
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2022

Novel secure outsourcing of modular inversion for arbitrary and Novel secure outsourcing of modular inversion for arbitrary and

variable modulus variable modulus

Chengliang TIAN

Jia YU

Hanlin ZHANG

Haiyang XUE
Singapore Management University, haiyangxue@smu.edu.sg

Cong WANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
TIAN, Chengliang; YU, Jia; ZHANG, Hanlin; XUE, Haiyang; WANG, Cong; and REN, Kui. Novel secure
outsourcing of modular inversion for arbitrary and variable modulus. (2022). IEEE Transactions on
Services Computing. 15, (1), 241-253.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9197

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Chengliang TIAN, Jia YU, Hanlin ZHANG, Haiyang XUE, Cong WANG, and Kui REN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9197

https://ink.library.smu.edu.sg/sis_research/9197

Novel Secure Outsourcing of Modular Inversion
for Arbitrary and Variable Modulus

Chengliang Tian , Jia Yu , Hanlin Zhang, Haiyang Xue, Cong Wang , Senior Member, IEEE,

and Kui Ren, Fellow, IEEE

Abstract—In cryptography and algorithmic number theory, modular inversion is viewed as one of the most common and

time-consuming operations. It is hard to be directly accomplished on resource-constrained clients (e.g., mobile devices and IC cards)

since modular inversion involves a great amount of operations on large numbers in practice. To address the above problem, this paper

proposes a novel unimodular matrix transformation technique to realize secure outsourcing of modular inversion. This technique

makes our algorithm achieve several amazing properties. First, to the best of our knowledge, it is the first secure outsourcing

computation algorithm that supports arbitrary and variable modulus, which eliminates the restriction in previous work that the protected

modulus has to be a fixed composite number. Second, our algorithm is based on the single untrusted program model, which avoids the

non-collusion assumption between multiple servers. Third, for each given instance of modular inversion, it only needs one round

interaction between the client and the cloud server, and enables the client to verify the correctness of the results returned from the

cloud server with the (optimal) probability 1. Furthermore, we propose an extended secure outsourcing algorithm that can solve

modular inversion in multi-variable case. Theoretical analysis and experimental results show that our proposed algorithms achieve

remarkable local-client’s computational savings. At last, as two important and helpful applications of our algorithms, the outsourced

implementations of the key generation of RSA algorithm and the Chinese Reminder Theorem are given.

Index Terms—Cloud computing, modular inversion, unimodular matrix transformation, efficiency, privacy

Ç

1 INTRODUCTION

CLOUD computing is a type of Internet-based comput-
ing that offers processing resources and data to elec-

tronic devices on demand. It is a model that enables
network access to a shared pool of configurable comput-
ing resources at any time, at any place [2], [21]. As one of
the typical service delivery types in cloud computing,
more and more cloud servers are providing alternative
and economic platform services for resource-constrained
clients [31]. By leveraging the cloud computing platforms,
the resource-constrained clients can perform large-scale
computations and data storage without the investment of
purchasing and maintaining their own computing facili-
ties. However, the client and the cloud server are not nec-
essarily in the same trusted domain, which brings many

security concerns and challenges towards this promising
computation model [8], [23], [34]. First and foremost, the
client’s computation task outsourced to the cloud server
often contains sensitive information, such as business
financial records and client’s private keys. Once the criti-
cal information is exposed to the cloud, it might bring
huge lost to the client. Second, the result returned from
the cloud might be invalid. For example, due to financial
incentives, the cloud server may be lazy, curious, or even
malicious, and therefore may return incorrect answers.
Besides, some accidental reasons such as software bugs,
hardware failures or outsider attacks can also result in
wrong computational results. Last but not the least, the
cost of delegating computation task must be less than
that of doing the work locally from scratch. In summary,
it has been widely established that a “well defined”
secure outsourcing computation algorithm should at least
satisfy the following requirements [15], [18]:

1) Privacy. The secure outsourcing computation algo-
rithm must protect the secrecy of the input and the
output of computation task. In other words, cloud
server should not learn anything about what it is
actually computing.

2) Verifiability. The client should be able to detect the
misbehaviour of cloud server.

3) Efficiency. The cost of task generation and result
verification for the client should be substantially
cheaper than performing the computation on its
own, otherwise the outsourcing will become
meaningless.

� C. Tian and J. Yu are with the College of Computer Science and Technology,
Qingdao University, Qingdao 266071, China, and also with the State Key
Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China.
E-mail: tianchengliang@qdu.edu.cn, qduyujia@gmail.com.

� H. Zhang is with the College of Computer Science and Technology, Qing-
dao University, Qingdao 266071, China. E-mail: hanlin@qdu.edu.cn.

� H. Xue is with the State Key Laboratory of Information Security, Chinese
Academy of Sciences, Beijing 100093, China, and also with the Data
Assurance and Communication Security Research Center, Chinese Acad-
emy of Sciences, Beijing 100093, China. E-mail: xuehaiyang@iie.ac.cn.

� C. Wang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. E-mail: congwang@cityu.edu.hk.

� K. Ren is with the Institute of Cyberspace Research, Zhejiang University,
Hangzhou 310007, China. E-mail: kuiren@buffalo.edu.

Manuscript received 10 Aug. 2018; revised 13 July 2019; accepted 21 Aug.
2019. Date of publication 26 Aug. 2019; date of current version 4 Feb. 2022.
(Corresponding author: Jia Yu.)
Digital Object Identifier no. 10.1109/TSC.2019.2937486

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022 241

1939-1374 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2474-910X
https://orcid.org/0000-0002-2474-910X
https://orcid.org/0000-0002-2474-910X
https://orcid.org/0000-0002-2474-910X
https://orcid.org/0000-0002-2474-910X
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

Modular inversion is one of the most common operations
in cryptography and algorithmic number theory. Given two
coprime integers a and n, modular inversion solves the lin-
ear congruence

ax � 1 modn; (1)

which in nature is the division operation over the residue
class ring Zn ¼ f0; 1; . . . ; n� 1g. It is well known that the
division operation is the most time-consuming one among
the four fundamental operations “addition”, “subtraction”,
“multiplication” and “division”. The classic algorithm of
solving this problem is the famous extended Euclidean
algorithm which computes two integers u; v such that
1 ¼ gcdða; nÞ ¼ auþ nv with Oðlog3 nÞ-bit operations. Then
the solution is x ¼ umodn. The total time cost is polynomial
in the size of input which makes the algorithm feasible.
However, it is far from being the whole story. In practice,
with the fast development of information technology and
mobile internet, more and more mobile intelligent clients
and embedded devices, such as RFID tags, smart cards and
cell phones, are connected with other components of their
environment. These clients are usually limited in computing
resources [19], [24], [25]. Meanwhile, the modular inversion,
required by virtually any public-key algorithm, often
involves handling large numbers. For example, during the
key-generation phase of the celebrated RSA public-key
scheme, one needs to randomly choose a large public key e
satisfying 1 < e < fðnÞ and gcdðe;fðnÞÞ ¼ 1, and then
computes the secret key d such that ed � 1modfðnÞ, where
fð�Þ is the Euler totient function, and n is a large number
with bit length no less than 1,024. Moreover, because of the
primitiveness of the division operation and the exponential
growth quantity in data nowadays, it often needs to dispose
a large number of modular inversion operations simulta-
neously in practice. It is difficult for resource-constrained
clients to perform massive heavy computations. Fortu-
nately, the cloud computing makes it possible for the
resource-constrained clients to accomplish these operations.

1.1 Related Work

There aremany researches on how to securely outsource vari-
ous computation-expensive work. Currently, the researches
mainly move towards two directions. One is to devise a
generic model that outsources arbitrary scientific computa-
tions with fully homomorphic encryption (FHE) technology
[7], [16]. This technology converts the computations on the
plaintext into the computations on the ciphertext. Mean-
while, the encrypted result, when decrypted, matches the
result of operations performed on the plaintext. Using FHE
technology, the resource-constrained client can send the
encrypted data to the cloud server, and then decrypt the com-
putation result from the could server to the plaintext using
his/her private key. Although great efforts have been made
to optimize the FHE algorithms [3], [4], [11], [17], the existing
algorithms still suffer from very high computation cost.

The other direction is to devise specific secure outsourcing
computation algorithms for some concrete heavy computa-
tional tasks. For example, as a popular topic in the present,
secure outsourcing of modular exponentiations involving
large numbers has been extensively investigated.Hohenberger

and Lysyanskaya [18] proposed the first outsource-secure
algorithm for variable-exponent variable-base exponentiations
with a strict proof of theoretical security. But the probability
of verifiability was only 1

2. Chen et al. [6] improved their
secure outsourcing computation algorithm in both efficiency
and verifiability. The above two algorithms were based on
one-malicious version of twountrustedprogrammodel,which
made too strong an assumption that the two untrusted
programs are non-collude. In order to solve this problem,
Wang et al. [28] presented the first algorithm to securely out-
source variable-exponent variable-base exponentiations based
on one untrusted programmodel, but the probability of verifi-
ability was still 12. Ding et al. [10] introduced a new secure out-
sourcing computation algorithm of modular exponentiation
based on one untrusted program model which achieved
higher checkability. However, all the aforementioned algo-
rithms exposed the modulus completely while, in some appli-
cations such as the decryption of RSA cryptosystem [1], the
modulus contains sensitive informationwhich needs to be pro-
tected from the cloud server. Zhou et al. [33] designed a new
secure outsourcing computation algorithm based on one
untrusted programmodel, which not only concealed the expo-
nent and the base, but also concealed the modulus. In terms of
efficiency, without outsourcing, the local client would need
Oðlog3 nÞ-bit operations to carry out amodular exponentiation
for some modulus n and any exponent no bigger than n.
Meanwhile, the client’s computational burden is reduced to
Oðlog2 nÞ by outsourcing algorithms mentioned above.
Besides, outsourcing other computation tasks such as polyno-
mial evaluation [13], [14], large matrix operations [20], linear
programming [27], large-scale system of linear equations solv-
ing [5],min-cut of graphs [32] and key updates in cloud storage
auditing [29] have been studied. Compared with the generic
model, secure outsourcing computation algorithm devised for
specific operation usually achieves higher efficiency.

