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Abstract In this paper, we present invalid-curve attacks that apply to the hyperelliptic curve scalar multi-

plication (HECSM) algorithm proposed by Avanzi et al. on the genus 2 hyperelliptic curve over binary field.

We observe some new properties of the HECSM. Our attacks are based on these new properties and the obser-

vation that the parameters f0 and f1 of the hyperelliptic curve equation are not utilized for the HECSM. We

show that with different “values” for curve parameters f0, f1, there exsit cryptographically weak groups in the

Koblitz hyperelliptic curve. Also, we compute the theoretical probability of getting a weak Jacobian group of

hyperelliptic curve whose cardinality is an smooth integer.
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1 Introduction

The discrete logarithm problem (DLP) is the keystone for the security of cryptosystems based on elliptic

curves and on Jacobian groups of more general algebraic curves. The performance of low-genus hyperel-

liptic curves has been shown to be competitive with that of elliptic curves(see [1] and reference there in).

The outcome is that for implementing cryptographic primitives, curves of genus 3 or higher have clearly

practical disadvantages over curves of genus 2 and elliptic curves. In this paper, we are concerned with

the security of curves of genus 2 defined over finite filed of characteristic 2.

In 1996 a fault analysis attack was introduced by Boneh et al. [2]. This attack is based on a fault

injection in a device performing an RSA [3] or Rabin [4] digital signature. Biehl et al. [5] proposed

the first fault-based attack on elliptic curve cryptography (ECC) [6,7]. Their basic idea is to change

the input points, elliptic curve parameters, or the base field in order to perform the operations in a

weaker group where solving the elliptic curve discrete logarithm problem (ECDLP) is feasible. A basic

assumption for this attack is that one of the two parameters of the governing elliptic curve equation

is not involved in point operations formulas. The authors [8] find that fault-based attack algorithm on

elliptic curve is subexponent. Later, Ciet et al. [9] have shown how to recover the secret key by applying

the same principle of invalid curves but using a less restrictive assumption of unknown but fixed faulty

input point. Karabina et al. [10] demonstrated that invalid-curve attacks can be successfully mounted on

∗Corresponding author (email: wangmingqiang@sdu.edu.cn)
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protocols based on genus 2 hyperelliptic curves if the appropriate public-key validation is not performed.

Recently, Domiinguze-Oviedo et al. [11] presented fault-based attacks that apply to the Montgomery

ladder algorithm on curves defined over the binary field and a computation after a fault may leave the

original group and be in a twist of the original elliptic curve. The authors [12] extend this method to

hyperelliptic curve. They based their work on the fact that the y-coordinate is not used for the elliptic

curve scalar multiplication (ECSM). A number of protections against active fault attacks have been

reported in [5,9,13–17].

Anderson and Kuhn reported a practical fault attack [18] by producing faults in instructions rather than

in data. Its technique consists of applying a high frequency glitch into the clock or power supply signals.

Due to different delays in the processors internal signal paths, this glitch might affect only some signals.

Varying the timing and duration of the glitch, the attacker can possibly help execute different wrong

instructions which might compromise some sensitive information. Skorobogatov et al. [19] introduced

a new way to induce faults into a single bit using a laser beam. This is called optical fault induction

attack. They used a low-cost laser to change the contents of any single RAM bit. In this way, according

to the principles of differential fault analysis, it is possible to mount an inexpensive attack against many

microcontrollers used today in constrained devices. Recently, Kim et al. [20] showed how general propose

microcontrollers can be targets of a so-called double-fault attack. Their fault injection method is based

on inducing a glitch which makes a transient fault with a voltage spike. These glitches are used to corrupt

data transferred between registers and memory or to prevent the execution of the code. They mount

successfully this attack on a microcontroller computing the Chinese remainder theorem (CRT) based

RSA signature generation algorithm.

The invalid-curve attacks presented by Biehl et al. [5], Ciet et al. [9] and Karabina et al. [10] apply to

situations where the above-mentioned parameter is not used for the group formulas. In this paper, we

extend the notion of invalid elliptic curves proposed by Domiinguze-Oviedo et al. [11] to genus 2 curves.

Our work takes advantage of the fact that the resulted uh is independent of part parameter of vg for the

hyperelliptic curve scalar multiplication (HECSM), where [uh, vh] = k[ug, vg]. Some numerical examples

will be shown in this paper by taking Koblitz hyperelliptic curve over F2m as the target curve.

In Section 2, some basic knowledge about hyperelliptic curve and hyperelliptic discrete logarithm

problem are described.

In Sections 3, we investigate the hyperelliptic curve scalar multiplication (HECSM) algorithm proposed

by Avanzi et al. in [1] on the genus 2 hyperelliptic curve over binary field. We provide some useful

properties on which our attack method is based.

There are two ways to represent a divisor in a Jacobian group of a curve. In Section 4, we present two

invalid-curve-based attacks on the target algorithm according to the representation of a given divisor.

In Section 5 and Section 6, we first describe our fault attack in detail based on the observations

in Section 3. If the validation check of the divisor(points) is omitted in a hyperelliptic curve based

cryptographic scheme, our attack model really does work. Next, some numerical examples are provided

by taking the Koblitz hyperelliptic curve as the target curve. The implemental results show that the

fault attack method is efficient. There is no parallel result in elliptic curve.

In Section 7, we analyze the efficiency of our attack method. Also, we obtain theoretical probability

of getting a weak Jacobian group of hyperelliptic curve whose cardinality is a smooth integer. Our

experimental results substantiate our claim. As an example, for Koblitz hyperelliptic curve over F2113 ,

the probability of running our attack algorithm to get a invalid hyperelliptic curve of which the cardinality

of the Jacobian group is a 275 smooth integer is at least 0.96227. In Section 8, we conclude this paper.

2 Preliminaries

2.1 Hyperelliptic curve

A hyperelliptic curve H of genus 2 over a finite field Fq of characteristic 2 can be defined by the following

non-singular Weierstrass equation: H : y2+h(x)y = x5+f4x
4+f3x

3+f2x
2+f1x+f0, where deg(h) � 2.
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Let H be an affine hyperelliptic curve of genus 2 with function field Fq(H) and coordinate ring O = Fq[H].

The group of O-ideal classes is denoted by Cl(O). The Jacobian JH(Fq) of H over Fq is the quotient

group of the degree zero divisors by the group of principal divisors defined over Fq.

Lemma 1 ([1]). We use the notation as above. There exists a surjective homomorphism from JH(Fq)

to Cl(O).

Lemma 2 ( [1]). Let H be a hyperelliptic curve over finite field Fq of genus g and let ω denote the

nontrivial automorphism of Fq(H) over Fq(x) with an Fq-rational Weierstrass point P∞ lying over the

place x∞ of Fq[x]. Let O = Fq[x, y]/(y
2 + h(x)y − f(x)).

1) In every nontrivial ideal class c of Cl(O) there is exactly one ideal I ⊆ O of degree t � g with the

property: the only prime ideal that could divide both I and ω(I) are those resulting from Weierstrass

points.

2) Let I be as above. Then I = Fq[x]u(x) + Fq[x](v(x)− y) with u(x), v(x) ∈ Fq[x], u monic of degree

t, deg(v) < t and u divides v2 + h(x)v − f(x).

3) The polynomials u(x) and v(x) are uniquely determined by I and hence by c. So [u, v] can be used

as coordinates for c.

The divisor classes D ∈ JH(Fq) are in one-to-one correspondence with the pairs of polynomials (u, v)

with u, v ∈ Fq[x], deg(v) < deg(u) � g, u monic, and u|(v2 + hv − f). The pair [u, v] is called the

Mumford representation of the divisor D.

In this paper, we consider the hyperelliptic curves of genus 2 defined over finite field Fq of characteristic

2 which is given by the following Weierstrass equation:

H : y2 + (h1x+ h0)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0. (1)

Koblitz hyperelliptic curves Ca of genus 2 defined over the binary field F2m , Ca : y2+xy = x5+ax2+1

are hyperelliptic curves of form (1). Günther et al. [21] found that there is fast scalar mulitplication

algorithm on such curves and JC1(F2m) are almost prime, where m ∈ {61, 103, 113}.
In the following sections, we use H to represent a hyperelliptic curve of form (1) defined over binary

field Fq unless otherwise specified. [u, v] denotes the Mumford representation of a divisor in JH(Fq).

