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Abstract. We extend the notion of lossy encryption to the scenario
of identity-based encryption (IBE), and propose a new primitive called
identity-based lossy encryption (IBLE). Similar as the case of lossy
encryption, we show that IBLE can also achieve selective opening secu-
rity. Finally, we present a construction of IBLE from the assumption of
learning with errors.

Keywords: Lossy encryption · Learning with errors · Identity-based
lossy encryption

1 Introduction

1.1 Background

Lossy encryption was proposed by Bellare, Hofheinz and Yilek [3] to achieve
selective opening security. Briefly, the key generation algorithm of lossy encryp-
tion runs in two indistinguishable modes, the real mode and the lossy mode. In
the real mode, a real pubic key PKreal is generated and scheme works just as
standard public key encryption scheme. In the lossy mode, a lossy public key
PKloss is generated, and the plaintext is information-theoretically hidden.

Lossy encryption can be constructed from several primitives, such as lossy
trapdoor functions (LTDF) [3], re-randomizable encryption [18] and oblivious
transfer [18]. It also can be constructed from concrete assumptions, such as
decision Diffie-Hellman (DDH) [3,19], quadratic residuosity (QR) [3], learning
with errors (LWE) [22] and so on.

This research is supported by the National Nature Science Foundation of China
(No. 61379137 and No. 61272040), the National Basic Research Program of China
(973 project)(No. 2013CB338002), and IIE’s Cryptography Research Project (No.
Y4Z0061403 and No. Y4Z0061D03).
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As a strengthen version of public key encryption, identity-based encryption
(IBE), proposed by Shamir [25], is a powerful primitive in which the public key
can be an arbitrary string. Currently, IBE schemes can be constructed from
pairings [7–9,24,26,27], lattices (LWE) [1,2,11,16] and QR [10,12,20].

Motivation. Currently the most important application of lossy encryption is to
achieve selective opening security. However, in the scenario of IBE, the selec-
tive opening security is achieved by using one-sided public openability [5,21].
Whether the selective opening secure IBE scheme can be constructed via the
idea of lossy encryption is an interesting problem.

1.2 Our Contributions

New Definition and Its Application. We give the definition of identity-based
lossy encryption (IBLE). Similar to lossy encryption, there are also two indistin-
guishable modes in identity-based lossy encryption, the real mode and the lossy
mode. The real mode is akin to a normal IBE, but the case of lossy mode is
more delicate. Specifically, in the lossy mode the lossiness of the master public
key MPKlossy can be triggered by a particular identity idlossy only. The reason
is that in IBE the adversary can obtain the identity private keys SKid for arbi-
trary identities except the challenge identity by a series of extraction queries,
it can distinguish MPKreal from MPKlossy with the help of SKid. With IBLE,
we obtain indistinguishability-based selective opening security in the selective
identity setting (IND-sID-SO).

Construction from LWE. Inspired by [1,2,11,16], we start the construction of
our IBLE scheme by designing a dual Regev type lossy encryption. Specifi-
cally let (A1s + e1,A2s + e2 + m� q

2�) be the ciphertext of a dual Regev type
encryption scheme, where (A1,A2) is the public key, s, e1, e2 are random num-
bers, and m is the message. The main technical difficulty of constructing lossy
encryption is to information-theoretically hide the plaintext message m. How-
ever, the random number s is completely determined by the first item of the
ciphertext, consequently, m is fixed by the second item of the ciphertext. Our
solution is to lose the information of s with the technique proposed in [6,17].
Concretely, the randomly selected A1 ∈ Z

m×n
q is replaced by an LWE sample

(BC + Z) where B ∈ Z
m×n1
q ,C ∈ Z

n1×n
q ,Z ∈ Z

m×n sampled from the discrete
Gaussians distribution. If n1 < n and the element of Z is small enough, then s
is information-theoretically undetermined given (BC + Z)s + e [6,17].

Combining our dual Regev type lossy encryption and the technique for con-
structing IBE scheme in [1], we obtain an IBLE scheme. To hide the plain-
text message information-theoretically for idlossy and simultaneously extract the
identity private key for other identities, the main technical challenge is to guar-

antee that s is still information-theoretically undetermined given (
[

B
RtB

]
C +[

Z
RtZ

]
)s + e, where R ∈ {−1, 1}m×m. Luckily, we prove that it still holds when
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n1 < n and the element of Z is small enough. From another point of view, it
is not only an extension of the result proved in [6], but also provides another
choice for constructing lossy branch.

1.3 Related Work

LTDF, which is closely related with lossy encryption, has been extended to the
identity-based scenario by Bellare, Kiltz, Peikert and Waters [4]. Escala, Herranz,
Libert, and Ráfols [15] further studied hierarchical identity-based LTDF. Similar
to the construction of lossy encryption from LTDF, the primitive IBLE can also
be obtained from identity-based LTDF.

1.4 Organization

The rest of this paper is organized as follows. In Sect. 2 we introduce some
notations, definitions and previous results. In Sect. 3, we give the definition of
IBLE, prove that IBLE scheme implies selective opening security, and propose
a construction of IBLE from LWE.