Recently, Su et al. [26] have studied the problem of out-
sourcing the inversion modulo a large composite number
with two known factors, which is viewed as a special case
of the Equation (1). By employing Chinese Reminder Theo-
rem (CRT), they proposed an efficient secure outsourcing
computation algorithm based on one-malicious version of
two untrusted program model. However, the prior art is not
sufficient in all contexts, and there still exist some critical
challenges yet to be fully addressed. First, the previous
work cannot be applied to the case where the modulus is
not a composite number with known factors. This is indeed
a common case in practice. For example, in the ElGamal
encryption and signature schemes [12], we need to compute
the inversion modulo a large prime. Second, in previous
design, the preprocessing can only be executed under the
condition that the modulus has been known in [26], and
therefore the modulus must be fixed. Again, these precondi-
tions somewhat limit the wide applicability of the design,
and further demands solutions with more flexibility, such
as the case of arbitrary and variable modulus. Third, the
assumption of two non-colluding cloud servers in prior art
in general is not easy to be met in practice [33]. Conse-
quently, how to securely outsource modular inversion for
arbitrary and variable modulus based on single untrusted
program model, which is much more desired in practice, is
left as an open problem.

242 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

1.2 Our Contributions

To address the above problems, this paper further explores
the properties of linear congruence (1), and presents a new
secure outsourcing computation algorithm for modular
inversion which essentially is an outsourcing implementa-
tion of the extended Euclidean algorithm. Further, we
generalize our algorithm to outsource modular inversion
in multi-variable case. Compared with previous work, our
algorithms maintain the property that the client can detect
the incorrect answer from the dishonest server with proba-
bility 1, and meanwhile are superior in the following
aspects:

1) The proposed algorithms can support arbitrary and
variablemodulus.We give a novel unimodularmatrix
transformation technique, which takes advantage of a
significant property that unimodular matrix transfor-
mation keeps the greatest common divisor of two inte-
gers invariant, to realize secure outsourcing of
modular inversion for arbitrary and variablemodulus.

2) The proposed algorithms are designed under single
untrusted program model. According to the model
defined in the paper, we give a rigorous theoretical
analysis on the security of the proposed algorithms,
which indicates our algorithms satisfying the verifiabil-
ity and the one-way argument of input/output privacy.

3) Our algorithms achieve decent local-client’s compu-
tational savings. They only need Oðl2Þ bit operations
for some given modulus of l bits in contrast with,
without outsourcing, Oðl3Þ bit operations on the cli-
ent side. Specially, in the single-variable case, our
experimental results demonstrate that the proposed
algorithm performs about 9 to 14� faster than the
algorithm without outsourcing and 5.8 to 8.3� faster
than the algorithm in [26].

4) Our algorithms have found wide applications in
some fundamental algorithms in cryptography and
coding theory, e.g., the secure outsourcing for the
key generation of RSA algorithm and the solving of
linear congruences.

1.3 Road Map

The rest of this paper is organized as follows: In Section 2,
we present the systemmodel and the related security defini-
tions. Section 3 reviews some necessary preliminaries of our

algorithms. We propose two secure outsourcing computa-
tion algorithms and prove their correctness, security and
efficiency in Section 4. The practical performance evaluation
of the proposed algorithms is given in Section 5. Section 6
presents two important applications of our algorithms.
Finally, we conclude our paper in Section 7.

2 SYSTEM MODEL AND SECURITY DEFINITIONS

2.1 System Model

A secure outsourcing computation model involves two enti-
ties: the resource-constrained client C and the cloud server
S with powerful computational resource yet maybe curious,
or even malicious. With the help of the cloud server S, the
client C intends to accomplish a computational task F with
an input x. At a high level, the client C and the cloud server
S perform a two-party protocol as follows: C sends an
encoding of the computational task F and the blinded input
sx to S. S is expected to complete the computational task
associated with sx and return the output to C. The client C
verifies correctness of the result given by S and recovers the
desired value if the returned results passed the verification.

We show the system model in Fig. 1. Formally, following
the model in [15], a secure outsourcing computation algo-
rithm consists of the following four-tuple SOCF ¼ (KeyGen,
ProbGen,Compute,Verify).

1) KeyGenðF; �Þ ! ðPK; SKÞ: Taken the inputs as the
security parameter � and the target function F , the
key generation algorithm outputs a public key PK
that encodes the target function F , and the corre-
sponding private key SK which is kept private by
the client C.

2) ProbGenSKðxÞ ! ðsx; txÞ: Given an input x to the
function F , the problem generation algorithm uses the
private key SK to encode x as a secret value tx and a
public value sx, and then sends sx to the server S.

3) ComputePKðsxÞ ! sy: Utilizing the public key PK
and the encoded input sx given by C, the computation
algorithm outputs sy, which is an encoded version of
y ¼ F ðxÞ.

4) VerifySKðtx; syÞ ! y [?: Utilizing the private key
SK and the secret “decoding” tx, the verification algo-
rithm verifies whether sy is valid. If the result is
valid, the client converts sy into the real y ¼ F ðxÞ as
the output. Otherwise, the client outputs ?.

2.2 Threat Model

The threats in our outsourcing system mainly come from
three aspects: attacks from the (malicious) cloud server,
attacks from external adversaries and occasional accidents
from internal software or hardware failures. However, from
the client’s point of view, any extraneous attack will be
attributed to the server’s misbehaviors. Therefore, accord-
ing to the server’s behaviors and the number of servers, all
the threats can be included into four models: the lazy sin-
gle-server (LS) model, the honest but curious single-server
(HCS) model, the malicious single-server (MS) model and
the malicious multiple-server (MM) model.

Lazy Single-Server (LS) Model. In LS model, the cloud
server still performs the protocol specification, but, for

Fig. 1. The system model.

TIAN ET AL.: NOVEL SECURE OUTSOURCING OF MODULAR INVERSION FOR ARBITRARY AND VARIABLE MODULUS 243

saving computational resources, may return a random or
intermediate result.

Honest but Curious Single-Server (HCS) Model. In HCS
model (also known as the “semi-honest” single-server
model), the cloud server is assumed to faithfully execute the
delegated computation task and returns the correct result to
the client. However, in order to profit from some sensitive
computational tasks, the cloud may be curious about the
intermediate data and try to learn or infer the protected
information.

Malicious Single-Server (MS) Model. In MS model, the
cloud server won’t execute its advertised functionality,
even arbitrarily deviates from the protocol specification and
tries to learn sensitive information as much as it can. Worse
still, it may intentionally return a random or forged result to
fool the client.

Malicious Multiple-Servers (MM) Model. In MM model, the
client assigns the computation task to multiple malicious
cloud servers under the assumption of their non-collusion.

Clearly, under the LS model, a secure outsourcing algo-
rithm should guarantee the verifiability of the returned
result from, and, under the HCS model, a secure outsourc-
ing algorithm should ensure the input/output privacy of
client’s data. While, under the MS model, a secure outsourc-
ing algorithm should satisfy both of the above two require-
ments and, simultaneously, doesn’t need the multiple non-
collude servers in the MM model. Consequently, from the
perspective of security, designing an outsourcing algorithm
under the MS model for some given computation task is
more significative than that of under LS, HCS or MMmodel.

2.3 Design Goals

In pursuit of an efficient and secure outsourcing algorithm
for modular inversion under the MS model, we identify the
following four design goals, which are consistent with the
existing works [15], [30] except an adjustment on the input/
output privacy.

2.3.1 Correctness

A secure outsourcing computation algorithm should first
satisfy correctness. An algorithm is correct if, for any valid
input, when the server correctly executes the algorithm
Compute, the output of algorithm Verify is the evaluation
of F on this input. More formally,

Definition 1 (Correctness [15]). A secure outsourcing com-
putation algorithm SOCF of some computation task F is cor-
rect if the key generation algorithm produces key ðPK; SKÞ
KeyGenðF; �Þ such that, for any x 2 DomainðF Þ, if ðsx;
txÞ ProbGenSKðF; xÞ and sy ComputePKðsxÞ, then
y ¼ F ðxÞ VerifySKðtx; syÞ.

