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Abstract. Seurin (PKC 2014) proposed the 2-®/4-hiding assumption
which asserts the indistinguishability of Blum Numbers from pseudo
Blum Numbers. In this paper, we investigate the lossiness of 2*-th power
based on the 2k—¢/4—hiding assumption, which is an extension of the 2-
&/4-hiding assumption. And we prove that 2%_th power function is a
lossy trapdoor permutation over Quadratic Residuosity group. This new
lossy trapdoor function has 2k-bits lossiness for k-bits exponent, while
the RSA lossy trapdoor function given by Kiltz et al. (Crypto 2010) has
k-bits lossiness for k-bits exponent under @-hiding assumption in lossy
mode. We modify the square function in Rabin-OAEP by 2*-th power
and show the instantiability of this Modified Rabin-OAEP by the tech-
nique of Kiltz et al. (Crypto 2010). The Modified Rabin-OAEP is more
efficient than the RSA-OAEP scheme for the same secure bits. With
the secure parameter being 80 bits and the modulus being 2048 bits,
Modified Rabin-OAEP can encrypt roughly 454 bits of message, while
RSA-OAEP can roughly encrypt 274 bits.

Keywords: Rabin, OAEP, Lossy trapdoor function, @-hiding.

1 Introduction

Lossy Trapdoor Function. Peikert and Waters [25] proposed the notion of
lossy trapdoor function (LTDF) in STOC 2008. LTDF implies cryptographic
primitives such as classic one-way trapdoor function [8], collision resistant hash
function [13], oblivious transfer protocol [14], chosen ciphertext secure public
key encryption scheme [25], deterministic public key encryption scheme [3], and
selective opening secure public key encryption scheme [17]. LTDFs can be con-
structed based on many assumptions, such as DDH[25], DCR[11], LWE[25], etc.
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Kiltz et al. [22] showed that the RSA function f : z — z° mod N is a
log e lossy trapdoor permutation (LTDP) under the ¢-hiding assumption. The
@-hiding assumption was firstly proposed by Cachin, Micali and Stadler [5].
Intuitively, this assumption states that given an RSA modulus N = pq, it is
hard to distinguish primes that divide ¢(NN) from those that do not, where ¢ is
the Euler function. Kiltz et al. [22] then showed that the lossiness of RSA implies
that the RSA-OAEP is indistinguishable against chosen plaintext attack (IND-
CPA) in the standard model by instantiating the hash with ¢-wise independent
hash. Subsequently, Kakvi and Kiltz [21] gave a tight proof of the security of
RSA-FDH using the lossiness of RSA function.

Recently, Seurin [26] extended the @-hiding assumption to the 2-¢/4-hiding
assumption and showed that the Rabin function is lossy with two bits over the
Quadratic Residuosity subgroup and 1 bit over the integers 1 < z < (N —1)/2
with Jacobi symbol 1. The 2-@/4-hiding assumption is the indistinguishability
of Blum Numbers, i.e. p,q =3 mod 4, from pseudo Blum Numbers i.e. p,g =1
mod 4.They also investigated the Rabin Williams signature and gave a tight
proof of the Rabin-FDH by following the steps of Kakvi and Kiltz [21].

On the other line, Joye and Libert [19] investigated the Extended pseudo
Blum Number and the Gap-2*-Res assumption. They proposed an efficient LTDF
based on the Gap-2*-Res assumption and DDH assumption over 2-th Residu-
osity.

