop new approaches for constructing several important crypto-
graphic tools, such as injective TDFs, collision-resistant hash functions (CRHFs), oblivious transfer and CCA-secure PKE.

1.1. Related work

Since the initial work of [39], there has been much additional work on LTFs and related concepts.
One direction of research is to find additional realizations of LTFs. Boyen and Waters [11] gave a technique to shrink 

the public key of matrix construction of [39] with the help of pairing. Rosen and Segev [43] and Boldyreva et al. [5]
independently described simple, compact constructions of LTFs and ABO-LTFs under the decisional composite residuosity 
(DCR) assumption. Freeman et al. [17] provided more constructions of LTFs from the quadratic residuosity (QR) and d-linear 
assumptions. Kiltz et al. [30] and Xue et al. [47] gave constructions of LTFs based on factoring assumptions. Hemenway 
and Ostrovsky [23] gave a construction of LTFs based on the extended decisional Diffie–Hellman (eDDH) assumption, which 
generalizes the DDH, QR and DCR assumption. They also showed a generic construction of LTFs from homomorphic smooth 
HPS. Wee [46] presented an alternative generic construction of LTFs from dual HPS.

Another direction of research is to explore variations and more applications. Rosen and Segev [43] and Kiltz et al. [28]
showed LTFs imply correlated-product TDFs and adaptive TDFs respectively. Boldyreva et al. [5] constructed CCA-secure de-
terministic encryption based on LTFs and ABO-LTFs. Hemenway et al. [22] generalized ABO-LTFs to all-but-N lossy trapdoor 
functions (ABN-LTFs) that have N lossy branches. Hofheinz [24] further generalized ABN-LTFs to all-but-many (ABM) LTFs in 
which the number of lossy branches is not bounded by any polynomial. Recently, Boyen and Li [10] realized ABM LTFs based 
on the learning with errors assumptions. So far, ABM-LTFs have shown their usefulness in constructing PKE with strong se-
curity properties including selective opening security [24] and key-dependent message security [25]. Mol and Yilek [36]
constructed a CCA-secure PKE from any slightly lossy trapdoor functions that lose only a noticeable fraction of a bit. On the 
contrary, Zhandry [48] introduced extremely lossy functions (whose functions in the lossy mode only have polynomial-sized 
image), and demonstrated extremely lossiness is useful for instantiating random oracles in several settings.

1.2. Motivations

Due to the strong requirement for the normal mode (injective and efficiently invertible with trapdoor), the concrete 
constructions of (ABO)-LTFs are typically not efficient in terms of the size of evaluation key and complexity of evaluation. 
The generic constructions of (ABO)-LTFs require advanced property for the basing primitives, such as homomorphic and 
invertible properties.

In all the known applications of LTFs, the normal mode is used to fulfill functionality, while the lossy mode is used 
to establish security. However, in many scenarios we do not require the full power of LTFs. As observed by Peikert and 
Waters [39, Section 3.4], some applications (such as injective OWFs, CRHFs) do not require a trapdoor, but only indistinguisha-
bility between normal mode and lossy mode. Thereby, they conjectured “realizing the weaker notion of lossy (non-trapdoor) 
functions (LFs) could be achieved more simply or efficiently than the full notion of LTFs”, and left the investigation of this 
question as an interesting problem.

A central goal in cryptography is to base cryptosystems on primitives that are as week as possible. With the question 
raised by Peikert and Waters [39] in mind, we ask the following questions:

How to realize LFs efficiently? Are there any other applications of LFs? Can we further weaken the notion of LFs while still being 
useful?

1.3. Our contributions

We answer the above questions affirmatively. An overview of our contributions is as below.

1.3.1. Regular lossy functions and extensions
As discussed above, when building cryptographic protocols the normal mode of LTF is used to fulfill functionality. For 

some applications that invertible property for the normal mode is overkilled, the injective property may also be unnecessary. 
This suggests that we may further relax the notion of LFs.
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We introduce a new primitive called regular lossy functions (RLFs), which is a public function fek (the evaluation key 
ek serves as the function index) that is created to behave in one of two modes. In the normal mode, the function fek
could be lossy, but should lose regularly (we will formally define this later). The intuition is that when the input x has high 
min-entropy, so does fek(x). In the lossy mode, the function fek statistically loses a significant amount information about its 
input x, i.e., the average min-entropy of x| fek(x) is high. Finally, the two modes are indistinguishable: no efficient adversary 
can tell whether fek is in normal mode or lossy mode.

In line of the above intuition, we can use image size to capture the lossy mode same as LTFs [39], but not for the normal 
mode. This is because image size is a global characterization for a function, which suffices to give the lower bound of the 
average min-entropy of x| fek(x) by applying the chain rule for min-entropy (cf. Lemma A.1), but is insufficient to give the 
lower bound of the min-entropy of fek(x). For instance, when the function is highly unstructured, it is possible that the 
image size of fek is slightly smaller the domain size, but the min-entropy fek(x) is much smaller than that of x. To address 
this subtle issue, we choose a local characterization of function named regularity to capture the normal mode. In the normal 
mode, the function fek is ν-regular, i.e., each image has at most ν preimages under fek . With this requirement, the (average) 
min-entropy of f (x) decreases at most logν compared to that of x (by applying Lemma 2.1 we develop in Section 2.2).

Clearly, our notion of RLFs differs from LFs only at the normal mode, whose functions are not required to be injective 
but could be flexibly lossy from injective to significantly lossy, subjected to the parameter choices of concrete applications. 
The only constraint is they should lose in a regular way.

To admit more applications, we introduce a richer abstraction called ABO-RLFs, analogously to the extension of LTFs to 
ABO-LTFs. Briefly, an ABO collection is associated with a branch set B . The generation algorithm of ABO-RLF takes an extra 
parameter b∗ ∈ B , and outputs an evaluation key such that fek,b is regular for any branch b �= b∗ but is lossy when b = b∗ . 
Moreover, the lossy branch is hidden (computationally) by ek. Note that with ABO-RLF, the lossy branch must be determined 
before publishing ek, which may hinder applications in adaptive scenarios. In line of this limitation, we further introduce 
an agile version of ABO-RLFs, namely one-time regular lossy filters (OT-RLFs), in which a lossy branch can be generated 
on-the-fly even after publishing ek.

1.3.2. Efficient constructions of ABO-RLFs
Existing constructions of (ABO)-LTFs are less efficient due to their strong requirement for the normal mode. In contrast, 

RLFs require nothing but the intrinsic regularity of functions for the normal mode. Such weakening admits much more 
efficient constructions from both number-theoretic assumptions and HPS.

First, we mainly follow the matrix approach due to [39] to give a DDH-based ABO-RLFs, in which the evaluation key is 
specified by an n × m matrix over groups. The efficiency improvements of our construction comes from two aspects: (1) 
since we do not require efficient inversion, the input x can be treated as an n-dimensional vector of elements from some 
large field (say Zp ) rather than a binary string over {0, 1}n; (2) since we even do not require injectivity, m could be set 
smaller than n and thus the matrix size shrinks noticeably. Our DDH-based ABO-RLFs can be naturally extended to base 
on the eDDH assumption. Second, we give an efficient and direct DCR-based ABO-RLFs, which compares favorably to the 
DCR-based ABO-LTFs due to [17] in terms of evaluation key size and computation overhead.

As to generic constructions, we first give a construction of ABO-RLF from any HPS for subset membership problems 
(SMPs). The construction proceeds via two steps: (1) build LF from any HPS following the approach of building LTF from 
dual HPS [46]; (2) amplify the obtained RLF to ABO-RLF with branch set {0, 1}� . However, this construction is inefficient 
in that its second step invokes � individual copies of RLF and involves some degradation in lossiness. Towards a direct and 
efficient construction, we require the underlying SMP to satisfy natural algebra properties, namely L is a subgroup of X
and the quotient group H = X/L is a cyclic group of order p. By exploiting this properties, we manage to give an efficient 
ABO-RLF with branch set B = Zp directly from HPS.

1.3.3. Applications in leakage-resilient cryptography
On the surface, non-injective function without a trapdoor do not appear pretty useful, since many appealing applications 

of standard LTF require a trapdoor (e.g., public-key encryption) or at least injectivity (e.g., CRHFs) for the normal mode. 
Indeed, RLF does not suffice for most of the applications outlined above. Nevertheless, we show that this simple notion on 
its own or in conjunction with other tools can in fact quite useful in leakage-resilient cryptography.

Traditional security models assume complete privacy of secret keys. However, in real systems the adversary might learn 
partial information about secret keys by launching various “key leakage attacks” via side channels, which make this idealized 
assumption false in practice. This fact leads to the design of leakage-resilient cryptography, which spreads to stream ciphers, 
block ciphers, digital signatures, public-key encryption, identity-based encryption.

There are several models of key leakage-resilience in the literature, mainly differing in their specifications of what and 
how many information can be leaked to the adversary. In this work we will focus on a simple yet general model, called 
bounded-leakage model. In this model, the adversary can learn arbitrary information about the secret key, subjected to the 
restriction that the total number of leakage is bounded by some leakage bound �(λ), where λ is the security parameter. The 
leakage rate is defined as the ratio of �(λ) to the secret key size s(λ), i.e., �(λ)/s(λ). Clearly, 1 − o(1) is the optimal leakage 
rate in the bounded leakage model.

In this work, we demonstrate the utility of RLFs (including their special case – LFs) by exploring their applications in 
leakage-resilient cryptography.
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Leakage-resilient OWFs. A function is said to be �-leakage-resilient one-way if one-wayness maintains even the attacker 
may obtain at most �-bits leakage about the preimage.

It was shown in [3,15,29] (and implicitly in [2,33]) that any weak universal one-way hash function (UOWHF)1 from 
{0, 1}n to {0, 1}m automatically provides �-leakage-resilient one-wayness, where � ≤ n − m − ω(λ). The shortcoming of this 
construction is the resulting LR OWFs are inherently compressing, and the leakage bound is dependent on the image size. 
As a consequence, in some applications one has to make a trade-off between image size and leakage bound.

In this work, we give an alternative construction based on LF. The insight is that the implication of LF ⇒ injective 
OWF [39] also holds in the leakage setting. More precisely, we show that the functions in the injective mode of LFs make 
up a collection of �-leakage-resilient injective OWFs. The leakage bound is � ≤ n − τ −ω(λ), where n is the length of inputs 
and τ is the logarithm of image size for the lossy mode. Both of our construction based of LF and the construction based 
on UOWHF achieves optimal leakage rate with appropriate parameter choice. The advantage of our construction is that the 
leakage bound is independent of the image size,2 which is more applicable in practice. To the best of our knowledge, our 
construction appears to be the first leakage-resilient injective OWF with optimal leakage rate.

Leakage-resilient MAC. Hazay et al. [21] constructed a leakage-resilient MAC from standard PRF. Though their construction 
only requires minimum assumption (OWFs), the leakage rate log λ/s(λ) is poor. Constructing leakage-resilient MAC under 
general assumption with higher leakage rate was left as an open problem [21].

In this work, we make a progress towards this problem. We construct a leakage-resilient MAC with optimal leakage 
rate from ABO-RLFs (or OT-RLFs), though in a weaker sense. To convert a ABO-RLF to a MAC, the key generation algorithm 
generates an evaluation key ek as public parameter, then chooses a random x from input space as the secret key; the tag 
algorithm treats message m as branch and evaluate t ← fek,m(x); the verification algorithm is canonical, namely re-computes 
the tag and checks for equality.

The resulting MAC turns out to be leakage-resilient strongly unforgeable, though in a weaker sense: the attacker only 
makes one tagging query and declares the query at the very beginning. The security argument leverages on the power of 
lose information. Upon the attacker submits its target query m∗ , the reduction generates ek with m∗ as the lossy branch and 
returns t∗ ← fek,m∗ (x). Observe that fek,m∗ is a lossy function, thus the secret key x still retains sufficient min-entropy even 
after revealing t∗ and bounded leakage. For any forge (m, t), we must have m �= m∗ since the MAC is unique. Besides, fek,m
is a ν-regular function whenever m �= m∗ . In this case, the (average) min-entropy of t = fek,m(x) decreases at most logν
compared to that of x. Therefore, t is unpredictable. The leakage rate could achieve 1 − o(1) under proper parameter choice.

The above construction only attains leakage-resilient one-time strong unforgeability against static chosen message attack, 
which is not desirable in some scenarios. One could overcome this limitation by relying on OT-RLFs instead of ABO-RLFs, 
yielding a leakage-resilient one-time strongly unforgeable MAC with optimal leakage rate. We left the construction of full-
fledged leakage-resilient MAC as a challenge problem.