2 Preliminaries

2.1 Notations

Unless otherwise noted, all operations in this paper are under the modulo oper-
ation of q, and log means log2. Throughout, we use λ to denote our security
parameter. We use bold lower-case letters (e.g. s) to denote vectors, and bold

upper-case letters (e.g. A) to denote matrices. We use x
$← X to denote that

x is drawn uniformly at random over a set X. We use x ← X to denote that
x is drawn from a distribution X . To denote the statistical distance between
two distributions, we write Δ(X ,Y). For two distribution ensembles X =
Xλ,Y = Yλ, we write X ≈s Y if Δ(X ,Y) is a negligible function of λ,
and we write X ≈c Y if for all probabilistic polynomial time (PPT) distin-
guishers D there is a negligible function negl(·) such that: |Pr[D(1λ,Xλ) =
1] − Pr[D(1λ,Yλ) = 1]| ≤ negl(λ). We let �x� be the closest integer to x. We
use ‖S‖ to denote the L2 length of the longest vector in S, and ‖S̃‖ to denote
the Gram-Schmidt norm of S. Let Λ⊥

q (A) = {e ∈ Z
m s.t. Ae = 0 mod q}, and

Λu
q = {e ∈ Z

m s.t. Ae = u mod q}, given a matrix A ∈ Z
n×m
q and a vector

u ∈ Z
n
q .

2.2 Min-Entropy

Themin-entropy of a random variableX is H̃∞(X)=− log(maxx Pr[X =x]), and
the averagemin-entropy of X conditioned on Y , defined by [13], is H∞(X|Y ) =
− log(Ey←Y [maxx Pr[X = x|Y = y]]) = − log(Ey←Y [2−H∞(X|Y =y)]).

Definition 1 ([13]). For two random variables X and Y, the ε-smooth aver-
age min-entropy of X conditioned on Y, denoted H̃ε

∞(X|Y ) is H̃ε
∞(X|Y ) =

max
(X′,Y ′):Δ((X,Y ),(X′,Y ′))<ε

H̃∞(X ′|Y ′).
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2.3 Learning with Errors

Learning with errors (LWE) problem initially stated in [23]. Here we recall the
concepts and the hardness of LWE.

Learning with Errors (LWE). Let m = m(n), q = q(n) be integers, and χ be

a distribution on Zq. Let A $← Z
m×n
q , s $← Z

n
q , e ← χm, then the LWE(m,n, q, χ)

problem is to find s, given (A,As + e).
This is the search version of the LWE problem, and there is a decisional

version of the LWE problem.

(Decisional) Learning with Errors (DLWE). Let m = m(n), q = q(n) be

integers, and χ be a distribution on Zq. Let A $← Z
m×n
q , s $← Z

n
q , e ← χm,

then the DLWE(m,n, q, χ) problem is that given (A,b), decide whether b is
distributed by As + e or chosen uniformly at random from Z

m
q .

The hardness of the matrix-version of the DLWE problem is as below.

Lemma 1 ([14]). Let m(n), k(n) = poly(n). Assume that DLWE(m,n, q, χ) is
pseudorandom [23]. Then the distribution (A,AX + E) is also pseudorandom,
where A ∈ Z

m×n
q and X ∈ Z

n×k
q are chosen uniformly at random and E is

chosen according to Dm×k
Z,αq .

2.4 Discrete Gaussians

For any s > 0 and c ∈ R
n, define the Gaussian function: ∀x ∈ R

n, ρs,c(x) =
exp(−π‖x − c‖2/s2).

For any c ∈ R
n, real s > 0, and n-dimensional lattice Λ, define the discrete

Gaussian distribution over Λ as: ∀x ∈ Λ,DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) where ρs,c(Λ) =∑

y∈Λ ρs,c(y). We omit the parameter c when c = 0.

2.5 Lossy Encryption

Lossy Encryption Scheme is defined in [3]. It is given by a tuple of PPT algo-
rithms {KeyGenreal, KeyGenloss, Enc, Dec}. The details are as below.

– KeyGenreal(1λ): a key generation algorithm takes a security parameter λ
as input, and outputs a pair of real public key and corresponding secret key
(PKreal,SK).

– KeyGenloss(1λ): a key generation algorithm takes a security parameter λ as
input, and outputs a pair of lossy public key and ⊥ instead of SK (PKlossy,⊥).

– Enc(PK,m): an encryption algorithm takes either PKreal or PKloss and message
m as input, and outputs a ciphertext C.

– Dec(SK,C): a decryption algorithm takes a secret key SK and a ciphertext C
as input, and outputs either a message m or ⊥ in the case of failure.

A Lossy Encryption Scheme should have the properties below.
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1. Correctness on Real Keys. For all (PKreal,SK) generated by KeyGenreal(1k)
and all message m, Dec(SK,Enc(PKreal,m)) = m.

2. Lossiness of Encryption with Lossy Keys. For any lossy keys PKloss

generated by KeyGenloss(1k) and any two messages m0 �= m1, there is
Enc(PKloss,m0) ≈s Enc(PKloss,m1).

3. Indistinguishability Between Real Public Key and Lossy Public Key.
For any PKreal generated by KeyGenreal and any PKloss generated by
KeyGenloss, there is PKreal ≈c PKloss.

2.6 Some Results About Randomness

Randomness plays an important role in constructing lossy encryption schemes,
so we introduce some results about randomness which will be used as tools in
the later section.

Lemma 2 ([17]). Let D be a distribution over Z
n
q with min-entropy k. For any

ε > 0 and l ≤ (k − 2 log(1/ε) − O(1))/ log q, the joint distribution of (C,C ·
s) where C ← Z

l×n
q is uniformly random and s ∈ Z

l×n
q is drawn from the

distribution D is ε-close to the uniform distribution over Z
l×n
q × Z

l
q.

