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Abstract. We introduce a new notion, lossy key encapsulation mech-
anism (lossy KEM), which enhances the notion of key encapsulation
mechanism with lossiness, and can be more efficient than lossy trapdoor
functions. We show that lossy KEM can be constructed from lossy trap-
door functions, lossy trapdoor relations, and entropic projective hashing.
Using lossy KEM as a building block, several previous constructions of
lossy encryption and deterministic public key encryption can be gener-
alized and improved in efficiency.

Keywords: Lossy key encapsulation mechanism · Lossy encryption ·
Deterministic public key encryption

1 Introduction

Lossy Primitives. Lossy primitives became important building blocks of var-
ious cryptosystems in the last decades. The first lossy primitive, lossy trap-
door function (LTDF), was introduced by Peikert and Waters in 2008 [20].
LTDF is useful in building plenty of cryptographic schemes, e.g., oblivious trans-
fer, collision-resistant hash, leakage-resilient encryption, chosen ciphertext-secure
encryption, and deterministic public-key encryption (DPKE). LTDF can be con-
structed from various number-theoretic assumptions and lattice-based assump-
tions [15,24], and from dual projective hashing [23].

In 2009, Bellare et al. introduced lossy encryption [6], which implies indis-
tinguishability against chosen plaintext attacks (IND-CPA) and security against
selective-opening attacks (SOA). Lossy encryption can be constructed from lossy
trapdoor functions [6], from smooth projective hashing [17], and also from vari-
ous concrete number-theoretic and lattice-based assumptions [17].

Xue et al. introduced the notion of lossy trapdoor relations (LTDR) in 2014
[25], which is a relaxation of LTDF for it does not require the recovery of the
pre-image, thus is generally more efficient. It was shown in [25] that LTDR is
useful in constructing lossy encryption, and adaptive trapdoor relation, which is
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a building block for chosen-ciphertext security. And in [25] LTDR is constructed
from several concrete assumptions such as discrete logarithm related assumptions
and subgroup membership assumptions.

Typically, lossy primitives works in two computationally indistinguishable
modes: the injective mode and the lossy mode. In the injective mode an output is
usually mapped from one pre-image, and this makes the primitives information-
theoretically invertible. While in the lossy mode, an output corresponds to var-
ious pre-images, thus it statistically loses some information of the input.

Hybrid Encryption. Hybrid encryption, proposed by Cramer and Shoup
in [11,13], is the combination of an asymmetric key encapsulation mechanism
(KEM) and a symmetric data encapsulation mechanism (DEM). The KEM takes
a public key and a randomness as input, outputs the first part of the ciphertext,
and generates the encryption of a random encapsulated key via a key derivation
function (KDF); the DEM encrypts the plaintext with the encapsulated key,
and outputs the second part of the ciphertext. Given the secret key of the KEM
part and the ciphertext, both the encapsulated key and the plaintext can be
recovered.

A hybrid encryption scheme is essentially a public key encryption scheme.
Compared with general-purpose public-key encryption, hybrid encryption enjoys
the advantage of unrestricted message space, and is usually more efficient, as
pointed out in [13]. Regarding to security, by a composition theorem, it is proved
that a secure KEM plus a secure DEM can yield a secure hybrid encryption [13].
Thus, the KEM-DEM paradigm allows us to separate the design of the two parts.
In many cases a simple one-time pad is enough for the DEM part, and we can
focus on the KEM part.

However, whether deterministic public key encryption (DPKE), which is
a promising solution to the issues of searchable encryption and randomness-
subversion [1–3,8,9,16,21,23], can benefit from the KEM-DEM paradigm is a
long-pending problem. Since in DPKE the encryption algorithm is deterministic,
there is no randomness for generating the encapsulated key in the KEM. In [3] a
hybrid encryption style DPKE was proposed, with an LTDF playing the KEM
part, and a one-time pad playing the DEM part. Since an LTDF statistically
hides the information of its pre-image in the lossy mode, it can cooperate with
a powerful KDF, the universal computational extractor for statistically unpre-
dictable sources UCE[Ssup], which is a strong primitive introduced by Bellare
et al. in [4,5] and is an important tool in the DPKE construction of [3].

Motivated by the usefulness of previous lossy primitives and the advantage of
hybrid encryption, it is interesting to enhance the notion of KEM with lossiness,
which is a natural match of the newly proposed primitive UCE[Ssup], as stated
in [3]. Also, it is natural to generalize the KEM usage of LTDF in [3] to embrace
more efficient constructions from other primitives.
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1.1 Our Contributions: Lossy KEM

Definition. We define a new lossy primitive called lossy key encapsulation
mechanism, which extends the usage of several lossy primitives in some scenarios,
e.g. LTDF and LTDR, to the form of KEM.

Originally, the syntax of KEM requires that the encapsulation algorithm gen-
erate a ciphertext C and an encapsulated key K out of an input randomness r.
Generally, looking inside, the encapsulation algorithm can be decomposed into
two subroutines: one generates a binary relation (C, tK), where C is the cipher-
text, and tK is the material for producing the encapsulated key K and is usually
obtained by applying an injective map on r; the other is the key derivation func-
tion, which takes tK as input and outputs K. Typically the relation (C, tK) is
one-way, i.e., given a random C and the public key, it is hard to find tK. Also
the decapsulation algorithm can be decomposed into two subroutines: the first
one recovers tK from C with the secret key, and the other is the KDF. Note
that this viewpoint on KEM was implicit in [22] by Wee, with the relation being
injective, that is, there exists at most one tK corresponding to C.