Leakage-resilient PKE. A PKE is said to be �-leakage-resilient if semantic security maintains even if the attacker can obtain 
at most �-bits leakage about the secret key.

Akavia et al. [4] formalized the notion of leakage-resilient chosen-plaintext security (LR CPA) in the bounded-leakage 
model. Since then, many existing PKE schemes [42,19,8] have been proved secure in the bounded-leakage model. Later Naor 
and Segev [37] generalized the main ideas behind these constructions to by giving a generic construction of LR CPA-secure 
PKE schemes from universal1 hash proof system (HPS) [14]. Moreover, they also show how to achieve LR CCA security by 
either: (1) applying the Naor–Yung paradigm to obtain impractical PKE schemes with leakage-rate 1 −o(1) or (2) combining 
universal2 HPS to obtain practical PKE schemes (variants of the Cramer–Shoup cryptosystems) with leakage-rate 1/6 − o(1). 
Later, Liu et al. [35] proposed a new variant of the Cramer–Shoup cryptosystems which is LR CCA-secure with leakage-rate 
1/4 −o(1). Dodis et al. [15] realized that the HPS approach to building LR CCA-secure PKE seems to be inherently limited to 
leakage-rates below 1/2: because the secret-key consists of two components (sk1 of universal1 HPS for decrypting ciphertext 
and sk2 of universal2 HPS for verifying the well-formedness of the ciphertext) and the proofs break down if either of the 
components is individually leaked in its entirety.3 Later, Qin and Liu [40,41] bypassed the bound by replacing the universal2
HPS in the HPS approach [37] with a new primitive called one-time lossy filters (OT-LFs). By delicate instantiations of 
universal1 HPS and OT-LF, they obtained LR CCA-secure PKE schemes with leakage rate 1 − o(1). However, if OT-LF is 
implied by HPS is unknown. The problem of whether we can build LR CCA-secure PKE with optimal leakage-rate based on 
solely HPS is still open.

In the identity-based setting, Alwen et al. [1] gave a generic construction of LR CPA-secure IBE based on identity-based 
HPS. Lewko et al. [34] build LR CPA-secure IBE via dual system encryption. So far, the only known two LR CCA-secure IBE 
schemes [1,45] are adapted from the Gentry’s IBE [18], with leakage rate 1/6 − o(1) and 1/4 − o(1) respectively.

1 This is sometimes called second preimage resistant functions.
2 The leakage bound only subjects to the image size of functions in the lossy mode, which will not be used in real construction.
3 Kiltz et al. [32] showed that CCA-secure PKE can be constructed from a universal2 HPS with an authenticated one-time secure symmetric encryption, 

while universal2 HPS can be generically obtained from universal1 HPS via 4-wise independent hash function. At a first glance, their construction can be 
easily augmented to be leakage-resilient CCA-secure by applying randomness extractor to the projective hash. However, such augment could be very subtle 
in that the adding of a random seed may render the overall ciphertext easily malleable, and thus cannot be CCA-secure.
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Fig. 1. Overview of the results in this work.

In this work, we resolve this problem by building LR CCA-secure PKE with leakage rate 1 −o(1) based solely on HPS. This 
goes beyond previous believed bound conjectured by Dodis et al. [15]. Our starting point is the work of Qin and Liu [40]. 
It is well-known that key encapsulation mechanism (KEM) is more preferable than PKE from both theoretic and practice 
interest, thus we focus on the construction of leakage-resilient KEM.

Observe that in the setting of PKE the challenge ciphertext depends on attacker’s choice of target messages, whereas in 
the setting of KEM the challenge ciphertext is entirely determined by the challenger in the setting of KEM. Such feature 
allows us to replace OT-LFs with all-but-one lossy functions (ABO-LFs), which saves at least a chameleon hash for the KEM 
construction.4 Moreover, we show that ABO-LFs can be relaxed to ABO-RLFs. As we show in Section 5, ABO-RLFs can be 
efficiently constructed from any HPS for subgroup membership problem with natural algebraic properties. Taken together, 
the secret key in our approach consists of just one component for verifying the well-formedness of the ciphertext and for 
decrypting it simultaneously. Therefore, the leakage rate of our construction can go beyond the limitation of 1/2, being 
subject to the leakage tolerance of the underlying universal1 HPS. For instance, applying the DDH-based universal1 HPS 
from [40], we obtain a LR CCA-secure KEM with leakage rate 1/2 −o(1); applying the universal1 HPS from refined subgroup 
indistinguishability problem [41], we obtain a LR CCA-secure KEM with leakage rate 1 − o(1).

Note that a KEM can be bootstrapped to a PKE by combining a data encapsulation mechanism (DEM) with appropriate 
security properties [14,26,20], and the composition applies well in the leakage-resilient setting (without requiring DEM to 
be leakage-resilient). Taken together, our KEM construction indicates that LR-CCA secure PKE with optimal leakage ratio are 
achievable based on solely HPS.

Notably, our approach also extends to the identity-based setting: one can build LR CCA-secure IB-KEM generically from 
identity-based HPS and ABO-RLFs (or OT-RLFs), and the leakage rate is decided by the leakage tolerance of the underlying 
IB-HPS. By combining the IB-HPS realizations from the CPA-secure IBE schemes [18,12] and appropriate instantiations of 
ABO-RLFs (or OT-RLFs), we obtain IB-KEMs with leakage rate 1/2 −o(1) and 1/3 −o(1) respectively, higher than all previous 
work [1,45].

We conclude this section by remarking that in (ABO)-RLF’ applications to leakage-resilient cryptography (including 
leakage-resilient MAC, KEM and IB-KEM) presented in this work, the regularity ν allows for an interesting trade-off be-
tween efficiency and leakage tolerance, since larger ν typically allows for more efficient realizations of (ABO)-RLFs.

An overview of the constructions of this work is given in Fig. 1.

2. Preliminaries

2.1. Basic notations

For a distribution or random variable X , we write x R←− X to denote the operation of sampling a random x according to 
X . For a set X , we use x R←− X to denote the operation of sampling x uniformly at random from X , and use |X | to denote 
its size. We use U X to denote the uniform distribution over X .

We denote λ ∈ N as the security parameter. Unless described otherwise, all quantities are implicit functions of λ, and all 
cryptographic algorithms (including the adversary) take λ as an input. We say that a quantity is negligible, written negl(λ), 
if it vanishes faster than the inverse of any polynomial in λ. A probabilistic polynomial time (PPT) algorithm is a randomized 
algorithm that runs in time poly(λ). If A is a randomized algorithm, we write z ←A(x1, . . . , xn; r) to indicate that A outputs 
z on inputs (x1, . . . , xn) and random coins r. For notational clarity we usually omit r and write z ←A(x1, . . . , xn).

Due to space limit, we defer the definition of standard cryptographic primitives and information background to Ap-
pendix A.

2.2. Regular functions

A function f is injective (akin, 1-to-1) if every image has one and only one preimage. Following [9], we measure the 
amount of “non-injectivity” by looking at the maximum preimage size. Let ν be a quantity of security parameter λ. We 

4 As shown in [40], OT-LFs can be build from ABO-LFs and chameleon hash.
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say that f is ν-to-1 (or ν-approximately-regular) if ν bounds the maximum preimage size of f : any image has at most ν
preimages under f . Particularly, if every image has the same number (say ν) of preimages, we say f is ν-regular.

We develop the following technical lemma which establishes the relation between the min-entropy of X and f (X).

Lemma 2.1. Let f : D → R is a ν-to-1 function and X is a random variable over domain D. Then we have:

H∞( f (X)) ≥ H∞(X) − logν

Proof. Let x∗ be the value in the domain that maximizes Pr[X = x] and y∗ be the value in the range that maximizes 
Pr[ f (X) = y]. Since every image has at most ν preimages, it follows that Pr[ f (X) = y∗] = ∑

x∈ f −1(y∗) Pr[X = x] ≤ ν · Pr[X =
x∗]. According to the definition of min-entropy, the lemma immediately follows. The equality achieves when f is ν-regular 
and X follows the uniform distribution. Moreover, the above relation applies to average min-entropy as well. Suppose X is 
correlated to another random variable Y , we have H̃∞( f (X)|Y ) ≥ H̃∞(X |Y ) − logν . �

Hereafter, we do not distinguish ν-approximately-regular and ν-regular. For ease of presentation, we refer to them 
collectively as ν-regular.

3. Regular lossy functions and extensions

3.1. Regular lossy functions

Now, we define the notion of RLFs. Suppose the size of domain is 2n(λ) where n(λ) = poly(λ). Define ν(λ) ≤ 2n(λ) to 
represent the non-injectivity of the collection, and 2τ (λ) ≤ 2n(λ) to represent the image size of the collection. For all these 
quantities, we often omit the dependence on the security parameter λ.

A collection of (ν, τ )-RLFs is given by four polynomial time algorithms satisfying the following properties:

• Setup(λ): on input λ, output public parameter pp which includes the descriptions of evaluation key space E K , domain 
X and range Y .

• GenNormal(pp): on input pp, output an evaluation key ek. fek(·) is a ν-regular function from X to Y .
• GenLossy(pp): on input pp, output an evaluation key ek. fek(·) is a lossy function from X to Y whose image has size 

at most 2τ . The lossiness is defined as n − τ .
• Eval(ek, x): on input ek and an element x ∈ X , output y ← fek(x).

Hard to distinguish normal from lossy. For all pp ← Setup(λ), the outputs of GenNormal(pp) and GenLossy(pp) are com-
putationally indistinguishable.

Remark 3.1. Our notion of RLFs is a generalization of LFs. In the case ν = 1, RLFs obviously boil down to LFs. We also note 
that the concept of “regular lossy” was considered in previous works [31,44]. The important difference lies in that in their 
notion the functions in the lossy mode are required to be regular lossy, while in our notion of RLFs the functions in the 
normal model are relaxed to be approximately regular lossy.

3.2. All-but-one regular lossy functions

To admit more applications, it is convenient to work with a richer notion named ABO-RLFs. The extension is an analog 
of LTFs to ABO-LTFs in [39]. In an ABO collection, each function has an extra input called its branch. All of the branches 
are regular functions, except for one branch is lossy. The lossy branch is an auxiliary input to the evaluation key generation 
algorithm, and its value is hidden (computationally) by the resulting evaluation key.

We retain the same notation for n, ν , τ as above, and let B be the set of branches. A collection of (ν, τ )-ABO-RLFs 
consists of three polynomial time algorithms satisfying the following properties:

• Setup(λ): on input λ, output public parameter pp which specifies of evaluation key space E K , branch set B , domain X
and range Y .

• Gen(pp, b∗): on input pp and any b∗ ∈ B , output an evaluation key ek. For any b �= b∗ , fek,b(·) is a ν-regular function 
from X to Y , while fek,b∗(·) is a lossy function from X to Y whose image has size at most 2τ .

• Eval(ek, b, x): on input an evaluation key ek and a branch b ∈ B and an element x ∈ X , output y ← fek,b(x).

Hidden lossy branch. For any b∗
0, b

∗
1 ∈ B × B , the output ek0 of Gen(pp, b∗

0) and the output ek1 of Gen(pp, b∗
1) are compu-

tationally indistinguishable.
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3.3. One-time regular lossy filter

For ABO-LTFs, the lossy branch is fixed as soon as ek is published. This stipulates that the reduction must determine 
a lossy branch at the very beginning, and thus potentially hinders applications in adaptive scenarios. Qin and Liu [40]
introduced the notion of OT-LFs, in which a lossy branch could be generated on-the-fly in a somewhat semi-customized (or 
adversary-dependent) manner. In this work, we generalize OT-LFs to one-time regular lossy filters (OT-RLFs), which could 
be thought as an agile version of ABO-RLFs.

A collection of (ν, τ )-OT-RLFs consists of four polynomial time algorithms satisfying the following properties:

• Setup(λ): on input λ, output public parameter pp which includes the descriptions of evaluation key space E K , branch 
set B = Bc × Ba (where Bc is the core branch set and Ba is the auxiliary branch set), domain X and range Y .

• Gen(pp): on input pp, output an evaluation key ek and a trapdoor td. B contains two disjoint subsets, the subset of 
regular branches Bnormal and the subset of lossy branches B lossy. For any b ∈ Bnormal, fek,b(·) determines a ν-regular 
function from X to Y . For any b ∈ B lossy, fek,b(·) determines a lossy function from X to Y whose image has size at 
most 2τ .

• SampLossy(td, ba): on input a trapdoor td and an auxiliary branch ba , output a core branch bc such that b = (bc, ba) is 
lossy branch from B lossy.