P,Q,R denote points in H(Fq). [uD, vD] denotes the Mumford representation of a given divisor D in

JH(Fq), where uD = x2 + uD1x + uD0, vD = vD1x + vD0. If the divisor D can be represented by

D =: 〈R1〉 + 〈R2〉 − 2〈∞〉, by the property of Mumford representation of a divisor, we have uD =

(x− xR1)(x − xR2), vD =
yR1−yR2

xR1−xR2
x− xR1yR2−xR2yR1

xR1−xR2
, where Ri = (xRi , yRi), i = 1, 2.

2.2 Hyperelliptic curve discrete logarithm problem

Let H be a hyperelliptic curve of genus 2 defined over a finite field Fq of characteristic 2, and g ∈ JH(Fq).

The discrete logarithm problem is: given h ∈ 〈g〉, find an integer k such that h = [k]g.

If the order of the divisor g contains only small prime factors, then it is possible to use the Silver-

Pohlig-Hellman algorithm [22] to solve the DLP as presented in Algorithm 1. Let n be the order of the

base point g with the prime factorization n =
∏j−1

i=0 p
ei
i , where pi < pi+1.

Without loss of generality, we assume that the order of the base point g for which we want to solve

the DLP is a large prime number.

3 Arithmetic of hyperelliptic curve of form (1)

Let [ui, vi], i = 1, 2, 3 be the Mumford representation of divisors in JH(Fq). If deg(ui) = 2, define

ui = x2 + ui1x+ ui0, vi = vi1x+ vi0, if deg(ui) = 1, define ui = x+ ui0, vi = vi0.

We will use the affine formulae over binary fields for the group law as described in [1,23,24], and refer

to these formulae as F2a (see Appendix A) throughout the paper. Karabina et al. [10] claimed that the

output of the formulae F2a is independent of f1 and f0. However, they did not give the proof. Our

experiment results show that this claim is right. For completeness, we prove the following result.
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Algorithm 1 Silver-Pohlig-Hellmans algorithm for solving the DLP

Input: g ∈ JH(Fq), h ∈ 〈g〉, n =
∏j−1

i=0 peii , where pi < pi+1.

Output: An integer k with h = [k]g

1. For i = 0 to j − 1 do

1.1 h′ ← O, ki ← 0.

1.2 gi ← (n/pi)g.

1.3 For t = 0 to (ei − 1) do

1.3.1 ht,i ← (n/pt+1
i )(h+ h′).

1.3.2 Wt,i ← loggi ht,i. {DLP in a subgroup of order ord(gi).}
1.3.3 h′ ← h′ −Wt,iptig.

1.3.4 ki ← ki + ptiWt,i.

2. Use the CRT to solve the system of congruences k ≡ ki mod peii .

This gives us k mod n

3. Return (k)

Lemma 3. Let H be a hyperelliptic curve of genus 2 defined over finite field Fq with equation H :

y2 + h(x)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0. Then the addition and double over the Jacobian group

of H are independent of f1 and f0.

Proof. Book [1] has given the explicit formulae of adding and doubling over H. We give them in Ap-

pendix A. It is obvious that no formulae utilize the parameters f1 and f0.

Furthermore, by the formulae F2a, we have the following results. The proof of Lemma 4 and Lemma 5

will be given in Appendix B.

Lemma 4. Let [ui, vi] be the Mumford representation of divisors in JH(Fq), for i = 1, 2, 3, and satisfy

[u3, v3] = [u1, v1] + [u2, v2]. Suppose that deg(u2) = 2. Then u3, v31and v30 − v20 can be represented by

v10 − v20 with coefficients independent of v10, v20.

Lemma 5. Let [ui, vi] be the Mumford representation of the divisors in JH(Fq), for i = 1, 2, and satisfy

[u2, v2] = [2][u1, v1]. Suppose deg(u1) = 2. Then u2, v21 and v20 − v10 are independent of v10.

Theorem 1. Let [ug, vg] and [uh, vh] be the Mumford representation of given divisors g, h respectively

and satisfy h = [k]g with deg(ug) = 2. Then uh, vh1 are independent of vg0.

Proof. Assume that g is a reduced divisor. Let [ui, vi] = [i][ug, vg], i = 1, 2, . . . , k. By Lemma 5 and

[u2, v2] = [2][ug, vg], u2, v21 and v20 − vg0 are independent of vg0. By Lemma 4 and [u3, v3] = [u2, v2] +

[ug, vg], u3, v31 and v30 − vg0 are rational functions of v20 − vg0 with coefficients independent of v20, vg0.

Then u3, v31 and v30−vg0 are independent of v30, vg0. Iteratively, we find that uk and vk1 are independent

of vg0. That means uh and vh1 are independent of vg0. This completes the proof of this theorem.

4 Fault attack models on F2a

Consider a crptosystem that uses a strong hyperelliptic curve H of form (1) defined over finite field F2m ,

where m is an odd number. Since this algorithm F2a does not utilize the curve parameters f1 and f0, we

can insert a fault in the input points so that the computation is carried out exactly in another curve Ĥ
with f1 and f0 different. The discrete logarithm problem overH is transfered to that over Ĥ. The discrete

logarithm over H can be solved, if Ĥ is a weaker curve with which we can compute the HEC discrete

logarithm using the Silver-Pohlig-Hellman algorithm in the cryptographically weaker group J
̂H(Fq). This

work adopts the same single-bit flip fault model as that proposed in [2], which has been shown to be

practical [19].
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Definition 1. [10] Let H be a hyperelliptic curve of genus 2 defined over Fq with equation H : y2 +

h(x)y = x5+f4x
4+f3x

3+f2x
2+f1x+f0. An invalid curve relative to H and F2a is a hyperelliptic curve

over Fq with equation Ĥ : y2 + h(x)y = x5 + f4x
4 + f3x

3 + f2x
2 + f̂1x+ f̂0, where (f1, f0) �= (f̂1, f̂0).

Let g be the input divisor in JH(Fq) which can be represented by g = 〈P1〉 + 〈P2〉 − 2〈∞〉, where
Pi = (xPi , yPi), i = 1, 2 and P1 �= ±P2. Let [ug, vg] be the Mumford representation of g, where ug, vg can

be written as ug = x2 + ug1x + ug0, vg = vg1x + vg0. From the two representations of the input divisor

g, we have the following two fault attack models.

• Fault Model 1. Assume that the adversary can inject a flip fault (single bit) into ug1 (or ug0)

that might occur at random locations of the input divisor [ug, vg] of a device computing the HECSM

utilizing F2a. Suppose that the resulting Mumford representation after the fault injection is known and

is expressed as ũg = x2 + ũg1x+ ug0, vg = vg1x+ vg0 or ũg = x2 + ug1x+ ũg0, vg = vg1x+ vg0. Let the

Mumford representation of divisor g̃ be [ũg, vg]. Suppose that the result h̃ = [k]g̃ carried out in JH(Fq)

is released.

• Fault Model 2. Assume that the adversary can inject a random flip fault (single or multiple bit) into

the x-coordinate of the input point Pi = (xPi , yPi), i = 1, 2, of a device computing the HECSM by using

F2a. Without loss of generality, we assume that the adversary can inject a flip fault in P1. Suppose that

the resulting point after the fault injection is known, denoted by P̃1 = (x
˜P1
, yP1), satisfying P̃1 �= ±P2.

Let g̃ = 〈P̃1〉+ 〈P2〉 − 2〈P∞〉. Consider that the resulting h̃ = [k]g̃ carried out in JH(Fq) is released.

•How to avoid these attacks. If there is no validation check of the divisor(points) in the hyperelliptic

curve(JH(Fq)), our attack really dose work. We want to emphasize the importance of validation check of

the divisor(points).

5 Attack algorithm on Model 1

5.1 Attack algorithm by injecting a fault in ug1

By fault Model 1, we can get [ũg, vg] by injecting a fault in ug1, where ũg = x2+ũg1x+ug0, vg = vg1x+vg0.

