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1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

{zhangdaode,libao,luxianhui,xuehaiyang,lijie}@iie.ac.cn
2 Data Assurances and Communications Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
3 Department of Information Security, Shanghai University of Electric Power,

Shanghai, China

Abstract. Dual receiver encryption (DRE), proposed by Diament et al.
at ACM CCS 2004, is a special extension notion of public-key encryp-
tion, which enables two independent receivers to decrypt a ciphertext
into a same plaintext. This primitive is quite useful in designing com-
bined public key cryptosystems and denial of service attack-resilient
protocols. Up till now, a series of DRE schemes are constructed with
bilinear pairing groups. In this work, we introduce the first construction
of lattice-based DRE. Our scheme is secure against chosen-ciphertext
attacks from the standard Learning with Errors (LWE) assumption with
a public key of bit-size about 2nm log q, where m and q are small poly-
nomials in n. Additionally, for the DRE notion in the identity-based
setting, identity-based DRE (ID-DRE), we also give a lattice-based ID-
DRE scheme that achieves chosen-plaintext and adaptively chosen iden-
tity security based on the LWE assumption with public parameter size
about (2� + 1)nm log q, where � is the bit-size of the identity in the
scheme.

Keywords: Lattices · Dual receiver encryption
Identity-based dual receiver encryption · Learning with errors

1 Introduction

The notion of dual receiver encryption (DRE), formlized by Diament et al. [8]
at ACM CCS 2004, is an extension version of public key encryption, in which a
ciphertext can be decrypted into the same plaintext by two independent users.
More precisely, in a DRE scheme, the encryption algorithm takes as input a
message M and two receivers’ independently generated public keys pk1 and pk2
and produces a ciphertext c. Once the receivers receive the ciphertext c, either
of them can decrypt c and obtain the message M using their respective secret

c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 520–538, 2018.
https://doi.org/10.1007/978-3-319-93638-3_30
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key. With such a DRE primitive, one can obtain a combined public key cryp-
tosystem or design a denial of service attack-resilient protocol [8]. A decade
later, in CT-RSA 2014, Chow et al. [6] refined the syntax of DRE and appended
some appealing features for DRE. Recently, to simplify the difficulty of certifi-
cate management in traditional certificate-based DRE schemes, Zhang et al. [21]
extended the DRE concept into the identity-based setting by introducing the
identity-based dual receiver encryption (ID-DRE) notion.

In [8], Diament et al. presented the first DRE scheme by transforming the
three-party one-round Diffie-Hellman key exchange scheme by Joux [11], and
also proved that it is indistinguishable secure against chosen ciphertext attacks
(CCA). However, their scheme relied on the existence of random oracle heuristic
(RO), where a DRE that proven to be secure in the RO model may turn into
insecure one when the RO is instantiated by an actual hash function in practice.
Hence, Youn and Smith [20] began with attempting to give a provably secure
DRE scheme in the standard model by combining a adaptively CCA secure
encryption scheme and a non-interactive zero-knowledge protocol, while suffered
low efficiency due to the prohibitively huge proof size. Later on, Chow et al.
[6] proposed a CCA secure DRE scheme via combining a selective-tag weakly
CCA-secure tag-based DRE (based on the tag-based encryption scheme in [13])
and a strong one-time signature scheme, as well as other DRE instantiations
for non-malleable and other properties1. Recently, Zhang et al. [21] constructed
two provably secure ID-DRE schemes against adaptively chosen plaintext or
ciphertext and chosen identity attacks based on an identity-based encryption
scheme in [19].

However, it is worth noticing that all the existing concrete (ID-)DRE schemes
are constructed over bilinear pairing groups. Moreover, recent advances in quan-
tum computing have triggered widespread interest in developing post-quantum
cryptographic schemes. Therefore in this work, inspired by the appealing poten-
tials of DRE, we consider (identity-based) dual receiver encryption notion in the
context of lattice-based cryptography due to its conjectured resistance against
quantum adversaries.

1.1 Our Contributions

We introduce the first construction of DRE and ID-DRE from lattices. Our two
schemes are constructed in the standard model and satisfy chosen-ciphertext or
chosen-plaintext security, which are both based on the hardness of the Learning
With Errors (LWE) problem. Specifically, based on the beautiful work of Agrawal
et al. [1], our works are stated as follows.

• We construct a secure DRE scheme against chosen-ciphertext attacks from the
standard Learning with Errors assumption with a public key of bit-size about

1 Note that Chow et al. [6] also gave two generic DRE constructions: one is combining
Naor-Yung “two-key” paradigm [14] with Groth-Sahai proof system [10], the other
is from lossy trapdoor functions [15].
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2nm log q, where m and q are small polynomials in n. In order to encrypt a
n-bit message, the ciphertext consists of two parts: one is a (n+4m) log q-bit
ciphertext which is an encryption of the message, the other is a one-time
signature of the first part.

• Additionally, we construct a secure ID-DRE scheme against chosen-plaintext
and adaptively chosen-identity attacks from the same assumption. As a result,
the public parameter of our ID-DRE achieves (2�+1)nm log q bit-size, where
� is the bit-size of the identity. In order to encrypt a n-bit message, the bit-
size of ciphertext will become (n + 3m) log q. Note that one can still get two
ID-DRE schemes with more compact public parameters via relying on other
lattice-based IBE works that achieved short public parameter sizes, which is
formally discussed in Sect. 4.3.

Organization. The rest of this paper is organized as follows. In AppendixA and
Sect. 2, we recall some lattice background, dual-receiver encryption and identity-
based dual-receiver encryption. Our DRE construction and its proof are pre-
sented in Sect. 3, and ID-DRE construction along with its proof are described in
Sect. 4. In Sect. 5, we give a conclusion.

