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Abstract. We propose a generic construction of lossy trapdoor function
from the subgroup membership assumption. We present three concrete
constructions based on the k-DCR assumption over Z2, the extended p-
subgroup assumption over Zy.2, and the decisional RSA subgroup mem-
bership assumption over Z3 . Our constructions are more efficient than
the previous construction from the DCR assumption over Zjs(s > 3).

Keywords: Lossy Trapdoor Functions, DCR Assumption, p-subgroup
Assumption, Decisional RSA Assumption.

1 Introduction

Peikert and Waters [1] proposed the notion of lossy trapdoor function (LTDF) in
STOC 2008. LTDF implies cryptographic primitives such as classic one-way trap-
door function [2], collision resistant hash function [3], oblivious transfer protocol
[4], chosen ciphertext secure (CCA) public key encryption scheme[1], determinis-
tic public key encryption scheme [5], OAEP based public key encryption scheme
[6], and selective opening secure public key encryption scheme [7]. LTDF's can be
constructed based on many assumptions, especially lattice-based assumptions.
Peikert and Waters [1] proposed two constructions of LTDFs, based on the
Decisional Diffie-Hellman (DDH) assumption and the Learning with Errors as-
sumption respectively. But the two constructions are not efficient since they
both require a function index of size O(n?). Boyen et al. [8] shrank the func-
tion index of the DDH-based construction from O(n?) to O(n) with common
reference string and pairing. But their method can only be applied to bilinear
groups and their algorithm requires computing pairing, which is an expensive
operation. Freeman et al. [9], [L0] proposed a construction based on the d-linear
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assumption which is a generalization of the DDH assumption. This construction
is not efficient since the size of the function index is O(n?).

Under the quadratic residuosity (QR) assumption, two distinct constructions
of LTDF's were given in [9], [11]. The construction of [9] only loses one bit of the
input information. In the construction of [11], the inversion algorithm does not
use the factorization of IV but performs a coordinated ElGamal decryption and
learns one bit at one time. Joye et al. [12] proposed the 2F-QR assumption, which
is a generalization of the QR assumption, and proved that it is implied by the
QR assumption. They proposed a LTDF based on DDH and 2*-QR assumptions
which is slightly different from Hemenway-Ostrovsky’s [11] method. In their
construction, the factorization of N is the trapdoor and the inversion algorithm
processes k bits at one time. With a well-chosen k, only a 18 x 18 matrix over

~ is needed which highly reduces the length of the output. But the length of
output and the function index is also too long for practical application.

The constructions above belong to the matrix based framework proposed by
Peikert and Waters [1]. More efficient constructions of LTDFs based on different
techniques were proposed. Kiltz et al. [6] showed that the RSA permutation
provides a lossy property under the @-hiding assumption. A efficient LTDF based
on the decisional composite residuosity (DCR) assumption over ZY., for s > 3,
was proposed in [9], [10] and Wee [13] described a generic construction of LTDFs
by using dual hash proof systems.

In the construction of Freeman et al. [9], the message is embeded into a sub-
group generated by (1 + N) mod N* with order N*~! and the image is the
group of N-th residuosity with order ¢(NV) in lossy mode, s must be larger than
2 in order to make lossiness. It is a very interesting question if we could make
lossiness when s < 2.

1.1 Owur Contribution

We propose a generic construction of LTDFs based on the subgroup membership
assumption. For a finite cyclic group G with a non-trivial subgroup K, the
subgroup membership problem asserts that it is difficult to decide whether an
element is in K or G\ K. To construct LTDFs, two special properties are needed.
Firstly, the subgroup discrete logarithm over G/K is easy to compute with the
help of a trapdoor. Secondly, the size of G/K is significantly larger than that
of K. The construction in [9] based on the DCR assumption over Zi.(s > 3)
can be seen as a concrete example of our generic construction. According to our
generic construction, G = Z%. and K is the group of N*~!-th residuosity.

We also present three concrete constructions over Z3,, or Z3; which are more
efficient. The main idea is to shrink the size of K. Briefly, our constructions can
be described as follows.

— k-DCR based construction. We extend the 2¥-QR problem from Zy to
ZY-» and get a new assumption named as k-DCR assumption. We prove that
the k-DCR assumption over Z3., is implied by the DCR assumption and
the QR assumption. We propose an efficient construction of (log N + k, 3k)-
LTDF based on the k-DCR assumption. This construction is more efficient
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than the DCR based construction [9] and the 2¥-QR based construction [12].
With a well-chosen parameter k, we can get a (% log N, %log N)-LTDF. To
our best knowledge, this is the first index independent LTDF over Z3,.. We
can generalize this construction and get ((s—1)log N +k, (s—2) log N +3k)-
LTDFs over Z}., for s > 2.

