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There only exists one deterministic identity-based encryption (DIBE) scheme which is adaptively secure in the auxiliary-input
setting, under the learning with errors (LWE) assumption. However, the master public key consists of O(𝜆) basic matrices. In this
paper, we consider to construct adaptively secure DIBE schemes with more compact public parameters from the LWE problem. (i)
On the one hand, we gave a generic DIBE construction from lattice-based programmable hash functions with high min-entropy.
(ii) On the other hand, when instantiating our generic DIBE construction with four LPHFs with high min-entropy, we can get four
adaptively secure DIBE schemes with more compact public parameters. In one of our DIBE schemes, the master public key only
consists of 𝜔(log𝜆) basic matrices.

1. Introduction

ADIBE scheme is an identity-based encryption (IBE) scheme
[1] whose encryption algorithm is deterministic. This prim-
itive was proposed by Bellare et al. [2] via extending the
security definition under high min-entropy into the identity-
based setting. In order to construct DIBE schemes, Bellare et
al. [2] first defined a notion of identity-based lossy trapdoor
functions (IB-LTDFs). And they obtained a DIBE scheme by
constructing an IB-LTDF with a universal property, based on
the DLIN assumption. However, due to the inherent limita-
tion of IB-LTDFs, their scheme can only achieve a selective
security; i.e., the adversarymust commit an challenge identity
before getting the master public key from the challenger.

In SCN12, Xie et al. [3] gave a more efficient secure
DIBE scheme in the auxiliary-input setting, based on the
hardness of the LWE problem. In their scheme, there exists
only 3matrices in themaster public key. However, the scheme
only satisfies a selective security same as the scheme in [2].
The more significant contribution of Xie et al. [3] is that
they proposed the first DIBE scheme with a much more

realistic adaptive security (or equivalently, full security) in the
auxiliary-input setting, based on the same assumption. To the
best of our knowledge, their scheme is the only DIBE scheme
that achieves an adaptive security. However, their scheme
requires ℓ + 2 basic matrices in the master public key so that
it is less efficient than their selectively secure scheme, whereℓ is the bit length of the identity and ℓ = Θ(𝜆).
Our Contributions. In this paper, we consider to construct
adaptively secure DIBE schemes with more compact public
parameters from the LWE problem.

(i) We gave a generic DIBE construction from lattice-
based programmable hash functions (LPHFs) with
high min-entropy [4]. Note that the adaptively secure
DIBE in [3] is in our framework.

(ii) We present more instantiations of LPHFs with high
min-entropy. In fact, most of these instantiations
are already implicit in recent works. Following the
works of Zhang et al. [4] who proved that the IBE
schemes in [4–6] imply instantiations of LPHFs with
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2 Security and Communication Networks

Table 1: Comparison of Adaptively Secure DIBE Schemes in the Auxiliary-Input Setting.

Schemes
# of

Z�×�
� matrixmpk

Rounding
Parameter𝑝

Message
Space𝑡

Sample
Width𝜎

Reduction
Cost

XXZ12 [3] O(𝜆) Õ(𝑛4.5+3�) Õ(𝑛3.5+2�) Õ(𝑛2.5+�) O( 𝜖ℓ𝑄)
Ours:

DIBEMAH 𝜔(log2𝜆) Õ(𝑛6.5+5.5�) Õ(𝑛6+5�) Õ(𝑛5+4�) O(𝜖�+1𝑄�
)†

DIBEAFF 𝜔(log𝜆) poly(𝑛) poly(𝑛) poly(𝑛) O( 𝜖2ℓ2𝑄)
DIBEYam16

√𝜆 Õ(𝑛�+3.5+2.5�) Õ(𝑛�+3+2�) Õ(𝑛�+2+�)§ O( 𝜖3ℓ𝑄2
)

DIBEZCZ16 O(log𝑄) Õ(𝑛�+4+3�) Õ(𝑛�+3.5+2.5�) Õ(𝑛�+2.5+1.5�)‡ O( 𝜖ℓ𝑄2
)

|mpk| shows the size of the master public key. � and � denote the number of key extraction queries and the advantage of the adversary, respectively. poly(�)
represents a fixed but large polynomial that does not depend� and �. To measure the reduction cost, we show the advantage of the LWE algorithm constructed
from the adversary against the corresponding DIBE scheme.
†, � > 1 is the constant satisfying � = 1 − 2−1/� , where � ∈ {0, 1} is the relative distance of the underlying error correcting code. We can take � as close to 1 as
one wants.
§, � = �1 + �2 and �1, �2 are the smallest integers satisfying that ��1/2 ≥ �+ 1 and �−�2 ≤ �.
‡, � is the smallest integer satisfying that �� ≥ �+ 1.

high min-entropy, we show that LPHFs with high
min-entropy can be constructed from partitioning
functions with compatible algorithms [7]. And we
show that the IBE schemes in [8–10] naturally imply
instantiations of LPHFswith highmin-entropy. Com-
bining with the result of Zhang et al., we conclude that
the adaptively secure and anonymous IBE schemes
in [4–10] naturally imply instantiations of LPHFs
with high min-entropy (note that Boyen and Li [11]
constructed an adaptively secure and anonymous IBE
scheme with tight security. However, their construc-
tion does not imply a LPHF and is not in our frame-
work).