2 Preliminaries

Notations. Let λ be the security parameter, and all other quantities are implic-
itly dependent on λ. Let negl(λ) denote a negligible function and poly(λ) denote
unspecified function f(λ) = O(λc) for a constant c. For n ∈ N, we use [n] to
denote a set {1, · · · , n}. And for integer q ≥ 2, Zq denotes the quotient ring of
integer modulo q. We use bold capital letters to denote matrices, such as A,B,
and bold lowercase letters to denote column vectors, such as x,y. The notations
A� and [A|B] denote the transpose of the matrix A and the matrix of concate-
nating A and B, respectively. Additionally, we use (a)i, (A)i to denote the i-th
element, column of a, A. In denotes the n×n identity matrix and Invn denotes
the set of invertible matrices in Z

n×n
q .

2.1 Encoding Vectors into Matrices

In [7], Cramer and Damg̊ard described an encoding function Ht,F that maps a
domain F

t to matrices in F
t×t with certain, strongly injective properties, where

F is a field. For a polynomial g ∈ F[X] of degree less than t − 1, coeff(g) ∈ F
t is

the t- vector of coefficients of g. Let f be a polynomial of degree t in F[X] that
is irreducible. Then for g ∈ F[X], the polynomial g mod f has degree at most
t − 1, so coeff(g mod f) ∈ F

t. Now, for an input h = (h0, h1, · · · , ht−1)� ∈ F
t

define the polynomial gh(X) =
∑t−1

i=0 hix
i ∈ F[X]. Define Ht,F(h) as

Ht,F(h) :=

⎛

⎜
⎜
⎜
⎝

coeff(gh mod f)�

coeff(x · gh mod f)�
...

coeff(xt−1 · gh mod f)�

⎞

⎟
⎟
⎟
⎠

∈ F
t×t.



Lattice-Based Dual Receiver Encryption and More 523

From here on, we take F := Zq for a prime q. As stated in [4], it is easy to verify
that Ht,q : Zt

q → Z
t×t
q obeys the following properties:

• Ht,q(ah1 + bh2) = a · Ht,q(h1) + b · Ht,q(h2) for any a, b ∈ Zq,h1,h2 ∈ Zt
q.

• For any vector h �= 0, Ht,q(h) is invertible, and Ht,q(0) = 0.

In [1], according to function Ht,q, Agrawal et al. defined the following equa-
tion HABB : Z�

q → Z
n×n: For x = (x1, · · · , x�)� ∈ Z

�
q,

HABB(x) = In +
�∑

i=1

xi · Ht,q(hi) ⊗ In/t,

where hi
$← Zt

q for i ∈ {1, · · · , �}, and assume that n is a multiple of t. Then,
they implicitly presented the following lemma. However, they did not give a
complete proof.

Lemma 1. For any integers �, t, n, and a prime q, let HABB be the hash function
family defined as above. Then for any fixed set S ⊆ Z

�
q, |S| ≤ Q, and any x ∈

Z
�
q\S, we have

Pr [HABB(x) = 0 ∧ (∀x′ ∈ S,HABB(x′) ∈ Invn)] ∈
(

1
qt

(1 − Q

qt
),

1
qt

)

.

Proof. For a vector e1 = (1, 0, · · · , 0)� ∈ Z
t
q, we have Ht,q(e1) = It. For x =

(x1, · · · , x�)� ∈ Z
�
q, let S0 be the set of functions in HABB such that HABB(x) =

0. It is straightforward to verify that the following equation holds:

HABB(x) = In +
�∑

i=1

xi · Ht,q(hi) ⊗ In/t =

(

It +
�∑

i=1

xi · Ht,q(hi)

)

⊗ In/t

=

(

Ht,q(e1)+
�∑

i=1

xi · Ht,q(hi)

)

⊗ In/t = Ht,q

(

e1 +
�∑

i=1

xihi

)

⊗ In/t.

By a simple observation, we have HABB(x) = 0 if and only if
∑�

i=1 xihi = −e1.
As a result, we can get |S0| = q(�−1)t. In the same way, we can get |S ′

i| = q(�−1)t,
where S ′

i is the set of functions HABB such that HABB(x′
i) = 0 for x′

i ∈ S =
{x′

1, · · · ,x′
|S|}. Moreover, |S0 ∩ S ′

i| ≤ q(�−2)t for i ∈ {1, · · · , |S|}. The set of
functions in HABB such that HABB(x) = 0 and ∀x′ ∈ S,HABB(x′) ∈ Invn is
exactly S̃ = S0 \ {S ′

1 ∪ · · · ∪ S ′
|S|}. Now, we have

∣
∣
∣S̃
∣
∣
∣ =

∣
∣
∣S0 \ {S ′

1 ∪ · · · ∪ S ′
|S|}

∣
∣
∣ ≥ |S0| −

|S|∑

i=1

|S0 ∩ S ′
i| ≥ q(�−1)t − Qq(�−2)t.

Therefore the above probability holds with |S̃|/qt� is at least 1
qt (1− Q

qt ). And the

probability is at most 1
qt since |S̃| ≤ |S0| = q(�−1)t. ��
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2.2 (Identity-Based) Dual Receiver Encryption

Dual Receiver Encryption [8]. A DRE scheme consists of the following four
algorithms:

• CGenDRE(1λ) → crs: The randomized common reference string (CRS) gener-
ation algorithm takes as input a security parameter λ and outputs a CRS
crs.

• GenDRE(crs) → (pk, sk): The randomized key generation algorithm takes as
input crs and outputs a public/secret key pair (pk, sk). We regard (pk1, sk1)
and (pk2, sk2) as the key pairs of two independent users. Without loss of
generality, we assume pk1 <d pk2, where <d is a “less-than” operator based
on lexicographic order throughout this paper.

• EncDRE(crs, pk1, pk2,M) → c: The randomized encryption algorithm takes as
input crs, two public keys pk1 and pk2 (such that pk1 <d pk2) and a message
M , and outputs a ciphertext c.

• DecDRE(crs, pk1, pk2, skj , c) → M : The deterministic decryption algorithm
takes two public keys pk1 and pk2 (such that pk1 <d pk2), one of the secret
keys skj (j ∈ {1, 2}), and a ciphertext c as input, and outputs a message M
(which may be the special symbol ⊥).