— Extended p-subgroup based construction. We extend the p-subgroup
problem from Z3; to Z}. and get an extended p-subgroup assumption. We
propose a construction of (log N, % log N)-LTDF over Z;.. This construction
can also be generalized to Z};., for s > 2.

— Decisional RSA subgroup based construction. The decisional RSA
subgroup assumption over Zx for N = (2p'r, + 1)(2¢'r, + 1) was proposed
by Groth [14], where p/, ¢’ are primes and r,, r, consist of distinct odd prime
factors smaller than some low bound B. According to our generic construc-
tion, we get a LTDF based on the decisional RSA subgroup assumption.

Kiltz et al. [6] proposed an efficient LTDF based on the @-hiding assumption
over Z%. They utilized a factor of ¢(N) as the public key e in lossy mode. It
seems difficult to construct an ALL-But-One (ABO) LTDF for CCA application
following their steps. Our generic construction can easily be extended to the
ABO LTDF. We will describe the extension in section 3.

1.2 Outline

This paper is organized as follows. In Sect. 2, we introduce the notations and
recall the definition of lossy trapdoor function and subgroup membership prob-
lem. In Sect. 3, we present the generic construction of LTDF. In Sect. 4, we
present concrete constructions of LTDF based on the k-DCR assumption, the
extended p-subgroup assumption, and the decisional RSA subgroup assumption,
respectively. In Sect. 5, we compare our work with the precious constructions.
In Sect. 6, we conclude this paper.

2 Preliminaries

2.1 Notation

If S is a set, we denote its size by |S| and denote by = + S the process of
sampling = uniformly from S. If A is an algorithm, we denote by z < A(z,y, - -)
the process of running A with input z,y,--- and output z. For an integer n, we
denote by [n] the set of {0,1,---,n — 1}. A function is negligible if for every
¢ > 0 there exists a A, such that f(\) < 1/A¢ for all A > A..

2.2 Lossy Trapdoor Function

A collection of lossy trapdoor functions consists of two families of functions.
Functions in the first family are injective and can be inverted with the trapdoor,
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while functions in the second are lossy, meaning that the size of their image
is significantly smaller than the size of their preimage. For CCA applications,
it is convenient to work with the All-But-One lossy trapdoor function. In the
following, we recall the definition of lossy trapdoor functions and All-But-One
lossy trapdoor function.

Definition 1 (Lossy Trapdoor Functions). A collection of (m,1)-lossy trap-
door functions are -tuple of probabilistic polynomial time (PPT) algorithms
(Sinj, Sioss: Fitdf Fl;dz;) such that:

1. Sample Lossy Function Sjess(1™). Output a function index o € {0,1}*.

2. Sample Injective Function S;,,;(1™). Output a pair (o,7) € {0,1}* x {0,1}*
where o is a function index and T is a trapdoor.

3. Evaluation algorithm Fjqr. For every function index o produced by either
Sioss 0T Sinj, the algorithm Fyqr(o,-) computes a function fo : {0,1}™ —
{0,1}* with one of the two following properties:

— Lossy: If o is produced by Sioss, then the image of f, has size alt most
am—L,
— Injective: If o is produced by Sin;, then the function fo is injective.
4. Inversion algorithm Fl;d}. For every pair (o,7) produced by Sin; and every

z €{0,1}™, we have Fyy (7, Fugr (0, x)) = .

In the above algorithms, the two ensembles {0, 0 < Sioss(1™)} and {o, (0, 7) <
Sini (1)} are computationally indistinguishable.

Definition 2 (All-But-One Lossy Trapdoor Functions). A collection of
(m,1)-All-But-One lossy trapdoor functions are 4-tuple of PPT algorithms (B,
S, Flear, Fl;dlf) such that:

1. Sample a branch B. On input 1™, B outputs a value b € {0, 1}*.

2. Sample a function S. For every value b produced by B, the algorithm S
outputs a triple (o,7,5) € {0,1}* x {0,1}* x {0,1}* where o is a function
index, T is a trapdoor, and (B is a set of lossy branch.

3. Evaluation algorithm Fjqr. For any b* and b produced by B(1™), every o, 7, 3
produced by S(1™,b*), the algorithm Fqr(o,b, ) computes a function fyp :
{0,1}™ — {0, 1}* with one of the two following properties:

— Lossy: If b= b*, then the image of f, has size at most 2™,
— Injective: If b # b*, then the function f, is injective.

4. Inversion algorithm Fl;d}. For any b* and b produced by B(1™) and every

(0,7, 8) produced by S(1™,b*) and every x € {0,1}™, we have

Firs (72 Futar (0, b, 7)) = .

— In the above algorithms, the two ensembles {o, (o, 7,) + S(1",b)} and{o,
(o, 7, B) < S(1™,b%)} are computationally indistinguishable.