2.3.2 Verifiability

Verifiability means a malicious server cannot persuade the
verification algorithm to accept an incorrect output. Namely,
for any given computation F and randomly chosen input
x 2 DomainðF Þ, the probability that a malicious server is
able to convince the verification algorithm to output ŷ such
that ŷ =2 fF ðxÞ;?g is negligible. Below, we formalize its
notion with the following experiment.

Experiment Expverif
A ½F; ��

ðPK; SKÞ KeyGenðF; �Þ
Query and response :

x0 ¼ sx0 ¼ b0 ¼ ?:
For i ¼ 1; . . . ; ‘ ¼ polyð�Þ

xi AðPK; x0; sx0 ;b0; . . . ; xi�1; sxi�1 ;bi�1Þ:
ðtxi ; sxiÞ ProGenSKðxiÞ:
syi AðPK; x0; sx0 ;b0; . . . ; xi�1; sxi�1 ;bi�1; sxiÞ:
bi VerifySKðtxi ; syiÞ:

Challenge :

x AðPK; x1; sx1 ;b1; . . . ; xl; sx‘ ;b‘Þ:
ðtx; sxÞ ProGenSKðxÞ:
sy AðPK; x1; sx1 ;b1; . . . ; x‘; sx‘ ;b‘; sxÞ:
ŷ VerifySKðtx; syÞ:
if ŷ 6¼ F ðxÞ and ŷ 6¼?; output 010;
else output 000:

In the query and response phase, the adversary (e.g.,
malicious server) is given oracle access to the public output
of ProbGen and the sub-algorithm Verify. In the challenge
phase, the adversary is successful if it produces a forged
output that convinces the verification algorithm to accept
the wrong output. Now, we define the verifiability of a
secure outsourcing computation algorithm based on the
probability of the adversary’s success.

Definition 2 (Verifiability). A secure outsourcing computa-
tion algorithm SOCF of computation task F is verifiable if for
any adversary A running in probabilistic polynomial time, the
probability of outputting 1 in Experiment Expverif

A ½F; �� is
negligible, i.e., Pr½Expverif

A ½F; �� ¼ 1� � neglið�Þ, where
negliðÞ is a negligible function of its input.

2.3.3 Input/Output Privacy

The definition of input/output privacy in [15], [30] is based
on a typical indistinguishability argument that ensures that
any probabilistic polynomial-time adversary A cannot dis-
tinguish the ciphertexts of two different plaintexts. How-
ever, in most of our applications, one-way security is
enough. That is, given the public information (e.g., the pub-
lic key PK and the public value sx), the probabilistic poly-
nomial-time adversary A can not recover the input x and
the output F ðxÞ. Here we formalize the one-way argument
of privacy, including input privacy and output privacy,
with the experiment as follows.
Experiment ExpIpriv

A ½F; ��
ðPK; SKÞ KeyGenðF; �Þ
Query and response :

x0 ¼ sx0 ¼ ?:
For i ¼ 1; . . . ; ‘ ¼ polyð�Þ

xi AðPK; x0; sx0 ; . . . ; xi�1; sxi�1Þ:
ðtxi ; sxiÞ ProGenSKðxiÞ:

Challenge :

x
? DomainðF Þ:
ðtx? ; sx? Þ ProGenSKðx? Þ:
x0 AðPK; x0; sx0 ; . . . ; x‘; sx‘ ; sx? Þ:
if x0 ¼ x

?
; output 010;

else output 000:

244 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

In the query and response phase, the adversary is given
the oracle access to obtain the public output of the problem
generation algorithm, and allowed to invoke the algorithm
polynomial times. In the challenge phase, based on the infor-
mation gathered in the query and response phase and given
the public key PK and a public value sx? , the adversary tries
to acquire the input, and succeeds if it can recover x

?
.

Definition 3 (Input privacy). A secure outsourcing computa-
tion algorithm SOCF of computation task F is input-private if
for any adversary A running in probabilistic polynomial time,
the probability of outputting 1 in Experiment ExpIpriv

A ½F; �� is
negligible, i.e.,

Pr½ExpIpriv
A ½F; �� ¼ 1� � neglið�Þ;

where negliðÞ is a negligible function of its input.

Similarly, the security requirement of output privacy can
be defined by the following experiment.

Experiment ExpOpriv
A ½F; ��

ðPK; SKÞ KeyGenðF; �Þ
Query and response :

x0 ¼ sx0 ¼ b0 ¼ ?:
For i ¼ 1; . . . ; ‘ ¼ polyð�Þ
xi AðPK; x0; sx0 ;b0; . . . ; xi�1; sxi�1 ;bi�1Þ:
ðtxi ; sxiÞ ProGenSKðxiÞ:
syi AðPK; x0; sx0 ;b0; . . . ; xi�1; sxi�1 ;bi�1; sxiÞ:
bi VerifySKðtxi ; syiÞ:

Challenge :

x
? DomainðF Þ:
ðtx? ; sx? Þ ProGenSKðx? Þ:
sy	 ComputePKðsx? Þ:
f 0 AðPK; sx? ; sy? ; ðxj; sxj ;bjÞj¼0;...;‘Þ:
if f 0 ¼ F ðx? Þ; output 010;
else output 000:

Definition 4 (Output privacy). A secure outsourcing compu-
tation algorithm SOCF of some computation task F is output-
private if for any adversary A running in probabilistic time,
the probability of outputting 1 in Experiment ExpOpriv

A ½F; �� is
negligible, i.e.,

Pr½ExpOpriv
A ½F; �� ¼ 1� � neglið�Þ;

where negliðÞ is a negligible function of its input.

2.3.4 Efficiency

Efficiency is a basic requirement for a secure outsourcing
computation algorithm, which requires that the client’s cost
of blinding the input and verifying the output must be sub-
stantially cheaper than that of computing the computational
task from scratch locally. Since the KeyGen step is indepen-
dent of the input, it can be preprocessed and its time over-
head is not contained in the client’s cost.

Definition 5 (a-Efficient [15]). A secure outsourcing computa-
tion algorithm SOCF of some computation task F is a-Efficient if
the time required for ProbGenSKðxÞ and VerifySKðtx; syÞ is

nomore than anamultiplicative factor ofT , where T is the fastest
known time of computingF ðxÞ.

3 PRELIMINARIES

To be self-contained, this section will briefly introduce some
necessary notations and basic concepts used in the rest of
the paper.

3.1 Notations and Terminologies

We use bold lower case letters to denote vectors, and use
upper case letters to denote matrices. MT (resp. aT)
denotes the transposition of matrix M (resp. vector a),
and Zn�m denotes all of the n�m matrices whose entries
are integers.

3.2 Unimodular Matrix

Unimodular matrix is a special invertible matrix which has
numerous applications in matrix theory and lattice-based
cryptography [22].

Definition 6 (Unimodular matrix). An n� n matrix U is
unimodular if and only if U 2 Zn�n and the absolute value of
its determinant j detðUÞj ¼ 1.

A simple property of unimodular matrix is that the
inverse of a unimodular matrix is also unimodular. We list
it as a lemma and omit its proof.

Lemma 1 ([22]). If U 2 Zn�n is unimodular, then there exists a
unique matrix V 2 Zn�n s. t. j detðVÞj ¼ 1 and UV ¼ In�n,
where In�n denotes the identity matrix.

For example, let U ¼ 2 1
5 2

� �
be an unimodular matrix

with detðUÞ ¼ 2� 2� 5� 1 ¼ �1. Then it is easy to verify

that its inverse V ¼ �2 1
5 �2

� �
is also unimodular.

3.3 Extended Euclidean Algorithm

The well-known extended Euclidean algorithm is an
extension of the Euclidean algorithm. Given two integers
a and n, the algorithm computes two integers x and y
beside the greatest common divisor of integers a and n,
such that axþ ny ¼ gcdða; nÞ. It needs 2 logn divisions
and 6 logn multiplications in the worst case, and therein
the total time complexity is Oðlog3 nÞ. The pseudocode is
shown in Algorithm 1.

Algorithm 1. extended_gcdða; nÞ
Require: Integers a; n.
Ensure: Three integers d; x; y satisfying d j a, d jn and

axþ ny ¼ d.
1: x ¼ 0; old_x = 1, y ¼ 1; old_y = 0, r ¼ n; old_r ¼ a
2: While (r 6¼ 0)
3: q ¼ b old_r=rc
4: t ¼ r; r ¼ old_r� q 	 t, old_r ¼ t
5: u ¼ x; x ¼ old_x� q 	 u, old_x ¼ u
6: v ¼ y; y ¼ old_y� q 	 v, old_y ¼ v
7: Output d ¼ old_r, old_x, old_y

TIAN ET AL.: NOVEL SECURE OUTSOURCING OF MODULAR INVERSION FOR ARBITRARY AND VARIABLE MODULUS 245

4 SECURE OUTSOURCING ALGORITHMS OF

MODULAR INVERSION

4.1 Computation Task Description and Basic Idea

Given two coprime integers a and n, the client wants to find
the unique x 2 Zn such that ax � 1 modn. The classic
method of solving this problem is to compute two integers
u and v such that auþ nv ¼ 1 by the extended Euclid algo-
rithm. Then, the solution is x ¼ u modn. The procedure
needs Oðlog3 nÞ bit operations. Since the integers involved
in the cryptographic community are usually very large. It is
difficult for resource-limited client to carry out such expen-
sive operations. Under this circumstance, the client may
accomplish this task by secure outsourcing computation.