(iii) When instantiating our generic DIBE construction
with four LPHFs with high min-entropy in [4, 7,
8], we can get four adaptively secure DIBE schemes
with more compact public parameters. In our DIBE
schemes, the master public key, respectively, consists
of 𝜔(log2 𝜆), 𝜔(log 𝜆), √𝜆,O(log𝑄) number of basic
matrices, where 𝑄 denotes the number of key extrac-
tion queries. Please see more details in Table 1.

Related Works. In [2], Bellare et al. extended the notion
of lossy trapdoor function (LDTF) to identity-setting and
introduced the notion of identity-based LTDF (IB-LTDF).
And they used IB-LTDF to construct DIBE scheme with
a selective security from pairings. Soon afterwards, Escala
et al. [12] extended the notion of IB-LTDF [2] and intro-
duced the notion of hierarchical identity-based trapdoor
functions (HIB-TDFs).WithHIB-TDFs, they could construct
deterministic hierarchical identity-based schemes (DHIBE).
They instantiated HIB-TDFs from pairings so that they
constructed a pairing-based DHIBE scheme. Fang et al. [13]
constructed a DHIBE scheme with a selective security based
on the hardness of the learning with rounding problem over

small modulus [14]. In fact, a DHIBE with a selective security
implies a selectively secure DIBE. In SCN12, Xie et al. [3] gave
a more efficient DIBE scheme with a security. Additionally,
they also proposed the first and the only DIBE scheme with
an adaptive security in the auxiliary-input setting.

Remarks. This work is very relevant to [15] in which we
constructed the DIBE schemes DIBEMAH, DIBEAFF, and
DIBEYam16 directly from the works of Yamada [7, 8]. As our
growing understanding, we find that all adaptively secure
DIBE schemes in [3, 15] can be explained by using LPHFs
with high min-entropy (note that the adaptively secure DIBE
scheme in [3] is constructed from the LPHF with high min-
entropy in [5, 6].). So, in this paper, we present a genericDIBE
construction from LPHFs with high min-entropy.

2. Preliminaries

Notations. Let 𝜆 be the security parameter, and all other
quantities are implicitly dependent on 𝜆. Let negl(𝜆) denote
a negligible function and poly(𝜆) denote an unspecified
function 𝑓(𝜆) = O(𝜆�) for some constant 𝑐. A function 𝑓 is𝜖-hard-to-invert with respect to the distribution D, if, given
ℎ(𝑥) with 𝑥 $← D, there exists no PPT algorithm that can
find 𝑥 with probability better than 𝜖. For 𝑛 ∈ N, we use [𝑛] to
denote a set {1, . . . , 𝑛}. And, for integer 𝑞 ≥ 2,Z� denotes the
quotient ring of integer modulo 𝑞. We use bold capital letters
to denote matrices, such as A,B, and bold lowercase letters
to denote column vectors, such as x, y. The notations A⊤ and[A | B] denote the transpose of the matrix A and the matrix
of concatenating A and B, respectively.

For 𝑛 ∈ N, we use [𝑛] to denote a set {1, . . . , 𝑛}. For integer𝑞 ≥ 2, Z� denotes the quotient ring of integer modulo 𝑞. For
integers 𝑞 ≥ 𝑝 ≥ 2 and 𝑥 ∈ Z�, a rounding function ⌊⋅⌉� :
Z� → Z� is defined by ⌊𝑥⌉� = ⌊(𝑝/𝑞) ⋅ 𝑥⌉ mod 𝑝.
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Security and Communication Networks 3