— Any PPT algorithm A that receives as input (o,b"), where b* < B(1™)
and (o,7,8) < S(1™,b*), has only a negligible probability of outputting an
element b e B\ {b*}.
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2.3 Subgroup Membership Assumption

Gj¢steen [15] discussed the subgroup membership problem. A subgroup member-
ship problem considers a group G with a non-trivial subgroup K. The problem as-
serts that it is hard to distinguish elements of K from elements of G\ K. Brown [16]
analysed instances of subgroup membership problems and concrete schemes ob-
tained by following the Cramer-Shoup framework [17]. Brown gave the construc-
tions of CCA secure scheme based on the GBD subgroup membership assumption
[18] , the r-th residuosity assumption [19], and the p-subgroup assumption [20].
Groth [14] proposed another example of the subgroup membership assumption,
the decisional RSA subgroup assumption. Paillier and Pointcheval [21] discussed
the subgroup variant of DCR-based encryption. The DCR assumption over this
subgroup variant is also a subgroup membership assumption.

Definition 3 (Subgroup Membership Assumption). Let G be a finite cyclic
group G with subgroup K. Let g(resp. h) be a generator of group G (resp. K ). The
subgroup membership problem SM ¢k asserts that, for any PPT distinguisher D,
the adavantage

Adv}M €0 = | Pr{A(G, K, x) = 1|z + K] — Pr[A(G. K. z) = 1|z + G\ K]|.
is negligible, where the probability is taken over coin tosses.

There are three interesting subgroup membership problems. We illustrate
them here since they are useful for our construction of LTDFs.
The 2*-QR. assumption. Joye et al. [12] proposed the 2F-QR assumption. Let
N = pq be the product of two large primes p and ¢ with p = 2Fp’ +1,q =
2Fq’ + 1, where p/,q' are primes. The internal direct product of Z% is: Zi =
Gpg - Gar - Kox . The decomposition is unique except for the choice of Kyx. Let
G = GpygGyr and K = Gy, the 2F-QR assumption asserts that it is infeasible
to distinguish elements of G\ K from that of K.
The p-subgroup membership assumption. Okamoto and Uchiyama [20]
proposed the p-subgroup assumption. Let p, ¢ be primes and set N = p?q. Let g
be a random element of Z% such that the order of g, = ¢! mod p? is p. Let
h=g"N mod N and G = {z = ¢™h" mod N\m € Z,,r € Zy}, K = {x = h"
mod N|r € Zy}. The p-subgroup assumption is that it is infeasible to distinguish
elements of K from that of G\ K given N and g.
The decisional RSA subgroup assumption. Groth [14] described a deci-
sional RSA subgroup assumption over Z} with semi-smooth order. Let N =
pq = (2p'rp, +1)(2¢'rq + 1), with p, q,p’, ¢ primes and r,, r, consists of distinct
odd prime factors smaller than some bound B. The internal direct product of
Ly is: Ly = Grpry Gprg - G2 T. Let G be Gy, - Gprgr and K = G- The deci-
sional RSA subgroup assumption asserts the hardness of distinguishing elements
in G\ K from K.

Gjgsteen also gave the definition of subgroup discrete logarithm problem
which is a generalization of Paillier’s [22] partial discrete logarithm problem.
In their definition, g is a group element such that its residue class generates
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G/K and X\ : G — Zjg/k| is the group homomorphism defined by A(g) = 1
with ker(\) = K. The subgroup discrete logarithm problem is: given a random
z € G, compute A(z). The formal definition follows.

Definition 4 (Subgroup Discrete Logarithm Problem). Assume that group
G has a non-trivial subgroup K andlet g be a generator of G. If p : G — G/ K is the
canonical epimorphism, then the subgroup discrete logarithm problem SDL(q kg
is: given a random x € G, to compute log,, .\ (¢()).

3 A Generic Construction of LTDF

In order to make lossiness in LTDFs, we assume a generic subgroup assumption
having two special properties. The first property (namely SDL property) we
assume is that the subgroup discrete logarithm problem is solvable with a trap-
door. For a subgroup membership problem SM g iy, let 7 be the corresponding
trapdoor, there is a PPT algorithm to solve SDL g, k,4) with the trapdoor 7.
The second property (namely lossy property) we require is that the length of
G/K’s order is significantly larger than that of K’s order. The input message in
[|G/K]] can be embeded into G by computing a pre-image of the map . In the
lossy mode, we just compute a pre-image falling into subgroup K. The length
of G/K’s order should be significantly larger than that of K in order to get
lossiness.

In this subsection, we give the generic construction of LTDF based on the
subgroup membership assumption with special property. We assume that there
is a PPT generator Gen of groups with the subgroup membership assumption.
The generator Gen takes the security parameter n and outputs (G, K, g, h, 1),
where g (resp. h) is the generator of G (resp. K) and 7 is the corresponding
trapdoor. The order of G is a polynomial of n.