Assume that there exist two different elements x̃i ∈ Fq, i = 1, 2, such that ũg(x̃i) = 0, i = 1, 2. Such

elements exist with a probability of about 1/2 [11].

Let [u
˜h, v˜h] be the Mumford representation of divisor h̃ = [k][ũg, vg]. The scalar multiplication is

carried out in JH(Fq) by using F2a.

Our attack idea of Model 1 is motivated by the following result.

Theorem 2. Let H be a genus 2 hyperelliptic curve of form (1) defined over a finite field Fq of charac-

teristic 2, and [ug, vg] be the Mumford representation of the divisor g ∈ JH(Fq). Let [ũg, vg] and [u
˜h, v˜h]

be defined as above. Then there exists a hyperelliptic curve Ĥ defined over Fq and divisors ĝ, ĥ ∈ J
̂H(Fq)

satisfying u
̂h = u

˜h, and ĥ = kĝ. Moreover uĝ = x2+ ũg1x+ug0, vĝ = vg1x+vĝ0, where vĝ0 is an element

in Fq.

Proof. Let ug1(x̃1 − x̃2) = α. For any y
̂P1

∈ Fq, define y
̂P2

= y
̂P1

− α. Consider the following linear

equation set:
{
f̂1x̃1 + f̂0 = y2

̂P1
+ h(x̃1)y ̂P1

− x̃5
1
− f4x̃

4
1 − f3x̃

3
1
− f2x̃

2
1,

f̂1x̃2 + f̂0 = y2
̂P2

+ h(x̃2)y ̂P2
− x̃5

2 − f4x̃
4
2 − f3x̃

3
2 − f2x̃

2
2.

(2)

By the assumption, the rank of the coefficient matrix

(
x̃1 1

x̃2 1

)

is 2. Therefore, there is a unique solution

of f̂1 and f̂0 in the above equations set.

Let Ĥ be a hyperelliptic curve over finite field Fq represented by the following Weierstrass equation:

Ĥ : y2 + h(x)y = x5 + f4x
4 + f3x

3 + f2x
2 + f̂1x+ f̂0. (3)
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Let P̂1 =: (x̃1, y
̂P1
), P̂2 =: (x̃2, y ̂P2

), ĝ =: 〈P̂1〉 + 〈P̂2〉 − 2〈P̂∞〉. Obviously P̂1, P̂2 ∈ Ĥ(Fq), ĝ ∈ J
̂H(Fq).

By the definition of ĝ, and α, the Mumford representation [uĝ, vĝ] of ĝ satisfy uĝ = ũg and vĝ1 = vg̃1.

By Theorem 1, u
̂h is independent of f̂1, f̂0 and vĝ0. Hence we have u

˜h = ukĝ. Suppose kĝ can be

represented by kĝ = 〈Q̂1〉 + 〈Q̂2〉 − 2〈Q̂∞〉, where Q̂1, Q̂2 ∈ Ĥ(Fq) and Q̂i = (x
̂Qi
, y

̂Qi
). By the fact

that uh̃ = ukĝ, x ̂Qi
can be obtained by u

˜h. Since Q̂1, Q̂2 ∈ Ĥ(Fq), we can determine y
̂Qi

by equations

Ĥ(x
̂Qi
, y) = 0, for i = 1, 2.

Therefore, we can find a divisor ĥ ∈ J
̂H(Fq) such that ĥ = kĝ. This completes the proof of the theorem.

With the divisors pair ĝ, ĥ ∈ J
̂H(Fq), one can obtain k mod n, where n = ord(ĝ). This would be possible

if all the prime factors of n are small. The completed attack procedure is presented as Algorithm 2.

There are several remarks on Algorithm 2.

Remark 1. In Algorithm 2, if ord(ĝ) is larger than ord(g) and all of the prime factor of ord(ĝ) are

smaller than ω, then we can get the whole secret integer k.

Remark 2. In Algorithm 2, we chose parameter w according to its practical computation ability. If

ord(ĝ) is not an ω smooth integer, we can modify Step 3 in Algorithm 2 as follows: write ord(ĝ) = n′n′′,
where n′ is w smooth integer, compute (n′′ĥ, n′′ĝ). One can get k mod n′ from (n′′ĥ, n′′ĝ) by using

Algorithm 1.

Remark 3. In Algorithm 2, if ord(ĝ) < ord(g), we let 2e be the exhaustive search space. If there is an

integer r � 2e such that Lcm(ord(ĝ), r) � ord(g), we can uniquely determine k by solving the system of

congruences:
{
x ≡ k mod n′,

x ≡ l mod r,

where l � r. Let kl be the solution of the above congruence. For each kl, we compute D = [kl]g. If

D = h, we have k = kl.

5.2 Implemental results of Algorithm 2

We have implemented Algorithm 2 using C++ library NTL1). In this subsection, we give some numerical

results by running Algorithm 2. The hyperelliptic curve H is the Koblitz curve represented by y2 + xy =

x5 + x2 + 1, which is defined over F2m given by a polynomial f(x), where m ∈ {61, 103, 113}. Let us

represent the elements of F2m in hexadecimal form. g is the input divisor in JH(F2m) whose Mumford

representation is [ug, vg]. By implementing Algorithm 2, we obtain fault divisors g̃, h̃, invalid curve Ĥ,

and ĝ, ĥ ∈ J
̂H(F2m) whose Mumford representations are [uĝ, vĝ], [ûh, v̂h] respectively, satisfying ĥ = [k]ĝ.

We list our numerical results in Table 1. Note that the numerical results are obtained by injecting only

one bit in ug1.

By injecting one bit in ug0, we can get similar results as above. The attack procedure and the numerical

results are presented in Appendix C (see Algorithm C1 and Table C1).

6 Attack algorithm on Model 2

6.1 Attack algorithm by injecting a fault in xP1

By Model 2, we get divisor g̃ by injecting one bit fault in xP1 , where g̃ = 〈P̃1〉 + 〈P2〉 − 2〈∞〉. Then
the corresponding polynomial of ug̃, vg̃ can be written as ug̃ = (x − x

˜P1
)(x − xP2), vg =

yP1−yP2

x
˜P1

−xP2
x −

x
˜P1

yP2−xP2yP1

x
˜P1

−xP2
. Assume that x

˜P1
�= ±xP2 . Let h̃ = [k]g̃, which can be represented by h̃ = 〈Q̃1〉+ 〈Q̃2〉 −

2〈∞〉, where the computation is carried out in JH(Fq) by using F2a.

Our attack on Model 2 is based on the following theorem.

1) Victor Shoup. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/.
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Algorithm 2 Attack algorithm by injecting a fault in ug1

Input: Hyperelliptic curve H, the Mumford representation [ug, vg ]

of a divisor g ∈ JH(Fq), w a parameter.

Output: Scalar k partially with a probability.

1. Inject a fault in ug for obtaining ũg = x2 + ũg1x+ ug0.

2. Solve ũg to get x̃1, x̃2, if x̃1, x̃2 ∈ Fq goto step 3, otherwise goto step 1.

3. Let α =: vg1(x̃1 − x̃2), for any y
̂P1
∈ Fq, y

̂P2
=: y

̂P1
− α.

3.1 Given y
̂Pi

solve the equation set (2) get f̂1, f̂0.

3.2 Define Ĥ : y2 + h(x)y = x5 + f4x4 + f3x3 + f2x2 + f̂1x+ f̂0.

3.3 Let P̂i = (x̃i, y ̂Pi
), ĝ =: 〈P̂1〉+ 〈P̂2〉 − 2〈∞〉.

3.4 Compute n = ord(ĝ) in J
̂H(Fq).

4. If all the prime factors of n are smaller than w, then

4.1 Compute h̃ = [k][ũg, vg ] carried out in JH(Fq) by F2a

4.2 Decompose u
˜h
, get the roots x

̂Qi
, i = 1, 2.

4.3 Compute y
̂Qi

= vg(x
̂Qi
), i = 1, 2.

4.4 Let Q̂i = (x
̂Qi
, y

̂Qi
), ĥ =: 〈Q̂1〉+ 〈Q̂2〉 − 2〈∞〉.