Correctness. For consistency, we require that, if crs ← CGenDRE(1λ), (pk1, sk1) ←
GenDRE(crs) and (pk2, sk2) ← GenDRE(crs), and c ← EncDRE(crs, pk1, pk2,M),
then we have the probability

Pr [DecDRE(crs, pk1, pk2, sk1, c) = DecDRE(crs, pk1, pk2, sk2, c) = M ] = 1−negl(λ).

Security. A DRE scheme is said to be indistinguishable against chosen-ciphertext
attacks (IND-CCA) if for any PPT adversary A,

Advind−cca
DRE,A(1λ) =

∣
∣
∣
∣Pr

[
Expind−cca

DRE,A(1λ) = 1
]

− 1
2

∣
∣
∣
∣

is negligible in λ.

Identity-Based Dual Receiver Encryption [21]. An ID-DRE scheme con-
sists of the following four algorithms:

• SetupID(1λ) → (PP,Msk). The setup algorithm takes in a security parameter
1λ as input. It outputs public parameters PP and a master secret key Msk.

• KeyGenID(PP,Msk, id1st, id2nd ∈ ID) → skid1st , skid2nd
. The key genera-

tion algorithm takes public parameters PP , master secret key Msk, and two
identities id1st, id2nd as input. It outputs skid1st as the secret key for the first
receiver id1st, and skid2nd

for the second receiver id2nd.
• EncID(PP, id1st, id2nd,M) → c. The encryption algorithm takes in public

parameters PP , two identities id1st and id2nd, and a message M as input. It
outputs a ciphertext c.

• DecID(PP, c, skidj
) → M . The decryption algorithm takes in public param-

eters PP , a ciphertext c, and one secret key skidj
as input, where j ∈

{1st, 2nd}. It outputs a message M .
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Experiment Expind−cca
DRE,A(1λ) :

crs
$← CGenDRE(1λ);

(pkj , skj)
$← GenDRE(crs) for j ∈ 1, 2;

(M0, M1, s)
$← ADecDRE(skj ,c)(crs, pk1, pk2);

b
$← {0, 1}, c� $← EncDRE(crs, pk1, pk2, Mb);

b′ $← ADecDRE(skj ,c)∧c �=c�

(c�, s);
if b′ = b then return 1 else return 0.

Experiment Expind−id−cpa
ID−DRE,A(1λ) :

(PP, Msk) $← SetupID(1
λ)

(id�
1st, id

�
2nd, M0, M1, s)

$← AKeyGenID(PP,Msk,id1st,id2nd)(PP );

b
$← {0, 1},c� $← EncID(PP, id�

1st, id
�
2nd, Mb);

b′ $← AKeyGenID(PP,Msk,id1st,id2nd)∧idj �=id�
j,j=1st,2nd(c�, s);

if b′ = b then return 1 else return 0.

Fig. 1. IND-CCA security for DRE and IND-ID-CPA security for ID-DRE

Correctness. For all (PP,Msk) $← SetupID(1λ), all identities idj ∈ ID, all
messages M , all skidj

← KeyGenID(PP,Msk, idj), all c ← EncID(PP, id1st,
id2nd,M), we have

Pr[DecID(PP, skid1st , c) = DecID(PP, skid2nd
, c) = M ] = 1 − negl(λ).

Security. An ID-DRE scheme is said to be indistinguishable against chosen-
plaintext and adaptively chosen-identity attacks (IND-ID-CPA) if for any PPT
adversary A,

Advind−id−cpa
ID−DRE,A(1λ) =

∣
∣
∣
∣Pr

[
Expind−id−cpa

ID−DRE,A(1λ) = 1
]

− 1
2

∣
∣
∣
∣

is negligible in λ.

The Relation Between DRE and Broadcast Encryption. As studied in [6,21], the
(ID-) DRE can be viewed as a special instance of a dynamic (ID-) broadcast
encryption primitive that supports multiple recipients in an encryption system.
Different from (ID-) broadcast encryption schemes usually relying on strong
security assumptions or/and random oracle heuristic [18], (ID-) DRE aims to
give a more straightforward understanding and direct construction under simple
assumptions in the standard model. In general, broadcast encryption is more
expensive than dual-receiver encryption.

3 Dual Receiver Encryption Construction

Our scheme relies upon a strongly unforgeable one-time signature scheme
OT S = (GenOTS,SigOTS,VrfOTS) whose verification key is exactly λ bits long.
The description of our DRE scheme DRE is as follows.
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• CGenDRE(1λ). On input a security parameter λ, algorithm CGenDRE sets the
parameters n,m, q as specified in Fig. 2. Then it selects a uniformly random
matrix U ∈ Z

n×n
q . Finally it outputs a CRS crs = (n,m, q,U).

• GenDRE(crs). For user j ∈ {1, 2}, this algorithm generates a pair matrices
(Aj ,TAj

) ∈ Z
n×m
q ×Z

m×m
q by running TrapGen(1n, 1m, q) and selects a ran-

dom matrix Bj
$← Z

n×m
q . Finally, it outputs

pkj = (Aj ,Bj) and skj = TAj
.

• EncDRE(crs, pk1, pk2,m ∈ {0, 1}n). It first obtains a pair (vk, sk) by running
GenOTS(1λ) and computes C1 = [A1|B1 + Hn,q(vk) · G] ∈ Z

n×2m
q , C2 =

[A2|B2 + Hn,q(vk) · G] ∈ Z
n×2m
q . Then, it picks s $← Z

n
q , ẽ0

$← DZn,αq, and

e1,1, e2,1, e1,2, e2,2
$← DZm,α′q. Finally, it computes and returns the ciphertext

c = (vk, c0, c1, c2, δ), where δ = SigOTS(sk, (c0, c1, c2)) and

c0 = U�s + ẽ0 +
⌈q

2

⌉
· m ∈ Z

n
q ,

c1 = C�
1 s +

[
e1,1

e1,2

]

∈ Z
2m
q , c2 = C�

2 s +
[
e2,1

e2,2

]

∈ Z
2m
q .