We construct a (log|G/K|, log|G/K|—log|K]|)-lossy trapdoor function
LTDFsy = (Sing: Stoss Fitar, Fipgs) as follows:

1. Sample Injective Function Sin;. On input 1", Sj,; chooses a random r € Z |
and computes ¢ := gh”. The function index is ¢ = (G, g, h, ¢). The trapdoor
ist=r.

2. Sample Lossy Function Si,ss. On input 1™, Sjyss chooses a random r € Zk|
and computes ¢ := h". The function index is o = (G, g, h, ¢).

3. Ewaluation algorithm Fyqp. Given a function index o = (N, g, h, ¢) and input
x € {0,1} where [ is the length of |G/K]|, the algorithm computes and
outputs z = c*.

4. Inversion algorithm Fl;d,lf' Given a function index (N, g, h, ¢), the trapdoor
t = 7 and a message z, the algorithm recovers = with the algorithm of solving
SDL(q k,q)(2) problem.

Theorem 1. If the membership assumption holds and the group G has the SDL
property and the lossy property, then LTDFsy is an (log|G/K]|, log|G/K| —
log | K|)-lossy trapdoor function.
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Proof. The algorithm to solve SDL ¢ i 4) guarantees the correctness of inversion
algorithm Fl;d.lf. The subgroup membership assumption implies that the indices
of injective and lossy functions are computationally indistinguishable. The out-
put of the lossy function falls in subgroup K. The size of the lossy function’s
image is at most log |K|. Consequently, the lossiness is log |G/K| —log |[K|. O

Remark 1. The construction [9] based on the DCR assumption is a concrete
example of this generic construction. The DCR construction is over Z},., where
N = (2p' +1)(2¢' + 1). The group structure of Z%. is

e = Gyet - Gy - Go - T,

where Gy is the group of order ¢, T is a group with {—1,1} and n’ = p'q’.
The decomposition is unique except for the choice of G. In their construction,
G =Gns—1 Gy -G T, K = Gy - Gy - T with (N + 1) be the generator
of Gy+-1. The injective (resp. lossy) function index is (1 + N)r™" " mod N*
(resp. ¥ mod N*) for randomly chosen r € Z}y . For a randomly chosen
go € K, let g be (1+ N)go and h be a random element in K, then LT DFg),
is exactly the DCR construction. The SDL ¢  (14nN)g,) Problem can be solved
with decryption algorithm of [23] and the lossiness property is satisfied. The
disadvantage of the DCR construction is that s should be larger than 2.

The generic construction can easily be extended to a ABO LTDF. We describe
the extension here and the security proof is similar with that of Theorem 5.4
in [9] and is therefore omitted. We also assume that there is a PPT generator
Gen of groups with the subgroup membership assumption. The construction of
LTDFE{% = (B, S, Firay, Fyyy) follows:

1. Sample a branch B. On input 1", the algorithm B outputs a uniformly
distributed b € {0,1,...,|G|}.

2. Sample a function S. On input 1™ and a lossy branch b*, S chooses a random
r € Zjk| and computes ¢ := g~ h". The function index is o = (G, g, h, ).

3. Ewaluation algorithm Fyqr. Given a function index o = (N, g, h, ¢), a branch
b and input = € {0,1}! where I is the length of |G/K|, the algorithm com-

putes and outputs z = (g°c)®.

4. Inversion algorithm Fl;dlf. Given a function index (N, g, h, ¢), the trapdoor
t = 7, a branch b # b* and a message z, the algorithm recovers = with the
algorithm of solving SDL ¢ f gv-++y(2) problem.

Theorem 2. If the membership assumption holds and the group G has the SDL
property and the lossy property, then LTDF89 is an (log|G/K]|, log|G/K| —
log | K|)-All But One lossy trapdoor function.

4 Concrete Constructions of LTDF

This section shows new efficient concrete constructions of LTDF's based on three
reasonable assumptions: the k-DCR assumption (implied by DCR and QR as-
sumptions), the extended p-subgroup assumption, and the decisional RSA sub-
group membership assumption.
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4.1 LTDF Based on k-DCR Assumption

Joye et al. [12] proposed the 2¥-QR assumption and proved that it is implied
by the classical QR assumption. We first review 2*-QR assumption and DCR
assumption, then give the formal definition of k-DCR assumption.

Definition 5 ([12] Definition 1). Let p be an odd prime and 2*|p — 1. Then
the symbol

(%)Qk = apz__kl mod p,

p—1
is called the 2F-th power residue symbol modulo p, where a'sF mod p are in

[—(p—1)/2,(p—1)/2].

Let N = pq be the product of two prime numbers, and p = 2*p'+1, ¢ = 2¥¢'+1
with p’,¢" be primes. Let Jy := {a € Z|(§)2 = 1}, QRN = {a € Z}[(£)2 =
(%)2 = 1} and QNRy := Jn \ QRxN.