• Eval(ek, b, x): on input ek, b ∈ B and an element x ∈ X , output y ← fek,b(x).

Indistinguishability. For any auxiliary branch ba ∈ Ba , a lossy core branch bc ← SampLossy(td, ba) and a random core 
branch bc

R←− Bc are computationally indistinguishable.
Evasiveness. For any PPT adversary, it is hard to generate a new lossy branch even given a lossy branch.

3.4. Basic relations

Peikert and Waters [39] showed that LTFs and ABO-LTFs are equivalent for appropriate choices of parameters and degree 
of lossiness. It is straightforward to verify the equivalence also holds in our regular lossy setting. We list the results as 
below for completeness. The security proofs are omitted here since they follow readily from [39].

Lemma 3.1. There exists a collection of (ν, τ )-ABO-RLFs having exactly two branches if and only if there exists a collection of 
(ν, τ )-RLFs.

Lemma 3.2. If there exists a collection of (ν, τ )-ABO-RLFs with branch set {0, 1}, then for any � ≥ 1 there exists a collection of 
(ν, �τ )-ABO-RLFs with branch set B = {0, 1}� .

Qin and Liu [41] showed that OT-LFs can be generically constructed from ABO lossy functions and chameleon hash 
functions. The same construction applies to the regular lossy setting as well.

Lemma 3.3. If there exists a collection of (ν, τ )-ABO-RLFs and a chameleon hash function, then there exists a collection of (ν, τ )-OT-
RLFs.

4. Concrete construction of ABO-RLFs

In this section, we build ABO-RLFs from the DDH and DCR assumptions (cf. definition in Appendix B).

4.1. A DDH-based ABO-RLFs

Our construction mainly follows the matrix approach due to [39], but with important refinement for better efficiency.
We first recall the algorithm named GenConceal for generating a pseudorandom concealer matrix that enjoys certain 

useful linearity properties from [39]. In a nutshell, GenConceal takes as input positive integers n and m (where n ≥ m), 
outputs a n ×m matrix Gn×m , in which the matrix is pseudorandom and all the columns lie in a one-dimensional subspace. 
More precisely, it works as follows:

• Choose r = (r1, . . . , rn) ← Zn
p and s = (s1, . . . , sm) ← Zm

p uniformly at random.
• Let V = r ⊗ s = rt s ∈ Zn×m

p be the outer product of r and s.

• Output C = gV ∈Gn×m as the concealer matrix.

Lemma 4.1 ([39]). Let n, m = poly(λ). Under the DDH assumption, the conceal matrix C = gV ← GenConceal(n, m) is pseudorandom 
over Gn×m.
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Our construction of ABO-RLFs from the DDH assumption is as below.

• Setup(λ): run (G, g, p) ← GroupGen(λ), output pp = (G, g, p) and B = Zp .
• Gen(pp, b∗): on input pp and b∗ ∈ Zp , invoke GenConceal(n, m) to generate C = gV ∈ Gn×m , output ek = gY = gV−b∗I′ , 

where I′ ∈ Zn×m
p , i.e., the ith column is the standard basis vector ei ∈ Zn

p for i ≤ n, and the rest columns are zero vectors.

• Eval(ek, b, x): on input evaluation key ek = gY , a branch b ∈ Zp and an element x ∈ Zn
p , output y = gx(Y+bI′) =

gx(V+(b−b∗)I′) ∈ Gm .

Lemma 4.2. Under the DDH assumption, the above construction is a collection of (pn−m, log p)-ABO-RLFs for n > 1.

Proof. For any b �= b∗ , (V, b) determines pn−m-to-1 function because the rank of (Y + bI′) is m and the size of the solution 
space for every y ∈ Gm is pn−m . For b = b∗ , every output y is of the form gr′s , where r′ = xrt ∈ Zp . Because s is fixed by 
the function index V, there are at most p distinct outputs of any particular function determined by (V, b∗). The lossiness is 
(n − 1) log p.

The hidden lossy branch property (under the DDH assumption) follows by an elementary reduction: for any branch 
b∗ ∈ Zp the output of Gen(λ, b∗) is computationally indistinguishable from uniform over Gn×m . �
Remark 4.1. The parameter n controls the size of domain, while the parameter m allows us to manipulate the regularity 
for the ABO branches in a flexible manner. When m = n the above construction becomes the standard ABO lossy functions 
because the ABO branches are injective.

In the DDH-based ABO-LTF construction [39], the input space is restricted to {0, 1}n and m must be larger than n to 
ensure invertible property. In our construction, we do not require invertible property. Therefore, the input space dramatically 
extends from {0, 1}n to Zn

p without expanding the conceal matrix. Moreover, when injective property is not necessary, we 
could further shrink the matrix by setting m smaller than n. In the matrix-based construction, both the size of evaluation 
key and the computation cost of evaluation are dominated by n and m. Therefore, compared to the DDH-based ABO-LTFs, 
our DDH-based ABO-RLFs allows much larger inputs and much better efficiency. The flexible choice of m gives rise to more 
compact evaluation key. A detailed comparison will be given shortly in Section 4.3.

Following a similar approach due to Hemenway and Ostrovsky [23], the above DDH-based construction naturally ex-
tends to construction based on the eDDH assumption [23], which generalizes the DDH, QR and DQR assumptions. Thereby, 
the above construction also implies a DCR-based ABO-RLFs. Nevertheless, we are able to give a more efficient and direct 
DCR-based construction, as shown in the next subsection.

4.2. A DCR-based ABO-RLFs

Our direct ABO-RLFs construction from the DCR assumption is as below.

• Setup(λ): run N ← GenModulus(λ), choose a random z ∈ ZN and compute g = z2N mod N2, output pp = (N, y) and 
set B = ZN .

• Gen(pp, b∗): on input pp and a given lossy branch b∗ ∈ ZN , choose a random r in ZN , computes and outputs ek =
gr(1 + N)−b∗

.
• Eval(ek, b, x): on input ek, a branch b ∈ ZN and an element x ∈ {0, · · · , 
N2/4�}, output y = [ek/(1 + N)b]x = grx(1 +

N)(b−b∗)x ∈ ZN2 .

Lemma 4.3. Under the DCR assumption, the above construction is a collection of (1, φ(N)/4)-ABO-RLFs.

Proof. For any b �= b∗ , fek,b is an injective function overwhelmingly because g is the generator of 2N-th residuosity with 
overwhelming probability. Let φ be the Euler phi function. The order of g is at least φ(N)/4, and the order of gr(1 + N)b−b∗

is Nφ(N)/4 with overwhelming probability. For b = b∗ , every output grx is the 2N-th residuosity. Thus, all the images are 
less than φ(N)/4, and the lossiness is at least log N .

The hidden lossy branch property follows by the security of Paillier encryption [38] (implied by the DCR assumption): 
the output of Gen(pp, b∗) is actually a Paillier encryption of b∗ with randomness r. Therefore, for any b∗

0, b
∗
1 ∈ ZN , the 

outputs of Gen(pp, b∗
0) and Gen(pp, b∗

1) are computationally indistinguishable.
Since the regularity is 1, this construction is actually an ABO-LF. �

4.3. Efficiency comparison

In this section, we compare our constructions of ABO-RLFs and previous constructions of ABO-LTFs. The results are 
summarized in Table 1.
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Table 1
ABO-LTFs vs. ABO-(R)LFs based on concrete assumptions.

ABO-LTF/(R)LF Assump. Input size Lossiness Key size Efficiency

ABO-LTF [39] DDH 2n n − log p nm|G| nm Add
ABO-RLF Sec. 4.1 DDH pn (n − 1) log p nm|G| nm (Exp+Add)

ABO-LTF [17] DCR Ns−1 (s − 2) log N |Z∗
Ns | 1 Exp

ABO-LF Sec. 4.2 DCR N2/4 log N |Z∗
N2 | 1 Exp

Add and Exp denote an addictive and an exponential operation in the underlying group respectively.

By setting n = m = 2 log p in the first line and setting n = 2, m = 1 in the second line, our DDH-based ABO-RLF in 
Section 4.1 has the same input size and lossiness as the DDH-based ABO-LTF [39], but the evaluation key size as well as 
computation overhead is much smaller. By setting s = 3 in the third line, our DCR-based ABO-LF in Section 4.2 has roughly 
the same input size and lossiness as that of the DCR-based ABO-LTF [17], but the evaluation key as well as computation 
overhead is much smaller.

5. Generic construction of ABO-RLFs

In this section, we focus on generic construction of ABO-RLFs.

5.1. Construction from HPS for subset membership problem

Lemma 3.1 and 3.2 indicate that ABO-RLF is implied by RLF. Thus, the task of constructing ABO-RLF can be reduced to 
seeking generic construction of RLF.

Wee [46] introduced the notion of dual HPS. As with universal HPS, dual HPS also centers around a family of hash 
function {�sk} indexed by secret key sk and whose input x comes from some “hard” language. As before, dual HPS requires 
that for x ∈ L (YES instance), the hash value �sk(x) is completely determined by x and pk = α(sk). On the other hand, 
for x /∈ L (NO instance), dual HPS requires invertibility – that α(sk) and �sk(x) jointly determine sk, and there exists an 
inversion trapdoor td that enables us to efficiently recover sk given (α(sk), �sk(x))5 along with x. Wee showed an elegant 
construction of LTF from dual HPS, which is depicted in Equation (1) as below.

fx(sk) = α(sk)||�x(sk) (1)

In Wee’s construction, instance x serves as the evaluation key and secret key sk acts as input. The injective mode (when 
x /∈ L) follows from the invertible property of dual HPS, whereas the lossy mode (when x ∈ L) follows from the projec-
tive property of �sk(·). Moreover, the indistinguishability of injective and lossy mode follows from the hardness of subset 
membership problem.

Interestingly, we can build RLF from any HPS via the same construction shown as above. Since RLF is much weaker then 
LTF, we only need the projective property of HPS; any additional properties such as smooth, universal or invertible properties 
are unnecessary. Formally, let (X, L, W , R, P K , S K , α, 
, �) be public parameter of HPS. Assume fx(sk) = α(sk)||�x(sk) is a 
ν-to-1 function from S K to 
 for any x /∈ L.6 We have the following lemma.

Lemma 5.1. Under the subset membership assumption, Equation (1) yields a collection of (ν, log |Img(α)|)-RLFs.

Proof. Correctness for the normal mode follows readily from the fact that fx(·) is a ν-to-1 function. Lossiness for the lossy 
mode follows readily from the projective property, which implies that for any x ∈ L, Img( fx) = Img(α). The indistinguisha-
bility between normal mode and lossy mode can be directly reduced to the subset membership assumption. �

Putting all the above together, we can generically construct ABO-RLF from any HPS. The construction proceeds via two 
steps: (1) build RLF from any HPS; (2) amplify the obtained RLF to ABO-RLF with branch set {0, 1}� . However, this generic 
construction is not efficient in that its second step invokes � individual copies of RLF and involves some degradation in 
lossiness.

5.2. Efficient construction from HPS for algebraic subset membership problems

The above construction serves as a proof of concept that one can generically build ABO-RLF from any HPS. It is intriguing 
to know if there exists more efficient construction.

5 Following the treatment of [46], we will write �sk(x) as �x(sk) occasionally.
6 The regularity of α gives an upper bound of ν .
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Our idea is to exploit more algebra property of the associated subset membership problem. More precisely, we choose 
to work with group-oriented SMPs, which we call algebraic subset membership problem.

Algebraic subset membership problems. We first formally introduce a new class of cryptographic indistinguishability prob-
lem called algebraic subset membership problems (ASMPs), which is a special type of SMPs (cf. definition in Section 8) with 
the following requirements.

1. X forms a finite Abelian group, L forms a subgroup of X .
2. The quotient group H = X/L is cyclic with order p = |X |/|L|.

With the above algebraic properties, we have the following two useful facts:

• Let a = aL for some a ∈ X\L be a generator of H , then the co-sets (aL, 2aL, . . . , (p −1)aL, paL = L) constitute a partition 
of X .

• For each x ∈ L, ia + x ∈ X\L for 1 ≤ i < p.

The hardness of ASMPs is same as that of SMPs, which stipulates the uniform distributions over L and X\L are com-
putationally indistinguishable. Define the density of L as ρ = |L|/|X |. When ρ is negligible, U L ≈c U X\L is equivalent to 
U L ≈c U X in that U X\L and U X are statistically close. When ρ is known, U L ≈c U X\L implies U L ≈c U X since one can 
efficiently reconstruct U X from U L , U X\L and ρ .

To demonstrate the generality of ASMP, we instantiate it based the DDH, d-linear, QR and DCR assumptions respectively. 
Due to space limit, we defer the instantiations to Appendix B.