Lemma 3 ([16]). Let n and q be positive integers with q prime, and let m ≥
2n log q. Then for all but a 2q−n fraction of all A ∈ Z

m×n
q and for any s ≥

ω(
√

log m), the distribution of the syndrome ut = etA mod q is statistically
close to uniform over Z

n
q , where e ∼ Dm

Z,s.

Lemma 4 ([6]). There exists a distribution Lossy such that Ā ← Lossy ≈c

U $← Z
m×n
q and given s $← Z

n
q , and e ← Dm×n

Z,βq , H̃ε
∞(s|Ā, Ās + x) ≥ n, where

ε = negl(λ). Lossy is as follows,

– Choose B $← Z
m×k
q , C $← Z

k×n
q , and Z ← Dm×n

Z,αq , where
α
β = negl(λ) and

k log q ≤ n − 2λ + 2.
– Let Ā = BC + Z.
– Output Ā.

3 Identity-Based Lossy Encryption

In this section, we give the definition of IBLE. An IBLE scheme works in two
modes. One is the real mode which is the same as an IBE scheme with stan-
dard master key generation algorithm and extraction algorithm. The other is the
lossy mode with a lossy master key generation algorithm, and the corresponding
extraction algorithm. The two modes share the same encryption and decryp-
tion algorithms. For identities id �= idlossy, encryptions with the lossy master
public key MPKlossy are committing as the same in the real mode. For idlossy,
encryptions are not committing.

Formally, the real mode is a tuple of PPT algorithms {Setupreal, Extractreal,
Enc, Dec}:
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– Setupreal(1λ): a master key generation algorithm takes a security parameter
λ as input, and outputs a pair of real master public key and corresponding
master secret key (MPKreal,MSK).

– Extractreal(id,MPKreal,MSK): a user secret key generation algorithm takes
an identity id, the master public key MPKreal and the master secret key MSK
as inputs, and outputs a user secret key SKid for the identity.

– Enc(id,MPK,m): a user encryption algorithm takes an identity id, the master
public key MPK and a message m as inputs, and outputs a ciphertext C.

– Dec(id,SKid,C): a user decryption algorithm takes an identity id, the user
secret key SKid and a ciphertext C as inputs, and outputs either a message
m or ⊥ in the case of failure.

The lossy mode is a tuple of PPT algorithms {Setuplossy, Extractlossy, Enc,
Dec}:

– Setuplossy(idlossy): a master key generation algorithm takes an identity idlossy

as input, and outputs a pair of lossy master public key and corresponding
master secret key (MPKlossy,MSK).

– Extractlossy(id,MPKlossy,MSK): a user secret key generation algorithm takes
an identity id, the master public key MPKlossy and the master secret key MSK
as inputs, and outputs either a user secret key SKid when id �= idlossy or ⊥
when id = idlossy.

– Enc and Dec algorithms are the same as those in the real mode.

An Identity-based Lossy Encryption Scheme should have the properties as
below.

1. Correctness on Keys for All id �= idlossy. For any (MPK,MSK) gen-
erated by Setupreal(1k) or Setuplossy(idlossy), any SKid generated by
Extractreal/lossy(id,MPK,MSK), and any message m, Dec(id,SKid,
Enc(id,MPK,m)) = m.

2. Lossiness of Encryption with Lossy Keys for id = idlossy. For any
lossy keys MPKlossy generated by Setuplossy(idlossy) and any two messages
m0 �= m1, there is Enc(idlossy,MPKlossy,m0) ≈s Enc(idlossy,MPKlossy,m1).
The advantage of A whose target is to distinguish those two ciphertexts (i.e.
Advlossy

A,IBLE -ind) means the advantage of A in the standard IND-CPA game
when the public key in the IND-CPA game is lossy.

3. Indistinguishability Between Real Keys and Lossy Keys. We use a game
to describe this property.

The advantage of the adversary is Advlossy-keys
A,IBLE = |2Pr[b′ = b] − 1|. If for all

PPT adversaries A we have that Advlossy−keys
A,IBLE is a negligible function, then

we say that the real keys generated in the real mode is indistinguishable with
the lossy keys generated in the lossy mode.

Obviously the definition of IBLE implies IND-CPA security of IBE.
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CA
chooses a target identity id∗ �id∗

(MPK0,MSK0) ← Setupreal(1
λ)

(MPK1,MSK1) ← Setuplossy(id
∗)

mode0 = real, mode1 = lossy
b ∈R {0, 1}� MPKb

for i = 1 to n
chooses idi �= id∗ �idi

SKidi ← Extractmodeb(idi,MPKb,MSKb)� SKidirecords SKidi

end

guesses b′ ∈ {0, 1} �b′
if b′ = b, outputs true
else outputs false

Fig. 1. Game of indistinguishability between real keys and lossy keys

3.1 Selective Opening Security

Here we prove that the notion of IBLE implies indistinguishability-based selec-
tive opening secure (IND-sID-SO) under chosen-plaintext attack. Firstly, we use
a game to define IND-sID-SO. Let DM be any message sampler.

Init: The adversary outputs a target identity id∗.

Setup: The challenger runs Setup(1λ) and keeps the master secret key MSK.
The challenger samples n messages {mi

0}i=1..n from DM and gets n ciphertexts
by using algorithm Enc(id∗,MPK,mi

0), i = 1..n. The master public key MPK
and the n ciphertexts c1, c2, ..., cn are sent to the adversary.

Phase 1: The adversary issues queries q1, ..., qk where the i-th query qi is a query
on idi. We require that idi �= id∗. The challenger responds by using algorithm
Extract to obtain a private key SKidi

for idi, and sends SKidi
to the adversary.