4.5 Utilize Algorithm 1 on J
̂H(Fq) with (ĝ, ĥ, n) to obtain k mod n.

5. Return (k mod n)

Actually, in step 4.2, h̃ is in J
̂H(Fq) and u

˜h
may have one or two roots in Fq.

Theorem 3. Let H be a hyperelliptic curve defined over a finite field Fq, g ∈ JH(Fq), and g̃, h̃ be defined

as above. There exists a hyperelliptic curve Ĥ defined over Fq and divisors ĝ, ĥ ∈ J
̂H(Fq) such that

ĥ = [k]ĝ.

See Appendix A for more detail, the proof of Theorem 3 is similar to that of Theorem 2.

With the points pair ĝ, ĥ ∈ J
̂H(Fq), one can obtain k mod n, where n = ord(ĝ). The completed attack

procedure is presented in Algorithm 3.

There are several remarks on Algorithm 3 similar to Algorithm 2.

6.2 Implemental examples of Algorithm 3

In this subsection, we give some examples by implementing Algorithm 3. The hyperelliptic curve H is the

Koblitz curve represented by y2+ xy = x5 + x2+1, which is defined over F2m and given by a polynomial

f(x), where m ∈ {61, 103, 113}. Let us represent the elements of F2m in hexadecimal form. g is the input

divisor in JH(F2m) which can be represented by g = 〈P1〉+ 〈P2〉 − 2〈∞〉, where Pi = (xPi , yPi), i = 1, 2.

By implementing Algorithm 3, we obtain fault divisors g̃, h̃, invalid curve Ĥ, and ĝ, ĥ ∈ J
̂H(F2m) where

the Mumford representations of g̃, h̃ and ĝ, ĥ are the same, satisfying ĥ = [k]ĝ. We list our examples in

Table 2. Note that the numerical results are obtained by injecting only one bit in xPi .

7 Efficiency of the attack method

In this section, we analyze the efficiency of our attack method.

7.1 Success probability of this attack

Most of the computational cost of Algorithm 2 and Algorithm 3 is involved in obtaining k by partially

using the Silver-Pohlig-Hellman algorithm (Algorithm 1) and the exhaustive search in Remark 3. Silver-

Pohlig-Hellman algorithm need to compute one HEC discrete logarithm. This operation can be performed

with a fast algorithm for HECDLP such as Pollard’s rho algorithm [25] with an expected number of point

operations about 3
√
pt−1 , where pt−1 is the largest prime divisor of n. An efficient algorithm was

provided in [26] to compute the order of Jacobian group for Hyperelliptic curve of characteristic 2. The
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Table 1 Insert a flip fault in ug1

Curve specification m = 61, p(x) = x61 + x5 + x2 + x+ 1

ug = x2 + 0x5003d8b67eb7d6fx+ 0xa8ee05ac09be989

vg = 0x23820d5e5fa3048x+ 0x074c4c18be9e74b

ord(g) = 2658455988447243530986550320280662477

k = 434798374983234574983

ug̃ = x2 + 0x4003d8b67eb7d6fx+ 0xa8ee05ac09be989

vg̃ = 0x23820d5e5fa3048x+ 0x074c4c18be9e74b

u
˜h
= x2 + 0x8703af391365c41x+ 0x3b7ccd02439f5b8

v
˜h
= 0x169f56a9082dd2e1x+ 0x49fb9a1f732c329

Ĥ : y2 + xy = x5 + x2 + 0xdeb1c6db60e71721x+ 0xdca12071e07a681

uĝ = x2 + 0x4003d8b67eb7d6fx+ 0xa8ee05ac09be989

vĝ = 0x23820d5e5fa3048x+ 0x99650d58d879df2

ord(ĝ) = (3)(17)(263)(40609)(30294782659877)(53702210072963)

u
̂h
= x2 + 0x8703af391365c41x+ 0x3b7ccd02439f5b8

v
̂h
= 0x169f56a9082dd2e1x+ 0xd7d2db5f15cb99

Curve specification m = 103, p(x) = x103 + x9 + 1

ug = x2 + 0xeee2d5c07a6bd93a0c59833ba4x+ 0xa48824b71e13215936f3cfa563

vg = 0xc7224fb356bd2cd32e4a5c14f3x+ 0xfdf1b8f10539754f7b3b50e2c4

ord(g) = 1085287719049570327739050925845914539948927360923370110769

k = 47983749832749832354365675827957

ug̃ = x2 + 0xeee2d5c07a6bdd3a0c59833ba4x+ 0xa48824b71e13215936f3cfa563

vg̃ = 0xc7224fb356bd2cd32e4a5c14f3x+ 0xfdf1b8f10539754f7b3b50e2c4

u
˜h
= x2 + 0xeb74574c92bcf7117d5bca8dd2x+ 0x76b4d8428e57f0cb9a875cee82

v
˜h
= 0xacdb9fa0ed3f5dbcd7739723c2x+ 0x11d81fb7039db7fa36ba893783

Ĥ : y2 + xy = x5 + x2 + 0xffe19155edbbbbc589c2452b27x

+0x2d2f25e94392ada846ececf413

uĝ = x2 + 0xeee2d5c07a6bdd3a0c59833ba4x+ 0xa48824b71e13215936f3cfa563

vĝ = 0xc7224fb356bd2cd32e4a5c14f3x+ 0x76c96ef71d21ada89f9364f757

ord(ĝ) = (2)(3)(23)(499)(52345739)(102687017779)(2416263581169375187)

(38329842543370836539)

u
̂h
= x2 + 0xeb74574c92bcf7117d5bca8dd2x+ 0x76b4d8428e57f0cb9a875cee82

v
̂h
= 0xacdb9fa0ed3f5dbcd7739723c2x+ 0x9ae0c9b11b856f1dd212bd221

Curve specification m = 113, p(x) = x113 + x9 + 1

ug = x2 + 0xc2b96348cc58e038b71178a9a38bx+ 0x3b358cf39d80854ad0b4d8ed5f43,

vg = 0x812bd9b8364583ca9abe1ddac461x+ 0xa6d4259ef3709c31246fdf8cce661

ord(g) = 53919893334301278715823297673841230760642802715019043549764193368381

k = 479837498327498354365675827957

ug̃ = x2 + 0xe2b96348cc58e038b71178a9a38bx+ 0x3b358cf39d80854ad0b4d8ed5f43,

vg̃ = 0x812bd9b8364583ca9abe1ddac461x+ 0xa6d4259ef3709c31246fdf8cce661

u
˜h
= x2 + 0x9618ec3ab49dde5afec0ff40ee1dx+ 0xc89eb90e270f5072a870244ee4761

v
˜h
= 0xd58145b4f23e3be0150195e47759x+ 0xc9145b2904fba6e0f911e34bf2181

Ĥ : y2 + xy = x5 + x2 + 0x125242763d3b9b9d2bd6ad9c49cax

+0xe95c3e0ba8e66dd0c807ef61c0911

uĝ = x2 + 0xe2b96348cc58e038b71178a9a38bx+ 0x3b358cf39d80854ad0b4d8ed5f43

vĝ = 0x812bd9b8364583ca9abe1ddac461x+ 0x476adaa20236340dc6ea942b28611

ord(ĝ) = (2)(5)(503)(12046651)(183064547)(5637681901967)(24099893265761)

(71552493695623998215629)

u
̂h
= x2 + 0x9618ec3ab49dde5afec0ff40ee1dx+ 0xc89eb90e270f5072a870244ee4761

v
̂h
= 0xd58145b4f23e3be0150195e47759x+ 0x28aaa415f5bd0edc1b94a8ec141f1
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Algorithm 3 Attack algorithm by injecting a fault xP1

Input: Hyperelliptic curve H, g ∈ JH(Fq), g = 〈P1〉+ 〈P2〉 − 2〈P∞〉,
Pi = (xPi

, yPi
), i = 1, 2, w a parameter to be chosen later.

Output: Scalar k partially with a probability.

1. Inject a fault in P1 = (xP1
, yP1

) for obtaining P̃1 = (x
˜P1
, yP1

).