The syntax of lossy KEM is similar to that of the original KEM. However,
akin to previous lossy primitives, lossy KEM also works in two modes, an injec-
tive mode for functionality and a lossy mode for the security proof. In the injec-
tive mode, the key material tK can be recovered from the ciphertext C with
the secret key, thus K can be recovered; while in the lossy mode, the ciphertext
C statistically hides the information of tK and the encapsulated key K. The
injective mode and the lossy mode should be computationally indistinguishable
given the public key. We show that lossy KEM implies IND-secure KEM, just
like lossy encryption implies IND-CPA secure encryption.

Constructions. Then we show the general ideas of constructing lossy KEM
from two previous lossy primitives, i.e., LTDF, LTDR, and from entropic pro-
jective hashing [18]. Details of the constructions are in Sect. 4.

– Given an LTDF f , the lossy KEM on input r generates the relation (C =
f(r), tK = r), derives the key K = h(tK), and outputs (C,K), where the KDF
h is randomly chosen from a family of pairwise independent hash functions.
The KDF can also be other suitable primitives. Note that the KEM usage
of LTDF in the DPKE construction of [3] is just the case, with the KDF
being picked from a family of UCE[Ssup]-secure hash functions. The lossiness
of the KEM follows from that of the LTDF, i.e., in the lossy mode, C = f(r)
statistically hides the information of r.

– Given an LTDR (f,H), where H is a publicly computable injective map, the
lossy KEM on input r generates the relation (C = f(r), tK = H(r)), derives
the key K = h(tK) and outputs (C,K), where the KDF h is also randomly
chosen from a family of pairwise independent hash functions.

– Given an entropic projective hashing (H,Λ,R,X,L,Π, S, α), where H is the
private evaluation algorithm, Λ is the public evaluation algorithm, X is a
language and L is a subset of X. With a public key x ∈ X, the lossy KEM on
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input r ∈ R generates the relation (C = α(r) ∈ S, tK = H(r, x) ∈ Π), derives
the key K = h(tK), and outputs (C,K), where α is a projective map, and
h is randomly chosen from a family of pairwise independent hash functions.
If x ∈ L then the lossy KEM is working in the injective mode, otherwise if
x ∈ X\L then the lossy KEM is working in the lossy mode.

Applications. The new lossy primitive lossy KEM is useful in constructing
lossy encryption and deterministic public key encryption.

– With lossy KEM, we generalize constructions of lossy encryption based on
LTDF and LTDR in [6] and [25] respectively, and the construction of lossy
encryption from smooth projective hashing in [17].

– Moreover, we generalize the deterministic public key encryption based on
LTDF in [3]. Generally, if we choose a lossy KEM constructed from LTDR,
then we can get better efficiency, compared to [3].

Organization. In Sect. 2, some notations and definitions are introduced. In
Sect. 3, the definition of lossy KEM is given. In Sect. 4, several constructions
of lossy KEM are shown. In Sect. 5, we construct a lossy encryption from
lossy KEM. In Sect. 6, we construct a DPKE from lossy KEM. Section 7 is the
conclusion.

2 Preliminaries

Notations. Let λ be the security parameter. For a string x, |x| denotes its
length. For a finite set S, |S| denotes its size. Vectors are denoted by bold-
face characters. For a vector x, |x| denotes the number of its components.

x
$← S means that x is chosen from the set S uniformly at random. For

a randomized algorithm A, x
$← A(·) means that x is assigned the out-

put of A. An algorithm is efficient if it runs in polynomial time in its input
length. A function f(λ) is negligible if it decreases faster than any polyno-
mial, and is denoted as f(λ) ≤ ε(λ). The min-entropy of a random variable
X is denoted as H∞(X) = − log(max

x
PX(x)), wherein PX(x) = Pr[X = x].

Given a random variable Y , the conditional min-entropy of X is H̃∞(X|Y ) =
− log( E

y←Y
max

x
Pr[X = x|Y = y]) [14]. The statistical distance between two

random variables X and Y is Δ(X,Y ) = 1
2 Σ

x
|PX(x) − PY (x)|, X and Y are

statistically close if Δ(X,Y ) is negligible, and is denoted as X
s≈ Y . X and

Y are computationally indistinguishable if no efficient algorithm can tell them
apart given only oracle access, and is denoted as X

c≈ Y . PPT is the short form
of probabilistic polynomial time. ⊥ is the empty symbol.
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2.1 Key Encapsulation Mechanism

Here we recall the definition and security notion of KEM. In the definition we also
use an alternative description, for the sake of better description of lossy KEM in
subsequent sections. We believe that the alternative description is still without
loss of generality and gives better understanding of KEM. We use the alternative
description in some occasions if necessary. xue2014lossy A key encapsulation
mechanism KEM is a triple of algorithms (KEM.Kg, KEM.Enc, KEM.Dec):

– Key generation: (pk, sk) $← KEM.Kg(λ).
– Encapsulation: (C,K) ← KEM.Enc(pk, r). KEM.Enc can be decomposed into

two subroutines, Rg and KDF.
• Relation generation: (C, tK) ← KEM.Enc.Rg(pk, r), where tK is induced

by an injective function of r.
• Key derivation: K ← KEM.Enc.KDF(tK), where KDF : {0, 1}∗ → {0, 1}∗

is a key derivation function (usually a pairwise independent hash function
with its key specified in pk and sk).