Definition 6. Let N = pq be the product of two large primes p and q with
p,g =1 mod 2*. Define two sets

Wy := {,’E S QNRN},

Wy = {y2k mod Ny € Zx}.

The Gap 2% Residuosity assumption (2-QR) asserts that, for any PPT distin-
guisher D, the advantage

AdvE @R = | Pr[D(w, N) = 1]z + Wo] — Pr[D(z, N) = 1|z < Wi]|
s negligible, where the probability is taken over coin tosses.

Definition 7. Let N = pq be the product of two large primes p and q. Define
two sets

P:={a=2" mod N?|z € Z}},
M:={a=(1+N)¥zY mod N?|z € Z},y € Zn}.

The Decisional Composite Residuosity (DCR) assumption asserts that, for any
PPT distinguisher D, the advantage

AdvBOE = | Pr[D(z, N) = 1|z + P] — Pr[D(z, N) = 1|z + Z13]|
1s negligible, where the probability is taken over coin tosses.
The 2*-QR assumption is over the group Z%. We embed Z% into the group VA

and get a k-DCR assumption by combining 2¥-QR and DCR assumptions. We
also prove that the k-DCR assumption is implied by QR and DCR assumptions.
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Definition 8. Let N = pq be the product of two large primes p and q with
p=2Fp' +1,q=2%¢ + 1. For random element y € QN Ry, define two sets

Wo :={a= 2N mod N3|r € ZX},

Wii={a=(1 +N)ZytN7"2kN mod N2|r € Zi,t € [2¥],2 € Zn}.

The k Decisional Composite Residuosity (k-DCR) assumption asserts that, for
any PPT distinguisher D, the advantage

Adv’BDCR :=|Pr[D(x,y, N) = 1|z + Wy, y + QNRy]
—Pr[D(z,y,N) = 1|z + Wi,y + QNRy].

is negligible, where the probability is taken over coin tosses.

With overwhelming probability, random element y € QN Ry has order 2¥p/q’
in Z%. In detail, let d; be the order of y modulo p, we have that d; equals to 2¥p’

or 2% since that (%)2 = yz(k'*l)f’ = —1 mod p. Similarly, the order of y modulo

q, da, is 28¢’ or 2%. Consequently, the order of random element y in Z% is 28p/q’
with probability 1 — # — % + p,—lq,. We decompose Z}» as an inner direct product

Z}{\p = GN : GQk . Gp’q/ . KQk,

where each group G; is a group of order t. The decomposition is not unique,
but if given an element y"¥ mod N? where y € QN Ry has order 2¥p'q’, the
subgroup Gy - Gax - Gprg is unique. Note that the element (1+ N) has order N
in Z3., i.e. it generates Gy while y mod N? has order 2¢p/q/, i.e. it generates
Gar - Gprgr. We have that (1+ N)y™ generates the group Gy - Gor - Gy Which

is actually Wi in Definition 8. And Wy in Definition 8 is actually group G4 .

Theorem 3. The k-DCR assumption is implied by the 25-QR assumption and
QR assumption. It satisfies that,

AdviPOR < 9AdvE O 4 AdvEOR < 8kAdVER + AdvEOR.
Proof. The complete proof of the theorem can be found in Appendix.

Now, we show a construction of LTDF based on the k-DCR assumption
over Zy;. The output of our construction is much shorter, as compared with
construction based on the DCR assumption [9] and Joye et al.’s construction
based on the 2*-QR assumption [12]. Specifically, the DCR based construc-
tion is over Zj,. for s > 3. The output has slog /N bits for s > 3. For well-
chosen parameters, the output of 28-QR construction is a 18 x 18 matrix over
Zy with 234log N bits. Our construction is computed over Zy.. We define
LTDFy por = (Sing, Stoss, Fitar, Flfdic) as follows
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1. Sample Injective Function Si,;. On input 1, S;;,; chooses an n-bits N = pq
where p = 2Fp' + 1, = 28¢' + 1 and p, ¢, p’, ¢’ are prime numbers. It chooses
a random y € QNRy and computes ¢ = y"¥ mod N2. Then it chooses a
random hy € Z}, and compute h = h%kN mod N?2. It chooses a random r €
[&] and let ¢ = (1+ N)gh" mod N2. The function index is o = (N, g, h, c).
Let A= (p—1,¢q — 1) then the trapdoor is t = {\, p}.

2. Sample Lossy Function Sjss. On input 17, Sj,ss chooses an n-bits N = pq
where p = 2Fp' +1, ¢ = 2%¢' +1 and p, ¢, 9, ¢’ are prime numbers. It chooses
a random y € QNRy and computes ¢ = 4y mod N2. Then it chooses a
random hy € Z% and compute h = hZN mod N2. It chooses a random
r € [&] and let ¢ = h" mod N?. The function index is o = (N, g, , ¢).