All queries may be made adaptively, that is, the adversary may ask qi with
knowledge of the challenger’s responses to q1, ..., qi−1.

Open and Challenge: Once the adversary decides that Phase 1 is over it
specifies a set J and sends it to the challenger. Then the challenger resamples
n messages {mi

1}i=1..n from DM such that m[J]
1 = m[J]

0 . The challenger picks
a random bit b ∈ {0, 1} and sends the adversary the messages mb and the
randomnesses r[J ] used in ciphertexts c[J ].

Phase 2: The adversary issues additional adaptive queries qk+1, ..., qm where
qi is a private-key extraction query on idi, where idi �= id∗. The challenger
responds the same as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins if b′ = b.
The advantage of A in attacking an IBE scheme E is AdvIND

A,E,DM,n-sID-SO(λ) =
|2 ·Pr[b = b′]−1|. The probability is over the random bits used by the challenger
and the adversary.
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Definition 2. We say that an IBE system E is IND-sID-SO secure if for all
IND-sID-SO PPT adversaries A we have that AdvIND-sID-SO

A,E,M,n (λ) is a negligible
function.

Theorem 1 (Identity-Based Lossy Encryption Implies IND-sID-SO
Security). Let λ be a security parameter. If IBLE is any identity-based
lossy encryption scheme, then for all IND-sID-SO PPT adversaries A,
AdvIND-sID-SO

A,IBLE (λ) is a negligible function.

Proof. At the beginning, we describe an algorithm called Opener. By the proper-
ties of IBLE, a ciphertext can be explained to any message with high probability.
It means that, given a ciphertext C and a message m, the algorithm Opener can
find a set of random numbers r such that Enc(idlossy,MPKlossy,m; r) = C and
outputs a random element of that set by traversing all values of the random
number. The distribution of randomness is correct and the algorithm Opener
is unbounded. Let A be any IND-sID-SO PPT adversary of IBLE . The game
sequence is as below.

G0 : The IND-sID-SO original game as the definition.

G1 : Setupreal in G0 is replaced by Setuplossy, and correspondingly,
Extra-ctreal in G0 is replaced by Extractlossy.

H0 : Based on G1, in the process of Open & Challenge, the challenger uses the
algorithm Opener(id∗,MPKlossy, ci,mi

0) to generate the random numbers corre-
sponding to the |J | ciphertexts.

Hk : We generalize H0 with a sequence of hybrid games. In this game, besides
the true messages m0 sampled from DM, the challenger randomly chooses
another k messages m′1

0,m
′2
0, ...,m

′k
0 from the plaintext space M as fake mes-

sages and encrypts them in the lossy mode (c′
1, c′

2, ..., c′
k) to replace the first

k ciphertexts. The challenger sends c′
1, ..., c′

k, ck+1, ..., cn to the adversary in
the Setup process. In the Open & Challenge process, the challenger still uses
Opener to reveal the random numbers by the true messages m0, i.e. ri =
Opener(id∗,MPKlossy, c′

i,mi
0) when i ≤ k and ri = Opener(id∗,MPKlossy, ci,mi

0)
when i > k.

Hn : In this game, the n ciphertexts sent to A are all replaced by encryptions
of other n fake messages {m′i

0}i=1..n. The revealed random numbers are opened
by Opener(id∗,MPKlossy, c′

i,mi
0).

Then we will analyze this game sequence. First, the change of G1 is that the
real keys (MPKreal,SKid real) are replaced by lossy keys (MPKlossy,SKid lossy).
Then if an adversary can distinguish G0 and G1, there is an adversary can
distinguish the real keys and the lossy keys in IBLE . It means that there is an
PPT adversary B1 such that

Pr[G0] − Pr[G1] = Advlossy-key
B1,IBLE(λ).
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By the third property of IBLE, Advlossy-key
B1,IBLE(λ) is negl(λ).

Second, the algorithm Opener in H0 uses the true message mi
0 and its corre-

sponding ciphertext ci, so the distribution of random number revealed by Opener
is the same as in G1. Then there is

Pr[G1] = Pr[H0].

Third, compared with H0, the change of H1 is that the first ciphertext c′
1

sent to A is encrypted by the fake message m′1
0 instead of the true message

m1
0. However, H1 still uses the true message m1

0 to open the random number
of the ciphertext c′

1. In other words, r′
1 = Opener(id∗,MPKlossy, c′

1,m
1
0), satis-

fies Enc(id∗
,MPKlossy,m1

0; r
′
1) = c′

1 = Enc(id∗
,MPKlossy,m′1

0; r1). Therefore,
if there is an adversary can distinguish H0 from H1, there is an unbounded
(because the algorithm Opener is unbounded) adversary B2 can distinguish the
ciphertexts in IBLE . That is

Pr[H0] − Pr[H1] = Advlossy-ind
B2,IBLE(λ).

H is a hybrid sequence, and the only difference between Hi and Hi+1 is the
ciphertext c′

i+1. Therefore,

Pr[H0] − Pr[Hn] = n · Advlossy-ind
B2,IBLE(λ).

Because the distribution of ciphertexts encrypted by any messages in identity-
based lossy encryption are statistically close, Advlossy-ind

B2,IBLE(λ) is negl(λ).
Last, in Hn, all n ciphertexts c′

1, c
′
2, ..., c

′
n are encrypted by fake messages

m′1
0,m

′2
0, ...,m

′n
0 which has no information of the true messages m1

0,m
2
0, ...,m

n
0 .