2. Let α =: yP1
− yP2

, for any y
̂P1
∈ Fq, y

̂P2
=: y

̂P1
− α.

3.1 Given y
̂Pi

solve the equation set (4) get f̂1, f̂0.

3.2 Define Ĥ : y2 + h(x)y = x5 + f4x4 + f3x3 + f2x2 + f̂1x+ f̂0.

3.3 Let P̂i = (x
̂Pi
, y

̂Pi
), ĝ =: 〈P̂1〉+ 〈P̂2〉 − 2〈∞〉.

3.4 Obtain n = ord(ĝ) in J
̂H(Fq).

3. If all the prime factors of n are smaller than w, then

3.1 Compute h̃ = [k]g̃ carried in JH(Fq) by F2a

3.2 Decompose u
˜h
, get the roots x

˜Qi
, i = 1, 2.

3.3 Compute y
̂Qi

= vg(x
˜Qi
), i = 1, 2.

3.4 Let Q̂i = (x
˜Qi
, y

̂Qi
), ĥ =: 〈Q̂1〉+ 〈Q̂2〉 − 2〈∞〉.

3.5 Utilize Algorithm 1 on J
̂H(Fq) with (ĝ, ĥ, n) to obtain k mod n.

4. Return (k mod n)

In fact, in step 3.2, h̃ is in J
̂H(Fq) and u

˜h
may have one or two roots in Fq.

order of ĝ can be efficiently computed. The exhaustive search space depends on the order of ĝ, and the

order of g.

LetH be hyperelliptic curve of genus 2 defined over Fq, we have �JH(Fq) ∈ [(
√
q−1)4, (

√
q+1)4], where �

denotes cardinality. In Algorithm 2 and Algorithm 3, we can find a hyperelliptic curve Ĥ of genus 2 defined

over Fq and a divisor ĝ ∈ J
̂H(Fq). Without loss of generality, we assume ord(ĝ) ∈ [(

√
q − 1)4, (

√
q + 1)4].

For n ∈ N, let S1(n) denote the largest prime divisor of n. For random integers n, Knuth et al. [27]

showed that Prob[S1(n) � ω] ≈ ρ(logn/ logω), where ρ(u) is the Dickman-de Bruijn function satisfying

uρ′(u) + ρ(u− 1) = 0.

A fault is called a valid fault if the resulting divisor which we get by injecting the fault in the input

divisor satisfies Theorem 2 or Theorem 3. Let t be the number of locations where we can inject a valid

fault. From Algorithm 2 and Algorithm 3, we can obtain a Jacobian group of a hyperelliptic curve over

Fq whose cardinality is an ω smooth integer with probability at least 1− (1− ρ(logn/ logω))t.

Given a hyperelliptic curve H defined over F2m , m ∈ {61, 103, 113}, Tables 3 and 4 give the probability

of running Algorithm 2 and Algorithm 3 to get a invalid hyperelliptic curve. The cardinality of the

Jacobian group of the invalid hyperellipti curve is an ω smooth integer.

7.2 Experimental results

This subsection reports our experimental results of these fault attacks on three Koblitz curves. The

Koblitz curve is defined by y2 + xy = x5 + x2 + 1 over F2m , where m ∈ {61, 103, 113}. We test all the

results after inserting a flip fault in u1, u0 and xi for i = 1, 2. Taking m = 113, for example, find that

an invalid curve requires 28.379 s with a total of 64.47 MB memory usage(on Intel(R) Core(TM) 2 Duo

CPU) including the factorization of the cardinality.

Figure 1 shows the size in bits of the biggest prime factor of the cardinality of the Jacobian group of

all the feasible invalid curves. Owing to space constraints, we only give the result of attack on Koblitz

hyperelliptic curve over F2113 . From the algorithm described above, we can inject 56 faults in u1, 59

faults in u0, and 201 faults in xi. The security level in bits of Koblitz hyperelliptic curve over F2113 is

102. There are 107 invalid curves whose security level in bits is less than 50, and there are 18 invalid

curves whose security level in bits is less than 30.

In Table 5, we show the best result of attacking three Koblitz curves. The biggest prime factor of the

weakest invalid curves has 42, 41, 36 bits respectively for m = 61; 58, 53, 57 for m = 103; 68, 69, 39
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Table 2 Inserting a flip fault in xi

Curve specification m = 61, p(x) = x61 + x5 + x2 + x+ 1

g = 〈0x8900a8b93a076f6, 0x3923bf8285950e7〉
+ 〈0xd903700f44b0b99, 0x4a5825cb088983f1〉 − 2〈∞〉

ord(g) = 2658455988447243530986550320280662477

Ĥ : y2 + xy = x5 + x2 + 0xb7cc1cd225fd9781x+ 0x7d37ef99a3923b3

ĝ = 〈0xc900a8b93a076f6, 0x3923bf8285950e7〉
+ 〈0xd903700f44b0b99, 0x4a5825cb088983f1〉 − 2〈∞〉

ord(ĝ) = (2)(23)(47)(599)(261409249)(9975575507)(314882152177)

k = 434798374983234574983

ĥ = 〈0xbd710d522c5dbee, 0x22b7376f98697a〉
+ 〈0x73ac9b38ae2430c1, 0x22feef1f0a4819b1〉 − 2〈∞〉

Curve specification m = 103, p(x) = x103 + x9 + 1

g = 〈0x2a3279a1aa8cf29c3f8acae6b3, 0x755b7ec0c057b9d804eb133b54〉
+ 〈0xc4d0ac61d0e72ba633d349dd17, 0x6716f3b50a6cb699e8993f9a01〉 − 2〈∞〉

ord(g) = (1085287719049570327739050925845914539948927360923370110769)

Ĥ : y2 + xy = x5 + x2 + 0xf52d451fde9ff75f80365df8c4x+ 0x3315f129ec8226ce9dcf16e071

ĝ = 〈0x2a3279a1aa8cf29c3f8acae6b3, 0x755b7ec0c057b9d804eb133b54〉
+ 〈0xccd0ac61d0e72ba633d349dd17, 0x6716f3b50a6cb699e8993f9a01〉 − 2〈∞〉

ord(ĝ) = (2)(5)(29)(31)(2045987)(694226125567609)(1606257785136088771)(5014184917771227827)

k = 479837498327498354365675827957

ĥ = 〈0x459ae03b3260f17b0931b4c853, 0x67e4d19032f3d9f96c7b29ae75〉
+ 〈0xc078869148a2840228a89204, 0xaa6d6a0fd301d60bf693f6775〉 − 2〈∞〉.

Curve specification m = 113, p(x) = x113 + x9 + 1

g = 〈0x7d58cac12e5122476d1ab89c8c57, 0x0231395d3e67ac81149cc1b5c581〉
+ 〈0xbfe1a989e209c27fda0bc0352fdc, 0xcb45a10bd42f4e8758b1b459f8641〉 − 2〈∞〉

ord(g) = 53919893334301278715823297673841230760642802715019043549764193368381

Ĥ : y2 + xy = x5 + x2 + 0xf8dd487b294ad77a55fe40c3912cx

+0xdaedbdfa7d1d3824ba2d964f4c9d1

ĝ = 〈0x7d58cac12e5122476d1ab89c8e57, 0x0231395d3e67ac81149cc1b5c581〉
+ 〈0xbfe1a989e209c27fda0bc0352fdc, 0xcb45a10bd42f4e8758b1b459f8641〉 − 2〈∞〉

ord(ĝ) = (5)(23)(83)(2928268957)(5143307119)(15240965639)(59409661109)(63353145481)

(6538557223013)

k = 479837498327498354365675827957

ĥ = 〈0x88ad369b0b05288e7c22a7424fc4, 0x4483c387455dd631df98408504c8〉
+ 〈0xaf358d917992d2162418747b0aa31, 0x049769825db3fb0c809e08ebdc711〉 − 2〈∞〉

Table 3 Probability of attack model 1

q �(JH(Fq)) t ω Probability

261 2122 30 260 0.99998

2103 2206 51 269 0.9212

2113 2226 56 275 0.9386

Table 4 Probability of attack model 2

q �(JH(Fq)) t ω Probability

261 2122 60 260 0.99999

2103 2206 102 269 0.9937

2113 2226 112 275 0.96227

for m = 113. It is feasible to solve discrete logarithm problem of these weakest invalid curves by using

Silver-Pohlig-Hellman algorithm.