– Decapsulation: K ← KEM.Dec(sk, C). Similarly, KEM.Dec can also be decom-
posed into two subroutines, Inv and KDF.

• Inversion: tK ← KEM.Dec.Inv(sk, C);
• Key derivation: K ← KEM.Dec.KDF(tK).

The IND security of KEM is described by the following game, where A is
the adversary, RSp(λ) is the randomness space, KEM.kl is the length of the
encapsulated key. b′ ?= b is a predicate denoting whether the two bits are equal,
1 is true and 0 is false.

GameindKEM,A(λ)

(pk, sk) $← KEM.Kg(λ); r $← RSp(λ); (C,K0) ← KEM.Enc(pk, r);

K1
$← {0, 1}KEM.kl; b $← {0, 1}; b′ $← A(pk,C,Kb); Return (b′ ?= b)

The advantage of A in winning the game is defined as AdvindKEM,A(λ) =
2Pr[GameindKEM,A(λ)] − 1, where GameindKEM,A(λ) is the abbreviation for
“GameindKEM,A(λ) ⇒ 1”. The kind of abbreviation will be used throughout the
paper. We say that KEM is IND secure if for all PPT adversary A, AdvindKEM,A(λ)
is negligible.

2.2 Lossy Primitives

Here is a brief recap of the definitions of previous lossy primitives in literatures
[6,20,25].
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Lossy Trapdoor Functions. A collection of (m, l)-lossy trapdoor functions is
a 4-tuple of PPT algorithms F = (F.Ig, F.Lg, F.Ev, F.Inv) described below.

– Sampling the injective mode: (σI , τ) $← F.Ig(λ), where σI is a function index,
and τ is a trapdoor.

– Sampling the lossy mode: (σL,⊥) $← F.Lg(λ). In the lossy mode, the function
is irreversible, thus there is no trapdoor.

– Evaluation: y ← F.Ev(σ, x), where σ is a function index, x ∈ {0, 1}m. There
are:

• injective mode: if σ is produced by F.Ig(·), then the function F.Ev(·) is
injective.

• lossy mode: if σ is produced by F.Lg(·), then the size of the image of
F.Ev(·) is at most 2m−l, i.e., there are many pre-images corresponding to
an image.

– Inversion: x ← F.Inv(τ, y), i.e., the function can be inverted in the injective
mode with the trapdoor.

The function indices σI and σL respectively produced in the injective mode and
the lossy mode should be computationally indistinguishable.

Lossy Trapdoor Relations. A collection of (m, l)-lossy trapdoor relations is
a 4-tuple of PPT algorithms F = (F.Ig, F.Lg, F.Ev, F.Inv) described below.

– Sampling the injective mode: (σI , τ,H) $← F.Ig(λ), where σI is a function
index, τ is a trapdoor, and H is a publicly computable injective map.

– Sampling the lossy mode: (σL,⊥,H) $← F.Lg(λ). Also, there is no trapdoor in
the lossy mode of LTDR.

– Encapsulation: (y, z) ← F.Ev(σ,H, x), where x ∈ {0, 1}m, y = f(σ, x) for a
function f parameterized by σ, z = H(x), and there are:

• injective mode: if σ is produced by F.Ig(·), then the function f(σ, ·) is
injective.

• lossy mode: if σ is produced by F.Lg(·), then the size of the image of f(σ, ·)
is at most 2m−l.

– Decapsulation: z ← F.Inv(τ,H, y), where z = H(x). That is, the relation (y, z)
can be recovered in the injective mode given the trapdoor.

Also, the function indices σI and σL respectively produced in the injective mode
and the lossy mode should be computationally indistinguishable. LTDR is gen-
erally more efficient than LTDF since it does not require the recovery of the
pre-image x but a publicly computable injective map of it, i.e., z = H(x), as
shown in [25].

Lossy Encryption. A lossy public key encryption LE is a 4-tuple of algorithms,
(LE.Kg, LE.LKg, LE.Enc, LE.Dec).

– Key generation: (pkI , sk) $← LE.Kg(λ).
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– Lossy key generation: (pkL,⊥) $← LE.LKg(λ).
– Encryption: C ← LE.Enc(pk,m, r), where m is the plaintext, and r is the

randomness.
– Decryption: m ← LE.Dec(sk, C).

And the algorithms should satisfy the following addition properties:

1. Correctness: for all (pkI , sk) generated by LE.Kg, all m and r, there is m =
LE.Dec(sk, C) where C ← LE.Enc(pkI ,m, r).

2. Lossiness: for all pkL generated by LE.LKg, and any pair of distinct messages
(m0,m1), the respective distributions of the ciphertexts of m0 and m1 are
statistically close, i.e., LE.Enc(pkL,m0, R)

s≈ LE.ENC(pkL,m1, R), where R is
the randomness space.

3. Indistinguishability: The public keys pkI and pkL respectively generated by
LE.Kg and LE.LKg are computationally indistinguishable.

2.3 Entropic Projective Hashing

Cramer and Shoup introduced smooth projective hashing (SPH) in [12]. SPH
is a family of keyed hash functions defined over a “hard” language, and is use-
ful in building many cryptographic primitives such as chosen-ciphertext secure
encryption, leakage-resilient encryption, lossy encryption. In [18] Kiltz et al. gen-
eralized the smoothness property of SPH to “κ-entropic”. A κ-entropic projective
hashing P = (H,Λ,R,X,L,Π, S, α) is explained below:

– Hard language (X,L): X is a language and L is a subset of X. For any x ∈ L
there is a witness w, and for x ∈ X\L there is no witness. By assumption, it
is hard to distinguish x ∈ L and x′ ∈ X\L efficiently.