• DecDRE(crs, pk1, pk2, sk1, c). To decrypt a ciphertext c = (vk, c0, c1, c2, δ) with
a private key sk1 = TA1 , the algorithm DecDRE performs each of the following
steps:
(1) it runs VrfOTS(vk, (c0, c1, c2), δ), outputs ⊥ if VrfOTS rejects;
(2) for i ∈ {1, · · · , n}, it runs SampleLeft(A1,B1+Hn,q(vk) ·G, (U)i,TA1 , σ)

to obtain (E1)i, i.e., it obtains E1 ∈ Z
2m×n
q such that C1 · E1 = U;

(3) it computes b = c0 − E�
1 c1 and treats each element of b =

[(b)1, · · · , (b)n]� as an integer in Z, and sets (m)i = 1 if
∣
∣(b)i − � q

2�
∣
∣ <

� q
4�, else (m)i = 0, where i ∈ {1, · · · , n}.

(4) finally, it returns the plaintext m = [(m)1, · · · , (m)n]�.

3.1 Correctness and Parameter Selection

In order to satisfy the correctness requirement and make the security proof work,
we need that

◦ for i ∈ {1, · · · , n}, the error term is bounded by
∣
∣
∣
∣(ẽ0)i − (E)�

i

[
e1,1

e1,2

]∣
∣
∣
∣ ≤ αq

√
m + (σ

√
2m) · (α′q

√
2m) < q/4.

◦ TrapGen in Lemma 12 (Item 1) can work (m ≥ 6n�log q�), and it returns TA

satisfying ‖T̃A‖ ≥ O(
√

n log q).
◦ the Leftover Hash Lemma in Lemma 12 (Item 4) can be applied to the security

proof (m > (n + 1) log q + ω(log n)).
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◦ SampleLeft in Lemma 12 (Item 2) can operate (σ ≥ ‖T̃A‖ · ω(
√

log m) =
O(

√
n log q) · ω(

√
log m)).

◦ SampleRight in Lemma 12 (Item 3) can operate (σ ≥ ‖T̃G‖·s1(Rj)·ω(
√

log m),
for j = 1, 2).

◦ ReRand (Lemma 13) in the security proof can operate (αq > ω(
√

log m),
and α′q/(2αq) > s1([Im|Rj ]�), where s1([Im|Rj ]�) ≤ (1 + s1(Rj)) ≤
(1 + 12

√
2m), for j = 1, 2.

To satisfy the above requirements, we set the parameters in Fig. 2.

Parameters Description Setting
λ security parameter
n PK-matrix row number n = λ
m PK-matrix column number 6n log q

σ SampleLeft,SampleRight width 12
√
10m · ω(

√
logn)

q modulus 96
√
5m3/2nω(

√
logn)

αq error width 2
√
2n

α′q error width 96
√

mn

Fig. 2. Parameter selection of DRE construction

3.2 Security Proof

Theorem 1. If OT S is a strongly existential unforgeable one-time signature
scheme and the DLWEq,n,n+2m,α assumption holds, then the above scheme DRE
is a secure DRE against chosen-ciphertext attacks.

Proof (of Theorem 1). Assume A is a probabilistic polonomial time (PPT)
adversary attacks DRE in a chosen-ciphertext attack. If
VrfOTS(vk, (c0, c1, c2), δ) = 1, we say the ciphertext c = (vk, (c0, c1, c2), δ) is
valid. Let c� denote the challenge ciphertext (vk�, (c�

0, c
�
1, c

�
2), δ

�) received by A
during a particular run of the experiment, and let Forge denote the event that
A submits a valid ciphertext (vk�, (c0, c1, c2), δ) to the decryption oracle (we
assume that vk� is chosen at the outer of the experiment so this well-defined
even before A is given c�.) According to the security of OT S, Pr [Forge] is neg-
ligible. We then prove the following lemma:

Lemma 2.
∣
∣
∣Pr

[
Expind−cca

DRE,A (1λ) = 1 ∧ Forge
]

+ 1
2 Pr [Forge] − 1

2

∣
∣
∣ is negligible, if

assuming that the DLWEq,n,n+2m,α assumption holds.
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To see that this implies the theorem, note that

Advind−cca
DRE,A (1λ) =

∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1

]

− 1

2

∣
∣
∣
∣

≤
∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]

− 1

2
Pr [Forge]

∣
∣
∣
∣

+

∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]

+
1

2
Pr [Forge] − 1

2

∣
∣
∣
∣

≤1

2
Pr [Forge] +

∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]

+
1

2
Pr [Forge] − 1

2

∣
∣
∣
∣
.

Proof (of Lemma 2). We sketch the proof via a sequence of games. The games
involve the challenger and an adversary A. In the following, we define Xκ as the
event that the challenger outputs 1 in Gameκ, for κ ∈ {1, 2, 3, 4, 5}.

Game1: This game is the original experiment Expind−cca
DRE,A (1λ) except that when

the adversary A submits a valid ciphertext (vk�, (c0, c1, c2), δ) to the decryp-
tion oracle, the challenger outputs a random bit. It is easy to see that

∣
∣
∣
∣Pr [X1] − 1

2

∣
∣
∣
∣ =

∣
∣
∣
∣Pr

[
Expind−cca

DRE,A (1λ) = 1 ∧ Forge
]

+
1
2

Pr [Forge] − 1
2

∣
∣
∣
∣ .

Game2: This game is identical to Game1 except that the challenger changes
(1) the generation of public keys pk1, pk2: the challenger selects random
matrices A1,A2 ∈ Z

n×m
q instead of running TrapGen, and random matri-

ces R1,R2 ∈ {−1, 1}m×m; then, the challenger computes B1 = A1R1 −
Hn,q(vk�)G,B2 = A2R2 − Hn,q(vk�)G ∈ Z

n×m
q . (2) the decryption oracle:

when A submits a valid ciphertext (vk �= vk�, (c0, c1, c2), δ), the challenger
generates E1 by running SampleRight(A1,G,R1,Hn,q(vk−vk�), (U)i,TG, σ)
(In the similar way, the challenger can obtain E2 by running the algorithm
SampleRight(A1,G,R2,Hn,q(vk − vk�), (U)i,TG, σ) ) instead of SampleLeft,
for i ∈ {1, · · · , n}. Note that the following equation holds:

c�
0 = U�s + ẽ0 +

⌈q

2

⌉
· mb,

c�
1 =

[
(A1)�s + e1,1

(R1)�(A1)�s + e1,2

]