�.�. Deterministic Identity-Based Encryption and Its Security.
Adeterministic identity-based encryption schemeDIBEwith
the identity space ID can be defined by a tuple of PPT algo-
rithms DIBE.Setup,DIBE.KGen,DIBE.Enc,DIBE.Dec. The
DIBE.Setup algorithm takes a security parameter 1� as input
and outputs a master secret key 𝑚𝑝𝑘 and a master secret key𝑚𝑠𝑘. The DIBE.KGen algorithm takes 𝑚𝑝𝑘,𝑚𝑠𝑘, 𝑖𝑑 ∈ ID
as input and outputs a private key 𝑠𝑘��. The deterministic
algorithm DIBE.Enc takes 𝑚𝑝𝑘, 𝑖𝑑 ∈ ID and a message 𝑚,
outputs a ciphertext 𝑐.Thedeterministic algorithmDIBE.Dec
decrypts ciphertexts using the private key 𝑠𝑘��. We require
that, for all 𝜆, all 𝑖𝑑 ∈ ID, and all 𝑚 in the specified message
space, Pr[DIBE.Dec(𝑚𝑝𝑘, 𝑠𝑘��,DIBE.Enc(𝑚𝑝𝑘, 𝑖𝑑,𝑚)) =𝑚] = 1 − negl(𝜆).
Definition � (see [3]). We say that a DIBE scheme DIBE
is PRIV1-ID-INDr-secure with respect to 𝜖-hard-to-invert
auxiliary inputs if for any PPT algorithmA, for any efficiently
sampled distribution M, and for any efficiently computable
H = {ℎ}, that is, 𝜖-hard-to-invert with respect to M, the
advantage ofA in the following game is negligible.

Setup. At the outset of the game, the challenger runs
DIBE.Setup(1�)which outputs a pair (𝑚𝑝𝑘,𝑚𝑠𝑘) and
gives 𝑚𝑝𝑘 toA.
Phase 1. When A adaptively makes key-extraction
queries to the challenger, the challenger returns𝑠𝑘�� ← DIBE.KGen(𝑚𝑝𝑘,𝑚𝑠𝑘, 𝑖𝑑), for all 𝑖𝑑 in the
key-extraction queries.
Challenge Phase. At some point, A outputs an iden-
tity 𝑖𝑑∗, on which it wishes to be challenged. Then,
the challenger picks a random coin coin

$← {0, 1},
a message 𝑚 $← M, a random ciphertext 𝑐∗1 from
the ciphertext space C, and a function ℎ $← H. If
coin = 0, it runs DIBE.Enc(𝑚𝑝𝑘, 𝑖𝑑∗, 𝑚) → 𝑐∗0
and gives the challenge ciphertext (𝑐∗0 , ℎ(𝑚)) to A. If
coin = 1, it gives (𝑐∗1 , ℎ(𝑚)) toA.
Phase 2. A can also adaptively make key-extraction
queries to the challenger, with the restriction 𝑖𝑑 ̸= 𝑖𝑑∗.
Gauss. Finally,Amakes a guess coin� for coin.

The advantage ofA is defined as Pr[coin� = coin] − 1/2.
�.�. LPHFs with High Min-Entropy [�]. Let ℓ,𝑚,𝑚, 𝑛, 𝑞, V
be some polynomials in the security parameter 𝜆. By I�

we denote the set of invertible matrices in Z�×�
� . A hash

function H : ID → Z�×�
� consists of two algorithms(H.Gen,H.Eval). Given the security parameter 𝜆, the prob-

abilistic polynomial time (PPT) key generation algorithm
H.Gen(1�) outputs a key 𝐾; i.e., 𝐾 ← H.Gen(1�). For
any input 𝑖𝑑 ∈ ID = {0, 1}�, the efficiently deterministic
evaluation algorithm H.Eval(𝐾, 𝑖𝑑) outputs a hash value Z ∈
Z�×�
� ; i.e., Z =H.Eval(𝐾, 𝑖𝑑).

Definition � (LPHFs). A hash function H : ID → Z�×�
�

is a (1, V, 𝛽, 𝛾, 𝛿)-LPHF if there exist a PPT trapdoor key

generation algorithm H.TrapGen and a PPT deterministic
trapdoor evaluation algorithm H.TrapEval such that given a
uniformly random matrix A ∈ Z�×�

� and a (public) trapdoor
matrix B ∈ Z�×�

� the following properties hold:

Syntax: the PPT algorithm (𝐾�, 𝑡𝑑) ← H.
TrapGen(1�,A,B) outputs a key 𝐾� together
with a trapdoor 𝑡𝑑. Moreover, for any input𝑖𝑑 ∈ ID, the deterministic algorithm (R�

��, S���) =
H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑) returns R�

�� ∈ Z�×�
� and

S��� ∈ Z�×�
� such that 𝑠1(R�

��) ≤ 𝛽 and S��� ∈ I� ∪ {0}
hold with overwhelming probability over the
trapdoor 𝑡𝑑 that is produced along with 𝐾�.