3. Ewaluation algorithm Fyqp. Given a function index o = (N, g, h, ¢) and input
x € [2FN] the algorithm outputs z = ¢*.

4. Inversion algorithm Fl;dif. Given the function index (N,g,h,c), trapdoor
t = {\,p} and a message z, the algorithm first computes z; = ZAN—*I/\_1
mod N, then finds an x5 € [2¥] such that the following holds,

(.= (), war

Finally, it computes = with the Chinese Reminder Theorem:

{x:xl mod N,

T =1xzo mod 2k,

Theorem 4. Under the k-DCR assumption, it holds that LT DFy_pcr s an
(n+ k,3k)-lossy trapdoor function.

Proof. Let G = Gy - Gor - Gy and G = Gar - Gpgr, the SMg i is the k-
DCR assumption. The decryption algorithms of Paillier’s scheme [22] and Joye’s
scheme [12] solve the SDL g k, (14N)g) Problem correctly with the trapdoor.
The order of G/K here is 2° N and the order of K is p’q’. It’s a direct result of
Theorem 1. O

Remark 2. Joye et al. pointed out that for security parameters n, we can choose
k< ilog]\f —n. If K = n, it is sufficient to set k = %bg N. This construction
can be generalized to groups over Zy.,s > 2 by following the step of [23]. We
note that if ¢ is omitted, then LT DF},_pcr has less lossiness.

4.2 LTDF Based on Extended p-Subgroup Assumption

Okamoto and Uchiyama [20] proposed the p-subgroup assumption. with N =
p?q. We restrict p, ¢ to be safe primes for technical reasons. Now we consider the
group Z’. with N = p?q. The element (1+ ) has order N in Z%.,. Consider the

integer (1+N)' = 22:0 C/ N7 mod N2. The number is 1 modulo N2 for some
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if and only if (14+4N) =1 mod N2. Clearly this is the case i = aN for a € N, so
it follows that the order of (14 N) mod N? is N. For random element y € Z%,

/

g = y* has order p'q’ modulo N2 with overwhelming probability. Indeed the
order of g modulo p* (resp. ¢?) is p’ (resp. ¢') with probability 1 — [% (resp.
1—1). The above g has order p'q’ modulo N2 with probability 1 — 1% - % + ﬁ.

If the inner direct product of Z3. is
>Ik\/'2 gG(N'G’p'G’n’ 'K47

then (14 N) is a generator of Gy and ¢ is a generator of G,,; with overwhelming
probability. Consequently, (14 N)g is a generator of Gy - G- with overwhelming
probability.

Next, we consider the subgroup problem SM (¢ ¢, ,,c,,) over Zy» and propose
another example of the subgroup membership assumption.

Definition 9 (Extended p-subgroup assumption). With the notions above,
let G = GN - Gy and K = G,. The extended p-subgroup assumption asserts
that the subgroup membership problem SM (G, K) is difficult.

Now, we construct a LTDF based on the extended p-subgroup assumption.
We define LT DFg psub = (Sinj; Stoss Fitdr, Fl;dlf) as follows.

1. Sample Injective Function Si,;. On input security parameter 17, Sy, ; chooses
N = p?q where p=2p’ +1,¢ = 2¢' + 1 and p, ¢,p’, ¢’ are prime numbers. It
chooses y randomly in Z3} and computes h = y2N2 mod N2. Sinj chooses a
random 7 € Zy and computes ¢ = (1 + N)h"™ mod N2. The function index
is 0 = (N, h,¢). The trapdoor is t = p'¢q’.

2. Sample Lossy Function Sjyss. On input security parameter 1™, Sj,ss chooses
N =p?q where p=2p' +1,g=2¢' +1 and p,q,p’, ¢ are prime numbers. It
chooses y randomly in Z% and computes h = y2N° mod N2. Sj,ss chooses
a random r € Zy and computes ¢ = A" mod N2. The function index is
o= (N,h,c).

3. BEvaluation algorithm Fpqe. Given a function index o = (N, h,¢) and input
x € Zy the algorithm outputs z = ¢”.

4. Inversion algorithm Fl;da. Given the function index (N, g, h, c¢), trapdoor ¢

and a message z, the algorithm computes x = Zt]\_rlt’l mod N.

Theorem 5. Under the extended p-subgroup assumption, it holds that
LTDFE p-sup is an (log N, %log N)-lossy trapdoor function.