Remark 5.1. ASMP could also be thought as an enhancement of subgroup membership problems with requirement (2). For 
our application in this work, requirement (2) could be further relaxed to H contains a cyclic subgroup.

Comparison to (refined) subgroup indistinguishability problems. Brakerski and Goldwasser [6] introduced the so called 
subgroup indistinguishability problems (SIPs). SIPs is also defined w.r.t. a finite Abelian group X and a subgroup L. In 
addition, SIPs require X is isomorphic to direct product of two groups: X � L × M and gcd(ord(L), ord(M)) = 1. Qin and 
Liu [41] introduced refined SIPs, which further requires M to be cyclic. Compared to (refined) SIPs, ASMPs only require 
the quotient group X/L to be cyclic. Therefore, ASMP is strictly stronger than RSIP, and also arguably stronger than SIP 
because SIP is unlikely to be implied by the DDH and d-linear problems. Correspondingly, our algebraic subset membership 
assumption is potentially weaker.

Now we are ready to construct ABO-RLF from HPS for ASMP.

• Setup(λ): run HPS.Setup(λ) to generate pp = (X, L, W , R, P K , S K , α, 
, �), pick a random generator aL for the quotient 
group H , output p̂p = (pp, a).

• Gen(p̂p, b∗): on input p̂p = (pp, a) and a given lossy branch b∗ ∈ Zp , run (x, w) ← HPS.SampYes(pp) to sample a 
random element from L, compute the evaluation key ek = −b∗a + x ∈ X .

• Eval(ek, b, sk): on input an evaluation key ek = −b∗a + x, a branch b and an input sk, compute α(sk)||�sk(ek + ba). This 
algorithm defines fek,b(sk) := α(sk)||�sk(ek + ba).

Theorem 5.2. Assume X = {0, 1}n and the function fx(sk) = α(sk)||�x(sk) is a ν-regular for any x /∈ L. The above construction yields 
a collection of (ν, log |Imgα|)-ABO-RLFs under the algebraic subset membership problem.

Proof. By the group property of the ASMP, ek + ba = x + (b − b∗)a /∈ L as long as b �= b∗ . In this case, fek,b(·) is a ν-regular 
function. When b = b∗ , ek + ba = x + (b − b∗)a = x ∈ L. In this case, fek,b(·) is a lossy function by the projective property. For 
the security, the hidden lossy branch property follows readily from the hardness of algebraic subset membership problem. 
For any b∗

0, b
∗
1 ∈ Zp , (−b∗

0a + x) ≈c (−b∗
0a + u) ≡ u ≡ (−b∗

1a + u) ≈c (−b∗
1a + x), where u R←− X . This proves the theorem. �

6. Leakage-resilient one-way functions

We now show LFs implies a family of leakage-resilient OWFs. The construction and security proof are in the same spirit 
of the implication LTFs ⇒ injective TDFs given in [39]. We prove the implication also holds in the leakage setting.

Theorem 6.1. Suppose (Setup, GenInj, GenLossy, Eval) give a collection of lossy functions over {0, 1}n whose the image size of func-
tions in the lossy mode is at most 2τ . Then (Setup, GenInj, Eval) is a collection of �-leakage-resilient injective OWFs over {0, 1}n for 
any � ≤ n − τ − ω(log λ).
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Proof. We proceed via two games. Let Si be the event that A wins in Game i.

Game 0. This is the standard leakage-resilient game for injective OWFs. CH interacts with A as below:

1. Setup: CH generates ek ← GenInj(λ), picks x∗ R←− {0, 1}n , computes y∗ ← fek(x∗), then sends (ek, y∗) to A as the 
challenge.

2. Leakage Queries: A may adaptively make leakage queries. For each leakage query 〈g〉, CH responds with g(x∗).
3. Invert: A outputs x and wins if x = x∗ .

According to the definition, we have:

AdvA(λ) = Pr[S0]
Game 1. The same as Game 1 except in Step 1:

1. Setup: CH generates ek ← GenLossy(λ).

By the indistinguishability between injective and lossy mode, we have:

|Pr[S1] − Pr[S0]| ≤ negl(λ)

It remains to analyze Pr[S1] in Game 1. Let ek be any fixed evaluation key generated by GenLossy(λ). Then the probability 
(over the random choice x∗) that even an unbounded A predicts x∗ is given by the average min-entropy of x∗ conditioned 
on y∗ ← fek(x∗) and leakage of x∗ , i.e., the predictability of x∗ given y∗ and leakage is at most 2−H̃∞(x∗|(y∗,leak)) . Because 
fek(·) takes at most 2τ values and the total leakage takes at most 2� values, Lemma A.1 implies that

H̃∞(x∗|( fek(x∗), leak)) ≥ H∞(x) − τ − � = n − τ − �

Because n − τ − � ≥ ω(log λ), the probability that A(ek, y∗, leak) outputs x∗ is negl(λ). By averaging, the same is true for ek
chosen at random by GenLossy. This proves Pr[S1] = negl(λ), and so is Pr[S0]. The completes the proof. �
7. Leakage-resilient message authentication code

In this section, we construct leakage-resilient MAC from ABO-RLFs and OT-RLFs, respectively.

7.1. Construction from ABO regular lossy functions

We show how to convert an ABO-RLF to a MAC. The high-level idea is treating input as secret key and branch as message, 
outputting the function value as tag.

• Setup(λ): run ABORLF.Setup(λ) to generate pp = (E K , B, X, Y ) where |X | = 2n and B = {0, 1}b , generate ek ←
ABORLF.Gen(pp, 0b), output p̂p = (pp, ek). The key space K = X , the message space M = B and the tag space T = Y .

• Gen(p̂p): pick k R←− X as the secret key.
• Tag(k, m): compute t ← fek,m(k), output (m, t).
• Vefy(k, m, t): output 1 if t = fek,m(k) and 0 otherwise.

Theorem 7.1. If ABORLF is a collection of (ν, τ )-ABO-RLFs, the above construction is �-leakage-resilient one-time static sUF for any 
� ≤≤ n − τ − logν − ω(log λ).

Proof. We proceed via a sequence of games. Let Si be the event that A wins in Game i.

Game 0. This is the standard leakage-resilient one-time static sUF game. CH interacts with A as below.

1. Commit and setup: A declares its single tagging query 〈m∗〉 before seeing public parameter. CH generates public pa-

rameter by running pp ← ABORLF.Setup(λ) and ek ← ABORLF.Gen(pp, 0b). CH picks k R←− X , computes t∗ ← fek,m∗(k), 
then sends p̂p = (pp, ek) and t∗ to A.

2. Learning phase: A can make leakage queries adaptively. For each leakage query 〈g〉, CH responds with g(k) as long as 
the total leakage is less than �.

3. Forge: A outputs (m, t) and wins if m �= m∗ and t = fek,m(k).

According to the definition, we have:

AdvA(λ) = Pr[S0]
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Game 1. The same as Game 0 except that in step 1 CH generates ek via ABORLF.Gen(pp, m∗) rather than
ABORLF.Gen(pp, b∗). By the hidden lossy branch property, Game 0 and Game 1 are computationally indistinguishable. 
Therefore, we have:

|Pr[S1] − Pr[S0]| ≤ negl(λ)

It is left to analyze Pr[S1]. Since the MAC construction is unique, S1 is actually the event that A outputs (m, t) where 
m �= m∗ and fek,m(k) = t . We now analyze the average min-entropy of t conditioned on A’s view, which is determined by 
(pp, ek, m, leak, m∗, t∗).

H̃∞(t|view) = H̃∞(t|ek,m, leak, t∗) (2)

≥ H̃∞(t|ek,m) − � − τ (3)

≥ n − logν − � − τ (4)

In the above deduction, Equation (2) follows from the fact that the value t = fek,m(k) is determined by ek, m and k, while 
k is independent of m∗ and pp. Equation (3) follows from Lemma A.1 and the upper bound of leakage is �-bits and t has at 
most 2n−τ values. Note that for any m �= m∗ , fek,m(·) is a ν-to-1 function. Combining this fact with Lemma 2.1, Equation (4)
immediately follows.

By the parameter choice, we have n − logν − � − τ ≥ ω(logλ). Therefore, Pr[S1] ≤ negl(λ) holds even against unbounded 
adversary.

Putting all the above together, the theorem follows. �
7.2. Construction from one-time regular lossy filters

The above construction based on ABO-RLFs is only provably secure in the static setting, since the reduction has to pro-
gram the tagging query m∗ as the lossy branch, which must be fixed before publishing the public parameters. Nevertheless, 
we can circumvent this obstacle by resorting to OT-RLFs. The construction is as below.

• Setup(λ): run OTRLF.Setup(λ) to generate pp = (E K , X, Y , B = Bc × Ba) where |X | = 2n , generate ek ← OTRLF.Gen(pp), 
then output p̂p = (pp, ek). The key space K = X , the message space M = Ba and the tag space T = Bc × Y .

• Gen(p̂p): pick k R←− X as the secret key.

• Tag(k, m): set m as the auxiliary branch, pick a random core branch t1
R←− Bc , compute t2 ← fek,(t1,m)(k), output t =

(t1, t2).
• Vefy(k, m, t): parse t = (t1, t2), output 1 if t2 = fek,(t1,m)(k) and 0 otherwise.

Theorem 7.2. If OTRLF is a collection of (ν, τ )-OT-RLFs, the above construction is �-leakage-resilient one-time sUF for any � ≤ n − τ −
logν − ω(log λ).

Proof. We proceed via a sequence of games. Let Si the event that A wins in Game i.

Game 0. This is the standard leakage-resilient one-time sUF experiment. CH interacts with A as below.

1. Setup: CH generates pp ← OTRLF.Setup(λ), then computes (ek, td) ← OTRLF.Gen(pp). CH sends p̂p = (pp, ek) to A
and keeps td to itself.

2. Learning phase: A can make leakage queries adaptively and tagging query once. For each leakage query 〈g〉, CH re-
sponds with g(k) as long as the total leakage is less than �. For the tagging query 〈m∗〉, CH picks a random core branch 
t∗

1 ∈ Ba , computes t∗
2 ← fek,(t∗1,m∗)(k), and sends t∗ = (t∗

1, t∗
2) to A.

3. Forge: A outputs (m, t = (t1, t2)) and wins if t2 = fek,(t1,m)(k) and (m, t) �= (m∗, t∗).

According to the definition, we have:

AdvA(λ) = Pr[S0]
Game 1. The same as Game 0 except that in Step 2 when answering the tagging query m∗ , CH generates by computing 
t∗

1 ← OTRLF.SampLossy(td, m∗) rather than sampling t∗
1

R←− Bc . By the indistinguishable property, Game 0 and Game 1 are 
computationally indistinguishable. Therefore, we have:

|Pr[S1] − Pr[S0]| ≤ negl(λ)
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It is left to analyze Pr[S1]. S1 is the event that A outputs (m, t) where (m, t) �= (m∗, t∗) and fek,t1||m(k) = t2. Since 
when ek and k are fixed, the branch t1||m uniquely determines the function value t2, thus if S1 happens we must 
have (t1, m) �= (t∗

1, m∗). We now analyze the average min-entropy of t2 conditioned on A’s view, which is determined 
by (pp, ek, m, t1, leak, m∗, t∗).

H̃∞(t2|view) = H̃∞(t2|ek,m, t1, leak, t∗
2) (5)

≥ H̃∞(t2|ek,m) − � − τ (6)

≥ n − logν − � − τ (7)

In the above deduction, Equation (5) follows from the fact that the value t2 = fek,(t1,m)(k) is determined by ek, (t1, m)

and k, while k is independent of m∗ , pp and t∗
1. In Game 1, fek,(t∗1,m∗)(·) is a lossy function. Equation (6) follows from 

Lemma A.1 and the upper bound of leakage is �-bits and t∗
2 has at most 2τ values. According to the evasiveness property, 

fek,(t1,m)(·) where (t1, m) �= (t∗
1, m∗) is a ν-to-1 function with overwhelming probability. Combining this fact with Lemma 2.1, 

Equation (7) immediately follows.
By the parameter choice, we have n − logν − τ − � ≥ ω(log λ). Therefore, Pr[S1] ≤ negl(λ) holds even against unbounded 

adversary.

Putting all the above together, the theorem follows. �
8. Leakage-resilient CCA-secure KEM

Our starting point is the work of Qin and Liu [40]. By combining a universal HPS and an OT-LF in a clever manner, they 
obtained a simple and efficient leakage-resilient CCA-secure PKE scheme with higher leakage rate than previous construc-
tions based on HPS [37,35].