Optimal Asymmetric Encryption Padding. Bellare and Rogaway [2] in-
troduced Optimal asymmetric encryption padding (OAEP) as a replacement of
they widely used RSA PKCS #1 v1.5 [1]. And they proved that OAEP is secure
in the random oracle model. When implementing this scheme in practice, the
random oracle is replaced by a cryptographic hash function which is not ran-
dom. Canetti [6] et al. showed that there are schemes which are secure in the
random oracle model but not secure in the standard model. Two mostly studied
OAEP schemes are the RSA-OAEP and Rabin-OAEP. The first evidence that
RSA-OAEP could achieve a standard security notion in the standard model was
proposed by Kiltz et al. [22] stating that the RSA-OAEP is IND-CPA secure
under the @-hiding assumption. They proved that OAEP is a randomness ex-
tractor, that fools distinguishers with small range output. They also investigated
the Multi-prime @-hiding assumption in order to improve the lossiness of RSA
function. Some subsequent works [16][24] improved the security bound and in-
vestigated the regularity over subdomain. In terms of practice, the Rabin-OAEP
is a competent substitution of RSA-OAEP. But the security of Rabin-OAEP has
not been proven in the standard model under better-understood assumptions.
One research direction is using the technique of Kiltz et al. [22] with the combi-
nation of LTDF and OAEP. But this method requires that the LTDF has enough
lossiness. Seurin [26] noticed that one first step in this direction is to consider
the multi prime pseudo Blum Numbers, but in order to get m bits lossiness,
product of m/2 secure primes are required. This method reduces the security
level and the computational efficiency.
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The instantiability of Rabin-OAEP and concrete analysis of the security are
interesting questions. The problem is to find a well-understood assumption, con-
struct LTDF with enough lossiness and reduce the security to this assump-
tion in the standard model. As shown above, Seurin [26] investigated the 2-
&/4-hiding assumption and showed that Rabin fucntion loses 2 bits over QR
group. The 2-&/4-hiding assumption asserts that it is hard to tell if N =
(22" +22 — 1)(2% + 22 — 1) or N = (2%p' + 1)(2%¢' + 1) for some &', t/, p/
and ¢'. Inspired by Joye and Libert’ scheme [19], a natural extension is the 2*-
&/4-hiding assumption and the 2¥-th power function. The 2¥-th power function
loses about 2k bits which is enough for the instantiability of OAEP given by
Kiltz et al.[22].

1.1 Owur Contributions

In this paper, we consider the problem of reducing the security of Rabin-OAEP
to a well-understood assumption. Inspired by Joye and Libert’ scheme [19], we
first extend the 2-¢/4-hiding assumption to 2k—@/4—hiding assumption. Then we
show that the 2F-th power is lossy over the Quadratic Residuosity (QR) group
under the 2¥-¢/4-hiding assumption. We also modify the classic Rabin-OAEP
with 2F-th power and prove that it is IND-CPA secure in the standard model
using the lossiness of 2¥-th power. In the following, we explain our result with
more details.

Lossiness of 2*-th Power. In order to prove the lossiness of 2¥-th power, we
firstly proposed the 2*-¢/4-hiding assumption. Intuitively, this assumption is
that, given k, it is hard to distinguish RSA modulus N which is the product
of two primes with the least significant £ + 1 bits being all 1 from those which
is the product of two primes with the least significant k 4+ 1 bits being all 0
except the last one. The 2¥-@/4-hiding assumption asserts that, given (N, k)
where N is product of two primes and k < (% —¢g)log N, it is hard to tell if
N = (2FF1g/ 4 2k+1 — 1) (2FH1¢ 4 2k — 1) or N = (28 F1p' +1)(2F ¢ + 1) for
some s’, t', p’ and ¢’. We call the numbers of the first kind the Extended Blum
Numbers and those of the second kind the Extended pseudo Blum Numbers. Note
that it is actually the 2-@/4-hiding assumption when & = 1. For an Extended
Blum Number N, the 2¥-th power is a trapdoor permutation over QR group. For
Extended pseudo Blum Number N, the 2¥-th power is a 22#-to-1 map over QR.
Thus we attain new efficient lossy trapdoor permutation. One problem of the
QR group is that it is not efficiently recognizable, but the Signed QR subgroup
can be recognized efficiently according to [10][26]. We also investigate the 2¥-th
power over Signed QR group in the Appendix.

Modified Rabin-OAEP. We modify the Rabin-OAEP and call it Modified
Rabin-OAEP. The one way function after OAEP is the 2¥*1-th power function.
The security proof of our Modified Rabin-OAEP follows by extending Kiltz et
al.’s proof of RSA-OAEP. Under the same security bits, the 2¥-th power loses
about 2 times of the RSA function, and hence the Modified Rabin-OAEP can
encrypt longer message. Precisely, for 80 bits security, let n = 2048, then k = 432.
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Our Modified Rabin-OAEP can encrypt 454 bits at once while the RSA-OAEP
for the same security bits can encrypt 274 bits only. Assuming the regularity of
2k+1_th power on certain subdomains, message of 534 bits can be encrypted.

1.2 Outline

This paper is organized as follows. In Sect. 2, we introduce the notations and
recall the definition of lossy trapdoor function and OAEP. In Sect. 3, we present
2F-@/4-hiding assumption and analyse the lossiness of 2¥-th power. In Sect. 4,
we present a construction of LTDF based on the 2F-@/4-hiding assumption and
compare it with previous LTDFs. In Sect. 5, we propose the Modified Rabin-
OAEP scheme and show the instantiability of this encryption scheme. In Sect.
6, we conclude this paper.