At present, bit size of the security level in practical cryptsystem is 80. The security level in bits of

Koblitz hyperelliptic curve over F2103 and F2113 are 87 and 102, respectively. Hence, the Jacobian group

Koblitz hyperelliptic curve over F2103 and F2113 can be applied to design cryptosysytem. In Table 5, the

security level in bits of the invalid curves are 27 and 20 respectively, i.e. we can solve discrete logarithm

problem of these weakest invalid curves with one second by utilizing Silver-Pohlig-Hellman algorithm.
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(c) Size of the biggest prime factor of all the feasable 59 invalid curves with a fault inserted in u0

(b) Size of the biggest prime factor of all the feasable 203 invalid curves with a fault inserted in xi

(a) Size of the biggest prime factor of all the feasable 56 invalid curves with a fault inserted in u1

Figure 1 Attack Koblitz curve with m = 113. The thick black horizontal line denotes the size of the biggest prime factor

of JH(2113) in bits. The vertical lines denote the size of the biggest prime factor of all the feasible invalid curves’s cardinality.

Table 5 Size of each prime factor of Koblitz curve and the weakest curve

m Attack model Curves Size of each prime factor of �(J(Fq))

61 Koblitz curve 61 2, 101

Insert fault in u1 The Weakest curve 2, 5, 9, 15, 42, 42

Insert fault in u0 The Weakest curve 2, 7, 8, 14, 17, 27, 41

Insert fault in xi The Weakest curve 2, 5, 6, 9, 27, 30, 36

103 Koblitz curve 103 2, 15, 174

Insert fault in u1 The Weakest curve 2, 2, 5, 9, 24, 36, 57, 58

Insert fault in u0 The Weakest curve 2, 14, 29, 39, 51, 53

Insert fault in xi The Weakest curve 2, 3, 5, 5, 21, 45, 57

113 Koblitz curve 113 2, 204

Insert fault in u1 The Weakest curve 2, 3, 9, 24, 27, 39, 41, 68

Insert fault in u0 The Weakest curve 3, 9, 23, 26, 39, 41, 69

Insert fault in xi The Weakest curve 3, 5, 6, 30, 30, 32, 33, 33, 39

Therefore, we can get the discrete logarithm of the original curves efficiently.
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8 Conclusion

In this paper, we have presented invalid-curve attacks according to the representation of divisors in Jaco-

bian group of a hyperelliptic curve that applies to the hyperelliptic curve scalar multiplication (HECSM)

algorithm on the genus 2 hyperelliptic curve over binary field. These attacks exploit the fact that the

parameters of the hyperelliptic curve equation f0, f1 are not used in the group formula for these particular

algorithm. By injecting a one bit fault in the input divisor, we may find a hyperelliptic curve Ĥ with the

same parameters as the original hyperelliptic curve H except for parameters f0, f1, and the cardinality

of the Jacobian group J
̂H(F2m) is an ω smooth integer. By taking Koblitz as a target curve H, we have

shown some weaker Jacobian groups of the resulting hyperelliptic curve Ĥ. Finally, we have obtained

theoretical probability of getting a hyperelliptic curve whose Jacobian group is weak.
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Appendix A Formulae F2a

Here, we show the explicit formulae on H, and we denote them by F2a in this paper (see Tables A1–A3).

Appendix B Proofs of Lemma 4 and Lemma 5

Proof of Lemma 4. We divide the proof of this lemma into two cases: deg(u1) = 2 and deg(u1) = 1.

Case 1. Assume deg(u1) = 2, and define r = (u20 − u10)(u
2
11 − u11u21 + u20 − u10) + (u11 − u21)

2, s′0 =

[(u11 − u21)(u11 + 1) − u10 + u20](v10 − v20 + v11 − v21), s′1 = (u2
11 − u11u21 + u20 − u10)(v11 − v21) + (u11 −

u21)(v10−v20)−u11(u11−u21)(v11−v21). By the definition, r is independent of v10, v20, and s′0, s
′
1 can be linearly

represented by v10 − v20 with coefficient independent of v10, v20.

By a rather complex computation, we have: If s′1 �= 0, then u31 = r2

s′21
+ u11 − u21, u30 = u21

s′0
s′1
h1

r
s′1

+ (u11 −
u21 − f4)

s′20
s′21

+(
s′0
s′1

−u11)(
s′0
s′1

−u11 −u21)−u10, v31 = [u31(u21 +
s′0
s′1
)−u′

0 −u21
s′0
s′1

+u20]
s′0
r
− v21 −h1, v30 − v20 =

[u30(u21 +
s′0
s′1
) − u20

s′0
s′1
]
s′0
r

− h0. If s
′
1 = 0, then u31 = 1, u30 = u11

s′20
r2

+ f4 + u11 + u21, v31 = 0, v30 − v20 =

u30[(u21 + u30)
s′0
r
+ h1 + v21]− u20

s′0
r
− h0. By the above formula, it is not difficult to see that u31, u30, v31, and

v30 − v20 are rational functions of r, s′0, s
′
1 with coefficient independent of v10, v20.

Case 2. Assume deg(u1) = 1, and define s = v10−v20−v21u10

u20−u21u10+u2
10
. A similar computation as in case 1 shows that

u31 = f4−u21−s2−u10, u30 = f3−(f4−u21)u21−u20−s(su21+h1)−u10u31, v31 = s(u31−u21)−v21−h1, v30−v20 =

s(u30−u20)−h0. By the definition, s is a linear representation of v10−v20 with coefficient independent of v10, v20.

The above formula shows that u31, u30, v31 and v30 − v10 are rational functions of s with coefficient independent

of v10, v20. This completes the proof of the lemma.

Proof of Lemma 5. According to formulae for doubling over binary fields in case deg(u) = 2, we define

s′0 = (u2
11v11+f4u

2
11+f2−v211−h1v11)(h0−u11v11)−u10h1(f3+u2

11), s
′
1 = (h0−h1−u11v11)(f3+u2

11+u2
11v11+

f4u
2
11 + f2 − v211 − h1v11)− (u2

11v11 + f4u
2
11 + f2 − v211 − h1v11)(h0 − u11v11) + h1(f3 + u2

11)(1 + u11).

If s′0 �= 0, then u21 = r2

s′21
, u20 =

s′20
s′21

+ r
s′1
h1 − r2

s′21
f4, v21 = [u21(u11 +

s′0
s′1

− u21) − u11
s′0
s′1
]
s′1
r
− v11 − h1, v20 =

[u20(u11 +
s′0
s′1

− u21)− u10
s′0
s′1
]
s′1
r
− v10 − h0. If s

′
0 = 0, then u21 = 1, u20 = f4 − s′20

r2
, v21 = 0, v20 = u20[

s′0
r
(u20 +

u11) + h1 + v11]− u0
s′0
r
− v10 − h0.

By the definition, s′0, s
′
1 is independent of v10, u21, u20, v21 and v21 − v10 are rational functions of s′0, s

′
1 with

coefficient independent of v10. So u21, u20, v21 and v21 − v10 are independent of v10.

Proof of Theorem 6. Let yP1 − yP2 = α. For any y
̂P1

∈ Fq , define y
̂P2

= y
̂P1

−α. Consider the following liner

equation set: {
f1x ˜P1

+ f0 = y2
̂P1

+ h(x
˜P1
)y

̂P1
− x5

˜P1
− f4x

4
˜P1

− f3x
3
˜P1

− f2x
2
˜P1
,

f1xP2 + f0 = y2
̂P2

+ h(xP2)y ̂P2
− x5

P2
− f4x

4
P2

− f3x
3
P2

− f2x
2
P2

.
(B1)

By assumption x
˜P1

�= xP2 , the rank of the coefficient matrix

(
x

˜P1
1

xP2 1

)
is 2. Therefore, there is a unique solution

of f̂1 and f̂0 in the above equations set.
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Table A1 Formulae for addition over finite fields in case deg(u1) = 2, deg(u2) = 2

Addition (deg(u1) = 2, deg(u2) = 2, h2 = 0)

Input Two divisor classes [u1, v1],[u2, v2] with ui = x2 + ui1x+ ui0 and vi = vi1x+ vi0.