In order to keep the privacy of the input, we must blind
the values of a and n. As a sequence, the result returned from
the cloud server will not actually be the inversion of a mod-
ulo n. In order to ensure that the original result can be recov-
ered from the blinded result, the input values and their
blinded ones must satisfy certain equivalence relation. The
unimodularmatrix has a characteristic that the inversion of a
unimodularmatrix is still unimodular. This property implies
an equivalence relation in the sense that the greatest common
divisor of the input values equals that of their blinded ones.
By taking advantage of this property, we propose a novel
secure outsourcing computation algorithm of modular
inversion. More precisely, the client first chooses a random
unimodular matrixU 2 Z2�2, blinds the input by computing
ða0 n0ÞT ¼ Uða nÞT , and sends them to the cloud server. And
then the cloud server performs the extended Euclid algo-
rithm on the blinded values and returns the result to the cli-
ent. At last, the client verifies the received values and
recovers the solution. The security is based on the random-
ness of unimodularmatrixU, and the correctness follows the
intrinsic property of unimodularmatrix transform that keeps
the greatest common factor of a and n invariant. Further-
more, we employ this novel technique to securely outsource
themodular inversion inmulti-variable case.

4.2 Outsourcing Algorithm of ax � 1 modn

Given two coprime integers a and n, the proposed algo-
rithm SOCMIða; nÞ consists of four sub-algorithms as
follows:

1) Prepro: Given a security parameter �, the client C
randomly generated an unimodular matrix

U ¼ u11 u12

u21 u22

� �
2 SKMI ;

where

SKMI ¼ Ui j Ui 2 K2�2
� and j detðUiÞj ¼ 1

� �
;

and K� ¼ Z \ ð�2�; 2�Þ denotes the set of integers
with bit length no larger than �. This step should be
preprocessed before the following three steps.

2) ProbGen: Using the secret matrix U, C blinds the
input a and n by computing two integers a0 and n0

a0 ¼ u11aþ u12n; n
0 ¼ u21aþ u22n;

and sends ða0; n0Þ to the cloud server S.

3) Compute: Receiving the blinded values ða0; n0Þ, the
cloud server S uses the extended euclidean algo-
rithm to compute two integers x0, y0 such that a0x0þ
n0y0 ¼ 1. The cloud server returns ðx0; y0Þ to C.

4) Verify: Receiving the encoded output ðx0; y0Þ, the cli-
ent C verifies whether the equation a0x0 þ n0y0 ¼ 1
holds. If it does, C computes

x ¼ ðu11x0 þ u21y
0Þ modn;

as the solution. Otherwise, C outputs “?” and claims
the misbehavior of S.

Remark 1. Since the computation task F in our construction
is modular inversion which is concrete, unlike the generic
model for arbitrary target function in Section 2.1, there is
no KeyGen step in our construction. To be consistent
with the generic model, the public key PK can be seen as
the algorithm that on input two coprime ða0; n0Þ outputs
two integers x0, y0 subject to a0x0 þ n0y0 ¼ 1, and the secret
key SK can be seen as the collection of the secret 2-by-2
unimodular matrices.

Remark 2. In the preprocessing stage, a feasible method of
generating a random unimodular matrix is as follows:
Randomly generate two coprime integers u11; u21 2 K�.
And then, run the extended euclidean algorithm to com-
pute two integers u12 and u22 such that u11u22 � u12u21 ¼
1. Noteworthily, the randomness of U has great impact
on the input/output privacy of the scheme. If the ele-
ments in U are too small, the privacy is offended. If the
elements in U are too large, the efficiency of the scheme is
affected. In practice, we should balance the security and
the efficiency. To be immune against the brute-force
attack, the security parameter � should be at least 80. It
will not reduce the performance gain too much, since,
generally, outsourcing computation is employed when
the integers are large, usually no less than 512 bit, and the
local-client’s computational savings obtained by out-
sourcing are about OðlognÞ muiltiplications/divisions
with large numbers. For more details please refer to
Section 5.

Remark 3. Noteworthily, if n ¼ p is a prime, our algorithm
can be seen as an outsourcing implementation of Itoh-
Tsujii inversion in the prime field GF ðpÞ. To securely out-
source Itoh-Tsujii inversion in a general large-scale finite
field GF ðpmÞ, since GF ðpmÞ is isomorphic with the resi-
due class field GF ðpÞ½x�=ðnðxÞÞ, we can adapt the pro-
posed algorithm to two large-scale polynomials aðxÞ;
nðxÞ 2 GF ðpÞ½x�, where nðxÞ is an irreducible polynomial
with degree m. Nonetheless, the construction of random
unimodular matrices should be different and carefully
discussed. We leave it for our future work.

Remark 4. In practice, it is common to simultaneously or
successively compute many instances of modular inver-
sion, e.g., a�1i modni for m pairs of large integers ðai; niÞ,
where 1 � i � m and m is a positive integer. In this case,
we can precomputem unimodular matrices, and in paral-
lel or serially invoke our proposed algorithm.

In order to make our algorithm more transparent, we
give a toy example: Given two integers 13 and 15, the client

246 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

wants to find an integer x ð1 � x < 15Þ such that
13 � x � 1mod 15. The secure outsourcing computation algo-
rithm runs as follows (we omit the processing step):

(1) The client randomly chooses a unimodular matrix

U ¼ 5 �2
7 �3

� �
. Obviously, detðUÞ ¼ �1.

(2) The client blinds the input ða; nÞ ¼ ð13; 15Þ as
ða0; n0Þ ¼ ð5 � aþ ð�2Þ � n; 7 � aþ ð�3Þ � nÞ ¼ ð5 � 13 þ
ð�2Þ � 15; 7 � 13þ ð�3Þ � 15Þ ¼ ð35; 46Þ. The client
sends (35,46) to the cloud server.

(3) The cloud server computes two integers ðx0; y0Þ ¼
ð�21; 16Þ such that 35 � x0 þ 46 � y0 ¼ 1 by the
extended euclidean algorithm. The cloud server
returns ðx0; y0Þ to C.

(4) The result is correct because 35 � ð�21Þ þ 46 � 16 ¼ 1.
Finally, the client recovers the final solution x ¼
ð5 � ð�21Þ þ 7 � 16Þmod 15 ¼ 7.

Clearly, x ¼ 7 is indeed the inversion of 13 modulo 15.
For any valid input, we give a rigorous theoretical analysis
on the correctness of the proposed algorithm in the follow-
ing theorem.

Theorem 1. For any input ða; nÞ 2 Z2 satisfying gcdða; nÞ ¼ 1,
the proposed secure outsourcing computation algorithm
SOCMIða; nÞ is correct according to Definition 1.

Proof. First, we need to prove that a0 and n0 generated in
sub-algorithm ProbGen are coprime. In other words, an
honest server can indeed find two integers x0 and y0 such
that a0x0 þ n0y0 ¼ 1 in sub-algorithm Compute. In fact,
since

a0 ¼ u11aþ u12n

n0 ¼ u21aþ u22n

�

)
a ¼ 1

detðUÞ ðu22a
0 � u12n

0Þ
n ¼ � 1

detðUÞ ðu21a
0 � u11n

0Þ;

(

and j detðUÞj ¼ 1, it can be easily deduced that each com-
mon divisor of a0 and n0 is a common divisor of a and n
which implies gcdða0; n0Þ ¼ 1.

Second, if an honest server returns two integers a0 and
n0 satisfying a0x0 þ n0y0 ¼ 1, by substituting a0 and n0 with
u11aþ u12n and u21aþ u22n respectively, we have
aðu11x

0 þ u21y
0Þ þ nðu12x

0 þ u22y
0Þ ¼ 1. Hence x ¼ ðu11x

0þ
u21y

0Þmodn is the inverse of amodulo n. tu

4.3 Outsourcing Algorithm of
Pk

i¼1 aixi � 1 modn

More generally, given kþ 1 nonzero integers a1; . . . ; ak; n
with gcdða1; . . . ; ak; nÞ ¼ 1, the client tries to find a solution
x ¼ ðx1; . . . ; xkÞ 2 Zk

n such that
Pk

i¼1 aixi � 1modn. Simi-
larly, the proposed algorithm is SOCMMIða1; . . . ; ak; nÞ
designed as follows:

1) Prepro: Given a security parameter �, this prepro-
cessing step generates a secret and random unimod-
ular matrix

U ¼
u1;1 � � � u1;ðkþ1Þ

..

. . .
. ..

.

ukþ1;1 � � � ukþ1;kþ1

0
B@

1
CA 2 SKMMI ;

where SKMMI ¼

Ui j Ui 2 K
ðkþ1Þ�ðkþ1Þ
� and j detðUiÞj ¼ 1

n o
;

and K� ¼ Z \ ð�2�; 2�Þ denotes the set of integers
with bit length no larger than �.

2) ProbGen: Using the secret matrix U, C computes

a01 ¼ u1;1a1 þ � � � þ u1;kak þ u1;kþ1n;
a02 ¼ u2;1a1 þ � � � þ u2;kak þ u2;kþ1n;

..