2 Preliminaries

2.1 Notations

If S is a set, we denote by |S| the cardinality of S, and denote by = < S the
process of sampling x uniformly from S. If A is an algorithm, we denote by
z < A(z,y, ) the process of running A with input z,y, -+ and output z. For
an integer n, we denote by [n] the set of {0,1,--- ,n—1}. A function is negligible
if for every ¢ > 0 there exists a A, such that f(A) < 1/A° for all A > A..

2.2 Definitions

Definition 1 (Lossy Trapdoor Functions). A collection of (m,1)-lossy trap-
door functions are j-tuple of probabilistic polynomial time (PPT) algorithms
(Sing, Siosss Fiidf Fl;d}) such that:

1. Sample Lossy Function Sjess(17). Output a function index o € {0,1}* with
implicitly understood domain D of size 2™.
2. Sample Injective Function S;,,;(1™). Output a pair (o,7) € {0,1}* x {0,1}*
where o is a function index with domain D of size 2¢ and T is a trapdoor.
3. Evaluation algorithm Fjqr. For every function index o produced by either
Sioss OT Sinj, the algorithm Fi4r(o,-) computes a function f, : D — {0,1}*
with one of the two following properties:
— Lossy: If o is produced by Sjoss, then the image of f, has size alt most
2m—L,
— Injective: If o is produced by Sin;, then the function fo is injective.
4. Inversion algorithm Fl;d,lf' For every pair (o,7) produced by Sin; and every

x € {0,1}™, we have Fl;d.lf(Tf Fuap(o,x)) = .

In the above algorithms, the two ensembles {o,0 < Sioss(1™)} and {o, (o, 7)
Sini (1™)} are computationally indistinguishable.
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— We call this lossy trapdoor permutation (LTDP) if the functions in the
injective mode are permutations.

— We call the functions regular if the functions in the lossy mode are k to 1
for some k.

Definition 2 (t-wise independent hash function). Let H : K xD — R be a
hash function. We say that H is t-wise independent if for all distinct x1,-- x4 €
D and allyy, -y € R

1
PriH(k,z1) =y1 A - ANH(k,xp) =y - k< K| = R’
In other words, H(k,x1),...,H(k,x:) are all uniformly and independently ran-
dom.

3 The 2*-&/4-Hiding Assumption and 2*-th Power

In this section, we first propose the 2¥-®/4 assumption, then analyze the prop-
erties of 2F-th power function over QR.

3.1 The 2*-&/4-Hiding Assumption

Intuitively, the assumption is that, given secure parameters n and k < n/4 — 1
it is hard to distinguish RSA modulus N which are product of two primes with
the least significant k + 1 bits being all 1 from those which are product of two
primes with the least significant k + 1 bits being all 0 except the last one. In
both cases, the least significant k + 1 bits of the modulus N are all zero except
the last one. Formally, we define two distributions:

R={N: N =pq with logp =~ logq =~ Lg] and p,¢g =21 —1 mod 2F*+1},

L={N: N =pq with logp =~ logq =~ ng and p,g=1 mod 2F+1},

The 2¥-®/4 assumption asserts that, for a probability polynomial time (PPT)
distinguisher D the following advantage is negligible:

Advp(n) =Pr[D(R) = 1] — Pr[D(L) = 1].

In order to enhance the strength of this assumption, we add requirements
for p and ¢. In distribution R, we require that p = 2F+ls’ 4 2+l — 1 (resp.
q = 2FH1¢/ 1251 1) for odd number s (resp. t'), we also require that 2Fs'+2%F —1
and 2¥t' +2F — 1 are primes (p, ¢ are strong primes); in distribution L, we require
that p = 2*+1p’ +1 (resp. ¢ = 2F+1¢’ + 1) for prime number p’ (resp. ¢')

This assumption is an extension of the 2-¢/4-hiding assumption [26] for k = 1.
We call the numbers in distribution R the Extended Blum Numbers and those
in L the Extended pseudo Blum Numbers. Joye and Libert [19] investigated the



On the Lossiness of 2¥-th Power 39

Extended pseudo Blum Number. In their paper, they generalized the Goldwasser-
Micali cryptosystem [15] to encrypt many bits at once by using the Extended
pseudo Blum Number. The underlying assumption is the Gap-2*-Res assumption
which is implied by the original QR assumption. There is an efficient algorithm
[20] for generating Extended pseudo Blum Numbers. We can modify this algo-
rithm to get an efficient algorithm for generating Extended Blum Numbers. The
distribution R and L can be chosen efficiently.