– Key Projection α: The hash function is keyed by r ∈ R. There is also a
projective map α : R 	→ S, given a hash key r ∈ R, generates a projective key
s = α(r) ∈ S. Both r and s can be used to evaluate the hash value, in the
private evaluation algorithm H and public evaluation algorithm Λ respectively.

– Private evaluation H: Given the hash key r, and a hash input x ∈ X, the hash
value π = H(r, x) ∈ Π is efficiently computable.

– Public evaluation Λ: The public evaluation algorithm Λ only works for x ∈ L.
For any hash key r ∈ R, the action of H(r, ·) on L is completed determined
by α(r). That is, for any x ∈ L with witness w, Λ correctly computes the
hash value with w and α(r), i.e., Λ(α(r), x, w) = H(r, x). It is also called the
projective property.

– κ-entropic property: The property is defined for x ∈ X\L. P is ε-almost κ-
entropic if for all x ∈ X\L, there is Pr[H̃∞(H(r, x))|α(r) ≥ κ] ≥ 1−ε. That is,
the hash value of an input x ∈ X\L cannot be determined given the projective
key in the information-theoretic sense.

P is smooth if the two distributions over X\L × S × Π, defined as Z1 =

(x, s = α(r), π = H(r, x)) and Z2 = (x, s = α(r), π′) where r ∈ R and π′ $← Π,
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are statistically close [12]. That is, for x ∈ X\L, the hash value H(r, x) is nearly
uniformly distributed in its range Π given only the projective key α(r). Obvi-
ously smoothness is stronger than the κ-entropic property. However, κ-entropic
is enough in many scenarios. And as shown in [18], the κ-entropic property can
be converted into smoothness with a pairwise independent hash.

3 Lossy Key Encapsulation Mechanism

In this section we define the notion of lossy key encapsulation mechanism. The
definition combines those of KEM and lossy encryption.

Definition 1 (Lossy Key Encapsulation Mechanism). A lossy key encap-
sulation mechanism LKE is a 4-tuple of algorithms, (LKE.Kg, LKE.LKg, LKE.Enc,
LKE.Dec).

– Key generation: (pkI , sk) $← LKE.Kg(λ).
– Lossy key generation: (pkL,⊥) $← LKE.LKg(λ).
– Encapsulation: (C,K) ← LKE.Enc(pk, r), where pk is generated by either

LKE.Kg or LKE.LKg. LKE.Enc can be decomposed into two subroutines, LRg
and KDF.

• Lossy relation generation: (C, tK) ← LKE.Enc.LRg(pk, r), where C is the
image of r, and tK is induced by an injective function from r.

• Key derivation: K ← LKE.Enc.KDF(tK), where KDF : {0, 1}∗ → {0, 1}∗

is a key derivation function with its key specified in pk and sk.
– Decapsulation: K ← LKE.Dec(sk, C). Similarly, LKE.Dec can also be decom-

posed into two subroutines, Inv and KDF.
• Inversion: tK ← LKE.Dec.Inv(sk, C);
• Key derivation: K ← LKE.Dec.KDF(tK);

We require the following properties for the algorithms:

1. Correctness: for all (pk, sk) generated by LKE.Kg, there is K =
LKE.Dec(sk, C) where (C,K) ← LKE.Enc(pk, r).

2. Lossiness: for all pk generated by LKE.LKg, (C,K) ← LKE.Enc(pk, r), C
statistically hides the information of r and consequently the information of
tK, thus K can not be recovered. In detail, denote the size of the set of all r′s
as 2LKE.il and the size of the set of all C ′s as 2LKE.cl, then LKE.cl < LKE.il. We
call δ = LKE.il − LKE.cl the lossiness of LKE, and there is H̃∞(tK|C) ≥ δ.

3. Indistinguishability: No polynomial time algorithm can distinguish the public
keys generated by LKE.Kg and LKE.LKg. We further describe the requirement
by the following game:

GamelossLKE,A(λ)

(pk0, sk) $← LKE.Kg(λ); (pk1,⊥) $← LKE.LKg(λ);

b
$← {0, 1}; b′ $← A(λ, pkb); Return (b′ ?= b)

The advantage of the adversary A in winning the game, defined as
AdvlossLKE,A(λ) = 2Pr[GamelossLKE,A(λ)] − 1, is negligible.
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Akin to the case that lossy encryption implies IND-CPA secure encryption [6],
lossy KEM also implies IND-secure KEM. With a generalized leftover hash
lemma proposed by Dodis et al. in [19], we prove that a lossy KEM is IND
secure with the key derivation function KDF being chosen from a family of pair-
wise independent hash functions.

Lemma 1 (Generalized Leftover Hash Lemma [19]). Let X,Y be random
variables such that X ∈ D and H̃∞(X|Y ) ≥ δ. Let H be a family of pairwise

independent hash function from D to {0, 1}k. Then for h
$← H, and k ≤ δ −

2 log(1/ε) there is Δ((Y, h, h(X)), (Y, h, Uk)) ≤ ε.