, c�
2 =

[
(A2)�s + e2,1

(R2)�(A2)�s + e2,2

]

,

where ẽ0
$← DZn,αq and e1,1, e1,2, e2,1, e2,2

$← DZm,α′q.
Game3: In this game, the challenger changes the way that the challenge cipher-

text c� is created: the challenger first picks s $← Z
n
q , ẽ0

$← DZn,αq, ẽ1,1, ẽ2,1
$←

DZm,αq and sets w = U�s + ẽ0,b1 = (A1)�s + ẽ1,1,b2 = (A2)�s + ẽ2,1.
Then, it computes

c�
0 = w +

⌈ q

2

⌉

· mb,

c�
1 = ReRand

([
Im

(R1)
�

]

,b1, αq,
α′q
2αq

)

, c�
2 = ReRand

([
Im

(R2)
�

]

,b2, αq,
α′q
2αq

)

.
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Game4: In this game, the challenger changes the way that the challenge cipher-
text c� is created: the challenger first picks random vectors w $← Z

n
q , b̃1

$←
Z

m
q , b̃2

$← Z
m
q , ẽ1,1, ẽ2,1

$← DZm,αq and sets b1 = b̃1 + ẽ1,1,b2 = b̃2 + ẽ2,1.
Then, it computes

c�
0 = w +

⌈ q

2

⌉

· mb,

c�
1 = ReRand

([
Im

(R1)
�

]

,b1, αq,
α′q
2αq

)

, c�
2 = ReRand

([
Im

(R2)
�

]

,b2, αq,
α′q
2αq

)

.

Game5: In this game, the challenger changes the way that the challenge cipher-
text c� is created: the challenger first picks w $← Z

n
q , b̃1

$← Z
m
q , b̃2

$←
Z

m
q , e1,1, e1,2, e2,1, e2,2

$← DZm,α′q and computes

c�
0 = w +

⌈q

2

⌉
· mb,

c�
1 =

[
b̃1 + e1,1

(R1)�b̃1 + e1,2

]

, c�
2 =

[
b̃2 + e2,1

(R2)�b̃2 + e2,2

]

.

Analysis of Games. We use the following lemmas to give a analysis between
each adjacent games.

Lemma 3. Game1 and Game2 are statistically indistinguishable.

Lemma 4. Game2 and Game3 are identically distributed, and Game4 and
Game5 are identically distributed.

Lemma 5. Assume the DLWEq,n,n+2m,α assumption holds, Game3 and
Game4 are computationally indistinguishable.

Complete the Proof of Theorem 1. It is obvious that Pr[X5] = 1
2 , this is

because the challenge bit b is independent of the A’s view. From Lemmas 3 to
5, we know that

Pr[X1] ≈ Pr[X2],Pr[X2] = Pr[X3],Pr[X4] = Pr[X5].

From Lemma 5, we know that

|Pr[X3] − Pr[X4]| =
∣
∣
∣
∣Pr[X4] − 1

2

∣
∣
∣
∣ ≤ DLWEq,n,n+2m,α,

which implies
∣
∣Pr [X1] − 1

2

∣
∣ ≤ DLWEq,n,n+2m,α − negl(λ). ����

4 Identity-Based Dual Receiver Encryption Construction
from Lattice

Assume an identity space ID = {−1, 1}� (In general, ID-DRE needs to support
n-bit length identity, i.e., � = n) and a message space M = {0, 1}n, our ID-DRE
scheme ID − DRE consists of the following four algorithms:
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• SetupID(1λ) → (PP,Msk) : On input a security parameter λ, it sets the
parameters n,m, q as specified in Fig. 3. Then it obtains a pair matrices
(A,TA) ∈ Z

n×m
q × Z

m×m
q by running TrapGen(1n, 1m, q) and selects a uni-

formly random matrix U ∈ Z
n×n
q ,A1

i ,A
2
i ∈ Z

n×m
q , where i ∈ {1, · · · , n}.

Finally it outputs PP = (n,m, q,A,A1
i ,A

2
i ,U) and Msk = TA.

• KeyGenID(PP,Msk, id1st, id2nd ∈ ID) → skid1st , skid2nd
: On input public

parameters PP , a master key Msk, and identities id1st, id2nd, it first com-
putes Aid1 =

∑n
i=1(id1st)i · A1

i + G,Aid2 =
∑n

i=1(id2nd)i · A2
i + G. Then

for i ∈ {1, · · · , n}, it runs SampleLeft(A,Aid1 , (U)i,TA, σ) to obtain (Eid1)i

and sets skid1st = Eid1 ∈ Z
2m×n
q . Similarly, it can obtain skid2nd

= Eid2 such
that [A|Aid2 ] · Eid2 = U.

• EncID(PP, id1st, id2nd,m) → c. It computes Aid1 ,Aid2 as above. Then, it

picks s $← Z
n
q , ẽ0

$← DZn,αq, and e1,1, e2,1, e1,2, e2,2
$← DZm,α′q. Finally, it

computes and returns the ciphertext c = (c0, c1), where

c0 = U�s + e0 +
⌈q

2

⌉
· m ∈ Z

n
q ,

c1 =

⎡

⎣
c1,1

c1,2

c1,3

⎤

⎦ =

⎡

⎣
A�

(Aid1)
�

(Aid2)
�

⎤

⎦ s +

⎡

⎣
e1,1

e1,2

e1,3

⎤

⎦ ∈ Z
3m
q ,

• DecID(PP, skidj
, c) → m. To decrypt a ciphertext c = (c0, c1) with a private

key skid1st = Eid1 , it computes b = c0 − E�
id1

·
[
c1,1

c1,2

]

and regards each

coordinate of b = [(b)1, · · · , (b)n]� as an integer in Z, and sets (m)i = 1 if∣
∣(b)i − � q

2�
∣
∣ < � q

4�; otherwise sets (m)i = 0 where i ∈ {1, · · · , n}. Finally, it
returns a plaintext m = [(m)1, · · · , (m)n]�.