Analysis of the 2F-¢/4-Hiding Assumption. It is easy to break the 2F-
@/4-hiding problem with the factorization of modulus N. However, it seems
that there is no known algorithm to break this problem without factoring the
modulus N. [27] and [28] investigated the RSA modulus with primes sharing
least significant bits. If given the modulus primes p and ¢ sharing the least £+ 1
significant bits (denote it by [), at most 4 candidates ! can be computed by
solving the equation 22 = N mod 2Ft1. In our case, the equation is 2% = 1
mod 2F+1 and 1, 281 — 1 are the two candidates of . It is still difficult to
decide which distribution the modulus N belongs to. Joye and Libert [19] have
investigated the security parameters for the Extended pseudo Blum Numbers.
When £ is too large, by Coppersmith’s method [7] with LLL algorithm [23], N
can be factored in time poly(n) with advantage O(N®) if k =n/4 —en — 1. We
have en bits security here. We now consider Extended Blum Numbers. Pollard’s
p — 1 method dose not work. The powerful Coppersmith’s method bounds the
size of k to n/4 —en — 1 for the Extended Blum Numbers too. So we end up
with the same upper bound:

1
k‘gznfsnfl,

for en bits security. For example, if n = 2048, we set ¢ = 0.04 (about 80 bits
security), k can be about 430.

3.2 2k-th Power over QR Group

Let N = pq be a product of two distinct n/2 bits primes. The group Z3% consists
of all elements of Zx that are invertible modulo N. Then Z3, has order ¢(N) =
(p — 1)(¢ — 1). Denote QR the subgroup of Z% of quadratic residues modulo
N. Note that QR has order ¢(N)/4. We now consider the 2¥-th power over the
subgroup QR.

Let N be an Extended Blum Number, then we have that the order of QR
is an odd number. In fact the Extended Blum Number is a special case of the
Blum Number. The Extended Blum Number has all the properties of the Blum
Numbers. The square map is a permutation over QR, thus the 2*-th power is a
permutation over QR.

We now consider the Extended pseudo Blum Number N = pg with p,q =1
mod 2F+1. We recall the definition of the m-th power residue symbol for a divisor
m of p — 1 presented in [19] and [31]. Here we consider the case for m = 2¢ for
1<i<Ek+1.
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Definition 3. Let p be an odd prime and p =1 mod 2. For1 <i < k41,
the symbol
a p—1
<—> :=a'2* mod p,
P/ i

is the 2'-th power residue symbol modulo p, where apz_zl mod p is in [—(p —
1)/2,(p-1)/2].

Let a and b be two integers coprime to p,

(9),-(2), ().
(£),-[®).] -6,

For any integer a and any Extended pseudo Blum Number N, we generalize the
Jacobi symbol as the product of the m-th power residue Legendre symbol

®.-(), ), ®

Lemma 1. Let N be the Extended pseudo Blum Number associated with k, then
the 2F-th power map g : © — 22" (x € QR)is a 2%F-to-1 map and the 2++1-th
power map h:x — 22 (z € 7% ) is a 22D to-1 map.

Thus, we have

Proof. To prove this result, we investigate a sequence of subgroups and square
maps on them. Precisely, for 0 < s < k£ + 1, we consider the subgroups of Zj
denoted by

R = {a¥ |z € Z}},

and define the square map f; : y — %2 from R’ to R*™! for 0 < i < k. Note that
here RY is Z% itself. We also define here and in the followings that

x x
J? ={z|x € R, (—) =1, (—) =1},
H+) { ‘ P ) os+1 q ) 9s+1 }
T x
J_ _yi={xlx e R®, | — =-1,( - = -1},
o=t (p)zm (q)zw f
x x
Jo oy ={zxlz e R®, | — =1,(— = -1},
(= (p)25+1 <q>zs+1 J

x x
J i ={zxlre R’ | — =-1,( - =1}
(=4 2] (p)2s+1 (Q)gs+1 )

Note that the above sets divide Ry into four parts of the same size. And JES+ +)
is actually the subgroup Rsy1.
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We need only to prove that the map f; is a 4-to-1 map. The map g = f; o
fr_o---o f1 is 22*-to-1 naturally. For any element a € R,, by equation 2,

<M> = (E) =41 mod p.
p 2i+2 P/ git1

It also holds for modulus ¢. The four preimages of f;(a) fall into one of Ji; ;.
We have that f; is a 4-to-1 map. Then we have that 2*-th power over QR is a
22k_to-1 map and 2F+1-th power over Z} is a 22(F+1)_to-1 map. O

We illustrate the result of Lemma 1 and Lemma 3 in Figure 1.