So the adversary can just randomly guess b. That is,

Pr[Hn] =
1
2
.

Above all, Advind-sid-so
A,IBLE,M,n(λ) = |2Pr[G0] − 1| ≤ 2 · Advlossy-key

B1,IBLE(λ) + 2n ·
Advlossy-ind

B2,IBLE(λ) = negl(λ) states that identity-based lossy encryption implies
IND-sID-SO secure. ��

3.2 Construction from LWE

The dual Regev’s cryptosystem was proposed to construct IBE with random
oracle in [16]. Then, Agrawal, Boneh and Boyen [1] used it to construct an IBE
scheme in the standard model. Before constructing IBLE, we construct a dual
Regev type lossy encryption to get some inspiration.

3.2.1 Construction of Dual Regev Type Lossy Encryption
We construct a lossy encryption based on dual Regev’s cryptosystem. However,
the process of encryption is different from dual Regev’s cryptosystem. We only
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KeyGenreal(1
λ)

A
$←− Z

n×m
q

T
$←− Dm×l

Z,r

PKreal := (A,AT)

SK := T

return (PKreal, SK)

KeyGenloss(1
λ)

B
$←− Z

m×k
q

C
$←− Z

k×n
q

Z ←− Dm×n
Z,αq

U
$←− Z

l×n
q

PKloss := ((BC + Z)t,Ut)
return (PKloss, ⊥)

Enc(PK,m)

s
$←− Z

n
q

e ←− Dm
Z,βq

(PK1,PK2) := PK
c1 := PKt

1s + e

c2 := PKt
2s + m� q

2
�

return (c1, c2)

Dec(SK,C)

(c1, c2) := C
m′ := c2 − SKtc1
m := decode(m′)
return m

Fig. 2. Construction of dual Regev type lossy encryption

choose the noisy vector e once in our construction instead of twice in the original
cryptosystem. The message space M is {0, 1}l, and the concrete construction is
as follows.

The decode(m′) means that for every element m′
i of the vector m′, outputs

0 if m′
i is closer to 0 than to � q

2� modulo q, otherwise outputs 1.

Parameters. Consider requirements of correct decryption, and the lossiness and
so on, parameters are as below. m ≥ 2n log q, k log q ≤ n − 2λ + 2, l ≤ (k −
2 log(1/ε)−O(1))/ log q, q ≥ 5rm, r ≥ ω(

√
log m), β ≤ 1/(r

√
mω(

√
log m)), βq >

O(2
√

n), α
β = negl(λ). To satisfy these requirements, q should be super-

polynomial of the secure parameter λ.

Then, we show this scheme fulfills the properties of lossy encryption.

1. Correctness on Real Keys. For all (PKreal,SK) generated by KeyGenreal(1λ)
and all message m,

Dec(SK,Enc(PKreal,m)) = Dec(T,Enc((A,AT),m))

= Dec(T, (Ats + e,TtAts + m�q

2
�))

= decode(TtAts + m�q

2
� − TtAts − Tte)

= decode(m�q

2
� − Tte)

= m

By Lemma 5, the algorithm decode() will get the correct message with over-
whelming probability.

2. Lossiness of Encryption with Lossy Keys.

Enc(PKloss,m) = Enc(((BC + Z)t
,Ut),m)

= ((BC + Z)s + e,Us + m�q

2
�)

By Lemma 4, H̃∞(s|(BC + Z)s + e) ≥ n. Because l ≤ (k − 2 log(1/ε) −
O(1))/ log q, and by Lemma 2, given (BC + Z)s + e, Us is ε-close to U(Zl

q).
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When ε = negl(λ), Us ≈s U(Zl
q) given (BC + Z)s + e. Therefore, for any

m ∈ M, (Us+m� q
2�) is statistically close to U(Zl

q), given (BC + Z)s + e, i.e.
for any lossy keys PKloss generated by KeyGenloss(1λ) and any two messages
m0 �= m1, Enc(PKloss,m0) ≈s Enc(PKloss,m1) holds.

3. Indistinguishability Between Real Public Key and Lossy Public Key. PKreal is
(A,AT), and PKloss is ((BC + Z)t

,Ut). Because m ≥ 2n log q, by Lemma 3,

(At, (TA)t) ≈s (U1,U2),U1
$← Z

m×n
q and U2

$← Z
l×n
q . Under the hardness

of LWE, (BC + Z,U) ≈c (U1,U2). Therefore, (BC + Z,U) ≈c (At, (TA)t),
i.e. PKreal and PKloss are computationally indistingushable.

Lemma 5 ([16]). Let q ≥ 5rm, let β ≤ 1/(r
√

m ·ω(
√

log n)). Then Dec(SK,C)
in Fig. 2 decrypts correctly with overwhelming probability (over the random
choices of KeyGenreal(1λ) and Enc(PK,m)).

3.2.2 Construction of IBLE
Before describing the construction, we will introduce some algorithms which will
be used.

Lemma 6 ([1]). Let q ≥ 3 be odd and m := �6n log q�. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q , S ∈

Z
m×m) such that A is statistically close to a uniform matrix in Z

n×m
q and S is

a basis for Λ⊥
q (A) satisfying ‖S̃‖ ≤ O(

√
n log q) and ‖S‖ ≤ O(n log q) with all

but negligible probability in n.