4.1 Correctness and Parameter Selection

In order to satisfy the correctness requirement and make the security proof work
(which is very similar to Subsect. 3.1), we set the parameters in Fig. 3.

Parameters Description Setting
λ security parameter
n PK-matrix row number n = λ
m PK-matrix column number 6n log q
� length of identity n

σ SampleLeft,SampleRight width 12
√
10mn · ω(

√
logn)

q modulus O(m2n5/2ω(
√
logn))

αq error width 2
√
2n

α′q error width 192n3/2√m

Fig. 3. Parameter selection of ID-DRE construction
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4.2 Security Proof

Theorem 2. If the DLWEq,n,n+m,α assumption holds, then the above scheme
ID-DRE is a secure ID-DRE scheme against chosen-plaintext and adaptively
chosen-identity attacks.

Proof (of Theorem 2). We prove the theorem with showing that if a PPT
adversary A can break our ID-DRE scheme with a non-negligible advan-
tage ε (i.e., success probability 1

2 + ε), then there exists a reduction that can
break the DLWEq,n,n+m,α assumption with an advantage poly(ε) − negl(1λ).
Let Q = Q(λ) be the upper bound of the number of KeyGenID queries and
I∗ = {(id∗

1st, id
∗
2nd), (id

j
1st, id

j
2nd)j∈[Q]} be the challenge ID along with the

queried ID’s.
We formally give the proof via a sequence of games and define Xκ as the

event that the challenger outputs 1 in Gameκ, for κ ∈ {0, 1, 2, 3, 4, 5, 6}.

Game0: This game is the original experiment Expind−id−cpa
ID−DRE,A(1λ) in Fig. 1. It is

easy to see that

ε =
∣
∣
∣
∣Pr [X0] − 1

2

∣
∣
∣
∣ =

∣
∣
∣
∣Pr

[
Expind−id−cpa

ID−DRE,A(1λ) = 1
]

− 1
2

∣
∣
∣
∣ .

Game1: This game is as same as Game0 except that we add an abort event that
is independent of the adversary’s view. Let n, �, q be the parameters as in the
scheme’s setup algorithm and the challenger selects t = �logq(2Q/ε)�, hence
we have qt ≥ 2Q/ε ≥ qt−1. Then the challenger chooses 2n random integer
vectors h1

i ,h
2
i ∈ Z

t
q and defines two functions H1

ABB,H2
ABB : ID → Z

n×n
q as

follows: ∀id ∈ ID,

H1
ABB(id) = In+

n∑

i=1

(id)i·H(h1
i )⊗In/t,H2

ABB(id) = In+
n∑

i=1

(id)i·H(h2
i )⊗In/t.

We then describe how the challenger behaves in Game1 as follows:
• Setup: The same as Game0 except that the challenger keeps the hash

functions H1
ABB and H2

ABB passed from the experiment.
• Secret key and ciphertext query: The challenger responds to secret

key queries for identities and challenge ciphertext query (with a random
bit b ∈ {0, 1}) as same as that in Game0.

• Gauss: When the adversary returns a bit b′, the challenger checks if

H2
ABB(id�

1st) = 0,H2
ABB(idj

1st) ∈ Invn

H2
ABB(id�

2nd) = 0,H2
ABB(idj

2nd) ∈ Invn

for j ∈ {1, · · · , Q} where Invn denotes invertible matrices in Zn×n
q . If the

condition does not hold, the challenger outputs a random bit b ∈ {0, 1},
namely we say the challenger aborts the game.
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Note that A never sees the random hash functions H1
ABB and H2

ABB, and has
no idea if an abort event took place. While it is convenient to describe the
abort action at the end of the game, nothing would change if the challenger
aborts the game as soon as the abort condition becomes true.

Game2: This game is as same as Game1 except that we slightly change the
way that the challenger generates the matrices A1

i ,A
1
i for i ∈ {1, · · · , n}.

Taking t as t = �logq 2Q/ε�, we thus have qt ≥ 2Q/ε ≥ qt−1. Assume n is
a multiple of t. For i = 1, · · · , n, the challenger chooses 2n random integer
vectors h1

i ,h
2
i ∈ Z

t
q and random matrices R1

i ,R
2
i ∈ {−1, 1}m×m. Then it sets

A1
i = AR1

i + (Ht,q(h1
i ) ⊗ In/t) · G,A2

i = AR2
i + (Ht,q(h2

i ) ⊗ In/t) · G.
Game3: This game is identical to Game2 except that the challenger chooses

a random matrix A instead of running TrapGen and responds to private key
queries by involving the algorithm SampleRight instead of SampleLeft. To
respond to a private key query for id1st, id2nd, the challenger needs short
vectors (Eid1)i ∈ ∧(U)i

q ([A|Aid1 ]) and (Eid2)i ∈ ∧(U)i
q ([A|Aid2 ]), where

Aid1 =
n∑

i=1

(id1st)i · A1
i + G = A

(
n∑

i=1

(id1st)i · R1
i

)

+ H1
ABB(id1st) · G;

Aid2 =
n∑

i=1

(id2nd)i · A2
i + G = A

(
n∑

i=1

(id2nd)i · R2
i

)

+ H2
ABB(id2nd) · G.

If H1
ABB(id1st) /∈ Invn or H2

ABB(id2nd) /∈ Invn, the challenger aborts this
game and returns a random bit. Otherwise, the challenger responds the pri-
vate key query by running

SampleRight(A,G,

n∑

i=1

(id1st)i R
1
i ,H1

ABB(id1st), (U)i,TG, σ), to get Eid1 ,

SampleRight(A,G,

n∑

i=1

(id2nd)i R
2
i ,H2

ABB(id2nd), (U)i,TG, σ), to get Eid2 ,

for i ∈ {1, · · · , n}. Since H1
ABB(id�

1st) = 0,H2
ABB(id�

2nd) = 0, it holds:

c�
0 = U�s + ẽ0 +

⌈q

2

⌉
· mb, c�

1 =

⎡

⎢
⎣

A�s + e1,1(∑n
i=1(id

�
1st)i · R1

i

)�
A�s + e1,2(∑n

i=1(id
�
2nd)i · R2

i

)�
A�s + e1,2

⎤

⎥
⎦ ,

where ẽ0
$← DZn,αq, e1,1, e1,2, e1,3

$← DZm,α′q.
Game4: In this game, the challenge ciphertext is generated as follows: it chooses

s $← Z
n
q , ẽ0

$← DZn,αq, ẽ1
$← DZm,αq and sets w = U�s + ẽ0,b = A�s + ẽ1.