2 2 2 2
[~ [~ |-~ [~

|2

- _ \
Y RY RY e REY R REF!
T» TH T T I~I] T
= .2 .2 2 . 2 2
INn J9 Ji e JEt Jk JEHt
Z]*\/' = RO 2 Rl 2 [ 2 Rk—l 2 Rk 2 Rk+1

Here, R® is the subgroup of Zy with 2°-th residuocity. Ji is the subset of R® with
Legendre symbal 1. J]t is the subset of Ji greater than 0. 2 represents the square map.
| - | represents the absolute value and | -? | is the square map over signed group. R® is
actually Zy and J$ is JY. It satisfies that R® > R'--- > RF JY o Jl... D Jfrl
and Ri D Ri e D R’ffl. The 28 -th power over QR is the combination of square maps
from R to R**Y. The 2*-th power over Signed QR is the combination of square maps
from RY. to Rﬁ. See Appendiz for more information about Signed QR group.

Fig. 1. Square map step by step for Extended Blum Number N with associated k

4 LTDP Based on the 2*-&/4-Hiding Assumption

We now give a constructions of 22¥-to-1 lossy trapdoor permutation over the QR
group based on the 2F-¢/4-hiding assumption. The modulus N is an Extended
Blum Number in the injective mode and is an Extended pseudo Blum Number
in the lossy mode.

4.1 LTDP over QR
We define LTDPgr = (Sinj, Siosss for; fé}%) as follows:

1. Sample Injective Function Sin;. On input 17, S;,; chooses a proper k£ and
random N in distribution R and the function index is ¢ = {N,k}. The
trapdoor is ¢t = (p, q).
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2. Sample Lossy Function Si,ss. On input 1™, Sj,ss chooses a proper k and
random N in distribution L and the function index is o = {N, k}.

3. Ewaluation algorithm for. Given a function index ¢ = {N,k} and input
r € QR the algorithm outputs z = 22" mod N.

4. Inversion algorithm fé}% Given z € QR compute the 2¥ root over Signed
QR with the trapdoor p, q.

Remark 1. For Extended Blum Numbers, the order of the QR group is an odd
number, we can compute the square root over QR k times to get the root in the
injective mode. The trapdoor can be set as the inverse of 2¥ mod %. Then,
given z € QR, the 2F root is in fact 2! mod N.

Theorem 1. If the 2%-@/4-hiding assumption holds, then LT DPgr is an 22*-
to-1 lossy trapdoor permutation.

Proof. The 2¥-®/4-hiding assumption guarantees the indistinguishability of the
lossy and injective mode. The trapdoor permutation property is a straight for-
ward result. By Lemma 1, any element in for has exactly 22F preimages when
N is an Extended pseudo Blum Number. a

4.2 Comparison

In Table 1, we compare the above two lossy trapdoor permutations with previous
LTDFs. The second column lists the basic number-theoretic assumptions used
for guaranteeing the security. The third and fourth columns show the size of
an input message in bits and that of the function index respectively. The fifth
column lists the size of lossiness. The sixth column shows the computational
complexity of the corresponding function. According to [29], the complexity of
multiplication is O(n) here. The last column is the computational complexity
for one bit lossiness.

5 Modified Rabin-OAEP

LTDF over Z} can be used to instantiate the Rabin-OAEP. In [22], Kiltz et
al. gave a generic result of building IND-CPA secure padding based encryption
by combining a lossy TDP and a fooling extractor, and they proved that the
OAEP is an adaptive fooling extractor with well chosen parameters. Then, they
showed the instantitation of RSA-OAEP based on the @-hiding assumption.
By the technique of Kiltz et al., we prove that the Rabin-OAEP with a slight
modification over Z3 is IND-CPA in the standard model based on the 2¥-&/4-
hiding assumption.

We recall a theorem in [22] here. For more details of padding based encryption
please refer to [22].