Output The divisor classes [u′, v′] = [u1, v1] + [u2, v2]

1. Compute r = Res(u1, u2); z1 = u11 − u21; z2 = u20 − u10; z3 = u11z1 + z2; r = z2z3 + z21u10

2. Compute almost inverse of u2 modulo u1; inv1 = z1; inv0 = z3

3. Compute s′ = rs = ((v1 − v2)inv) mod u1; w0 = v10 − v20; w1 = v11 − v21; w2 = inv0w0; w3 = inv1w1

s′1 = (inv0 + inv1)(w0 +w1)−w2 − w3(1 + u11); s′0 = w2 − u10w3. If s′1 = 0 see below

4. Compute s′′ = s+ s′0/s
′
1 and s1; w1 = (rs′1)

−1; w2 = rw1; w3 = s′21 w1; w4 = rw2; w5 = w2
4; and s′′0 = s′0w2

5. Compute l′ = s′′u2 = x3 + l′2x
2 + l′1x+ l′0; l

′
2 = u21 + s′′0 ; l′1 = u21s′′0 + u20; l′0 = u20s′′0

6. Compute u′ = (s(l + h+ 2v2)− t)/u1 = x2 + u′
1x+ u′

0; u
′
0 = (s′′0 − u11)(s′′0 − z1) − u10

u′
0 = u′

0 + l′1 + h1w4 + (z1 − f4)w5; u′
1 = z1 + w5

7. compute v′ = (−h− (l + v2)) mod u′ = v′1x+ v′0; w1 = l′2 − u′
1; w2 = u′

1w1 − u′
0 − l′1; v′1 = w2w3 − v21 − h1;

w2 = u′
0w1 − l′0; v′0 = w2w3 − v20 − h0

8. Return [u′, v′]

In case s′1 = 0, replace 4–6 with the followling.

4′. Compute s; inv = 1/r; s0 = s′0inv

5′. Compute u′ = (t− s(l+ h+ 2v2))/u1 = x+ u′
0; u

′
0 = f4 − u21 − u11s20

6′. Compute v′ = (−h− (l + v2)) mod u′ = v′0; w1 = s0(u21 + u′
0) + h1 + v21; w2 = u20s0 + v20 + h0;

v′0 = u′
0w1 −w2

Table A2 Formulae for addition over finite fields in case deg(u1) = 1, deg(u2) = 2

Addition (deg(u1) = 1, deg(u2) = 2, h2 = 0)

Input Two divisor classes [u1, v1],[u2, v2] with u1 = x+ u10 and v1 = v10; u2 = x2 + u21x+ u20 and

v2 = v21x+ v20.

Output The divisor classes [u′, v′] = [u1, v1] + [u2, v2]

1. Compute r = u2 mod u1; r = u20 − (u21 − u10)u10

2. Compute almost inverse of u2 modulo u1; inv = 1/r

3. Compute s′ = rs = ((v1 − v2)inv) mod u1; s0 = inv(v10 − v20 − v21u10)

4. Compute l = su2 = s0x2 + l1x+ l0; l1 = s0u21; l0 = s0u20

5. Compute t = (f − v2h− v22)/u2 = x3 + t2x2 + t1x+ t0; t2 = f4 − u21; t1 = f3 − (f4 − u21)u21 − u20

6. Compute u′ = (t − s(l + h+ 2v2))/u1 = x2 + u′
1x+ v′0; u

′
1 = t2 − s20 − u10; u′

0 = t1 − s0(l1 + h1)− u10u′
1

7. Compute v′ = (−h− (l + v2)) mod u′ = v′1x+ v′0; v
′
1 = s0u′

1 − v21 − h1 − l1; v′0 = s0u′
0 − v20 − h0 − l0

8. Return [u′, v′]

Let Ĥ be a hyperelliptic curve over finite field Fq represented by the following Weierstrass equation: Ĥ :

y2+h(x)y = x5+f4x
4+f3x

3+f2x
2+ f̂1x+ f̂0, Define P̂1 =: (x

˜P1
, y

̂P1
), P̂2 =: (xP2 , y ̂P2

), ĝ =: 〈P̂1〉+〈P̂2〉−2〈∞〉.
Obviously P̂1, P̂2 ∈ Ĥ(Fq), ĝ ∈ J

̂H(Fq). By the definition of divisor ĝ and α, we can find that uĝ = ug̃ and

vg̃1 = vĝ1, where [uĝ , vĝ ] is the Mumford representation of ĝ.

By Theorem 1, u
̂h is independent of f̂1, f̂0 and vĝ0, so we have ukg̃ = ukĝ.

Assume that kĝ is a reduced divisor. Then there exist points Q̂1, Q̂2 ∈ Ĥ(Fq) such that kĝ can be uniquely

represented by kĝ = 〈Q̂1〉+〈Q̂2〉−2〈Q̂∞〉. Putting Q̂i = (x
̂Qi
, y

̂Qi
), we have ukĝ = (x−x

̂Q1
)(x−x

̂Q2
). By the fact

that ukg̃ = ukĝ, x ̂Qi
can be obtained by u

˜h. Since Q̂1, Q̂2 ∈ Ĥ(Fq), we can determine the y
̂Qi

by the equations

Ĥ(x
̂Qi
, y) = 0, for i = 1, 2.

Therefore, we can find a divisor ĥ ∈ J
̂H(Fq) such that ĥ = kĝ. This completes the proof of the theorem.
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Table A3 Formulae for doubling over finite fields in case deg(u) = 2

Doubling (deg(u) = 2, h2 = 0)

Input A divisor classes [u, v] with

u = x2 + u1x+ u0 and v = v1x+ v0.

Output The divisor classes [u′, v′] = [2][u, v]

1. Compute ṽ = (h+ 2v) mod u = ṽ1x+ ṽ0; ṽ1 = h1; ṽ0 = h0

2. Compute r = Res(ṽ, u); w0 = v21 ;w1 = u2
1; w2 = ṽ21 ; w3 = u1v1; r = u0w2 + h0(h0 −w3)

3. Compute almost inverse of inv′ = r inv; inv′1 = −ṽ1; inv′0 = ṽ0 − w3;

4. Compute t′ = ((f − hv − v2)/u) mod u = t′1x+ t′0; t
′
1 = f3 +w1; t′0 = u1(u1v1 + f4u1) + f2 − w0 − h1v1

5. Compute s′ = (t′inv′) mod u; w0 = t′0inv
′
0; w1 = t′1inv

′
1;

s′0 = w0 − u0w1; s′1 = (inv′0 + inv′1)(t′0 + t′1)−w0 − w1(1 + u1). If s′0 = 0 see below

6. Compute s′′ = x+ s0/s1 and s1; w1 = 1/(rs′1); w2 = rw1; w3 = s′21 w1; w4 = rw2; w5 = w2
4

and s′′0 = s′0w2

7. l′ = s′′u = x3 + l′2x
2 + l′1x+ l′0; l

′
2 = u1 + s′′0 ; l′1 = u1s′′0 + u0; l′0 = u0s′′0

8. Compute u′ = s2 + (h+ 2v)s/u + (v2 + hv − f)/u2; u′
0 = s′′20 + w4h1 −w5f4; u′

1 = −w5

9. compute v′ = (−h− (l + v)) mod u′ = v′1x+ v′0; w1 = l′2 − u′
1; w2 = u′

1w1 − u′
0 − l′1;

v′1 = w2w3 − v1 − h1; w2 = u′
0w1 − l′0; v

′
0 = w2w3 − v0 − h0

10. Return [u′, v′]

In case s′1 = 0, replace 6–8 with the following.