.

n0 ¼ ukþ1;1a1 þ � � � þ ukþ1;kak þ ukþ1;kþ1n:

8>>><
>>>:

(2)

and sends ða01; . . . ; a0k; n0Þ to the cloud server S.
3) Compute: Receiving the blinded values ða01; . . . ; a0k;

n0Þ, the cloud server S computes kþ 1 integers
x01; . . . ; x

0
k, x

0
kþ1 such that

Pk
i¼1 a

0
ix
0
i þ n0x0kþ1 ¼ 1 by

invoking the extended Euclidean algorithm k times,
then returns ðx01; . . . ; x0k; x0kþ1Þ to C.

4) Verify: Receiving the encoded output ðx01; . . . ; x0k;
x0kþ1Þ, the client C verifies whether the equationPk

i¼1 a
0
ix
0
i þ n0x0kþ1 ¼ 1 holds. If it does, C computes

xi ¼
Xkþ1
j¼1

ujix
0
j modn; i ¼ 1; . . . ; k; (3)

as the solution. Otherwise, C outputs “?” and claims
the misbehavior of S.

Remark 5. Similarly, in the preprocessing stage, C can gen-
erate the random unimodular matrix according to the
parity of k. If kþ 1 is even, for i ¼ 1; . . . ; ðkþ 1Þ=2, C pro-
duces

u2i�1;2i�1 u2i�1;2i
u2i;2i�1 u2i;2i

� �
; (4)

using the method in Remark 2 and sets other ui;j ¼ 0. If
kþ 1 is odd, for i ¼ 1; . . . ; ðk� 2Þ=2, one first produces
(4) using the method in Remark 2. Second, C generates a
random 3� 3 unimodular matrix (5) as follows:

un�2;n�2 un�2;n�1 un�2;n
un�1;n�2 un�1;n�1 un�1;n
un;n�2 un;n�1 un;n

0
@

1
A: (5)

1) C randomly generates three integers un�2;n�2;
un�1;n�2; un;n�2 2 K� with gcdðun�2;n�2; un�1;n�2;
un;n�2Þ ¼ 1.

2) Using the extended euclidean algorithm, C
computes integers x1; x2; x3; d1; y1 such that
un�2;n�2x1 þ un�1;n�2x2 ¼ d1, d1y1 þ un;n�2x3 ¼ 1.

3) C Returns un�2;n�1 ¼ �x2; un�2;n ¼ �x3 �
un�2;n�2

d1
;

un�1;n�1 ¼ x1; un�1;n ¼ �x3 �
un�1;n�2

d1
, un;n�1 ¼ 0,

un;n ¼ y1.
Finally, C sets other ui;j ¼ 0.

Remark 6. Since the generated unimodular matrix in
Remark 5 is sparse and every unimodular submatrix of
order 2 or 3 is independent, the ProbGen algorithm will
be extremely efficient by parallel processing. However,
the unimodular matrix transformation doesn’t change the

TIAN ET AL.: NOVEL SECURE OUTSOURCING OF MODULAR INVERSION FOR ARBITRARY AND VARIABLE MODULUS 247

greatest common divisor of any given integers (see
Lemma 2). It may result in that this kind of unimodular
matrix reveals the greatest common divisor of the two or
three adjacent integers corresponding to the unimodular
submatrix of order 2 or 3.

In order to prove the correctness of the secure outsourc-
ing computation algorithm SOCMMIðÞ, we need to utilize
the following significant property of unimodular matrix
transformation.

Lemma 2. The unimodular matrix transformation in the sub-
algorithm ProbGen keeps the greatest common divisor of
a01 ; . . . ; a

0
k invariant, namely, gcdða01; . . . ; a0k; n0Þ ¼ gcd

ða1; . . . ; ak; nÞ.

Proof. Let d ¼ gcdða1; . . . ; ak; nÞ, d0 ¼ gcdða01; . . . ; a0k; n0Þ.
Denote a ¼ ða1 . . . ak nÞT, a0 ¼ ða01 . . . a0k n0ÞT as two
kþ 1-dimensional column vectors.

On one hand, for any 1 � i � k, by Equation (2), we
have

a0i ¼ ui;1a1 þ � � � þ ui;kak þ ui;kþ1n;

n0 ¼ ukþ1;1a1 þ � � � þ ukþ1;kak þ ukþ1;kþ1n:

Also, since d j a1 and d jn, we have d j a0i and d jn0. There-
fore, d is a common factor of a01; . . . ; a

0
k and n0 which

results in d � d0.
On the other hand, by Lemma 1, there exists a unim-

odular matrix V 2 Zðkþ1Þ�ðkþ1Þ such that V ¼ U�1. Let

V ¼
v1;1 � � � v1;ðkþ1Þ

..

. . .
. ..

.

vkþ1;1 � � � vkþ1;kþ1

0
B@

1
CA:

From Equation (2), we have

a0 ¼ Ua, a ¼ Va0:

In other words, for any 1 � i � k

ai ¼ vi;1a
0
1 þ � � � þ vi;ka

0
k þ vi;kþ1n

0;

n ¼ vkþ1;1a
0
1 þ � � � þ vkþ1;ka

0
k þ vkþ1;kþ1n

0:

Since d0 j a0i and d0 jn0, d0 is a common factor of a1; . . . ; ak
and n, Consequently, d0 � d. tu

Based on the lemma mentioned above, we can deduce
the correctness of our algorithm easily.

Theorem 2. For any input ða1; . . . ; ak; nÞ 2 ðZ n f0gÞkþ1
with gcdða1; . . . ; ak; nÞ ¼ 1, the proposed secure outsourcing
computation algorithm SOCMMIða1; . . . ; ak; nÞ is correct
according to Definition 1.

Proof. According to Definition 1, our proof is split into two
steps.

(1) For any blind value (a01; . . . ; a
0
k; n

0) generated by the
client C, there indeed exist kþ 1 integers x01; . . . ; x

0
k; x

0
kþ1,

such that
Pk

i¼1 a
0
ix
0
i þ n0x0kþ1 ¼ 1. In fact, by Lemma 2,

gcdða01; . . . ; a0k; n0Þ ¼ gcdða1; . . . ; ak; nÞ ¼ 1 which impli-
cates there exist kþ 1 integers x01; . . . ; x

0
k; x

0
kþ1 such thatPk

i¼1 a
0
ix
0
i þ n0x0kþ1 ¼ 1. Further, x01; . . . ; x

0
k; x

0
kþ1 can be

found by invoking the extended euclidean algorithm k
times.

(2) For the integers x01; . . . ; x
0
k; x
0
kþ1 received by the

client C in sub-algorithmVerify, if
Pk

i¼1 a
0
ix
0
i þ n0x0kþ1 ¼ 1,

then xj calculated by Equation (3) satisfies
Pk

i¼1 aixi � 1
modn. In fact

Xk
i¼1

a0ix
0
i þ n0x0kþ1 ¼ 1

, a0ð ÞTx0 ¼ 1, aUð ÞTx0 ¼ 1

, ðaTUTÞx0 ¼ 1, aTðUTx0Þ ¼ 1

,
Xk
i¼1

ai
Xkþ1
j¼1

uj;ix
0
j

 !
þ n

Xkþ1
j¼1

uj;kþ1x
0
j ¼ 1

)
Xk
i¼1

ai
Xkþ1
j¼1

uj;ix
0
j

 !
� 1 modn;

where a ¼ ða1; . . . ; ak; nÞT; a0 ¼ ða01; . . . ; a0k; nÞ
T; x0 ¼

ðx01; . . . ; x0k; x0kþ1Þ
T denote kþ 1-dimensional column

vectors.
From (1) and (2), we know the proposed secure out-

sourcing computation algorithm SOCMMIða1; . . . ; ak; nÞ
is correct. tu

4.4 Security Analysis

In this section, we will analyze the security of the proposed
algorithms under the MS model. For the sake of brevity and
transparency, we only prove the verifiability and the input/
output privacy of the algorithm SOCMIðÞ, and the proof for
the algorithm SOCMMIðÞ is similar.

4.4.1 Verifiability

According to the formalized definition in Section 2.3, we
have the following result.

Theorem 3. For any input ða; nÞ 2 ðZ n f0gÞ2 satisfying
gcdða; nÞ ¼ 1, the algorithm SOCMI ða; nÞ is verifiable accord-
ing to Definition 2.

Proof. Consider the experiment Expverif
A ½F; �� defined in

Section 2. In the query and response phase, xi ¼ ðai; niÞ is
the ith input of sub-algorithm ProGen, txi ¼ Ui is the ith
secret unimodular matrix randomly chosen from SKMI ,
sxi ¼ ða0i; n0iÞ is the blinded value of xi, and bi is the ith
output of sub-algorithm Verify.

Based on the information gathered in the query phase,
the adversary A produces a challenge x ¼ ða; nÞ. Using a
random unimodular matrix tx ¼ U randomly chosen
from SKMI , sub-algorithm ProbGen encodes x as sx ¼
ða0; n0Þ. For any output ŝðyÞ ¼ ðx0; y0Þ returned from the
adversary A, if a0x0 þ n0y0 ¼ 1, then, by the proof of cor-
rectness in Theorem 2, the sub-algorithm Verify obvi-
ously outputs y ¼ F ðxÞ. Else, the sub-algorithm Verify
outputs y ¼ ?. Therefore

Pr½Expverif
A ½F; �� ¼ 1� ¼ 0;

and the probability is regardless of the number of queries
from A. tu

248 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

4.4.2 Input/Output Privacy

To prove the input/output privacy, we need the following
two useful lemmas. The first lemma estimates the size of
key space SKMI , and the second lemma estimates the num-
ber of input instances with the same ciphertext ða0; n0Þ. Due
to limited space, we leave their strict proofs in Appendix A
and Appendix B respectively, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2019.2937486.