Lemma 7 ([1]). Let q > 2, m > 2n log q and σ > ‖T̃A‖ · ω(
√

log(m + m1)).
There is a probabilistic polynomial-time algorithm SampleLeft(A,M1,TA,u, σ)
that, given a rank n matrix A in Z

n×m
q , a matrix M1 in Z

n×m1
q , a “short” basis

TA of Λ⊥
q (A) and a vector u ∈ Z

n
q , outputs a vector e ∈ Z

m+m−1 distributed
statistically close to DΛu

q (F1),σ where F1 := (A‖M1).

Lemma 8 ([1]). Let q > 2, m > n and σ > ‖T̃B‖ · √
m · ω(log m). There is

a probabilistic polynomial-time algorithm SampleRight(A,B,R,TB ,u, σ) that,
given a matrix A in Z

n×m
q , a rank n matrix B in Z

n×m
q , a uniform ran-

dom matrix R ∈ {−1, 1}m×m, a basis TB of Λ⊥
q (B) and a vector u ∈ Z

n
q ,

outputs a vector e ∈ Z
2m distributed statistically close to DΛu

q (F2),σ where
F2 := (A‖AR + B).

If the input vector u is replaced by a matrix U, the algorithms of SampleLeft
and SampleRight still work normally and the outputs of them are matrices. We
will use the matrix version of them in the construction.

Next we prove an extension of Lemma 4 using the similar method of [6], which
is important to our construction of IBLE.

Lemma 9. There is a distribution Lossy such that Ā ← Lossy ≈c U $← Z
2m×n
q

and given s $← Z
n
q , and e ← D2m×n

Z,βq , H̃ε
∞(s|Ā, Ās + x) ≥ n, where ε = negl(λ).

Lossy is as follows.
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– Choose B $← Z
m×k
q , C $← Z

k×n
q , Z ← Dm×n

Z,αq , and R $← {1,−1}m×m, where
α
β = negl(λ), k log q ≤ n − 2λ + 2, and n log q ≤ m − 2λ + 2.

– Let Ā =
[

B
RtB

]
C +

[
Z

RtZ

]
.

– Output Ā.

Proof. 1. Ā ≈c U $← Z
2m×n
q :

(BC + Z,Rt(BC + Z))
(1)≈ c (U1,RtU1)

(2)≈ c (U1,U2), U1,U2
$← Z

m×n
q

– Under the hardness of LWE assumption, approximate formula (1) holds.
– Let ri be the i-th column of R where ri ← {−1, 1}m is uniformly random.

Because n log q ≤ m − 2λ + 2, by Lemma 2, (Ut
1,U

t
1ri) is statistically close

to the uniform distribution over Z
n×m
q × Z

n
q . Because the columns of R =

[r1 r2 ... rm] are sampled independently, (Ut
1,U

t
1R) is statistically close to

the uniform distribution over Zn×m
q ×Z

n×m
q . Taking the transpose, (2) holds.

2. H̃ε
∞(s|Ā, Ās + x) ≥ n, where ε = negl(λ): Let s0

$← {0, 1}n, s1
$← Z

n
q , then,

think of s = s0 + s1. Because H̃ε
∞(s|Ās + e) ≥ H̃ε

∞(s0|Ās + e), we will consider
H̃ε

∞(s0|Ās + e).

Ās + e =
[

B
RtB

]
Cs0 +

[
Z

RtZ

]
s0 +

[
B

RtB

]
Cs1 +

[
Z

RtZ

]
s1 + e

(1)≈ s

[
B

RtB

]
Cs0 +

[
B

RtB

]
Cs1 +

[
Z

RtZ

]
s1 + e

(2)≈ s

[
B

RtB

]
u0 +

[
B

RtB

]
Cs1 +

[
Z

RtZ

]
s1 + e

– Since α
β = negl(λ), each element of Zs0 is negligibly small compared to the

corresponding element of e. And RtZs0 is polynomial number of adds operat-
ing on elements of Zs0 where the elements of R are uniformly random chosen
from {−1, 1}, so each element of RtZs0 is negligibly small compared to the cor-

responding element of e. Therefore, e +
[

Z
RtZ

]
s0 ≈s e, and the approximate

formula (1) holds. It means that their statistical distance is some ε1 = negl(λ).

– Since s0
$← {0, 1}n and k log q ≤ n − 2λ + 2, by Lemma 2, the approximate

formula (2) holds where u0
$← Z

k
q . It means that their statistical distance is

some ε2 = negl(λ).

Then, for ε = ε1 + ε2 = negl(λ),

H̃ε
∞(s0|

[
B

RtB

]
Cs0 +

[
Z

RtZ

]
s0 +

[
B

RtB

]
Cs1 +

[
Z

RtZ

]
s1 + e)

≥ H̃ε
∞(s0|

[
B

RtB

]
Cs0 +

[
B

RtB

]
Cs1 +

[
Z

RtZ

]
s1 + e)
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≥ H̃ε
∞(s0|

[
B

RtB

]
u0 +

[
B

RtB

]
Cs1 +

[
Z

RtZ

]
s1 + e)

(3)
= H̃∞(s0)
= n

Because each of B,R,C,Z,u0, s1, e is independent of s0, (3) holds. ��
Next we describe our construction of IBLE from LWE inspired by the construc-
tion of IBE in [1]. There are some changes compared with [1]. In [1], there are
errors chosen from gaussian distribution in both two ciphertexts. And the error
used in the second ciphertext consists of two parts, one part e is from gaussian
distribution, and the other is Rte. However, in our construction, only the first
ciphertext needs an error from gaussian distribution. The concrete construction
is as Fig. 3. H : Zn

q → Z
n×n
q is an encoding function constructed in [1]. This

encoding function has the property that, for any two distinct inputs id1 and id2,
the difference between the outputs H(id1) and H(id2) is never singular.