6′. Compute s; w1 = 1/r; s0 = s′0w1;w2 = u0s0 + v0 + h0

7′. Compute u′ = (f − hv − v2)/u2 − (h+ 2v)s/u − s2; u′
0 = f4 − s20

8′. Compute v′ = (−h− (su+ v)) mod u′; w1 = s0(u1 + u′
0) + h1 + v1; v′0 = u′

0w1 − w2

Algorithm C1 Attack algorithm based on Model 1

Input: Hyperelliptic curve H, the Mumford representations [ug, vg] of a divisor g ∈ JH(Fq), w a parameter.

Output: Scalar k partially with a probability.

1. Inject a fault in ug to obtain ũg = x2 + ug1x+ ũg0.

2. Solve ũg to get x̃1, x̃2, if x̃1, x̃2 ∈ Fq goto step 3, otherwise goto step 1.

3. Solve ug to get xP1
, xP2

, and obtain yPi
by yPi

= vg(xPi
), i = 1, 2.

4. Let α =: yP1
− yP2

, for any y
̂P1
∈ Fq, y

̂P2
=: y

̂P1
− α.

4.1 Given y
̂Pi
, solve equation set (2) to get f̂1, f̂0.

4.2 Define Ĥ : y2 + h(x)y = x5 + f4x4 + f3x3 + f2x2 + f̂1x+ f̂0.

4.3 Let P̂i = (x̃i, y ̂Pi
), ĝ =: 〈P̂1〉+ 〈P̂2〉 − 2〈P̂∞〉.

4.4 Obtain n = ord(ĝ) in J
̂H(Fq).

5. If all the prime factors of n are smaller than w, then

5.1. Compute h̃ = k[ũg, vg ] carried out in JH(Fq) by F2a

5.2 Decompose u
˜h
, get the roots x

̂Qi
(∗), i = 1, 2.

5.3 Compute y
̂Qi

= vg(x
̂Qi
), i = 1, 2.

5.4 Let Q̂i = (x
̂Qi
, y

̂Qi
), ĥ =: 〈Q̂1〉+ 〈Q̂2〉 − 2〈Q̂∞〉.

5.5 Utilize Algorithm 1 on J
̂H(Fq) with (ĝ, ĥ, n) to obtain k mod n.

7. Return (k mod n)

* Actually, in step 5.2, h̃ is in J
̂H(Fq) and u

˜h
has two roots in Fq.
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Table C1 Insert a flip fault in ug0

Curve specification m = 61, p(x) = x61 + x5 + x2 + x+ 1

ug = x2 + 0x5003d8b67eb7d6fx+ 0xa8ee05ac09be989

vg = 0x23820d5e5fa3048x+ 0x074c4c18be9e74b

order(g) = 2658455988447243530986550320280662477

k = 434798374983234574983

ug̃ = x2 + 0x5003d8b67eb7d6fx+ 0xa8ec05ac09be989

vg̃ = 0x23820d5e5fa3048x+ 0x074c4c18be9e74b

u
˜h
= x2 + 0x6c814b6f0e25c161x+ 0x78ffd288a0ef6e1

v
˜h
= 0xde20ef500589d0fx+ 0x113c48bab37b6c2

Ĥ : y2 + xy = x5 + x2 + 0x21d8c2e7ea623b31x+ 0x8573d4a349885611

uĝ = x2 + 0x5003d8b67eb7d6fx+ 0xa8ec05ac09be989

vĝ = 0x23820d5e5fa3048x+ 0x41c0925d59d2b671

ord(ĝ) = (3)(97)(151)(24593)(143827)(390271069)(43826950115759)

u
̂h
= x2 + 0x6c814b6f0e25c161x+ 0x78ffd288a0ef6e1

v
̂h
= 0xde20ef500589d0fx+ 0x57b096ff5437aee1

Curve specification m = 103, p(x) = x103 + x9 + 1

ug = x2 + 0xeee2d5c07a6bd93a0c59833ba4x+ 0xa48824b71e13215936f3cfa563

vg = 0xc7224fb356bd2cd32e4a5c14f3x+ 0xfdf1b8f10539754f7b3b50e2c4

order(g) = 1085287719049570327739050925845914539948927360923370110769

k = 479837498327498354365675827957

ug̃ = x2 + 0xeee2d5c07a6bd93a0c59833ba4x+ 0xa48824b71e17215936f3cfa563

vg̃ = 0xc7224fb356bd2cd32e4a5c14f3x+ 0xfdf1b8f10539754f7b3b50e2c4

u
˜h
= x2 + 0x9a68f0815dac0c2fa0970ff2f6x+ 0x3d71cd1bbaba4b3feec04fca4

v
˜h
= 0x86194e0eb0df241dcd760da6c5x+ 0xb6dceb387e5ce3c14b19a23124

Ĥ : y2 + xy = x5 + x2 + 0x8cebb70059930116e9beff11c1x

+0x899772507fed8b3d86a781fa03

uĝ = x2 + 0xeee2d5c07a6bd93a0c59833ba4x+ 0xa48824b71e17215936f3cfa563

vĝ = 0xc7224fb356bd2cd32e4a5c14f3x+ 0x55aa3c1832342b28b1d5603f57

ord(ĝ) = (2)(59021)(1112923871)(8925786237751)(31532716137894221)

(556287399183096149)

u
̂h
= x2 + 0x9a68f0815dac0c2fa0970ff2f6x+ 0x3d71cd1bbaba4b3feec04fca4

v
̂h
= 0x86194e0eb0df241dcd760da6c5x+ 0x1e876fd14951bda681f792ecb7

Curve specification m = 113, p(x) = x113 + x9 + 1

ug = x2 + 0xc2b96348cc58e038b71178a9a38bx+ 0x3b358cf39d80854ad0b4d8ed5f43

vg = 0xa6d4259ef3709c31246fdf8cce661x+ 0x812bd9b8364583ca9abe1ddac461

order(g) =

53919893334301278715823297673841230760642802715019043549764193368381

k = 479837498327498354365675827957

ug̃ = x2 + 0xc2b96348cc58e038b71178a9a38bx+ 0x3b358cf19d80854ad0b4d8ed5f43

vg̃ = 0xa6d4259ef3709c31246fdf8cce661x+ 0x812bd9b8364583ca9abe1ddac461

u
˜h
= x2 + 0x503da1588c8eab09118a2d42c5fd1x+ 0xa15efb97f8482faeeff99f5fa342

v
˜h
= 0xf71c9cf9d27203907823b259afee1x+ 0xe63f7117b897820c334314f738471

Ĥ : y2 + xy = x5 + x2 + 0x2d608dd43ab5fd4c9abba4b1ae95x

+0xd19a342cd5eed8b4c588d6a999f

uĝ = x2 + 0xc2b96348cc58e038b71178a9a38bx+ 0x3b358cf19d80854ad0b4d8ed5f43

vĝ = 0x812bd9b8364583ca9abe1ddac461x+ 0x7d5858cfe10a2c2eb7d341d909971

ord(ĝ) = (5)(503)(12046651)(183064547)(5637681901967)(24099893265761)

(71552493695623998215629)

u
̂h
= x2 + 0x503da1588c8eab09118a2d42c5fd1x+ 0xa15efb97f8482faeeff99f5fa342

v
̂h
= 0xf71c9cf9d27203907823b259afee1x+ 0x3db30c46aaed3213a0ff8aa2ffb61
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Appendix C Attack algorithm by injecting a fault in ug0

By fault Model 1, we can get [ũg, vg] by injecting a fault in ug0, where ũg = x2 + ug1x+ ũg0, vg = vg1x+ vg0.

Let [u
˜h, v˜h] be the Mumford representation of divisor h̃ = k[ũg, vg]. The computation should be carried out in

JH(Fq) by applying F2a.

The following result provides an attack method on Model 1.

Theorem C1. Let H be a hyperelliptic curve of genus 2 defined over a finite field Fq of characteristic 2 of

form (1), and let [ug , vg] be the Mumford representation of a divisor g ∈ JH(Fq). Let [ũg , vg], [u˜h, v˜h] be defined

as above. Then there exists a hyperelliptic curves Ĥ defined over Fq and divisors ĝ, ĥ ∈ J
̂H(Fq) satisfying u

˜h = u
̂h

and ĥ = kĝ. Moreover uĝ = x2 + ug1x+ ũg0, vĝ = vg1x+ vĝ0.
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