Then, it computes

c�
0 = w +

⌈q

2

⌉
· mb, c�

1 = ReRand

⎛

⎜
⎝

⎡

⎢
⎣

Im(∑n
i=1(id

�
1st)i · R1

i

)�
(∑n

i=1(id
�
2nd)i · R2

i

)�

⎤

⎥
⎦ ,b, αq,

α′q
2αq

⎞

⎟
⎠ .
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Game5: In this game, the challenge ciphertext is generated as follows: it first
picks random vectors w $← Z

n
q , b̃ $← Z

m
q , ẽ1

$← DZm,αq and sets b = b̃ + ẽ1.
Then, it computes

c�
0 = w +

⌈q

2

⌉
· mb, c�

1 = ReRand

⎛

⎜
⎝

⎡

⎢
⎣

Im(∑n
i=1(id

�
1st)i · R1

i

)�
(∑n

i=1(id
�
2nd)i · R2

i

)�

⎤

⎥
⎦ ,b, αq,

α′q
2αq

⎞

⎟
⎠ .

Game6: In this game, the challenge ciphertext is generated as follows: it first
picks w $← Z

n
q , b̃ $← Z

m
q and e1,1, e1,2, e1,3

$← DZm,α′q and computes

c�
0 = w +

⌈q

2

⌉
· mb, c�

1 =

⎡

⎢
⎣

b̃ + e1,1

(
∑n

i=1(id
�
1st)i · R1

i )
�b̃ + e1,2

(
∑n

i=1(id
�
2nd)i · R2

i )
�b̃ + e1,3

⎤

⎥
⎦ .

Analysis of Games. We use the following lemmas to give a analysis between
each adjacent games.

The only difference between Game1 and Game0 is the abort event. We use
Lemma 28 in [1] to argue that the adversary still has a non-negligible advantage
in Game1 even though the abort event happens.

Lemma 6 ([1]). Let I∗ be a (Q + 1)-ID tuple {id∗, {idj}j∈[Q]} denoted the
challenge ID along with the queried ID’s, and η(I∗) be the probability that an
abort event does not happen in Game1. Let ηmax = max η(I∗) and ηmin =
min η(I∗). For κ = 0, 1, we let Xκ be the event that the challenger returns 1
as the output of Gameκ. Then, we have

∣
∣Pr[X1] − 1

2

∣
∣ ≥ ηmin

∣
∣Pr[X0] − 1

2

∣
∣ −

1
2 (ηmax − ηmin).

Lemma 7. Let ε =
∣
∣Pr [X0] − 1

2

∣
∣, then

∣
∣Pr[X1] − 1

2

∣
∣ ≥ ε3

64q2Q2 .

Lemma 8. Game1 and Game2 are statistically indistinguishable.

Lemma 9. Game2 and Game3 are statistically indistinguishable.

Lemma 10. Game3 and Game4 are identically distributed, and Game5 and
Game6 are identically distributed.

Lemma 11. Assume the DLWEq,n,n+m,α assumption holds, Game4 and
Game5 are computationally indistinguishable.

Complete the Proof of Theorem 2. It is obvious that Pr[X6] = 1
2 , this is

because the challenge bit b is independent of the A’s view. From Lemmas 7 to
10, we know that

Pr[X1] ≈ Pr[X2],Pr[X2] ≈ Pr[X3],Pr[X3] = Pr[X4],Pr[X5] = Pr[X6]. (1)
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From Lemma 11, we know that

|Pr[X4] − Pr[X5]| =
∣
∣
∣
∣Pr[X4] − 1

2

∣
∣
∣
∣ ≤ DLWEq,n,n+m,α,

which implies DLWEq,n,n+m,α ≥ ε3

64q2Q2 − negl(λ), according to Lemma 7 and
Eq. 1. ����

4.3 Extension: ID-DRE with More Compact Parameters

As mentioned above, our ID-DRE scheme is based on the beautiful work of
Agrawal et al. [1], i.e., an adaptively secure identity-based encryption (IBE)
scheme. However, one drawback of Agarwal et al.’s adaptive secure IBE scheme
[1] is the large public parameter sizes: namely, the public parameters contain
� + 1 matrices composed of n × m elements, where � is the size of the bit-string
representing identities. As a result, the public parameters in our ID-DRE scheme
contain 2 · � + 1 matrices composed of n × m elements.

In [17], Singh et al. considered identities as one chunk rather than bit-by-bit.
In fact, the maximum of the above chunk is a number in Zq, so that they can
reduce the number of the matrices in the scheme by a factor at most log q, while
encryption and decryption are almost as efficient as that in [1]. Applying their
technique (they called “Blocking Technique”) to our construction, we can get
an ID-DRE scheme with more compact public parameter sizes. More precisely,
we can get a more efficient ID-DRE scheme in which there exist only 2 · �

log q + 1
matrices composed of n × m elements, or about O( n

log n ) matrices (since l = n

and q is a polynomial of n).
Based the IBE schemes in [1,17], Apon et al. [4] proposed an identity-based

encryption scheme which only needs O( n
log2 n

) public matrices to support n-bit
length identity. The reason why the number of the matrices in their scheme is
less about log n times than that of the IBE scheme in [17] is that they used
a different gadget matrix Ĝ and flattening function Ĝ−1 in logarithmic (log n)
base instead of the usual gadget matrix G and flattening function G−1 in 2
base. Note that the encryption and decryption of the IBE scheme in [4] are less
efficient than that in [1,17], this is because the flattening function Ĝ−1 is much
slower than G−1. Applying their technique to our construction, we can get a
more efficient ID-DRE scheme in which there exist about O( n

log2 n
) matrices.