To better illustrate our idea, we first briefly review their construction and security proof. Their construction can be di-
vided in two steps. In the first step, they followed the approach of [37] to build a LR CPA-secure PKE from a universal1-HPS. 
The first part of the ciphertext is (x, s, z = ext(π, s) + m), where x is a random element in L with witness w , s is a random 
seed for randomness extractor ext, m is the message, and π = HPS.Pub(pk, x, w). In the second step, they employed an 
OT-LF fek,·(·) to generate a randomized tag to authenticate the first part of the ciphertext. The second part ciphertext is 
(bc, t), where bc is randomly chosen core branch, x||s||z serves as the auxiliary branch ba , and t = fek,bc ||ba (k). This differs 
from previous (leakage-resilient) CCA-secure PKE constructions which use an independent universal2 HPS to authenticate 
the first part of the ciphertext, and eventually allows high leakage ratio.

To establish security, the challenge ciphertext c∗ = (x∗, s∗, z∗, b∗
c , t∗) evolves via a sequence of hybrids. In the last hybrid, 

x∗ is sampled from X\L and t∗ is evaluated via a lossy core branch b∗
c ← OTLF.SampLossy(td, b∗

a = x∗||s∗||z∗). No PPT 
adversary can tell the changes due to the hardness of subset membership problem and the indistinguishability of lossy 
branches and injective ones. Conditioned on c∗ , it is possible that π∗ = HPS.Priv(sk, x∗) maintains high min-entropy by 
proper parameter choice of ext and the fact that t∗ is evaluated under a lossy branch. On one hand, when a PPT adversary 
makes decryption queries, fek,(bc ,ba)(·) is an injective function with overwhelming probability due to the evasiveness of 
OT-LF, and thus the resulting t maintains the min-entropy of its input. According to the universal property of HPS and the 
fact that t∗ is evaluated under a lossy branch, �sk(x) has high average min-entropy when x /∈ L even after exposing c∗ . 
Thereby, the reduction can safely reject all invalid decryption queries with x /∈ L. On the other hand, due to the projection 
of �sk , the responses to all valid decryption queries do not reveal more information about sk other than pk and c∗ . In 
summary, the decryption oracle does not reveal more information of π∗ to the adversary. Upon the this point, ext can be 
used to distill the leftover entropy from π∗ as the session key to mask m.

From both theoretic and practical interest, KEM is more preferable than PKE. In Qin-Liu’s PKE, the auxiliary branch ba is of 
the from (x, s, z). During the security proof, z∗ = m∗ +ext(π∗, s∗) cannot be determined by the reduction in advance, in that 
m∗ is one of the two messages outputted by the adversary in the challenge stage. Thereby, the reduction is unable to decide 
the lossy branch at the very beginning, but has to generate it with the help of trapdoor on-the-fly. In contrast, in the KEM 
setting the reduction has fully control of the challenge ciphertext c∗ = (x∗, s∗), which could be programmed as the lossy 
branch before the generation of evaluation key. Thereby, the agility of OT-LF is overkilled and its static version – ABO-LF 
suffices. Moreover, we note that both OT-LF and ABO-LF act as a leakage-resilient MAC in the construction. Combining 
this observation with the implication we have shown in Section 7, a HPS and an ABO-RLF suffice for the construction of 
leakage-resilient CCA-secure KEM.

Next, we formally show how to construct leakage-resilient CCA-secure KEM from HPS and ABO-RLF. We first recall the 
notion of HPS [14] as below.

Hash proof system. A HPS consists of the following algorithms:

• Setup(λ): on input λ, output public parameter pp = (X, L, W , R, P K , S K , α, 
, �). Here X is a finite non-empty set, L
is a proper subset of X defined by binary relation R ⊂ X × W such that x ∈ L if and only if (x, w) ∈ R for some witness 
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Fig. 2. Our approach of KEM construction from HPS and ABO-RLF.

w ∈ W . Here P K is the public key space, S K is the secret key space, α : S K → P K is a projective map, 
 is the proof 
space, � = {�sk : X → 
}sk∈S K is a family of hash functions indexed by S K .

• SampYes(pp): on input pp, outputs a random element x ∈ L, together with a witness w ∈ W for x. We refer to elements 
belong to L as Yes instances.

• SampNo(pp): on input pp, output a random element x ∈ X\L. We refer to elements belong to X\L as No instances.

• KeyGen(pp): on input pp, pick sk R←− S K , compute pk ← α(sk), output a key pair (pk, sk).
• Priv(sk, x): on input sk and x ∈ X , output its hash proof π ← �sk(x).
• Pub(pk, x, w): on input pk, x ∈ L together with a witness w , output π ∈ 
.

Subset membership problem. Cramer and Shoup [14] introduced the subset membership problems (SMP) to abstract natural 
cryptographic indistinguishability problems such as the DDH and QR problems as well as others.

SMP w.r.t. (X, L, W , R) requires the random distributions over L and X\L are computationally indistinguishable, i.e., for 
any PPT adversary A, we have:

Advsmp
A (λ) = |Pr[A(pp, x0)] − Pr[A(pp, x1)]| ≤ negl(λ)

where pp ← Gen(λ), (x0, w) ← SampYes(pp), and x1 ← SampNo(pp).

Projection. � is projective if the action of �sk on L is determined by pk = α(sk), i.e., for all (pk, sk) ← KeyGen(pp) and all 
x ∈ L with witness w , we have:

�sk(x) = Pub(pk, x, w)

Universal1. � is ε1-universal1 if for all pk ∈ P K , all x ∈ X\L and all π ∈ 
, we have:

Pr[�sk(x) = π |(pk, x)] ≤ ε1

where the probability is over all possible sk with α(sk) = pk.

The lemma below follows directly from the definition of min-entropy.

Lemma 8.1. If � is ε1-universal1 , then for all pk ∈ P K and x ∈ X\L, H∞(�sk(x)|(pk, x)) ≥ log 1/ε1 , where sk ← S K with pk =
α(sk).

8.1. Construction from HPS and ABO-RLF

Now, we show how to construct LR CCA-secure KEM from a universal1 HPS, an ABO-RLF and randomness extractor, 
which is depicted in Fig. 2.

• Setup(λ): run HPS.Setup(λ) to generate pp1 = (X, L, W , R, P K , S K , α, 
, �),7 where � is ε1-universal1 for n = log 1/ε1; 
run ABORLF.Setup(λ) to generate pp2 = (E K , B = X × {0, 1}d, 
, T ); pick an average-case (n − τ − �, κ, ε2)-extractor 
ext : 
 × {0, 1}d → {0, 1}κ ; output pp = (pp1, pp2).

• KeyGen(pp): parse pp = (pp1, pp2), then run (pk, sk) ← HPS.KeyGen(pp1) and ek ← ABORLF.Gen(pp2, 0m+d), output 
public key p̂k = (pk, ek) and secret key sk.

• Encaps(p̂k): on input p̂k = (pk, ek), sample (x, w) ← HPS.SampYes(pp1), compute π ← HPS.Pub(pk, x, w), pick a ran-

dom seed s R←− {0, 1}d , compute t ← fek,x||s(π), output c = (x, s, t) and k ← ext(π, s).

7 Assume each element in X can be uniquely encoded as a binary string in {0, 1}m .
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• Decaps(sk, c): on input sk and c = (x, s, t), compute π ← HPS.Priv(sk, x), output k ← ext(π, s) if t = fek,x||s(π) and ⊥
otherwise.

Theorem 8.2. Assuming SMP is hard, HPS is an ε1-universal1 hash proof system, ABORLF is a collection of (ν, τ )-ABO-RLFs and ext be 
an average-case (n − τ − �, κ, ε2)-strong extractor, the above construction is �-leakage-resilient CCA-secure for any � ≤ n − τ − κ −
logν − ω(log λ).

Proof. In the following security analysis, we refer to ciphertexts (x, s, t) whose x ∈ L as valid and t = fek,x||s(π) as well-
formed. Clearly, there exist invalid but well-formed ciphertexts.

We proceed via a sequence of games. We start with Game 0, where the challenger CH proceeds in the standard LR CCA 
security game (i.e., k∗

0 is a real key and k∗
1 is a random key) and end up with a game where both k∗

0 and k∗
1 are chosen 

uniformly at random. Let Si be the probability that A wins in Game i.

Game 0. This is the standard LR CCA security game. CH interacts with A as follows:

1. Setup: CH runs pp1 ← HPS.Setup(λ) and pp2 ← ABORLF.Setup(λ), runs (pk, sk) ← HPS.KeyGen(pp1),
ek ← ABORLF.Gen(pp2, 0m+d), sets sk as secret key and sends pp = (pp1, pp2) and p̂k = (pk, ek) to A.

2. Phase 1: A can make leakage queries adaptively. For each leakage query 〈g〉, as long as the total leakage is less than �, 
CH responds with g(sk).

3. Challenge: CH samples β ∈ {0, 1}, s∗ R←− {0, 1}d , (x∗, w∗) ← HPS.SampYes(pp1), computes π∗ ← �sk(x∗) via

HPS.Pub(pk, x∗, w∗), t∗ ← fek,x∗||s∗ (π∗), k∗
0 ← ext(π∗, s∗), samples k∗

1
R←− {0, 1}κ , sends c∗ = (x∗, s∗, t∗) and k∗

β to A.
4. Phase 2: A can make decapsulation queries adaptively. For each decapsulation query c = (x, s, t) where c �= c∗ , CH re-

sponds with KEM.Decaps(sk, c), that is, computes π ← �sk(x) via HPS.Priv(sk, x), outputs k ← ext(π, s) if t = fek,x||s(π)

and ⊥ otherwise. The decapsulation query for c∗ will be directly rejected.
5. Finally, A outputs a guess β ′ for β and wins if β ′ = β .

According to the definition, we have:

AdvA(λ) = |Pr[S0] − 1/2|
Game 1. Same as Game 0 except that CH samples (x∗, w∗) and s∗ in the setup stage. This change is purely conceptual. 
Thus, we have:

Pr[S1] = Pr[S0]
Game 2. Same as Game 1 except CH generates ek ← ABORLF.Gen(pp2, ·) with branch x∗||s∗ rather than 0m+d . A straight-
forward reduction to the hidden lossy branch property of ABO-RLF yields:

|Pr[S2] − Pr[S1]| ≤ negl(λ)

Game 3. Same as Game 2 except that in the challenge stage CH computes π∗ ← �sk(x∗) via HPS.Priv(sk, x∗) rather than 
HPS.Pub(pk, x∗, w∗). Due to the correctness of HPS, we have:

Pr[S3] = Pr[S2]
Game 4. Same as Game 3 except that CH samples x∗ via HPS.SampNo rather than HPS.SampYes. A straightforward reduction 
to the SMP yields:

|Pr[S4] − Pr[S3]| ≤ Advsmp
A (λ) ≤ negl(λ)

Game 5. Same as Game 4 except that CH directly rejects decapsulation queries 〈c = (x, s, t)〉 if x /∈ L.
Let E be the event in Game 5 that A makes an invalid but well-formed legal decapsulation queries, i.e., fek,x||s(π) = t

where π = �sk(x) and x /∈ L ∧ (x, s, t) �= (x∗, s∗, t∗). Clearly, Game 4 and Game 5 are identical if E does not occur. By the 
difference lemma, we have:

|Pr[S5] − Pr[S4]| ≤ Pr[E]
Game 6. Same as Game 5 except that CH samples k∗

0
R←− {0, 1}κ rather than computing k∗

0 ← ext(π∗, s∗). Clearly, A’s view 
in Game 6 is identical for either choice of β ∈ {0, 1}, because β is never used in the experiment. Therefore, we have:

Pr[S6] = 1/2

It remains to analyze Pr[E] and the relations between Game 5 and Game 6 to establish the main theorem.
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Lemma 8.3. Pr[E] is negligible in λ.

Proof. Let Ei be the event that the i-th legal decapsulation query c = (x, s, t) issued by A is invalid but well-formed. 
According to the definition of E , we have E = ∪1≤i≤Q d Ei . In what follows, we figure out the upper bounds of Pr[Ei]. Denote 
by view the adversary’s view prior to submitting the first decapsulation query. Clearly, view = (pk, ek, leak, x∗, s∗, t∗, k∗

β).
Now, to determine the upper bound of Pr[E1], we first calculate the average min-entropy of �sk(x)|view, x.