Theorem 2 (Theorem 1 in [22]). Let F be a lossy trapdoor permutation with
residual leakage s and the padding transform (mw, %) is a (s,€) adaptive fooling
extractor, The padding based encryption by combination of F and (mw,7t) is IND-
CPA secure.
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Table 1. Comparison with existing LTDFs

| |Assumption |Input size|Index size |Lossiness |Complexity |Comp /Loss |
[25]|DDH n n?logp n—logp |n?logp nlogp
[11]|d-linear n n?logp n — dlogp|n®logp nlogp
[25]|[LWE n n(d + w)log q|en n(d + w)logq %
[11]|DCR 2log N |2log N log N 4log® N 4log N
[11]|QR log N log N 1 3log N 3log N
[19][DDH& QR |n (2)%log N |n—log N |(%2)log N nloa
[30]|[DCR& QR |log N + k [2log N 3k 2log N(log N + k)| 2eelGoa Nih)
[22]|#-hiding log N log N log e log elog N log N
[26]|2-®/4-hiding |log N log N 2 log N (log N)/2

4.1 [2F-® /4-hiding|log N log N 2k klog N (log N)/2

In the first, second and sixth rows, n is the number of rows used in the matriz. In the
first and second rows, p is the order of the underlying group. In the third row, 0 < ¢ < 1,
n is the rows used in the matriz, w = @ with p? > q and d < w. In this table, k and
e are less than %logN — Kk where K is the security parameter.

We recall the description of OAEP for Rabin given by Boneh [4] with keyed
hash function and give a full version of the Modified Rabin-OAEP encryption
scheme. The OAEP for Rabin is different with the OAEP for RSA since that
2 mod N is not a permutation on Z%. Let N be an n + 1 bits Extended
Blum Number, u, sg, p be security parameters such that n = p + sg + p. Let
G: Kgx{0,1}Y — {0,1}#*%0 and H : Ky x {0,1}#+% — {0,1}” be keyed hash
functions.

OAEP for Rabin
The associated padding transform is (Tx g Ky, Tk, k) defined by

Algorithm g, k(M) Algorithm 7, k, (x)
Stepl : v+ {0,1}” Stepl : s |tz
Step2: s+ m | 0% & Gk, (r) Step2 :r « t® Hg,, (s)
Step3:t <+ r® Hg,, (s) Step3 :m || v+ s® Gk, (r)
Stepd:x < st Stepd : If v = 0°° return m
Step5 : Return x else return|.

Remark 2. Kiltz et al. [22] noted that their result also applies to Simplified
OAEP given by Boneh[4] since hash function Hg,, in OAEP can be anything in
their analysis. We remove the hash function Hg,, and use the Simplified OAEP
for Rabin in the following. This does not affect the secure proof and parameter
bound.

The Modified Rabin-OAEP

KeyGen: On input a security parameters n, choose a k and n+ 1 bits Extended
Blum Number N = pq associated with k. Choose a random t-wise indepen-
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dent hash function G, and a hash function Hg, . Compute the inversion
of 2¥ mod @ and denote it as d. Let A =1 mod p and A =0 mod ¢,
and B=0 mod pand B=1 mod ¢, set

pk = (NakaKg7HKH)7 sk = (paQ7d7A7B)'

Encryption: On input a massage m € {0, 1 }#,
Step 1: Pick a random r € {0,1}* and compute 7, k, (m).
Step 2: Set the ciphertext as ¢ = y2k+1 mod N.

Decryption: On input a ciphertext c,
Step 1: Compute z = ¢ mod N.
Step 2: Compute z, = 25 mod pand zq = 2 mod q.
Step 3: Set y1 = Az, + Bzy and y2 = Az, — Bz,. Four square roots of z
mod N is £y1, 2ys. Two of them are less than N/2 and denote them by
Y1, Y2-
Step 4: Compute g iy (Y1) and Tk iy (Y2). If one of them outputs a
message m and the other outputs L, then return m.

Remark 3. Note that in Step 4, if both v = 0% for y1, y2, the decryption can not
choose between them. Boneh [4] showed that this happens with low probability,
namely 2°° and sq is typically chosen to be greater than 128.

Theorem 3. If Gy, is a t-wise independent hash function and the 2%-®/4-
hiding assumption holds, then the Modified Rabin-OAEP is IND-CPA secure

1. with advantage € = 27% for u = ﬁ(p— s —logt) — %%tify") —1.

2. with advantage € = 27 for u = ﬁ(p —s—logt) — ‘”?fﬁs“ — 1, if it is
reqular on OAEP domain.