Lemma 3. Let#SKMI denote the size of the set SK, we have

#SKMI

48

p2
ð2� � 1Þ2:

Lemma 4. For any given pair of integer ða0; n0Þ 2 Z2 with
gcdða0; n0Þ ¼ 1 andmaxfja0j; jn0jg
 2�þ1, define the sets

PI ¼ ða; nÞ 2 Z2 j 9U 2 SKMI Uða; nÞT ¼ ða0; n0ÞT
� �n o

;

PO ¼ ðx; yÞ 2 Z2 j 9U 2 SKMI ðx; yÞ ¼ ðx0; y0ÞUð Þ
� �

;

where ðx0; y0Þ satisfies a0x0 þ n0y0 ¼ 1. Then the size of PI and
PO satisfies

#PI ¼ #PO ¼ #SK
 48

p2
ð2� � 1Þ2:

Employing the above two lemmas, we can easily argue
the one-way security of the input/ouput information.

Theorem 4. For any input ða; nÞ 2 ðZ n f0gÞ2 with
gcdða; nÞ ¼ 1, the algorithm SOCMIða; nÞ is input-private
and output-private according to Definitions 3 and 4
respectively.

Proof. According to Definitions 3 and 4, we need to prove
that the probability of the experiment ExpIpriv

A ½F; �� (resp.
ExpOpriv

A ½F; ��) outputting “1” is negligible.
In these two experiments, the computation task F

denotes the modular inversion operation. In the query
and response phase, the input xi ¼ ðai; niÞ satisfies
gcdðai; niÞ ¼ 1, sxi ¼ ða0i; n0iÞ is obtained by encrypting xi

with the ith secret unimodular matrix txi ¼ Ui randomly
chosen from SKMI , syi ¼ ðx0i; y0iÞ is the result evaluated
by the adversary A, and bi denotes the ith output of sub-
algorithm Verify.

In the challenge phase, x
? ¼ ða?

; n
? Þwith gcdða?

; n
? Þ ¼

1 is a challenge instance chosen from the domain of F .
sx? ¼ ða? 0; n

? 0Þ is obtained by encrypting x
?
with a secret

unimodular matrix tx? ¼ U
?
which is chosen uniformly

from SKMI . For the input privacy, the adversary A is
given sx? and the information gathered in the query and
response phase, and tries to recover x

?
. For the output pri-

vacy, given sx? , sy? ¼ ðx0; y0Þ satisfying a
? 0x0þ n

? 0y0 ¼ 1
and the information gathered in the query and response
phase, the adversaryA is asked to recover ða? Þ�1 modn

?
.

In the query and response phase of the experiment
ExpIpriv

A ½F; ��, since, by Lemma 3, txi ¼ Ui is chosen inde-
pendently and randomly from a sufficient large set
SKMI , sxi can be seen as a one-time pad encryption of xi

with a random key Ui. Consequently, no information
will be leaked to the adversary. For the input privacy, the
adversary A knows sx? ¼ ða? 0; n

? 0Þ and tries to recover

x
?
. By Lemma 4, the number of input instances with the

same ciphertext sx? is #PI . Since tx? is uniformly and
randomly chosen from SKMI , these instances are with
the same probability. Therefore

Pr½ExpIpriv
A ½F; �� ¼ 1�

			 			 ¼ 1

#PI
� 1

48
p2
ð2� � 1Þ2

;

which is a negligible function of �. For the output pri-
vacy, the adversary A knows ða? 0; n

? 0Þ and ðx0; y0Þ, and
tries to recover ða? Þ�1 modn

?
, where a

? 0x0 þ n
? 0y0 ¼ 1.

There are two possible ways. The adversary either recov-
ers ða?

; n
? Þ from ða? 0; n

? 0Þ or directly recovers
ða? Þ�1 modn

?
from ðx0; y0Þ. By Lemma 4, no matter in

which way, the adversary’s success probability satisfies

Pr½ExpOpriv
A ½F; �� ¼ 1�

			 			 � 1

#PI
¼ 1

#PO
� 1

48
p2
ð2� � 1Þ2

;

which is also a negligible function of �. tu

4.5 Efficiency

On the client side, for any given constant k, the cost of blind-
ing the input and verifying the output is substantially lower
than the cost of performing the computation task from
scratch locally.

Theorem 5. Given an integer k > 0, for any input
ða1; . . . ; ak; nÞ 2 Zkþ1 with gcdða1; . . . ; ak; nÞ ¼ 1, the algo-
rithm SOCMMIða1; . . . ; ak; nÞ is Oð1=lognÞ-efficient accord-
ing to Definition 5.

Proof. During the execution of the algorithm SOCMMI
ða1; . . . ; ak; nÞ, sub-algorithm ProbGen needs ðkþ 1Þ2
multiplications, sub-algorithm Verify needs kþ 1 multi-
plications and kðkþ 1Þ modular multiplications, where
we omit other efficient operations such as modular addi-
tion. Hence the total cost on the client side is Oðk2Þ multi-
plications. Since k is a constant and the complexity of
multiplication operation is Oðlog2 nÞ, the complexity of
SOCMMIða1; . . . ; ak; nÞ is Oðlog2 nÞ. Without outsourcing,
the client needs to execute the extended euclidean algo-
rithm k times, which is an Oðlog3 nÞ bit operation. Conse-
quently, according to Definition 5, the proposed algorithm
isOð1=lognÞ-efficient. tu

5 PERFORMANCE EVALUATION

In this section, we provide theoretical and experimental
analysis of the proposed algorithms SOCMIðÞ and
SOCMMIðÞ by (1) comparing our secure outsourcing com-
putation algorithms with the corresponding algorithms
without outsourcing and (2) comparing our secure out-
sourcing computation algorithm SOCMIðÞ with the secure
outsourcing computation algorithm presented in [26]. It is
noteworthy that, since the sub-algorithm Prepro is a prepro-
cessing step, the client-side time cost in our proposed algo-
rithms consists of only two parts: the cost of sub-algorithm
ProbGen and the cost of sub-algorithm Verify.

On the theoretical side, we provide an elaborate descrip-
tion on the computation overhead of algorithms in different
cases. Let M, D, MM, MA and Mod denote the operation of

TIAN ET AL.: NOVEL SECURE OUTSOURCING OF MODULAR INVERSION FOR ARBITRARY AND VARIABLE MODULUS 249

http://doi.ieeecomputersociety.org/10.1109/TSC.2019.2937486
http://doi.ieeecomputersociety.org/10.1109/TSC.2019.2937486

multiplication, division, modular multiplication, modular
addition and the modular operation, respectively. We omit
other operations such as addition and substraction. Let
“SMInvða; nÞ”, “MMInvða1; . . . ; ak; nÞ” denote modular
inversion without outsourcing in single-variable case and
multi-variable case, respectively. The pseudocode is shown
in Algorithms 2 and 3. Table 1 shows the computation
overhead of algorithm SOCMIða; nÞ and algorithm SOCMMI
ða1; . . . ; ak; nÞ in different phases. Table 2 compares the com-
putation overhead of the proposed algorithm with that of
SOCMIða; nÞ algorithm SMInvða; nÞ. The efficiency compari-
son in multi-variable case is given in Table 3. Table 4 shows
the comparison results between our algorithm SOCMIða; nÞ
and the secure outsourcing computation algorithm pre-
sented in [26], where “UP” denotes the untrusted program
model. The results in the tables indicate that, theoretically,
the proposed algorithms have great efficiency advantages
compared with the algorithms without outsourcing and the
algorithm presented in [26].

Algorithm 2. SMInvða; nÞ
Require: Integers a; nwith gcdða; nÞ ¼ 1.
Ensure: An integers x (1 � x < n) such that ax � 1modn.
1: x ¼ 0; old_x = 1, y ¼ 1; old_y = 0, r ¼ n; old_r ¼ a
2: While (r 6¼ 0)
3: q ¼ b old_r=rc
4: t ¼ r; r ¼ old_r� q 	 t, old_r ¼ t
5: u ¼ x modn; x ¼ (old_x� q 	 uÞ modn, old_x ¼ u
6: Output old_x

On the empirical side, we give the experimental evalua-
tion of the proposed secure outsourcing computation algo-
rithms. Our experiments are carried out on Ubuntu
machine with 2.70 GHz Intel Pentium processor and 4 GB
memory. We use C programming language with the GNU
Multiple Precision Arithmetic (GMP) library. We set the
modulus to be 256 � z bits, where z is an integer from 1 to
16. Fig. 2 compares the time cost on the client side in
secure outsourcing computation algorithm SOCMIðÞ with
that in algorithm SMInvðÞ. It can be observed that the
cost on the client side is about 7-11 percent of that of
the algorithm without outsourcing. Fig. 3 compares the
time cost on the client side in secure outsourcing computa-
tion algorithm SOCMIðÞ with that in the algorithm in [26].
The result shows that the cost on the client side in our
algorithm is about 12-17 percent of that in the algorithm in
[26]. For multi-variable scenarios, we compare the client-
side cost between the secure outsourcing computation
algorithm SOCMMIðÞ and the algorithm MMInvðÞ. In
Fig. 4, the bit length of the modulus n is set as 1,024,
while k varies from 5 to 100. In Fig. 5, k is set as 20 while
the bit length of n varies from 256 to 4096. The above
results demonstrate the great efficiency of our proposed
algorithms.