Theorem 1. Assume that the key derivation function KDF is randomly chosen
from a family of pairwise independent hash functions mapping D to {0, 1}k,
where D is the set of all tK ′s and k ≤ δ − 2 log(1/ε), then a lossy KEM LKE
with lossiness δ is also IND secure. Specifically, let A be an IND adversary,
then we could construct a lossy KEM adversary B, such that for A, B, there is
AdvindLKE,A(·) ≤ 2AdvlossLKE,B(·).
Proof. We prove the theorem via a sequence of games. Let A be an IND adver-
sary attacking the IND security of the lossy KEM, and Game0 be the original
IND game. Denote the probability of A in winning Gamei as Pr[GA

i (·)], then
AdvindLKE,A(·) = 2Pr[GA

0 (·) − 1].
Game1: Replace the key generation algorithm LKE.Kg(·) with LKE.LKg(·).

Then we can construct a lossy KEM adversary B invoking A as follows:

B(λ, pkb)

r
$← RSp(λ); (C, tK)←LKE.Enc.LRg(pk, r);

K0 ← LKE.Enc.KDF(tK);K1
$← {0, 1}k; d $← {0, 1};

d′ $← A(pkb,C,Kd); If (d′ = d) return 0, otherwise return 1.

If b = 0, i.e., B receives a normal public key, then B is simulating Game0 for
A. Else, if b = 1, i.e., B receives a lossy public key, then B is simulating Game1.
Hence, Pr[GA

0 (·)] − Pr[GA
1 (·)] ≤ AdvlossLKE,B(·).

In Game1, LKE is working in the lossy mode, thus the ciphertext C statisti-
cally hides the information of tK, i.e., H̃∞(tK|C) ≥ δ. With Lemma 1 there is
Δ((C,KDF,KDF(tK)), (C,KDF, Uk)) ≤ ε, i.e., K0 and K1 are statistically close,
thus the probability of A in winning the game is Pr[G1

A(·)] = 1/2.
By summing up there is AdvindLKE,A(·) ≤ 2AdvlossLKE,B(·), which is negligible since

LKE is assumed to be lossy. ��

4 Constructions of Lossy KEM

Here we show constructions of lossy KEM from lossy trapdoor functions, lossy
trapdoor relations, and entropic projective hashing. The constructions are direct
and simple.



Lossy KEM and Its Applications 135

4.1 Lossy KEM from LTDF

Given a collection of lossy trapdoor functions F = (F.Ig, F.Lg, F.Ev, F.Inv), and
a family of pairwise independent hash functions H, we could construct a lossy
KEM LK = (LK.Kg, LK.LKg, LK.Enc, LK.Dec) as follows:

– Key generation (pkI , sk) $← LK.Kg(λ): (σI , τ) $← F.Ig(λ); h
$← H; (pkI , sk) ←

((σI , h), (τ, h)).

– Lossy key generation (pkL,⊥) $← LK.LKg(λ): (σL,⊥) $← F.Lg(λ); h
$← H;

(pkL,⊥) ← ((σL, h),⊥).
– Encapsulation (C,K)←LK.Enc(pk, r): C ← F.Ev(σ, r), tK ← r,K ← h(tK).
– Decapsulation K ← LK.Dec(sk, C): r ← F.Inv(τ, C), tK ← r,K ← h(tK).

Theorem 2. Assume that F is a collection of (m, l)-lossy trapdoor functions,
and H is a family of pairwise independent hash functions, then LK is a lossy
KEM with lossiness δ = l.

Proof. – Correctness: follows from the injective mode of F, i.e., for all (σI , τ)
produced by F.Ig, and C ← F.Ev(σI , r), there is r = F.Inv(τ, C), thus K ←
h(r) can be recovered.

– Lossiness: follows from the lossy mode of F, i.e., for all (σL,⊥) produced by
F.Lg, and C ← F.Ev(σL, r), the size of the set of all C’s is at most 2m−l, i.e.,
C statistically loses at least l bits information of r. Since tK = r, it means
that H̃∞(tK|C) ≥ l. Thus K = h(r) can not be recovered. And the lossiness
of LK is l.

– Indistinguishability: follows from the indistinguishability of the injective mode
and the lossy mode of F.

��

4.2 Lossy KEM from LTDR

Given a collection of lossy trapdoor relations F = (F.Ig, F.Lg, F.Ev, F.Inv) and
and a family of pairwise independent hash functions H, we could construct a
lossy KEM LK = (LK.Kg, LK.LKg, LK.Enc, LK.Dec) as follows:

– Key generation (pkI , sk) $← LK.Kg(λ): (σI ,H, τ) $← F.Ig(λ); h
$← H;

(pkI , sk) ← ((σI ,H, h), (τ,H, h)).

– Lossy key generation (pkL,⊥) $← LK.LKg(λ): (σL,H,⊥) $← F.Lg(λ); h
$← H;

(pkL,⊥) ← ((σL,H, h),⊥).
– Encapsulation (C,K)←LK.Enc(pk, r): (C,H(r)) ← F.Ev(σ,H, r), tK ←

H(r),K ← h(tK).
– Decapsulation K ← LK.Dec(sk, C): H(r) ← F.Inv(τ,H,C), tK ← H(r),K ←

h(H(r)).

Theorem 3. Assume that F is a collection of (m, l)-lossy trapdoor relations,
and H is a family of pairwise independent hash functions, then LK is a lossy
KEM with lossiness δ = l.
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Proof. – Correctness: follows from the injective mode of F, i.e., for all (σI , τ) pro-
duced by F.Ig, and (C,H(r)) ← F.Ev(σI ,H, r), there is H(r) = F.Inv(τ,H,C),
thus K ← h(H(r)) can be recovered.