This is almost a direct result of the combination of Theorem 1 and Theorem
2 in [22]. We omit the proof here and just point out the different part. The
OAEP for Rabin is different with the OAEP for RSA since that 22 mod N is
not a permutation on Z3;. The least significant s bits of message is padded by
zero in order to choose the right plaintext from four square roots. There is 2#
possible (1 + so, p)-sources X = (m]|0%, R) here while there is 2750 possible
(1t + S0, p)-sources in RSA-OAEP. This just affects the security bound of e.

5.1 Efficiency of the Modified Rabin-OAEP

Regularity. We have analyzed the regularity of 2¥*1-th power over Zy for Ex-
tended pseudo Blum Number. Unfortunately, in practice, the domain of Rabin-
OAEP is {0,1}#"50%? (as integer) where pu + so + p = n — 16 (i.e. the most
significant two bytes of the output are zeroed out). The 2**!-th power may not
be regular over the subdomain {0,1,---,2¢T%%? — 1} Tewko et al. [24] proved
the regularity of RSA function over this subdomain. We assume that the 2¥+1-th
power over this subdomain is regular and leave it as an open problem.
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Concrete Parameters. If we do not assume the regularity of 2*-th power over
subdomain, from part 1 in Theorem 3, for © = 80 bits of security, messages of
roughly p =n — s — sop — 3 - 80 bits can be encrypted for sufficiently large ¢. For
n = 2048, then k = 432, s ~ 1184, and the lossiness is 864 bits. Set sg = 130, 454
bits message (¢ ~ 2000) can be encrypted at once. Kiltz et al. [22] instantiated
the RSA-OAEP under the &-hiding assumption. 160 bits can be encrypted at
once in the RSA-OAEP (¢ ~ 400). Under the investigation of Lewko et al. [24]
that the RSA function is regular over subdomain, 274 bits can be encrypted at
once (t ~ 2000).

If we assume the regularity of 2¥-th power over subdomain, from part 2 in
Theorem 3, for u = 80 bits of security, messages of roughly 4t =n—s—s9—2-80
bits can be encrypted For n = 2048, then k = 432, 534 bits message (¢ ~ 2000)
can be encrypted at once. But this conjecture is not proved.

In Table 2, we compare the efficiency of the Modified Rabin-OAEP above
with RSA-OAEP. The second column lists the basic number-theoretic assump-
tions used for guaranteeing the security. The following columns show the size of
modulus, k or length of e, length of lossiness and encrypted message in bits, re-
spectively. The first row is the RSA-OAEP. The second row is the Rabin-OAEP
without the regular assumption (¢ ~ 2000). The last row is the Rabin-OAEP
with the regular assumption (¢ ~ 2000).

Table 2. Comparison with RSA-OAEP

Scheme Assumption llog N ||k or log e|Lossiness|Message
RSA-OAEP [22][24] P-hiding 2048 | 432 432 274
Rabin-OAEP 2k—45/4—hiding 2048 432 864 454
| Rabin-OAEP  [2-¢/4-hiding, Regular| 2048 | 432 864 534

6 Conclusion

In this paper, we investigate the lossiness of 2¥-th power based on the 2F-
@/4-hiding assumption, which is an extension of the 2-@/4-hiding assumption.
And we prove that 2*-th power function is a lossy trapdoor permutation over
Quadratic Residuosity group. We instantiate Modified Rabin-OAEP by the tech-
nique of Kiltz et al.. Our Modified Rabin-OAEP is more efficient than the RSA-
OAEP scheme for the same secure bits.
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Appendix: Signed QR Group

In this appendix, we investigate the 2F-th power over Signed QR group, and
propose another version of Rabin-OAEP. This version of OAEP is not used in
practice, but this is one solution of constructing OAEP-like CPA secure encryp-
tion.

2k-th Power over Signed QR Group

We first recall the definition of Signed QR group and the group operation. Let
N be an integer, we represent Zx in [—(N —1)/2, (N —1)/2]. For x € Z3%;, define
|z| as the absolute value of z. we denote Jy the subgroup of Z} with Jacobi
symbol 1, and QR the group of quadratic residue. The signed quadratic residues
is defined as the group QR = {|z| : € QRN}, and J := {|z| : © € Jn}. For
elements g, h and the integer x, the group operation is defined by

goh=|g-h mod N[, g*=[g-g---g|=1g" mod N|.
—
z times

In fact, the Extended Blum Number is over a subset of Blum Numbers N = pq,
(p =g =3 mod 4). They have all the properties of Blum Numbers.