Proof. Let G = Gy - G and K = G,,, the inversion algorithm solve the
SDL(G,k(14N)n) correctly. The order of G/K is N and the order of K is n'.
It is a direct result of Theorem 1. |

4.3 LTDF Based on the Decisional RSA Subgroup Assumption

Groth [14] described a decisional RSA subgroup assumption over Z} with semi-
smooth order and gave a chosen plaintext secure encryption scheme over this
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group. Let N = pg = (2p'r, + 1)(2¢'rq + 1), where p, q,p’, ¢ are primes and 7p,
rq consist of distinct odd prime factors smaller than some low bound B. The
internal direct product of Zj, is:

Z}F\f = Grprq : Gp’q/ : G2 : T

In fact, Gy, - Gprg is the quadratic residue group QRy of Z},. Let g be
a generator of @Ry then h = g¢"*" is a generator of G,y . The decisional
RSA subgroup assumption asserts that it is hard to distinguish elements drawn
randomly from QRy or from Gyrg. Let G = Gpyr - Gy, and K = Gy, then
the decisional RSA subgroup assumption is another instance of the subgroup
membership assumption.

Let ¢ be the number of distinct primes of r,74, and we assume the length [ of
the prime factors is about log B. Lemma 2 in [14] shows that a randomly chosen
¢ in QRy has order larger than p/q’2(~9(=1) with overwhelming probability.
To encrypt a message with length (¢t — d)(I — 1), where d is an integer smaller
than ¢, we can encrypt m as ¢ = g"h". To decrypt ¢, we compute 'l = gp/q/m
mod N. The message m can be derived since the order of gp/q/ has only small
prime factors. The decryption algorithm is efficient with the help of a storage
list. Groth gave an example of parameters, where Iy = 1280, I,y = Iy = 160,
B =211 =64,d= 7. The length of message space is no smaller than 698 with
probability higher than 1 — 2789 With well chosen parameters, this decisional
RSA subgroup assumption can be used to construct efficient LTDF.

Next, we construct a LTDF based on the decisional RSA subgroup assump-
tion. We define LT DFrsa = (Sinj. Stoss; Fliar, Fl;dlf) as follows.

1. Sample Injective Function S;nj. On input 17, S;,; chooses N = pq with
p=2p'rp+1,q=2q¢ry+ 1 where p,q,p',q are prime numbers. Let 7,,7q
be B-smooth with distinct prime factors. It chooses ¢ € QRy randomly,
and chooses a generator h of Gpq. It chooses proper parameters ¢ and d
and denotes I, = (t — d)(I — 1). It chooses a random r € Zy and computes
¢ =gh™ mod N. The function index is ¢ = (N, g, h, ¢). The trapdoor is the
factorization of p(NV).

2. Sample Lossy Function Sjyss. On input 1™, Sj,ss chooses N = pq with p =
2'rp, +1,q = 2¢'rg + 1 where p,q.p’, ¢’ are prime numbers. Let 7,74 be
B-smooth with distinct prime factors. It chooses ¢ € @Ry randomly, and
chooses a generator h of Gpq. It chooses proper parameters ¢ and d and
denotes I, = (t—d)(l—1). It chooses a random r € Zy and computes ¢ = h"
mod N. The function index is ¢ = (N, g, h, ¢).

3. Ewaluation algorithm Fpqp. Given a function index o = (N, g, h, ¢) and the
input = € {0, 1}!= the algorithm outputs z = ¢®.

4. Inversion algorithm Fl;d,l;" Given the function index (N, g, h,c), the factor-
ization of ¥)(N) and the message z, the algorithm invokes the inversion algo-
rithm provided by the decryption algorithm of Groth’s scheme. We compute
C, = 24 = (g?"7)* mod N. Since the order of g¢'¢" is B-smooth, we can
derive x by computing discrete log of Ci, base gp,q/.
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Theorem 6. Under the decisional RSA subgroup assumption, it holds that
LTDFRrga is an (Iy,lz — (I 4+ 1g))-lossy trapdoor function.

Proof. Let G be the group generated by g and K be the group generated by h,
this is a direct result of Theorem 1. O

5 Comparison

In the Table 1, we compare the three constructions instantiated with the generic
construction in Section 3 with previous LTDFs. The second column lists the basic
number-theoretic assumptions used for guaranteeing the security. The third and
fourth columns show the size of a input message in bits and that of lossiness,
respectively. The fifth column lists the size of the function index. The last column
indicates if there there a direct extension to ABO-LTDF from the construction
of LTDF or not.

Table 1. Comparison with existing LTDFs

| |Assumption Input size | Lossiness | Index size | Efficiency |ABO?|
[1]] DDH n n — |G| n’G n? Multi Yes
1] LWE n cn n(d + w)Zqg|n(d + w) Multi| Yes
[9], [10]| d-linear n n — d|G| n’G n? Multi Yes
[9], [10]] DCR |(s—1)logN|(s—2)logN| Zxs 1 Modular Exp| Yes
[9], [10] QR log N 1 VAS, 1 Multi Yes
[12]| DDH& QR n n—logN | (%)*Zy (2)? Multi | Yes
[6]] @-hiding log N loge VAS: 1 Modular Exp| No
Sect.4.1{QR & DCR| log N + k 3k N2 1 Modular Exp| Yes
Sect.4.2| E p-sub log N % log N N2 1 Modular Exp| Yes
Sect.4.3] D RSA le lo =1y — 1y VAS 1 Modular Exp| Yes

In the first and third line, n is the number of rows used in the matriz. It has to be larger
than |G|. In the second line, 0 < C' < 1, n is the rows used in the matriz, w = @
with p? > q and d < w. In the forth line, s has to be larger than 2. In the sizth line
and the construction in Sect. 4.1, k is less than %1ogN — Kk where Kk is the security
parameter. In the seventh line, e is the factor of ¢(n). In the last line, I, is the length
of the semi-smooth subgroup’s order and I, (resp. ) is the length of p’ (resp. q').