Algorithm 3.MMInvða1; . . . ; ak; nÞ
Require: Integers a1; . . . ; ak; nwith gcdða1; . . . ; ak; nÞ ¼ 1.
Ensure: k integers x1; . . . ; xk such that

Pk
i¼1 aixi � 1modn.

1: ðd1; x1; xkþ1Þ extended_gcdða1; nÞ
2: For i ¼ 2 to k
3: ðdi; xi; yi�1Þ extended_gcdðai; di�1Þ
4: For j ¼ 1 to i� 1
5: xj ¼ xjyi�1 modn
6: xk ¼ xk modn
7: Output x1; . . . ; xk

TABLE 1
The Computation Overhead of Our Algorithms

in Different Phases

ProbGen Verify

SOCMIða; nÞ 4M 2M+2MM+1MA
SOCMMIða1; . . . ; ak; nÞ ðkþ 1Þ2M ðkþ 1ÞM+kðkþ 1ÞMM+k2MA

TABLE 2
Efficiency Comparison in Single-Variable Case

Algorithm Computation Overhead

SMInvða; nÞ 2 lognM+2 logn D+2 lognMM+2 lognMA
SOCMIða; nÞ 6M+2MM+1MA

TABLE 3
Efficiency Comparison in Multi-Variable Case

Algorithm Computation Overhead

MMInvða1; . . . ; ak; nÞ k � 6 lognM+k � 2 logn D+kðk� 1Þ=2MM+1Mod
SOCMMIða1; . . . ; ak; nÞ ðkþ 1Þðkþ 2ÞM+kðkþ 1ÞMM+k2MA

TABLE 4
Comparison between SOCMIða; nÞ and Proposed Algorithm in [26]

ProbGen Verify Total overhead Verifiability UP Modulus

SOCMIða; nÞ 4M 2M+2MM+1MA 6M+2MM+1MA 1 single variable
algorithm in [26] 4MM 12MM+1MA 16MM+1MA 1 two fixed

Fig. 2. Comparison of experimental results between algorithm SOCMIðÞ
and algorithm SMInvðÞ.

250 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

6 APPLICATIONS

In this section, we show two applications for the proposed
outsourcing algorithms SOCMIðÞ and SOCMMIðÞ.

6.1 Secure Outsourcing for the Secret Key
Generation of RSA Algorithm

As one of the first practical public-key cryptosystems, RSA
is widely used for secure data transmission. In such a cryp-
tosystem, the encryption key is public and the decryption
key is secret. The theoretical security is based on the practi-
cal difficulty of factoring the product of two large primes.
Concretely, RSA algorithm consists of three steps: Key gener-
ation, Encryption and Decryption.

1) Key generation:
� Choose two distinct secure prime numbers p and

q, which are at least 512 bits.
� Compute n ¼ pq, fðnÞ ¼ ðp� 1Þðq � 1Þ.
� Choose an integer e such that 1 < e < fðnÞ and

gcdðe;fðnÞÞ ¼ 1
� Compute d ¼ e�1 modfðnÞ; i.e., d is the modular

inverse of e (modulo fðnÞ).
� The public key is fe; ng. The secret key is fd; ng

2) Encryption: For a plaintextm, compute c ¼ me modn
3) Decryption: For a ciphertext c, computem ¼ cd modn

Since p and q are large primes, fðnÞ ¼ ðp� 1Þðq � 1Þ is
also a large number. Instead of computing the inverse by
the user himself in step 1, we give an outsourcing imple-
mentation for Key generation of RSA by invoking the algo-
rithm SOCMIðÞ proposed in Section 4. The details are
shown in Algorithm 4.

Algorithm 4. SOCRSAKGðkÞ
Require: A secure parameter k.
Ensure: Public key fe; ng and secret key fd; ng
1: Choose two distinct secure prime numbers p and q, which

are at least k bits.
2: Compute n ¼ pq, fðnÞ ¼ ðp� 1Þðq � 1Þ.
3: Choose an integer e such that 1 < e < fðnÞ and

gcdðe;fðnÞÞ ¼ 1.
4: Compute d SOCMIðe;fðnÞÞ.
5: Return the public key fe; ng and the secret key fd; ng.

6.2 Secure Outsourcing for the Chinese Reminder
Theorem

Besides being significant in the number theory, the well-
known Chinese reminder theorem is pervasive also in cod-
ing (e.g., redundant residue codes, Reed-Solomon codes)
and cryptography (e.g., secret sharing) [9]. It is especially
suited for computing with large integers, as it allows
replacing one operation in which one knows a bound on
the size of the result by several similar operations on small
integers.

Given k pairwise coprime integers m1; . . . ;mk, the Chi-
nese remainder theorem states that, for an integer n, if one
knows the remainders of the divisions bym1: . . . ;mk, he can
determine the unique remainder of the division by

Qk
i¼1 mi.

More precisely,

Theorem 6 (Chinese Reminder Theorem [9]). Assume
m1; . . . ; mk are positive integers satisfying gcdðmi;mjÞ ¼
1; 8i 6¼ j. Let b1; . . . ; bk be arbitrary integers. Then the system
of congruences

n � b1 mod m1

..

.

n � bk mod mk;

8><
>: (6)

Fig. 3. Comparison of experimental results between algorithm SOCMIðÞ
and algorithm in [26].

Fig. 4. Comparison of experimental results between algorithm
SOCMMIðÞ and algorithm MMInvðÞ when the bit length of n is 1,024.

Fig. 5. Comparison of experimental results between algorithm
SOCMMIðÞ and algorithm MMInvðÞ when k ¼ 20.

TIAN ET AL.: NOVEL SECURE OUTSOURCING OF MODULAR INVERSION FOR ARBITRARY AND VARIABLE MODULUS 251

has exactly one solution modulo the product M ¼
Qk

i¼1 mi,
namely, n ¼

Pk
i¼1 MiM

0
ibi modM, where, for 1 � i � k,

Mi ¼M=mi;MiM
0
i � 1 modmi.

In order to find the unique solution modulo M of
linear congruences (6), we need to perform modular
inversion k times. It is very time-consuming when mi

is large. Utilizing the proposed secure outsourcing
computation algorithm SOCMMIðÞ, Algorithm 5 presents
an outsourcing implement of solving the linear con-
gruences (6).

The correctness of Algorithm 5 is described as follows:
for any i 2 f1; . . . ; kg, since

Pk
i¼1 Mixi � 1 modM and

mj jMi ð8j 6¼ iÞ, we have;

Mixi �
1 mod mi

0 mod mj:

�

Therefore, n ¼
Pk

i¼1 Mixibi modM � bi modmi.

Algorithm 5. SOCCRT ðb1; . . . ; bk; ;m1; . . . ;mkÞ
Require: Integers m1; . . . ;mk with gcdðmi;mjÞ ¼ 1; 8i 6¼ j and

integers b1; . . . ; bk.
Ensure: Integers n ð1 � n �MÞ such that n � bi modmi,

where 1 � i � n,M ¼
Qk

i¼1 mi.

1: ComputeM ¼
Qk

i¼1 mi.
2: For i ¼ 1 to k
3: Mi ¼M=mi.
4: ðx1; . . . ; xkÞ SOCMMIðM1; . . . ;Mk;MÞ.
5: Output n ¼

Pk
i¼1 Mixibi modM .

7 CONCLUSION

This paper investigates how to securely outsource the
modular inversion for arbitrary and variable modulus. By
taking advantages of the unimodular matrix transforma-
tion, we present a novel secure outsourcing computation
algorithm for modular inversion with high-efficiency and
robust cheating resistance. Compared with prior art that
demands two non-colluding servers, our algorithms
remove the strong assumption and only require one sin-
gle cloud server. To demonstrate the wide applicability of
our algorithms, we implement the secure outsourcing for
the key generation of RSA algorithm and the Chinese
Reminder Theorem, and show the results with efficiency
and effectiveness.

ACKNOWLEDGMENTS

This research is supported by National Natural Science
Foundation of China (61702294, 61572267), Natural Sci-
ence Foundation of Shandong Province (ZR2016FQ02),
National Development Foundation of Cryptography
(MMJJ20170126,MMJJ20170118), the Open Research Proj-
ect (2016-MS-23, 2019-MS-03) of State Key Laboratory of
Information Security in Institute of Information Engineer-
ing, Chinese Academy of Sciences, Key Research and
Development Project of Shandong Province, Applied
Basic Research Project of Qingdao City (17-1-1-10-jch).