Lemma 2 (Lemma 1 in [18]). Let N be an Extended Blum Number, then

1. (QRY;,0) is a group of order ¢(N)/4.
2. QRL = J]J\?, and QRE is efficiently recognizable.
3. The map QRN — QR} is a group isomorphism.
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The order of the Signed QR is odd, the 2F-th power is a permutation. If the
factorization of N or the inverse of 2¥ modulo ¢(NN)/4 is given, the preimage of
2k_th power is computable. The 25-th power is a trapdoor permutation.

Lemma 3. Let N be an Extended pseudo Blum Number associated with k, then
1. (Ji,0) is a group of order ¢(N)/4.

=1 — =1
P Jok ’ q Jok
3. The 2%-th power map over JR} is 22F or 221 ¢o-1.

Proof. The map |- | from Jy to Jj; has kernel {£1}, so ord (J3;) = ¢(N)/4. By
the definition of 2* residue symbol. Items 2 holds. Item 2 implies that -1 belongs
to

k—1
I

. We define J{ = J§  UJZ _ to be the subset of R® with Legendre symbol 1. To
prove the third item, we investigate a sequence of subgroups and square maps
on them. Precisely, for 0 < s < k + 1, we consider the subgroups of Z3; denoted
by '

R = {aZz € T},

and for 0 < i < k define the square map f; : y — y2 from Rf[l to R’_. Note
that RS)r is Jj\? itself. We first prove that the map f; is a regular 4-to-1 map
for 0 <4 < k — 1. Then we show that the map fi is regularly 4-to-1 or 2-to-1
depending on whether —1 € J_’f_ or not. The combination map g = fyofx—1---0f1
is regularly 22% or 22~ 1-to-1 naturally. We divide the map f; into two parts. The
first part is the square map and the second part is the absolute map. From part
two, —1 belongs to Jj’iil, the surjective map from subset szl to Jﬁr is a 2-to-1
map (1 < i < k), and the map from Ji to Ri isa2tot lmap (1 <j<k-—1).
The absolute value is a surjective homomorphism from J i to Ri with kernel
{1} if —1 € J¥ and with kernel {£1} if —1 € Jk. 0

LTDP over Signed QR
We define LT DPsgr = (Sing, Stoss: fsQRrs fgéR) as follows:

1. Sample Injective Function S;n;. On input 17, S;,; chooses a proper £ and
random N in distribution R and the function index is ¢ = {N,k}. The
trapdoor is t = (2¥)~! mod @.

2. Sample Lossy Function Sp,ss. On input 1™, Sj,ss chooses a proper k and
random N in distribution L and the function index is o = {N, k}.

3. Ewaluation algorithm fsgr. Given a function index o = {N,k} and input
T € JKP the algorithm outputs z = 22 mod N.

4. Inversion algorithm fs_é - Given z € Jlt and trapdoor ¢, compute and out-
put 2 mod N.

Theorem 4. If the 2k-¢/4-hidmg assumption holds, then LT DPsqr is an 22k
or 22*=1_to-1 lossy trapdoor permutation.
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Another Modified Rabin-OAEP

The following scheme is another modification of Rabin-OAEP. The 2F-th power
is computed over Signed QR group. In this scheme, one needs to resample the
output of OAEP until it falls into Signed QR group. The Leftover hash lemma
guarantees that OAEP falls into Signed QR with probability about %. However,
we have to admit that this is NOT done in practice.

KeyGen: On input a security parameters n, choose a k and n bits Extended
Blum Number N associated with k. Choose a random ¢-wise independent
hash function G’k and a hash function Hg,,. Compute the inversion of ok

mod @ and denote it as d.
pk = (Na k7GKg7HKH)7 sk =d.

Encryption: On input a massage m € {0, 1 }#,
Step 1: Pick a random r € {0,1}* for p =n — p.
Step 2: Set s =m || Gk, (7).
Step 3:set t =1 || Hi . ().
Step 4: Set y = s || t and view y as an integer. If y & J5 goto step 1,
otherwise set the ciphertext as ¢ = yg—k mod N.
Decryption: On input a ciphertext c,
Step 1: If ¢ € J5; output L, otherwise y = ¢ mod N.
Step 2: For y = s || t, set r =t ® Hg,, (8).
Step 3: Compute and output m = s & Gg, (7).
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