The LTDF's based on the QR, DCR and &-hiding assumptions are efficient.
The QR based LTDF in [9], [10] has only one bit lossiness which is useless
for some applications. Compared with the DCR based LTDF in [9], [10], our
construction in Sect. 4.1 is computed over ZY%. and the LTDF in Sect. 4.3 is
computed over Z%. Compared with the @-hiding based LTDF in [6], our con-
structions have a direct extension to ABO-LTDFs.
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6 Conclusion

We proposed a generic construction of lossy trapdoor function from the subgroup
membership assumption. We presented three concrete constructions based on
the k-DCR assumption over Zj., the extended p-subgroup assumption over
Z'2, and the decisional RSA subgroup membership assumption over Z3. Our
constructions are more efficient than the previous construction from the DCR
assumption over Zy. (s > 3).

Acknowledgments. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions.
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Appendix: Proof of Theorem 3

Proof. Denote by Vp the set {a = r2° mod N|r € Zy}. D is an algorithm
which takes x, y, N as input and returns 0 or 1. We shall need the following
experiments, Experiment i for i = 1,2, 3, 4.

Experiment 1 : Experiment 2 :
Input: D, N, y € QNRy Input: D, N, y € Vj

1. t <+ [2F], 2 + Zn. 1t <+ [2%], 2« Zy.

2 1 Zi. 2 1 i

3. b+ {0,1}. 3. b+ {0,1}.

4. Ifb=1, then v = 72N mod N2, 4. Ifb=1, then = r2'¥ mod N2,
otherwise z = 72 NytN(1 4 N)* otherwise z = 72 NytN(1 + N)?
mod N?2. mod N?2.

5.0+ D(N,z,y). 5.V« D(N,z,y).

Output: If ¥ = b output 1, otherwise Output: If ¥ = b output 1, otherwise

0.

0.
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Experiment 3 : Experiment 4 :

Input: D, N,y € W Input: D, N,y € QNRy

1. 2+ Zn.

2. 1+ 7. 1. r<Zy.

3. b+ {0,1}. . 2. b+ {0,1}.

4. Ifb=1, then z = r> ¥ mod N2, 3. Set 2 = 2N 1mod N2

: _ 28N z ’ ’

0therw1zse r o= N1+ N 4y « D(N,z,y).
mod N~-.

5.V + D(N,z,y).

Output: If ¥ = b output 1, otherwise Output: If b’ = b output 1, otherwise
0. 0.

Let T;,i = 1,2,3,4 denote the event that the Experiment ¢ returns 1. By the
definition of k-DCR, Experiment 1 is exactly the k-DCR experiment, and we
have

AdvhPOR < 12Pr[Ty] — 1]

Now we consider the Experiment 2, the only difference between Experiment

1 and 2 is that y is sampled from V{ instead of QN Ry. We have,

2| Pr[T}] — Pr[Ty)| < Adv% OF.

In Experiment 3, if y is chosen from V{ uniformly, then Experiment 2 and 3
are identical. We have that, Pr[T] = Pr[T3].

Now we consider Experiment 4. The difference between Experiment 4 and 3
is the choice of z and y. Define X := {r2"N(1+N)* mod N2|r « Z%,z + Zy}
and L := {r*"N mod N2|r + Z%}. Given input z of classical DCR problem, if

z is chosen uniformly from M (resp. P), then 22" is uniformly distributed over
X (resp. L). The indistinguishability of y in Experiment 3 and 4 is implied by
2F_QR assumption. Consequently, the difference between Experiment 4 and 3 is
bounded by DCR and 2*-QR assumptions.

2| Pr[T3] — Pr[Ty)| < AdvECE + Adv? OF.

The input of D in Experiment 4 includes no information of b, we have that
Pr[Ty] = 1. Combining the above, we have

AdviPOR < |2Pr[Ty] — 1]
< 2| Pr[Ty] — Pr[Ty]|
< 2| Pr[Ty] — Pr[Ty]| + 2| Pr[Ty] — Pr[T3]| + 2| Pr[T3] — Pr[T4]|

< 2AdV§'QR + AdngR.
With the result of Theorem 2 in [12], Advg'QR < 4l€Adng, we have that

AdviPOR < 8k AdvET + AdvECE,
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