Overall, we can further obtain more compact ID-DRE schemes from the IBE
schemes in [4,17].

5 Conclusion

The learning with errors (LWE) problem is a promising cryptographic primitive
that is believed to be resistant to attacks by quantum computers. Under this
assumption, we construct a dual-receiver encryption scheme with a CCA security.
Additionally, for the DRE notion in the identity-based setting, namely ID-DRE,
we also give a lattice-based ID-DRE scheme that achieves IND-ID-CPA security.
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Appendix A: Lattice Background

For positive integers q, n,m, and a matrix A ∈ Z
n×m
q , the m-dimensional integer

lattices are defined as: Λq(A) = {y : y = A�s for some s ∈ Z
n} and Λ⊥

q (A) =
{y : Ay = 0 mod q}.

Let S be a set of vectors S = {s1, · · · , sn} in R
m. We use S̃ = {s̃1, · · · , s̃n}

to denote the Gram-Schmidt orthogonalization of the vectors s1, · · · , sn in that
order, and ‖S‖ to denote the length of the longest vector in S. For a real-valued
matrix R, let s1(R) = max‖u‖=1 ‖Ru‖ (respectively, ‖R‖∞ = max ‖ri‖∞)
denote the operator norm (respectively, infinity norm) of R.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Z
m centered

at c ∈ R
m with parameter s > 0 as ρs,c(x) = exp(−π||x − c||/s2). Let

ρs,c(Λ) =
∑

x∈Λ ρs,c(x), and define the discrete Gaussian distribution over Λ

as DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) , where x ∈ Λ. For simplicity, ρs,0 and DΛ,s,0 are abbrevi-

ated as ρs and DΛ,s, respectively.

Learning with Errors Assumption. The learning with errors problem,
denoted by LWEq,n,m,α, was first proposed by Regev [16]. For integer n,m =
m(n), a prime integer q > 2, an error rate α ∈ (0, 1), the LWE problem
LWEq,n,m,α is to distinguish the following pairs of distributions: {A,A�s + e}
and {A,u}, where A $← Z

n×m
q , s $← Z

n
q ,u $← Z

m
q and e $← DZm,αq. Regev

[16] showed that solving decisional LWEq,n,m,α (denoted by DLWEq,n,m,α) for
αq > 2

√
2n is (quantumly) as hard as approximating the SIVP and GapSVP

problems to within Õ(n/α) factors in the worst case.

Lemma 12. Let p, q, n,m be positive integers with q ≥ p ≥ 2 and q prime.
There exists PPT algorithms such that

• ([2,3]): TrapGen(1n, 1m, q) a randomized algorithm that, when m ≥ 6n�log q�,
outputs a pair (A,TA) ∈ Z

n×m
q × Z

m×m such that A is statistically close to
uniform in Z

n×m
q and TA is a basis of Λ⊥

q (A), satisfying ‖T̃A‖ ≤ O(
√

n log q)
with overwhelming probability.

• ([5]): SampleLeft(A,B,u,TA, σ) a randomized algorithm that, given a full
rank matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q , a basis TA of Λ⊥

q (A), a vector
u ∈ Z

n
q and σ ≥ ‖T̃A‖ ·ω(

√
log m), then outputs a vector r ∈ Z

2m
q distributed

statistically close to DΛu
q (F),σ where F = [A|B].
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• ([1]): SampleRight(A,G,R,S,u,TG, σ) a randomized algorithm that, given
a full rank matrix A ∈ Z

n×m
q , a matrix R ∈ Z

m×m
q , an invertible matrix

S ∈ Z
n×n
q , a vector u ∈ Z

n
q and σ ≥ ‖T̃G‖ ·s1(R) ·ω(

√
log m), then it outputs

a vector r ∈ Z
2m
q statistically close to DΛu

q (F),σ where F = [A|AR + SG].
• (Generalized Leftover Hash Lemma [1,9]): For m > (n+1) log q+ω(log n) and

prime q > 2, let R $← {−1, 1}m×k and A $← Z
n×m
q ,B $← Z

n×k
q be uniformly

random matrices. Then the distribution (A,AR,R�w) is negl(n)-close to the
distribution (A,B,R�w) for all vector w ∈ Z

m
q . When w is always 0, this

lemma is called Leftover Hash Lemma.

In [12], Katsuamta and Yamada introduced the “Noise Rerandomization” lemma
which plays an important role in the security proof because of creating a well
distributed challenge ciphertext.

Lemma 13 (Noise Rerandomization [12]). Let q, w,m be positive integers
and r a positive real number with r > max{ω(

√
log m), ω(

√
log w)}. For arbitrary

column vector b ∈ Z
m
q , vector e chosen from DZm,r, any matrix V ∈ Z

w×m and
positive real number σ > s1(V), there exists a PPT algorithm ReRand(V,b +
e, r, σ) that outputs b′ = Vb + e′ ∈ Z

w where e′ is distributed statistically close
to DZw,2rσ.

Appendix B: Signature

Definition 1 (Signature Scheme). A signature scheme is a triple of proba-
bilistic polynomial-time algorithms as follows:

• Gen(1λ) outputs a verification key vk and a signing key sk.
• Sign(sk, μ), given sk and a message μ ∈ {0, 1}�, outputs a signature σ ∈

{0, 1}�.
• Ver(vk, μ, σ) either accepts or rejects the signature σ for message μ.

The correctness requirement is: for any message μ ∈ M, and for (vk, sk) $←
Gen(1λ), σ

$← Sign(sk;μ), Ver(vk, μ, σ) should accept with overwhelming proba-
bility (over all the randomness of the experiment).

The notion of security that we require for our IND-CCA DRE construction
is strong existential unforgeability under a one-time chosen-message attack. The
attack is defined as follows: generate (vk, sk) $← Gen(1λ) and give vk to the

adversary A, then A outputs a message μ. Generate σ
$← Sign(sk, μ) and give σ

to A. The advantage of A in the attack is the probability that it outputs some
(μ�, σ�) �= (μ, σ) such that Ver(vk, μ�, σ�) accepts. We say that the signature
scheme is secure if for every PPT adversary A, its advantage in the attack is
negl(λ).
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