Setupreal(1λ)

1 (A,SA) ∈ Z
n×m
q ×

Z
m×m
q ←TrapGen(q, n)

2 A1
$← Z

n×m
q , A2

$← Z
n×m
q

3 Y
$← Z

n×l
q

4 MPK := (A,A1,A2,Y)
5 MSK := SA

6 return (MPK,MSK)

Setuplossy(1λ, id∗)

1 B
$← Z

m×k
q , C

$← Z
k×n
q , Z ← Dm×n

Z,αq

2 A := (BC + Z)t

3 R
$← {−1, 1}m×m, Y

$← Z
n×l
q

4 (A2,SA2) ∈ Z
n×m
q ×Z

m×m
q ←TrapGen(q, n)

5 A1 := AR − H(id∗)A2

6 MPK := (A,A1,A2,Y)
7 MSK := (SA2 ,R)
8 return (MPK,MSK)

Extractreal(id,MPK,MSK)

1 (A,A1,A2,Y) := MPK
2 SA := MSK
3 M := A1 + H(id)A2

4 Xid←SampleLeft(A,M,SA,Y, σ)
5 SKid := Xid

6 return SKid

Extractlossy(id,MPK,MSK)

1 (A,A1,A2,Y) := MPK
2 (SA2 ,R) := MSK
3 M := A1 + H(id)A2 − AR
4 Xid←SampleRight(A,M,R,SA2 ,Y, σ)
5 SKid := Xid

6 return SKid

Enc(id,MPK,m)

1 s
$← Z

n
q , e ← D2m

Z,βq

2 (A,A1,A2,Y) := MPK
3 A(id) := (A‖A1 + H(id)A2)

4 c1 := A(id)ts + e

5 c2 := Yts + m� q
2
�

6 return (c1, c2)

Dec(MPK,SKid,C)

1 (c1, c2) := C
2 (A,A1,A2,Y) := MPK
3 m′ := c2 − SKt

idc1
4 m := decode(m′)

5 return m

Fig. 3. Construction of identity-based lossy encryption
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The algorithm decode() is the same in Sect. 3.2.1. In the algorithm Extra-
ctlossy(id,MPK,MSK), the matrix M is (H(id) − H(id∗))A2. When id �=
id∗, the trapdoor SA2 of Λ⊥

q (A2) is also a trapdoor for Λ⊥
q (M) since

(H(id) − H(id∗)) is non-singular.

Parameters. Consider requirements of correct decryption, and the lossiness and
so on, parameters are as below, m = �6n log q�, l log q ≤ k − 2λ + 2, k log q ≤
n − 2λ + 2, n log q ≤ m − 2λ + 2, q ≥ 10σm, σ ≥ O(

√
n log qm)ω(log m), β ≤

1/(σ
√

2mω(
√

log 2m)), α
β = negl(λ), βq > O(2

√
n), αq > O(2

√
n). To satisfy

these requirements, q should be super-polynomial of the secure parameter λ.
Then, we show this scheme fulfills the properties of IBLE.

1. Correctness on Keys for All id �= idlossy. For all (MPK,MSK) gen-
erated by Setupreal(1k) and Setuplossy(idlossy), all SKid generated by
Extractreal,lossy(id,MPK,MSK), and all messages m,

Dec(id,SKid,Enc(id,MPK,m))
= Dec(id,SKid,Enc((A,A1,A2,Y),m))

= Dec(id,SKid, ((A‖A1 + H(id)A2)ts + e,Yts + m�q

2
�)

= decode(Yts + m�q

2
� − SKt

idA(id)ts − SKt
ide)

(1)
= decode(Yts + m�q

2
� − Yts − SKt

ide)

= decode(m�q

2
� − SKt

ide)

= m

Because SKid is generated by SampleLeft, SKt
id = Yt, and (1) holds. By

Lemma 5, the algorithm decode() will get the correct message with overwhelm-
ing probability.

2. Lossiness of Encryption with Lossy Keys for id = idlossy.

Enc(id,MPKlossy,m)

= Enc(id, (BC + Z)t, (BC + Z)tR − H(id)A2,A2,Y),m)

= (
[

BC + Z
((BC + Z)tR − H(id)A2 + H(id)A2)t

]
s + e,Yts + m�q

2
�)

= (
[

BC + Z
Rt(BC + Z)

]
s + e,Yts + m�q

2
�)

= ((
[

B
RtB

]
C +

[
Z

RtZ

]
)s + e,Yts + m�q

2
�)

Let A′ =
[

B
RtB

]
C +

[
Z

RtZ

]
. Because the parameters satisfy the require-

ments of Lemma 9, we know that H̃∞(s|A′s + e) ≥ n. Then because
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l ≤ (k − 2 log(1/ε) − O(1))/ log q, and by Lemma 2, given A′s + e, Yts
is ε-close to U(Zl

q). When ε = negl(λ), Yts ≈s U(Zl
q) given A′s + e.

Therefore, for any m ∈ M, (Yts + m� q
2�) is statistically close to U(Zl

q),
given A′s + e, i.e. for the lossy identity id, any lossy keys MPKlossy gen-
erated by Setuplossy(id) and any two messages m0 �= m1, there is
Enc(id,MPKlossy,m0) ≈s Enc(id,MPKlossy,m1).