– Lossiness: follows from the lossy mode of F, i.e., for all (σL,⊥) produced by
F.Lg, and C ← F.Ev(σL,H, r), the size of the set of all C’s is at most 2m−l, i.e.,
C statistically loses at least l bits information of r and H(r). Since tK = H(r),
there is H̃∞(tK|C) ≥ l. Thus K = h(H(r)) can not be recovered. And the
lossiness of LK is l.

– Indistinguishability: follows from the indistinguishability of the injective mode
and the lossy mode of F.

��

4.3 Lossy KEM from Entropic Projective Hashing

In [23] Wee defined dual projective hashing, which is similar to smooth projective
hashing, for the purpose of constructing lossy trapdoor function and determin-
istic public key encryption. Here we show that lossy KEM can be directly con-
structed from the weaker primitive, entropic projective hashing, without making
a detour from lossy trapdoor functions, in a similar way with the lossy encryption
constructed from smooth projective hashing in [17].

Given a κ-entropic projective hashing P = (H,Λ,R,X,L,Π, S, α) and a fam-
ily of pairwise independent hash functions H, we construct a lossy KEM LK =
(LK.Kg, LK.LKg, LK.Enc, LK.Dec) as follows:

– Key generation (pkI , sk) $← LK.Kg(λ): (x,w) $← L; h
$← H; (pkI , sk) ←

((x, h), (x,w, h)).

– Lossy key generation (pkL,⊥) $← LK.LKg(λ): (x′,⊥) $← X\L; h
$← H;

(pkL,⊥) ← ((x′, h),⊥).
– Encapsulation (C,K)←LK.Enc(pk, r): C ← α(r), tK ← H(r, x),K ← h(tK).
– Decapsulation K ← LK.Dec(sk, C): tK ← Λ(α(r), x, w),K ← h(tK).

Theorem 4. Assume that P is a κ-entropic projective hashing, and H is a family
of pairwise independent hash functions, then LK is a lossy KEM with lossiness κ.

Proof. – Correctness: Follows from the projective property of P, i.e., for all
x ∈ L with witness w, and C = α(r), there is tK = Λ(α(r), x, w) = H(r, x),
thus K = h(tK) can be recovered.

– Lossiness: Follows from the entropic property of P, since for all x′ ∈ X\L,
given C = α(r), tK = H(r, x′) can not be determined by C, and with over-
whelming probability there is H̃∞(H(r, x′)|α(r)) ≥ κ. It means that H(·, x′)
is an injective function of r in the case of x′ ∈ X\L, and C statistically hides
the information of tK, with lossiness κ.

– Indistinguishability: Follows from the indistinguishability of x ∈ L and x′ ∈
X\L.

��
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5 Lossy Encryption from Lossy KEM

A natural and immediate application of lossy KEM is to construct lossy encryp-
tion, with a proper randomness extractor, e.g., a pairwise-independent hash,
being the key derivation function. In detail, given a lossy KEM LKE = (LKE.Kg,
LKE.LKg, LKE.Enc, LKE.Dec), with its encapsulated key length being k; let the
KDF h of LKE be chosen from a family of pairwise-independent hash functions
H with proper i/o length, and the description of h be specified in the public
key and secret key. Then we construct a lossy encryption scheme LE = (LE.Kg,
LE.LKg, LE.Enc, LE.Dec) encrypting messages from {0, 1}kas follows:

LE.Kg(1λ)

(pkI , sk) $← LKE.Kg(1λ)
(PKI , SK) ← (pkI , sk)
Return (PKI , SK)

LE.LKg(1λ)

(pkL,⊥) $← LKE.LKg(1λ)
PKL ← pkL

Return (PKL,⊥)

LE.Enc(PK,m, r)
(C1, tK) ← LKE.Enc.Rg(pk, r)
K ← h(tK)
C2 ← m ⊕ K

Return (C1, C2)

LE.Dec(SK,C)
(C1, C2) ← C

tK ← LKE.Dec.Inv(SK,C1)
K ← h(tK)
m ← C2 ⊕ K

Return m

The construction is a generalization of the lossy encryptions from lossy trap-
door functions and lossy trapdoor relations proposed in [6,25]; if LKE is con-
structed from entropic projective hashing, then it also generalizes the lossy
encryption from smooth projective hashing in [17]; thus it is obvious that LE
satisfies the properties of lossy encryption.

Theorem 5. Assume that LKE is a lossy KEM with lossiness δ, and H is a
family of pairwise independent hash functions mapping D to {0, 1}k, where D is
the set of all tK’s and k ≤ δ − 2 log(1/ε). Then LE is a lossy encryption.

Proof. – The correctness and indistinguishability of LE follow readily from those
properties of LKE.

– As to the lossiness, i.e., for all PKL generated by LE.LKg, the encryption of
any pair of distinct messages (m0,m1) should be statistically close, it mainly
follows from the lossy mode of the lossy KEM. In the lossy mode, there is
H̃∞(tK|C1) ≥ δ. With Lemma 1 we know that K is statistically close to
the uniform distribution on {0, 1}k. Consequently, C2 statistically hides the
information of the plaintext. Thus, the ciphertext distributions of two distinct
messages are statistically close.

��
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6 Deterministic Public Key Encryption from Lossy KEM

Another application of lossy KEM is the construction of deterministic public key
encryption scheme. Firstly we recall some definitions.