H̃∞(�sk(x)|view, x) = H̃∞(�sk(x)|pk, x, leak, t∗,k∗
β) (8)

≥ H̃∞(�sk(x)|pk, x) − � − τ − κ (9)

= n − � − τ − κ (10)

In the above deduction, Equation (8) follows from the fact that �sk(x) is determined by sk and x, while sk is independent 
of ek, x∗ and s∗ . Equation (9) follows from Lemma A.1 and the fact that the upper bound of leakage is �-bits, t∗ (resp. 
k∗
β ) has at most 2τ (resp. 2κ ) possible values respectively. Equation (10) follows from the ε1-universal1 property of �. 

Note that for a legal and well-formed ciphertext we must have x||s �= x∗||s∗ , because the third component of ciphertext 
is fully determined the first and second components. ek with such branch x||s �= x∗||s∗ determines a ν-regular function. 
Thereby, the value t = fek,x||s(�sk(x)) preserves most of the (average) min-entropy of �sk(x). Combining Lemma 2.1 and 
Equation (10), H̃∞(t|view ′, x) ≥ n − � − τ − κ − logν . This proves that Pr[E1] ≤ 2�+τ+κ+log ν/2n . Observe that the adversary 
can rule out at most ν values of �sk(x) from each rejection of such invalid decapsulation query, while the responses to 
all valid decapsulation queries are fully determined by pk and ek (which do not reveal more information beyond pk), thus 
Pr[Ei] ≤ 2�+τ+κ+log ν/(2n − iν). Applying the union bound, we have:

Pr[E] ≤ �
Q d
i=1 Pr[Ei] ≤ Q d2�+τ+k+log ν

2n − Q dν
≤ Q d

2n−�−τ−κ−log ν − Q d

which is negligible in λ since n − τ − � − κ − logν ≥ ω(log λ). This proves the lemma. �
Lemma 8.4. The adversary’s views in Game 5 and 6 are statistically close.

Proof. We prove this lemma by analyzing the average min-entropy of �sk(x∗) from the adversary’s view. For ease of 
analysis, we write k∗

β in Game 5 as k∗
5,β and that in Game 6 as k∗

6,β , and write leak to denote the key leakage. Let 
view ′ = (pk, ek, leak, x∗, s∗, t∗). We have:

H̃∞(�sk(x∗)|view ′) = H̃∞(�sk(x∗)|pk, x∗, leak, t∗) (11)

≥ H̃∞(�sk(x∗)|pk, x∗) − � − τ (12)

= n − � − τ (13)

In the above deduction, Equation (11) follows from the fact that �sk(x∗) is independent of ek and s∗ . Equation (12)
follows from the upper bound of leakage is � and t∗ has at most 2τ possible values. Equation (13) follows from the 
ε1-universal1 property of the underlying HPS.

Note that k∗
5,0 ← ext(�sk(x∗), s∗), k∗

6,0
R←− K , and ext is an average-case (n − τ − �, κ, ε2)-strong extractor, we have 

�[(view ′, k∗
5,0), (view ′, k∗

6,0)] ≤ ε2. By the definitions of k∗
5,β and k∗

6,β , we have �[(view ′, k∗
5,β), (view ′, k∗

6,β )] ≤ ε2/2.
Observe that in both Game 5 and Game 6, the responses to all invalid decapsulation queries (whose first element 

x /∈ L) are ⊥, while the responses to all valid decapsulation queries (whose first element x ∈ L) are determined by (pk, ek)

according to the projection property of �. It follows that the responses to all decapsulation queries in Game 6 are com-
pletely determined by a function (possibly inefficient and randomized by the random coins of the adversary), say h, of 
(view ′, k∗

6,β ), while the responses to all decapsulation queries in Game 6 are completely determined by the same func-
tion of (view ′, k∗

6,β). Denote A’s view in Game 5 by view5 = (view ′, k∗
5,β , h(view ′, k∗

5,β)) and A’s view in Game 6 by 
view6 = (view ′, k∗

6,β , h(view ′, k∗
6,β)). It follows that �[view5, view6] ≤ ε2/2. This proves the lemma. �

Putting all the above together, the theorem immediately follows. �
Comparison. Compared to Qin-Liu’s PKE [40,41], our construction is more efficient and conceptually simpler. Note that Qin-
Liu’s PKE requires a universal HPS and an OT-LF, while our construction requires a universal HPS and an ABO-RLF. To date, 
the only known construction of OT-LF is from ABO-LF and chameleon hash function. As we have shown in Section 4, ABO-
RLFs admit more efficient realizations than ABO-LFs. Moreover, as we have show in Section 5, ABO-RLFs can be generically 
build from any HPS. This implication indicates that our construction can be based solely on HPS, and help us to further 
reduce the footprint of cryptographic code.
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Extension. Our approach for building leakage-resilient CCA-secure KEM naturally extends to the identity-based setting. In 
the next section, we show how to build leakage-resilient CCA-secure identity-based KEM from identity-based HPS and 
ABO-RLF (or OT-RLF). The high-level idea is similar but the security proof is more complicated.

9. Leakage-resilient CCA-secure IB-KEM

In this section, we construct leakage-resilient CCA-secure IB-KEM from IB-HPS and OT-RLF. We first recall the notion of 
IB-KEM and IB-HPS as below.

9.1. Identity-based key encapsulation mechanism

An identity-based key encapsulation mechanism (IB-KEM) with identity space I and ciphertext space C and key space K
consists of four polynomial time algorithms as follows.

• Setup(λ): on input a security parameter λ, output a master public key mpk and a master secret key msk.
• Extract(msk, id): on input msk and an identity id ∈ I , output a secret key skid for id.
• Encaps(mpk, id): on input mpk and an identity id ∈ I , output a ciphertext c ∈ C and an encapsulation key k ∈ K .
• Decaps(skid, c): on input a secret key skid and a ciphertext c ∈ C , output a message k ∈ K or a special reject symbol ⊥

indicating c is invalid.

Correctness. For all (mpk, msk) ← Setup(λ) and all id ∈ I and all skid ← Extract(msk, id) and all (c, k) ← Encaps(mpk, id), 
Decaps(skid, c) = k with all but negligible probability over all the randomness in the experiment.

Leakage-Resilient CCA. Let A = (A1, A2) be an adversary against IBE and define its advantage in the following experiment:

AdvA(λ) = Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β = β ′ :

(mpk,msk) ← Setup(λ);
(state, id∗) ← AOext,Odecaps(·,·),Oleak(·)

1 (mpk);
(c∗,k∗

0) ← Encaps(mpk, id∗),k∗
1

R←− K ;
β

R←− {0,1};
β ′ ← AOext,Odecaps(·,·)

2 (state, c∗,k∗
β);

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2
.

Here Oext(·) is an oracle that on input id ∈ I returns skid ← Extract(msk, id). Note that Oext(·) returns the same skid for 
repeated extraction queries on id, and A = (A1, A2) is not allowed to query Oext(·) with id∗ . Oleak(·, ·) is a leakage oracle 
that on input id ∈ I and g : S K → {0, 1}∗ returns g(skid), and the sum of its output lengths is at most �. Odecaps(·, ·)
is a decapsulation oracle that on input id ∈ I and c ∈ C where c �= c∗ returns Decaps(skid, c). An IB-KEM is said to be 
�-leakage-resilient CCA-secure if for any PPT adversary A, its advantage defined as above is negligible in λ.

9.2. Identity-based hash proof system

IB-HPS is an extension of HPS in the identity-based setting, which forms the backbone of many IBE schemes includ-
ing [18,7,13,12]. We adapt the notion of IB-HPS from [1] as below.

An IB-HPS consists of the following algorithms:

• Setup(λ): on input λ, output public parameter pp = (X, L, W , R, I, S K , 
, �) and an associated secret parameter sp. 
Here X is a finite, non-empty set, I is a set of identities, L = {Lid}id∈I is a collection of sets defined by a collection of 
binary relations R = {Rid ⊂ X × W }id∈I such that x ∈ Lid if and only if (x, w) ∈ Rid for some witness w ∈ W . S K is the 
secret key space, 
 is a proof space, and � = {�sk : X → 
}sk∈S K is a family of hash functions indexed by S K .

• SampYes(pp, id): on input pp and an identity id ∈ I , output a random element x ∈ Lid , together with a witness w ∈ W
for x.

• SampNo(pp, id): on input pp, output a random element x ∈ X\Lid .
• Extract(sp, id): on input sp and an identity id ∈ I , output a secret key skid .
• Priv(skid, x): on input a secret key skid and an element x ∈ X , output π ← �skid (x).
• Pub(id, x, w): on input an identity id ∈ I , an element x ∈ Lid together with a witness w , output π ∈ 
.

Identity-based subset membership problem. The identity-based SMP states that for any id ∈ I the uniform distributions 
over Lid and X\Lid are computationally indistinguishable. Formally, for any PPT adversary A the following advantage is 
negligible in λ.
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AdvA(λ) = Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β = β ′ :

(pp, sp) ← Setup(λ);
(state, id∗) ← AOext(·)

1 (pp);
β

R←− {0,1};
(x∗

0, w∗) ← SampYes(pp, id∗);
x∗

1 ← SampNo(pp, id∗);
β ′ ← AOext(·)(state, x∗

β);

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2

Here Oext(·) is an oracle that on input id ∈ I returns a secret key skid ← Extract(sp, id). We require that Oext(·) returns the 
same secret key for repeated extraction queries on the same identity id.8 We stress that A is allowed to query Oext(·) with 
any id ∈ I (include id∗).

Projection. � is projective if the action of �skid on Lid is determined by id, that is, for all id ∈ I and all skid ←
Extract(msk, id), and for all x ∈ Lid with witness w , we have:

�skid (x) = Pub(id, x, w)

Universal1. � is universal1 if for all (pp, sp) ← Setup(λ), all id ∈ I and all x ∈ X\Lid , it holds that:

Pr[�skid (x))|(pp, sp, id, x)] ≤ ε1

where the probability is over all possible skid ← Extract(msk, id).

Lemma 9.1. If � is ε1-universal1 , then for all (pp, sp) ← IBHPS.Setup(λ), all id ∈ I , and all x ∈ X\Lid, we have
H∞(�skid (x)|(pp, sp, id, x)) ≥ log 1/ε1 , where skid ← Extract(sp, id).

9.3. Construction from IB-HPS and OT-RLF

We show how to construct leakage-resilient CCA-secure IB-KEM from an IB-HPS, an OT-RLF and a randomness extractor 
as below.

• Setup(λ): run IBHPS.Setup(λ) to generate pp1 = (X, L, W , R, I, S K , 
, �) and sp1 where � is ε1-universal1 for 
n = log 1/ε1; run OTRLF.Setup(λ) to generate pp2 = (E K , B = Bc × Ba, 
, T ) where Ba = X × {0, 1}d , compute 
ek ← OTRLF.Gen(pp2); pick an average-case (n − τ − �, κ, ε2)-strong extractor ext : 
 × {0, 1}d → {0, 1}κ , output 
mpk = (pp1, pp2, ek) and msk = sp1.

• Extract(msk, id): output skid ← IBHPS.Extract(msk, id).
• Encaps(mpk, id): on input mpk = (pp1, pp2, ek) and an identity id ∈ I , sample (x, w) ← IBHPS.SampYes(pp1, id), com-

pute π ← �skid (x) via IBHPS.Pub(id, x, w), pick a random seed s R←− {0, 1}d and a random core branch bc
R←− Bc , compute 

t ← fek,(bc ,x||s)(π), output a ciphertext c = (x, s, bc, t) and an encapsulated key k ← ext(π, s).
• Decaps(skid, c): on input a secret key skid and a ciphertext c = (x, s, bc, t), compute π ← IBHPS.Priv(skid, x), output 

k ← ext(π, s) if t = fek,(bc ,x||s)(π) and ⊥ otherwise.

Theorem 9.2. Assuming identity-based SMP is hard, IBHPS is an ε1-universal1 identity-based hash proof system, OTRLF is a collection 
of (ν, τ )-OT-RLFs and ext be an average-case (n −τ −�, κ, ε2)-strong extractor, the above construction is leakage-resilient CCA-secure 
as long as � ≤ n − logν − τ − κ − ω(log λ).

Proof. Our IB-KEM construction follows the same high-level idea behind our KEM construction. However, the security proof 
turns out to be more complicated. This is because in the CCA-security experiment for IB-KEM the attacker can make decap-
sulation queries before and after receiving the challenge ciphertext, whereas in the CCA-security experiment for KEM the 
attacker can only make decapsulation queries after receiving the challenge ciphertext.

We proceed via a sequence of games. We start with Game 0, where the challenger CH proceeds like in the standard 
leakage-resilient CCA security game (i.e., k∗

0 is a real key and k∗
1 is a random key) and end up with a game where both k∗

0
and k∗

1 are chosen uniformly at random. Let Si be the probability that A wins in Game i.