REFERENCES

[1] J. Jonsson, K. Moriarty, B. Kaliski, and A. Rusch, PKCS# 1: RSA
Cryptography Specifications Version 2.2. RFC8017, Nov. 2016.
[Online]. Available: https://tools.ietf.org/html/rfc8017

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010.

[3] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical GapSVP,” in Proc. 32nd Annu. Cryptology
Conf. Advances Cryptology, 2012, pp. 868–886.

[4] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomor-
phic encryption from (standard) LWE,” in Proc. IEEE 52nd Annu.
Symp. Found. Comput. Sci., 2011, pp. 97–106.

[5] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. S. Wong, “New
algorithms for secure outsourcing of large-scale systems of linear
equations,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 1, pp. 69–
78, Jan. 2015.

[6] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 9, pp. 2386–2396, Sep. 2014.

[7] K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of
computation using fully homomorphic encryption,” in Proc. 30th
Annu. Conf. Advances Cryptology, 2010, pp. 483–501.

[8] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges,” in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw. Appl.,
Apr. 2010, pp. 27–33.

[9] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem: Appli-
cations in Computing, Coding, Cryptography. Singapore: World Sci-
entific, 1996.

[10] Y. Ding, Z. Xu, J. Ye, and K.-K. R. Choo, “Secure outsourcing of
modular exponentiations under single untrusted programme
model,” J. Comput. Syst. Sci., vol. 90, pp. 1–13, 2017.

[11] L. Ducas and D. Stehl�e, “Sanitization of FHE ciphertexts,” in Proc.
35th Annu. Int. Conf. Advances Cryptology, 2016, pp. 294–310.

[12] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” in Proc. 4th Annu. Int. Conf.
Advances Cryptology, 1985, pp. 10–18.

[13] K. Elkhiyaoui,M. €Onen,M.Azraoui, andR.Molva, “Efficient techni-
ques for publicly verifiable delegation of computation,” in Proc. 11th
ACMAsia Conf. Comput. Commun. Secur., 2016, pp. 119–128.

[14] D. Fiore and R. Gennaro, “Publicly verifiable delegation of large
polynomials and matrix computations, with applications,” in
Proc. ACM Conf. Comput. Commun. Secur., 2012, pp. 501–512.

[15] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
Proc. 30th Annu. Cryptology Conf. Advances Cryptology, 2010,
pp. 465–482.

[16] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc. ACM Symp. Theory Comput., 2009, pp. 169–178.

[17] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Proc. 33rd Annu. Cryptology Conf.
Advances Cryptology, 2013, pp. 75–92.

[18] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. 2nd Int. Conf. Theory Cryp-
tography, 2005, pp. 264–282.

[19] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of compu-
tation offloading for mobile systems,” Mobile Netw. Appl., vol. 18,
no. 1, pp. 129–140, Feb. 2013.

[20] X. Lei, X. Liao, T. Huang, and H. Li, “Cloud computing service:
The case of large matrix determinant computation,” IEEE Trans.
Serv. Comput., vol. 8, no. 5, pp. 688–700, Sep. 2015.

[21] P. M. Mell and T. Grance, “The NIST definition of cloud
computing,” Nat. Inst. Standards Technol., Gaithersburg, MD,
USA, Tech. Rep. Sp 800-145, 2011.

[22] M. Newman, Integral Matrices. New York, NY, USA: Academic
Press, 1972.

[23] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan. 2012.

[24] C. P. Schnorr, “Efficient identification and signatures for smart
cards,” in Proc. Conf. Theory Appl. Cryptology, 1990, pp. 239–252.

[25] C. P. Schnorr, “Efficient signature generation by smart cards,” J.
Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[26] Q. Su, J. Yu, C. Tian, H. Zhang, and R. Hao, “How to securely out-
source the inversion modulo a large composite number,” J. Syst.
Softw., vol. 129, pp. 26–34, 2017.

252 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

https://tools.ietf.org/html/rfc8017

[27] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. IEEE INFO-
COM, Apr. 2011, pp. 820–828.

[28] Y. Wang, Q. Wu, D. S. Wong, B. Qin, S. S. M. Chow, Z. Liu, and
X. Tan, “Securely outsourcing exponentiations with single
untrusted program for cloud storage,” in Proc. 19th Eur. Symp.
Res. Comput. Secur., 2014, pp. 326–343.

[29] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage auditing with
verifiable outsourcing of key updates,” IEEE Trans. Inf. Forensics
Secur., vol. 11, no. 6, pp. 1362–1375, Jun. 2016.

[30] F. Zhang, X. Ma, and S. Liu, “Efficient computation outsourcing
for inverting a class of homomorphic functions,” Inf. Sci., vol. 286,
pp. 19–28, 2014.

[31] L. Zhang, “Editorial: Big services era: Global trends of cloud com-
puting and big data,” IEEE Trans. Serv. Comput., vol. 5, no. 4,
pp. 467–468, Oct.–Dec. 2012.

[32] P. Zhao, J. Yu, H. Zhang, Z. Qin, and C. Wang, “How to securely
outsource finding the min-cut of undirected edge-weighted
graphs,” IEEE Trans. Inf. Forensics Secur., 2019, doi: 10.1109/
TIFS.2019.2922277.

[33] K. Zhou, M. H. Afifi, and J. Ren, “ExpSOS: Secure and verifiable
outsourcing of exponentiation operations for mobile cloud
computing,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 11,
pp. 2518–2531, Nov. 2017.

[34] D. Zissis and D. Lekkas, “Addressing cloud computing security
issues,” Future Generation Comput. Syst., vol. 28, no. 3, pp. 583–592,
2012.

Chengliang Tian received the BS and MS
degrees in mathematics from Northwest Univer-
sity, Xi’an, China, in 2006 and 2009, respectively,
and the PhD degree in information security from
Shandong University, Ji’nan, China, in 2013. He
held a post-doctoral position with the State Key
Laboratory of Information Security, Institute of
Information Engineering, Chinese Academy of
Sciences, Beijing. He is currently with the
College of Computer Science and Technology,
Qingdao University, as an assistant professor.

His research interests include lattice-based cryptography and cloud
computing security.

Jia Yu received the BS and MS degrees from the
School of Computer Science and Technology,
Shandong University, in 2000 and 2003, respec-
tively, and the PhD degree from the Institute of
Network Security, Shandong University, in 2006.
He was a visiting professor with the Department
of Computer Science and Engineering, State Uni-
versity of New York at Buffalo, from 2013 to
2014. He is currently a professor with the College
of Computer Science and Technology, Qingdao
University. His research interests include cloud

computing security, key evolving cryptography, digital signature, and
network security.

Hanlin Zhang received the BS degree in soft-
ware engineering from Qingdao University, in
2010, and the MS degree in applied information
technology and PhD degree in information tech-
nology from Towson University, Maryland, in
2011 and 2016, respectively. He is currently
working with Qingdao University as an assistant
professor in the College of Computer Science
and Technology. His research interests include
cloud computing security, blockchain technology,
and IoT security.

HaiyangXue received the PhDdegree in informa-
tion security from the Institute of Information Engi-
neering, Chinese Academy of Sciences, Beijing,
in 2015. He is currently a researcher assistant
with the Institute of Information Engineering. His
research interests include post-quantum cryptog-
raphy and authenticated key exchange.

Cong Wang received the BE and ME degrees in
electrical and computer engineering from Wuhan
University, in 2004 and 2007, respectively, and
the PhD degree in electrical and computer engi-
neering from the Illinois Institute of Technology,
in 2012. He has worked with Palo Alto Research
Center in the summer of 2011. He has been an
assistant professor with the Department of Com-
puter Science, City University of Hong Kong,
since 2012. His research interests include the
areas of cloud computing and security, with cur-

rent focus on secure data services in cloud computing, and secure com-
putation outsourcing. He is a senior member of the IEEE and a member
of the ACM.

Kui Ren received the PhD degree from Worces-
ter Polytechnic Institute. He is currently a profes-
sor with the Institute of Cyberspace Research,
Zhejiang University, China. His current research
interests span cloud and outsourcing security,
wireless and wearable systems security, and
mobile sensing and crowdsourcing. His research
has been supported by NSF, DoE, AFRL, MSR,
and Amazon. He has published extensively in
peer reviewed journals and conferences and
received several Best Paper Awards, including at

ICDCS 2017, IWQoS 2017, and ICNP 2011. He currently serves as an
associate editor of the IEEE Transactions on Dependable and Secure
Computing, the IEEE Transactions on Service Computing, the IEEE
Transactions on Mobile Computing, the IEEE Wireless Communica-
tions, the IEEE Internet of Things Journal, and as an editor for Spinger-
Briefs on Cyber Security Systems and Networks. He is a fellow of the
IEEE, a distinguished lecturer of IEEE, a member of the ACM, and a
past board member of the Internet Privacy Task Force, State of Illinois.

TIAN ET AL.: NOVEL SECURE OUTSOURCING OF MODULAR INVERSION FOR ARBITRARY AND VARIABLE MODULUS 253

http://dx.doi.org/10.1109/TIFS.2019.2922277
http://dx.doi.org/10.1109/TIFS.2019.2922277

	Novel secure outsourcing of modular inversion for arbitrary and variable modulus
	Citation
	Author

	Novel Secure Outsourcing of Modular Inversion for Arbitrary and Variable Modulus