6.1 Deterministic Public Key Encryption

A deterministic PKE scheme DE = (DE.Kg, DE.Enc, DE.Dec) is defined below:

1. (probabilistic) Key generation: (PK,SK) $← DE.Kg(λ);
2. (deterministic) Encryption: C ← DE.Enc(PK,M);
3. (deterministic) Decryption: M ← DE.Dec(SK,C).

We use the IND-style definition of PRIV security from [2]. A PRIV adversary
A = (A1,A2) of the DPKE scheme is a pair of PPT algorithms:

– Message generator A1: (m0,m1) ← A1(λ); it is required that
i. |m0| = |m1| ≤ v(λ) for a certain polynomial v, and |m0[i]| = |m1[i]| for

every 1 ≤ i ≤ |m0|, and
ii. For i �= j, 1 ≤ i, j ≤ |m0|, there is mb[i] �= mb[j] for b = 0 and b = 1

respectively.
– Guesser A2: b′ ← A2(λ, PK, cb).

To make the security of DPKE schemes achievable, we should further
stipulate that the adversary A have high min-entropy. That is, the function
GuessA(λ) = Pr[mb[i] = m : (m0,m1)

$← A1(λ)] is negligible for all b ∈
{0, 1}, 1 ≤ i ≤ |mb|,m ∈ {0, 1}∗.

The IND-style PRIV security is described by the following game:

GameprivDE,A(λ)

(pk, sk) $← DE.Kg(λ); b $← {0, 1}; (m0,m1)
$← A1(λ);

For i = 1 to |m0| do c[i] ← DE.Enc(pk,mb[i]);

b′ $← A2(λ, pk, c); Return (b′ ?= b)

The advantage of the adversary A in winning the game is defined as AdvprivDE,A(λ) =
2Pr[GameprivDE,A(λ)] − 1.

We say that DE is PRIV secure if AdvprivDE,A(·) is negligible for all PPT adver-
sary A with high min-entropy.

6.2 Universal Computational Extractor

In [3] Bellare and Hoang solved the long-pending open problem of constructing
full PRIV secure DPKE in the standard model with the “UCE + LTDF” method,
where UCE stands for universal computational extractor studied in [4,5,10].
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A family of hash functions H=(H.Kg,H.Ev)is UCE[S] secure if it is indistin-
guishable with a random oracle of the same input and output length for any
PPT adversary pair (S,D), where S is called the source and D is called the dis-
tinguisher. S interacts with an oracle HASH and outputs a leakage L describing
the interaction. The oracle HASH is decided by a bit b ∈ {0, 1}. If b = 0 then
HASH is a random oracle [7]; otherwise, HASH is a function from H. The distin-
guisher D receives the leakage L and outputs a guess bit about HASH. Here is
the formal definition of the UCE security and the oracle HASH.

GameuceH,S,D(1λ)

b
$← {0, 1};hk

$← H.Kg(1λ);

L
$← SHASH(1λ); b′ $← D(1λ, hk, L);

Return (b′ ?= b)

HASH(x, 1l)
If T [x, l] = ⊥ then

If b = 0 then T [x, l] $← {0, 1}l

Else T [x, l] ← H.Ev(1λ, hk, x, 1l)
Return T [x, l]

However, to make UCE security meaningful, the source S should be restricted
to a certain type. In this paper we use statistically unpredictable sources, i.e.,
the HASH queries of S is hard to guess for a statistical predictor P given the
leakage of S. Since the unpredictability of S is the property of S and is unrelated
to the property of H, here the oracle HASH is the random oracle.

GamepredS,P (1λ)

Q ← ∅;L $← SHASH(1λ);

Q′ $← P (1λ, L); Return (Q′ ∩ Q �= ∅)

HASH(x, 1l)

If T [x, l] = ⊥ then T [x, l] $← {0, 1}l;
Q ← Q ∪ x; Return T [x, l]

We say that a hash family H is UCE[Ssup] secure if AdvuceH,S,D =
2Pr[GameuceH,S,D(1λ)] − 1 is negligible for all PPT adversaries (S,D), where S is
statistically unpredictable for all computationally unbounded predictor P, with
AdvpredS,P (1λ) = Pr[GamepredS,P (1λ)] being negligible.

6.3 DPKE from Lossy KEM

We generalize the “UCE + LTDF” method for constructing full PRIV-secure
DPKE in the standard model proposed in [3] to a “UCE + lossy KEM” way.
Given a lossy KEM LKE = (LKE.Kg, LKE.LKg, LKE.Enc, LKE.Dec), with its
input length denoted as LKE.il, ciphertext length denoted as LKE.cl, and encap-
sulated key length denoted as LKE.kl; and a UCE[Ssup] secure hash function family
H=(H.Kg, H.Ev) with variable input/output length, we construct a deterministic
public key encryption DE = (DE.Kg, DE.LKg, DE.Enc, DE.Dec) as follows:
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DE.Kg(λ)

(pk, sk)
$← LKE.Kg(λ)

hk
$← H.Kg(λ)

PK ← (pk, hk)

SK ← (sk, hk)

Return (PK, SK)

DE.Enc(PK, m)

r ← H.Ev(hk, m, 1
LKE.il

)

(C1, tK) ← LKE.Enc.Rg(pk, r)

K ← H.Ev(hk, tK, 1
LKE.kl

)

C2 ← m ⊕ K

Return (C1, C2)

DE.Dec(λ)

(C1, C2) ← C

tK ← LKE.Dec.Inv(sk, C1)

K ← H.Ev(hk, tK, 1
LKE.kl

)

m ← C2 ⊕ K

Return m

Then we prove the PRIV security of DE with the following theorem, which
is similar to the Theorem 3.2 of [3], since the construction is a generalization of
the DE1 scheme in [3].