3. Indistinguishability Between Real Keys and Lossy Keys. We use a game
sequence to prove this property.
G0: This is the original game from the definition of the third property of
identity-based lossy encryption described as Fig. 1.
G1: In G0, the master public key MPK1 generated by the challenger is
((BC + Z)t,(BC + Z)tR− H(id∗)A2,A2,Y). In G1, we use a random matrix
U in Z

n×m
q to replace (BC + Z)t. It means that MPK1 in this game is

(U,UR − H(id∗)A2,A2,Y). The remainder of the game is unchanged.

Suppose there is an adversary A has non-negligible advantage in distinguish-
ing G0 and G1. Then we use A to construct an algorithm S as Fig. 4 to
distinguish a random matrix U and an LWE instance ((BC + Z)t). In words,
the algorithm S proceeds as follows. S requests the oracle O which outputs a
random matrix U or an LWE instance (BC + Z)t, and receives a matrix A′.
After receiving the target identity id∗ sent by A, S works as the Setupreal

algorithm in Fig. 3 to generate the real keys MPK0,MSK0, and uses A′ to
generate the lossy keys MPK1,MSK1. Then S randomly chooses b from {0, 1}
and sends MPKb to A. Then A issues private key extraction queries on idi

where idi �= id∗.
We argue that when the oracle O outputs an LWE instance (BC + Z)t,

MPKb is distributed exactly as in G0. If b = 0, MPK0 is the real public key,
and else b = 1, MPK1 is ((BC+Z)t, (BC+Z)tR−H(id∗)A′

2,A
′
2,Y

′). This
is the same as in G0. When the oracle O outputs a random matrix U, MPK0

is unchanged and MPK1 is (U,UR − H(id∗)A′
2,A′

2,Y′). In this case, MPK
is the same as in G1.

At last, A guesses if it is interacting with G0 or G1. S uses A’s guess
to answer whether A′ is a random matrix or an LWE instance. Hence, S’s
advantage in distinguishing U and (BC + Z)t is the same as A’s advantage
in distinguishing G0 and G1. Because (BC + Z)t ≈c U by Lemma 4, G0 and
G1 are computationally indistinguishable.

In G1, MPK1 = (U,UR − H(id∗)A′
2,A′

2,Y′) ≈c (U1,U2,A′
2,Y′) by

Lemma 2 where U1,U2 are random matrices. Hence, MPK1 is statisti-
cally indistinguishable with MPK0 which is (A,A1,A2,Y). Let F1 =
(A‖A1 +H(id)A2),F2 = (U‖UR+ (H(id) −H(id∗))A′

2). For all id �= id∗,
Extractreal(id, MPK0,MSK0) uses algorithm SampleLeft to extract SKid,
so by Lemma 7, the distribution of SKid is statistically close to DΛY

q (F1),σ.
Extractlossy(id,MPK1,MPK1) uses algorithm SampleRight to extract SKid,
so by Lemma 8, the distribution of SKid is statistically close to DΛY

q (F2),σ.
And because MPK0 ≈s MPK1, F1 and F2 are statistically indistinguishable.
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The process of S

A′ ← O
id∗ ← A
(MPK0,MSK0) ← Setupreal(1

λ)
(A′

2,SA′
2
) ∈ Z

n×m
q × Z

m×m
q ← TrapGen

R
$← {1, −1}m×m,Y′ $← Z

n×l
q

A′
1 := A′R − H(id∗)A′

2

MPK1 := (A′,A′
1,A

′
2,Y

′)
MSK1 := SA′

2
mode0 := real
mode1 := lossy
b ∈R {0, 1}
sends MPKb

for i = 1 to t
idi ← A
SKidi ← Extractmodeb(idi,MPKb,MSKb)
sends SKidi

end

Fig. 4. The process of S

Therefore, DΛY
q (F1) is statistically indistinguishable with DΛY

q (F2), i.e. any
SKid generated by Extractreal(id,MPK0,MPK0) is statistically indistin-
guishable with any SKid generated by Extractlossy(id,MPK1,MPK1) for all
id �= id∗. Therefore, the advantage of the adversary of G1 is negl(λ).

Above all, the advantage of G0’s adversary is negl(λ). This completes the
proof. ��

4 Conclusion

In this paper, we extend the notion of lossy encryption proposed by [3] to the sce-
nario of identity-based encryption. This new notion, identity-based lossy encryp-
tion, implies IND-sID-SO security under selective identity. And we provide a
construction of identity-based lossy encryption based on LWE.
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15. Escala, A., Herranz, J., Libert, B., Ràfols, C.: Identity-based lossy trapdoor func-
tions: new definitions, hierarchical extensions, and implications. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 239–256. Springer, Heidelberg (2014)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of computing, pp. 197–206. ACM (2008)

17. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: Yao, A.C.-C. (ed.) ICS, pp. 230–240. Tsinghua
University Press, Beijing (2010)

18. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)



20 J. He et al.

19. Hemenway, B., Ostrovsky, R.: Building lossy trapdoor functions from lossy encryp-
tion. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 241–260. Springer, Heidelberg (2013)

20. Jhanwar, M.P., Barua, R.: A variant of Boneh-Gentry-Hamburg’s pairing-free iden-
tity based encryption scheme. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008.
LNCS, vol. 5487, pp. 314–331. Springer, Heidelberg (2009)

21. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure
against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg
(2014)

22. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 84–93. ACM, New York, NY, USA (2005)

24. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan, pp.
135–148 (2000)

25. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

26. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

27. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)


	Identity-based lossy encryption from learning with errors
	Citation
	Author

	tmp.1723526144.pdf.0hdM7