Game 0. This is the standard leakage-resilient CCA security game for IB-KEM. CH interacts with A as follows:

8 This restriction is natural yet necessary. If an adversary obtains multiple secret keys for the same identity, according to projective and smooth properties 
of �, it can break the language membership problem with high probability by checking if the hash values evaluated under these different secret keys are 
same.
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1. Setup: CH generates (pp1, sp1) ← IBHPS.Setup(λ), pp2 ← OTRLF.Setup(λ), computes ek ← OTRLF.Gen(pp2), output 
mpk = (pp1, pp2, ek) and msk = sp1.

2. Phase 1: A can make extraction queries, decapsulation queries and leakage queries adaptively. For each extraction 
query 〈id〉, CH responds with skid ← IBHPS.Extract(sp1, id). For each decapsulation query 〈id, c = (x, s, bc, t)〉, CH first 
computes π ← �skid (x) via IBHPS.Priv(skid, x), then outputs k ← ext(π, s) if t = fek,(bc ,x||s)(π) and ⊥ otherwise. For each 
leakage query 〈g〉, as long as the total leakage is less than �, CH responds with g(sk).

3. Challenge: A chooses a target identity id∗ . CH picks s∗ R←− {0, 1}d , b∗
c

R←− Bc , samples (x∗, w∗) ← IBHPS.SampYes(pp1), 
computes π∗ ← �skid∗ (x∗) via IBHPS.Pub(id∗, x∗, w∗), t∗ ← fek,(b∗

c ,x∗||s∗)(π
∗), k∗

0 ← ext(π∗, s∗). CH then picks k∗
1

R←−
{0, 1}κ , β R←− {0, 1}, sends c∗ = (x∗, s∗, b∗

c , t∗) and k∗
β to A.

4. Phase 2: A can make extraction queries and decapsulation queries. CH responds the same way as it did in Phase 1 
except the extraction query 〈id∗〉 and decapsulation query 〈id∗, c∗〉 will be denied.

5. Finally, A outputs a guess β ′ for β and wins if β ′ = β .

According to the definition, we have:

AdvA(λ) = |Pr[S0] − 1/2|
Game 1. Same as Game 0 except that when generating the challenge ciphertext in the challenge stage CH computes b∗

c ←
OTRLF.SampLossy(td, x∗||s∗) rather than b∗

c
R←− Bc . Due to the indistinguishability property of OT-RLF, we have:

|Pr[S1] − Pr[S0]| ≤ negl(λ)

Game 2. Same as Game 1 except that in the challenge stage CH computes π∗ ← �skid∗ (x∗) via IBHPS.Priv(skid∗ , x∗) rather 
than IBHPS.Pub(id∗, x∗, w∗). Due to the correctness of IB-HPS, we have:

Pr[S2] = Pr[S1]
Game 3. Same as Game 2 except that in the challenge stage CH samples x∗ via IBHPS.SampNo rather than IBHPS.SampYes. 
Due to the assumed hardness of identity-based SMP, we have:

|Pr[S3] − Pr[S2]| ≤ Advibsmp
A (λ) ≤ negl(λ)

Game 4. Same as in Game 3 except that in Phase 1 CH handles decapsulation queries 〈id, c = (x, s, bc, t)〉 as follows:

• x ∈ Lid: CH responds normally with skid .
• x /∈ Lid: If A had queried the secret key for id, CH responds with the associated skid . Else, CH directly responds with 

⊥.

Let F be the event that A makes an invalid but well-formed decapsulation query without querying the associated secret 
key before, i.e., t = fek,(bc ,x||s)(�skid (x)) where x /∈ Lid and A had not asked secret key for id. According to the definition, 
Game 4 and Game 5 are identical in A’s view if F never happens. Therefore, we have:

|Pr[S4] − Pr[S3]| ≤ Pr[F ]
We bound Pr[F ] in Lemma 9.3.
Game 5. Same as in Game 4 except that in Phase 2 CH handles decapsulation queries 〈id, c = (x, s, bc, t)〉 as follows:

• case id �= id∗: CH handles with associated secret key skid .
• case id = id∗: if x ∈ Lid∗ , CH responds with skid∗ ; if x /∈ Lid∗ , CH directly rejects.

Note Game 4 and Game 5 only differ at the case id = id∗ ∧ x /∈ Lid∗ , which can be further split to the sub-cases according 
to whether x = x∗ . It is easy to see that the decapsulation queries of the form 〈id∗, c = (x∗, s∗, b∗

c , t)〉 will be rejected 
in both Game 4 and Game 5 due to either illegal or ill-formed since the value t is fully determined by the first three 
components of ciphertext. Let E be the event that A makes an invalid but well-formed decapsulation queries of id∗ with 
(bc, x||s) �= (b∗

c , x∗||s∗). It is easy to see that if E never happens, Game 4 and Game 5 are identical in A’s view. Therefore, 
we have:

|Pr[S5] − Pr[S4]| ≤ Pr[E]
We bound Pr[E] in Lemma 9.4.
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Game 6. Same as Game 5 except that CH samples k∗
0

R←− K rather than computing k∗
0 ← ext(π∗, s∗). Clearly, A’s view in 

Game 6 is identical for either choice of β ∈ {0, 1}, because β is never used in the experiment. Therefore, we have:

Pr[S6] = 1/2

It remains to analyze Pr[F ], Pr[E] and the relation between Game 5 and Game 6 to establish the main theorem.

Lemma 9.3. Pr[F ] is negligible in λ.

Proof. Let Fid be the event that A makes one such decapsulation query c = (x, s, bc, t) w.r.t. id. Let Fid,i be the event 
that Fid happens in the i-th decapsulation query c = (x, s, bc, t) of id. According to the definition of Fid , we have 
Fid = ∪1≤i≤Q d Fid,i . In what follows, we figure out the upper bounds of Pr[Fid,i]. Denote by view the adversary’s view 
prior to submitting the first decapsulation query of id. Let S be the set of identities that A had asked for secret 
keys. Note that the responses to decapsulation queries can be expressed as a function h (possibly randomized by A’s 
random coins) of (mpk, skS , leak). This is because the responses to decapsulation queries are fully determined by A’s 
random coins when x ∈ Lid , or by skS when x /∈ Lid (where the responses are either Decaps(skS , c) or ⊥). Therefore, 
view = (mpk, skS , leak, h(mpk, skS , leak)).

To determine the upper bound of Pr[Fid,i], we first calculate the average min-entropy of �skid (x)|view, id, x.

H̃∞(�skid (x)|view, id, x) = H̃∞(�skid (x)|mpk, skS , leak, id, x) (14)

≥ H̃∞(�skid (x)|pp1, sp1, leak, id, x) (15)

≥ H̃∞(�skid (x)|pp1, sp1, id, x) − � (16)

= n − � (17)

In the above deduction, Equation (15) follows from the fact that �skid (x) is determined by skid and x, while skid is 
independent of (pp2, ek), skS can be extracted from sp1 and the random coins used for extraction are independent of 
skid . Equation (16) follows from Lemma A.1 and the upper bound of leakage is �-bits. Equation (17) follows from the 
ε1-universal1 property of �. By the evasiveness of OT-RLF, (bc, x||s) ∈ Bnormal with overwhelming probability, thus the 
value t = fek,(bc ,x||s)(�skid (x)) preserves most of the average min-entropy of �skid (x). More precisely, H̃∞(t) ≥ n − � − logν . 
Therefore, Pr[Fid,1] ≤ 2�+log ν/2n . Observe that A can rule out ν more value of �skid (x) from each rejection of invalid 
decapsulation query for id, thus Pr[Fid,i] ≤ 2�+log ν/(2n − iν). The analysis for other identities are same. Applying the union 
bound over the decapsulation queries, we have:

Pr[F ] ≤ Q d2�+log ν

2n − Q dν
≤ Q d

2n−�−log ν − Q d

which is negligible in λ since n − � − logν ≥ ω(λ). This proves the lemma. �
Lemma 9.4. Pr[E] is negligible in λ.

Proof. Let Ei be the event that the i-th decapsulation query c = (x, s, bc, t) for id∗ made by A in Phase 2 is invalid but 
well-formed with (bc, x||s) �= (b∗

c , x∗||s∗). Denote by view the adversary’s view prior to submitting the first invalid but 
well-formed decapsulation query of id∗ with (bc, x||s) �= (bc, x∗||s∗). Let view ′ = (mpk, skS , leak, x∗, s∗, b∗

c , t∗, k∗
β), where skS

is the set of secret keys for all identities but id∗ . According to the definition of Game 5, the responses to all decapsulation 
queries before can be expressed as a function h (possibly randomized by the random coins of the adversary) of view ′ . Thus, 
we have view = (view ′, h(view ′)).

To determine the upper bound of Pr[E1], we first calculate the average min-entropy of �skid∗ (x)|view, x, id.

H̃∞(�skid∗ (x)|view, x, id) = H̃∞(�skid∗ (x)|view ′, x, id) (18)

= H̃∞(�skid∗ (x)|pp1, skS , x, id, leak, t∗,k∗
β) (19)

≥ H̃∞(�skid∗ (x)|pp1, sp1, x, id, leak, t∗,k∗
β) (20)

≥ H̃∞(�skid∗ (x)|pp1, sp1, x, id) − � − τ − κ (21)

= n − � − τ − κ (22)

In the above deduction, Equation (18) follows from the fact that h is a function. Equation (19) follows from the fact that 
skid∗ is independent of pp2, ek, x∗ , s∗ and b∗

c . Equation (20) follows from the fact that skS can be extracted from sp1 and 
the random coins used in the extraction are independent of skid∗ . Equation (21) follows from the upper bound of leakage 
is � and t∗ has at most 2τ possible values. Equation (22) follows from the ε1-universal1 property of �. By the evasiveness 
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of OT-RLF, (bc, x||s) �= (b∗
c , x∗||s∗) belongs to Bnormal with overwhelming probability. Thus, the value t = fek,(bc ,x||s)(�skid∗ (x))

inherits most of the average min-entropy from �skid∗ (x). More precisely, H̃∞(t) ≥ n − � − τ − κ − logν . Therefore, Pr[E1] ≤
2�+τ+k+log ν/2n . Observe that the adversary can rule out ν more values of �skid∗ (x) from each rejection of such invalid 
ciphertext of id∗ , we have Pr[Ei] ≤ 2�+τ+κ+log ν/(2n − iν). Since A makes at most Q d decapsulation queries, it follows the 
union bound that:

Pr[E] ≤ Q d2�+τ+κ+log ν

2n − Q dν
≤ Q d

2n−�−τ−κ−log ν − Q d

which is negligible in λ since n − � − τ − κ − logν ≥ ω(log λ). This proves the lemma. �
Lemma 9.5. The adversary’s views in Game 5 and Game 6 are statistically close.

Proof. According to the definitions of Game 5 and Game 6, the responses to decapsulation queries in Phase 1 can be 
expressed as a function h (possibly randomized by A’s random coins) of (mpk, skS , leak). Therefore, A’s view in Phase 1 is 
view ′ = (mpk, skS , leak, h(mpk, skS , leak)). We now analyze the average min-entropy of �skid∗ (x∗) conditioned on view ′ , the 
challenge identity id∗ , and the challenge ciphertext c∗ = (x∗, s∗, t∗). We have:

H̃∞(�skid∗ (x∗)|view ′, c∗, id∗) = H̃∞(�skid∗ (x∗)|pp1, skS , id∗, x∗, t∗) (23)

≥ H̃∞(�skid∗ (x∗)|pp1, sp1, id∗, x∗, leak, t∗) (24)

≥ H̃∞(�skid∗ (x∗)|pp1, sp1, id∗, x∗) − � − τ (25)

= n − � − τ (26)

In the above deduction, Equation (23) follows from the fact that �skid∗ (x∗) is independent of pp2, ek and s∗ . Equation (24)
follows from the fact that skS can be extracted from sp1 and the random coins used are independent of skid∗ . Equation (25)
follows from the upper bound of leakage is � and t∗ has at most 2τ possible values. Equation (26) follows from the 
ε1-universal1 property of the underlying IB-HPS.

For ease of analysis, we write k∗
β in Game 5 as k∗

5,β and that in Game 6 as k∗
6,β . According to the defini-

tion of Game 5, k∗
5,0 ← ext(�skid∗ (x∗), s∗), k∗

6,0
R←− K . Since ext is an average-case (n − � − τ , ε2)-strong randomness 

extractor, we have �[(view ′, k∗
5,0), (view ′, k∗

6,0)] ≤ ε2. According to the definition of k∗
5,β and k∗

6,β , we further have 
�[(view ′, k∗

5,β ), (view ′, k∗
6,β)] ≤ ε2/2.