Theorem 6. Assume that LKE is a lossy KEM, H is a UCE[Ssup] secure hash
family with variable output length, then the deterministic public key encryption
DE is PRIV secure. Specifically, let A = (A1,A2) be a PRIV adversary with high
min-entropy, then we could construct a lossy KEM adversary B, a pair of UCE
adversary (S,D), such that for A, B and an arbitrary statistical predictor P,

AdvprivDE,A(·) ≤ 2AdvlossLKE,B(·) + 2AdvuceH,S,D(·) + 3v2/2LKE.il,

AdvpredS,P (·) ≤ qvGuessA(·) + 3v2/21+LKE.il + qv/2δ,

where v bounds the size of message vectors output by A, δ is the lossiness of
LKE, and q bounds the output size of P.

Proof. Let Game0 be the original PRIV game. We prove the theorem via a
sequence of games. Denote the probability of A in winning Gamei as Pr[GA

i (·)].
Thus the advantage of A is AdvprivDE,A(·) = 2Pr[GA

0 (·)] − 1.
Game1: Replace LKE.Kg(·) with LKE.LKg(·). We can construct a lossy KEM

adversary B simulating a PRIV game for the adversary A = (A1,A2) as follows:

B(λ, pk)

(m0,m1)
$← A1(λ);hk

$← H.Kg(λ);PK ← (pk, hk); b $← {0, 1};
For i = 1 to |m0| do

r ← H.Ev(hk,mb[i], 1LKE.il); (C1[i], tK) ← LKE.Enc.Rg(pk, r);
K[i] ← H.Ev(hk, tK, 1LKE.kl);C2[i] ← mb[i] ⊕ K[i];

C ← (C1,C2); b′ $← A2(λ, PK,C); Return (b′ ?= b)

If pk is generated by LKE.Kg(·) then B is simulating Game0 for A; otherwise
B is simulating Game1. Thus Pr[GA

0 (·)] − Pr[GA
1 (·)] ≤ AdvlossLKE,B(·).

Game2: Replace the hash function H(hk, ·, ·) with a random oracle. We con-
struct a UCE adversary (S,D) as follows.
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S(λ)

(pk,⊥) $← LKE.Kg(λ);PK ← pk;

b
$← {0, 1}; (m0,m1)

$← A1(λ);
For i = 1 to |m0| do

r ← HASH(mb[i], 1LKE.il);
(C1[i], tK) ← LKE.Enc.Rg(pk, r);

K[i] ← HASH(tK, 1LKE.kl);C2[i]
$← mb[i] ⊕ K[i];

C ← (C1,C2); Return (b, PK,C)

D(λ, hk, L)
(b, PK,C) ← L;

b′ $← A2(λ, PK,C);

Return (b′ ?= b)

We can see that if HASH is H.Ev, then (S,D) are simulating Game1, otherwise
they are simulating Game2. Thus, Pr[GA

1 (·)] − Pr[GA
2 (·)] ≤ AdvuceH,S,D(·).

Game3: identical to Game2, except that the random oracle now picks a fresh
value for every query, regardless of possible repetitions. Now the random oracle
in Game3 is as follows:

HASH(x, l)

y
$← {0, 1}l; Return y

Let v be a polynomial that bounds |m|. Since the components of m are
distinct, Game2 and Game3 are different only if:

1. some tK is repeated due to repeated r, which happens with probability at
most v2/21+LKE.il.

2. some tK is coincided with mb[i] for some i, the probability is bounded by
v2/2LKE.il.

Hence Pr[GA
2 (·)] − Pr[GA

3 (·)] ≤ 3v2/21+LKE.il. Finally, Pr[GA
3 (·)] = 1/2 since

the challenge for A2 is independent of the challenge bit now.
Thus, by summing up there is AdvprivDE,A(·) ≤ 2AdvlossLKE,B(·) + 2AdvuceH,S,D +

3v2/2LKE.il.
Now we should prove the statistical unpredictability of S. The leakage of

S is L = (b, PK,C). Let P be a statistical predictor with maximum output
size q, and the task of P is finding any mb[i] or intermediate value tK. In the
original unpredictability game, S is interacting with a normal random oracle.
However, if we replace the random oracle with the one defined in Game3, then
L contains no information of mb or any tK. Thus, the guessing probability
as to mb is bounded by qvGuessA(·), and the guessing probability as to tK is
bounded by qv/2δ, where δ is the lossiness of LKE. By summing up, there is
AdvpredS,P (·) ≤ 3v2/21+LKE.il + qvGuessA(·) + qv/2δ, which is negligible. ��

Let the lossy KEM be a “LTDF + UCE” combination, then we get the DPKE
scheme in [3] as a special case. However, if we construct the lossy KEM with
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“LTDR + UCE” or “entropic projective hash + UCE” then we can get better
efficiency with the same security, since generally LTDR is considered to be more
efficient than LTDF, as stated in [25].

7 Conclusion

In this paper, we abstract the KEM usage of several lossy primitives and intro-
duce a new lossy primitive lossy KEM. Lossy KEM can be constructed from
previous lossy primitives such as LTDF and LTDR, and from entropic projec-
tive hashing. With lossy KEM, we generalize previous constructions of lossy
encryption and DPKE, and get better efficiency.
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