Observe that in Phase 2 of Game 5 and Game 6 the responses to decapsulation queries for id �= id∗ are determined by 
skS and A’s random coins, the responses to decapsulation queries for id∗ are determined by id∗ and A’s random coins 
since the action of �skid∗ on x ∈ Lid∗ is determined by id∗ and the decapsulation queries 〈id∗, c = (x, s, t)〉 with x /∈ Lid∗
are rejected with ⊥. Therefore, the responses to all decapsulation queries in Phase 2 Game 5 are completely determined 
as a function, say h, of (view ′, k∗

5,β), while the responses to all decapsulation queries in Phase 2 Game 6 are completely 
determined as the same function of (view ′, k∗

6,β). Let view5 = (view ′, k∗
5,β , h(view ′, k∗

5,β)) denote adversary’s view in Game 
5 and view6 = (view ′, k∗

6,β , h(view ′, k∗
6,β)) denote adversary’s view in Game 6. It follows that �[view5, view6] ≤ ε2/2. This 

proves the lemma. �
Putting all the above together, the theorem immediately follows. �

Discussions. One may wonder why we do not use ABO-RLF to replace OT-RLF in the above construction, which had been 
proved successful in the setting of KEM. Observe that toward uttermost generality, in the identity-based subset membership 
problem the language L could be dependent on identity, and in the security experiment for IB-KEM the attacker can choose 
the target identity id∗ adaptively. The consequence is that the reduction is unable to determine the challenge ciphertext 
(more precisely, the first component x∗ ← SampYes(pp, id∗)) in advance until the attacker submits id∗ in the challenge 
ciphertext. In line of our proof strategy, we have to rely on OT-RLF to program x∗ into a lossy branch on-the-fly. However, 
when the language is independent of identity, as the case of realizations of [7,13], we do can use ABO-RLF in the place of 
OT-RLF to obtain more efficient and simpler construction of IB-KEM.
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Appendix A. Cryptographic notions and information background

Here we recall some standard cryptographic notions and information background that will be used in this work.

A.1. One-way functions

A family of efficiently computable functions F = { f i : X → Y }i∈I consists of two polynomial time algorithms:

• Gen(λ): on input a security parameter λ, outputs a function index i ∈ I . Each i defines a deterministic function f i : X →
Y .

• Eval(i, x): on input a function index i and an element x ∈ X , outputs f i(x).

Leakage-resilient one-wayness. Let A be an adversary against F and define its advantage in the following experiment as:

AdvA(λ) = Pr

⎡
⎢⎣ f i(x) = y∗ :

i ← Gen(λ);
x∗ R←− X, y∗ ← f i(x∗);
x ← AOleak(·)(i, y∗);

⎤
⎥⎦ .

Here Oleak(·) is a leakage oracle that on input leak : {0, 1}n → {0, 1}∗ returns leak(x∗), and the sum of its output lengths is at 
most �. F is said to be �-leakage-resilient one-way if for any PPT adversary A, its advantage defined as above is negligible 
in λ.

A.2. Message authentication codes

A MAC consists of four polynomial-time algorithms as follows.

• Setup(λ): on input a security parameter λ, output public parameter pp which includes the description of algorithm Tag, 
the key space K , the message space M and the tag space T .

• Gen(pp): on input public parameter pp, pick a random secret key k R←− K .
• Tag(k, m): on input secret key k and a message m, output a tag t .
• Vefy(k, m, t): on input secret key k and message-tag pair (m, t), output “1” indicating accept and “0” indicating reject.

Correctness. For all pp ← Setup(λ), all k ← Gen(pp), all m ∈ M and correctly generated tag t ← Tag(k, m), we have 
Vefy(k, m, t) = 1.
Leakage-resilient strong unforgeability. Let A be an adversary against MAC and define its advantage in the following 
experiment:

AdvA(λ) = Pr

⎡
⎢⎣ Vefy(k,m, t) = 1

∧(m, t) /∈ Q
:

pp ← Setup(λ);
k ← Gen(pp);
(m, t) ← AOtag(·),Oleak(·)(pp);

⎤
⎥⎦ ≤ negl(λ)

Here Otag(·) is a tagging oracle that on input m returns t ← Tag(k, m). The set Q contains pairs of queries to Otag(·) and 
their associated responses. Oleak(·) is a leakage oracle that on input any function g : K → {0, 1}∗ returns g(k), and the 
sum of its output lengths is at most �. MAC is said to be �-leakage-resilient strongly unforgeable if no PPT adversary has 
non-negligible advantage in above experiment.

The strong unforgeability (sUF) for MAC can be relaxed in several ways.

• One-time: The adversary can only query the tagging oracle Otag(·) once. The resulting notion is called one-time sUF.
• Static: The adversary specifies his tagging queries statically before seeing the public parameter. The resulting notion is 

called static sUF.

We also consider a combination of the above restrictions, yielding one-time static sUF.

Remark A.1. The above security definition does not incorporate a verification oracle Ovefy(·, ·) that on input (m, t) returns 
Vefy(k, m, t). It turns out the definitions with and without Ovefy(·, ·) are actually equivalent for strong unforgeability [27], 
and the equivalence even holds in the setting of leakage [21]. As such, in this work we choose the definition without 
Ovefy(·, ·) for simplicity of presentation.
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A.3. Key encapsulation mechanism

A key encapsulation mechanism (KEM) consists of four polynomial time algorithms as follows.

• Setup(λ): on input a security parameter λ, output global public parameter pp which includes the descriptions of public 
key space P K , secret key space S K , ciphertext space C , key space K .

• KeyGen(λ): on input a security parameter λ, output a public key pk and a secret key sk.
• Encaps(pk): on input a public key pk, output a ciphertext c ∈ C and a DEM key k ∈ K .
• Decaps(sk, c): on input a secret key sk and a ciphertext c ∈ C , output a DEM key k ∈ K or an distinguished symbol ⊥

indicating c is invalid.

Correctness. For pp ← Setup(λ) and (pk, sk) ← KeyGen(pp) and (c, k) ← Encaps(pk), then Decaps(sk, c) = k with all but 
negligible probability over all the randomness in the experiment.
Leakage-resilient CCA. Let A = (A1, A2) be an adversary against KEM and define its advantage in the following experiment:

AdvA(λ) = Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β = β ′ :

pp ← Setup(λ);
(pk, sk) ← KeyGen(pp);
state ← AOleak(·)

1 (pk);
(c∗,k∗

0) ← Encaps(pk),k∗
1

R←− K ;
β

R←− {0,1};
β ′ ← AOdecaps(·)

2 (state, c∗,k∗
β);

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2
.

Here Oleak(·) is a leakage oracle that on input f : S K → {0, 1}∗ returns f (sk), and the sum of its output lengths is at 
most �. Odecaps(·) is a decapsulation oracle that on input c ∈ C where c �= c∗ returns Decaps(sk, c). KEM is said to be 
�-leakage-resilient against chosen-ciphertext attack (LR-CCA) if for any PPT adversary A, its advantage defined as above is 
negligible in λ.

A.4. Randomness extraction

The statistical distance between two random variables X and Y over a finite domain � is defined as �(X, Y ) =
1
2 |Pr[X = ω] − Pr[Y = ω]|.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by λ. We say that X and Y are 
statistically indistinguishable, written X ≈s Y , if �(Xλ, Yλ) = negl(λ). We say that X and Y are computationally indistin-
guishable, written X ≈c Y , if the advantage of any PPT algorithm in distinguishing Xλ and Yλ is negl(λ).

The min-entropy of a random variable X over a domain � is the negative (base-2) logarithm of the unpredictability of X :

H∞(X) = − log

(
max
ω∈�

Pr[X = ω]
)

.

In many natural settings, the variable X is correlated with another variable Y whose value is known to an adversary. In 
such scenarios, it is most convenient to use the notion of average min-entropy as defined by Dodis et al. [16], which captures 
the average unpredictability of X conditioned Y :

H̃∞(X |Y ) = − log
(

Ey←Y

[
2−H∞(X |Y =y)

])
= − log

(
Ey←Y

[
max
ω∈�

Pr[X = ω|Y = y]
])

The average min-entropy corresponds to the optimal probability of guessing X , given knowledge of Y . The following 
bound of average min-entropy was proved in [16].

Lemma A.1 ([16]). Let X, Y , Z be random variables. If Z has 2r possible values, H̃∞(X |(Y , Z)) ≥ H̃∞(X |Y ) − r. In particular, 
H̃∞(X |Y ) ≥ H∞(X) − r.

In cryptographic applications, we usually need to derive nearly uniform bits from a weakly random source X that has 
some average min-entropy. This is accomplished via an appropriate type of randomness extractor.

Definition A.1 ([16]). A function ext : � × {0, 1}d → {0, 1}k is an average-case (m, k, ε)-strong extractor if for all pairs of 
random variables (X, Y ) such that X ∈ � and H̃∞(X |Y ) ≥ n, it holds that:

�((ext(X, s), s, Y ), (k, s, Y )) ≤ ε,

where s is uniform over {0, 1}d and k is uniform over {0, 1}κ .
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Dodis et al. [16] proved that any strong extractor is in fact an average-case strong extractor for appropriate setting of 
the parameters. As a specific example, they proved that any family of universal hash functions is an average-case strong 
extractor.

Lemma A.2 ([16]). Let X, Y be random variables such that H̃∞(X |Y ) ≥ n. Let H be a family of universal hash functions from X to K . 
Then for h R←−H and k R←− {0, 1}κ , it holds that:

�((h(X),h, Y ), (k,h, Y )) ≤ ε

as long as κ ≤ n − 2 log(1/ε) + 2.

Appendix B. Instantiations of algebraic subset membership assumptions

We first present instantiations of ASM assumptions from the DDH and d-linear assumptions. Let GroupGen be a PPT 
algorithm that takes as input a security parameter λ, and outputs a triplet (G, q, g) where G is a group of order q that is 
generated by g ∈ G, and q is a λ-bit prime number.

Instantiation under the DDH assumption. The decisional Diffie–Hellman (DDH) assumption is that (g1, g2, gr
1, g

r
2) and 

(g1, g2, gr1
1 , gr2

2 ) are computationally indistinguishable, where (G, q, g) ← GroupGen(λ), and the elements g1, g2 and 
r, r1, r2 ∈ Zq are chosen independently and uniformly at random.

The DDH assumption leads to the immediate instantiation of the ASM assumption by setting X = G ×G, L = {(gr
1, g

r
2) :

r ∈ Zq}. The order of H is a prime q and thus H is cyclic.

Instantiation under the d-Linear assumption. The d-Linear assumption for every positive integer d ≥ 1 is that (g1, · · · , gd,

gd+1, gr1
1 , . . . , grd

d , g
∑d

i=1 ri

d+1 ) and (g1, · · · , gd, gd+1, g
r1
1 , . . . , grd

d , gri
d+1) are computationally indistinguishable, where (G, q, g) ←

GroupGen(λ), and g1, . . . , gd+1 ∈G and r1, . . . , rd+1 ∈ Zq are chosen independently and uniformly at random. Note that DDH 
is the 1-Linear assumption.

This d-Linear assumption leads to the immediate instantiation of the SGMP by setting X = Gd+1, L = {(gr1
1 , . . . , grd

d ,

g
∑d

i=1 ri
d+1 ) : r1, . . . , rd ∈ Zq}. The order of H is a prime q and thus H is cyclic.

We then present instantiations from the QR and DCR assumptions. Let GenModulus be a PPT algorithm that takes as 
input a security parameter λ, and outputs a triplet (N, p, q) where N is a Blum integer, p and q are two random λ-bit 
prime number such that p, q ≡ 3 mod 4.

Instantiation under the QR assumption. Let JN be the set of elements in Z∗
N with Jacobi symbol 1, QRN be the set of 

quadratic residues (squares) modulo N . The quadratic residuosity (QR) assumption is that for (N, p, q) ← GroupGen(λ), the 
uniform distribution over JN and QRN are computationally indistinguishable.

The QR assumption leads to the immediate instantiation of the SGMP by setting X = JN , L = QRN . The order of H is a 
prime 2 and thus H is cyclic.

Instantiation under the DCR assumption. The decisional composite residuosity (DCR) assumption is that for a properly gen-
erated RSA number N , the uniform distribution over Z∗

N2 and its subgroup of Nth-residues {xN : x ∈ Z∗
N2 } are computationally 

indistinguishable.
The DCR assumption leads to the immediate instantiation of the SGMP by setting X = Z∗

N2 , L = {xN : x ∈ Z∗
N2 }. The order 

of X is Nφ(N), the order of L is φ(N), and H is a cyclic group with order N .
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