Correctness: for all possible (𝐾�, 𝑡𝑑) ← H.
TrapGen(1�,A,B), all 𝑖𝑑 ∈ ID, and its corresponding(R�

��, S���) =H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑), we have
H.Eval (𝐾�, 𝑖𝑑) = AR�

�� + S���B. (1)

Statistically close trapdoor keys: for all (𝐾�, 𝑡𝑑) ←
H.TrapGen(1�,A,B) and 𝐾 ← H.Gen(1�), the
statistical distance between (A, 𝐾�) and (A, 𝐾) is at
most 𝛾.
Well-distributed hidden matrices: for all (𝐾�, 𝑡𝑑) ←
H.TrapGen(1�,A,B), any inputs 𝑖𝑑∗, 𝑖𝑑1, . . . , 𝑖𝑑V
such that 𝑖𝑑∗ ̸= 𝑖𝑑� for any 𝑗 ∈ [V], we have that
Pr[S���∗ = 0 ∧ S���1 , . . . , S���V ∈ I�] ≥ 𝛿, where (R�

��∗ ,
S���∗) = H.TrapEval(𝑡𝑑,𝐾�, 𝑖𝑑∗) and (R�

��𝑗
, S���𝑗) =

H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑�).
Definition � (LPHFswith highmin-entropy). LetH : ID →
Z�×�
� be a (1, V, 𝛽, 𝛾, 𝛿)-LPHFwith 𝛾 = negl(𝜆) and noticeable𝛿 > 0. Let 𝐾 be the key space of H, and let H.TrapGen and

H.TrapEval be a pair of trapdoor generation and trapdoor
evaluation algorithms forH.We say thatH is a revised LPHF
with high min-entropy if, for uniformly random matrix A ∈
Z�×�
� and a (public) trapdoor matrix B ∈ Z�×�

� , the following
condition holds

(i) Property 1. For any (𝐾�, 𝑡𝑑) ← H.TrapGen(1�,
A,B), any 𝑖𝑑 ∈ ID and its corresponding(R�

��, S���) = H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑), the statistical
distance between (A, 𝐾�, k, u) and (A, 𝐾�, k, (R�

��)⊤k)
is negligible in 𝜆, where u $← Z�

� , k
$← Z�

� .

Remark �. Note that this definition of LPHFs with min-
high-entropy is much weaker than Zhang et al.’s definition of
LPHFs with min-high-entropy which includes another one
requirement. In [9], Katsumata and Yamada found that this
requirement is not necessary; i.e., we can define this weaker
version of LPHFs with min-high-entropy while keeping their
functionality–constructing IBE schemes.
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4 Security and Communication Networks

3. Generic DIBE Construction

Here, we construct an adaptively secure DIBE scheme in the
auxiliary-input setting by using a (1, V, 𝛽, 𝛾, 𝛿) LPHFH with
high min-entropy from {0, 1}� to Z�×�

� , where 𝛾 is negligible
and 𝛿 > 0 is noticeable. Let H.TrapGen and H.TrapEval be
a pair of trapdoor generation and trapdoor evaluation algo-
rithm ofH that satisfies the condition in Definition 3, where
integers𝑛,𝑚, 𝑞, V, 𝛽 are polynomials in the security parameter𝜆. Additionally, let integers 𝑚 = O(𝑛 log 𝑞),𝑚� = 𝑚 + 𝑚. We
assume ID = {0, 1}� andM = Z�

� , where ID is the user identity
space and M is the message space. Our generic DIBE scheme
DIBE = (DIBE.Setup,DIBE.KGen,DIBE.Enc,DIBE.Dec) is
defined as follows.

(i) Setup. Algorithm DIBE.Setup takes 1� as input, and
generates a pair (A,TA) $← TrapGen(1�, 1�, 𝑞), where
A ∈ Z�×�

� and TA ∈ Z�×�
� . Then, it obtains 𝐾 ←

H.Gen(1�). Finally, it outputs
𝑚𝑝𝑘 = (A, 𝐾)

and 𝑚𝑠𝑘 = TA. (2)

(ii) Key Generation. Algorithm DIBE.KGen takes 𝑚𝑝𝑘
and 𝑖𝑑 ∈ ID as inputs. It first computes F�� =[A | H.Eval(𝐾, 𝑖𝑑)] ∈ Z�×�

� and then generates
TF𝑖𝑑 ∈ Z�×� by running SampleBasisLeft(A,H.Eval(𝐾, 𝑖𝑑),TA, 𝜎). It finally outputs 𝑠𝑘�� = TF𝑖𝑑 .

(iii) Encryption. Algorithm DIBE.Enc takes 𝑚𝑝𝑘, 𝑖𝑑 ∈
ID, m ∈ M as inputs. It first computes F�� = [A |
H.Eval(𝐾, 𝑖𝑑)] ∈ Z�×�

� and, then, it outputs the
ciphertext c = ⌊F⊤��m⌉�.

(iv) Decryption. To decrypt a ciphertext c with a private
key 𝑠𝑘�� = TF𝑖𝑑 , the algorithm DIBE.Dec computes

m
$← Invert(c,F��, 𝑠𝑘��). Then, if m ∈ Z�

� it outputs
m, and otherwise it outputs ⊥.

�.�. Correctness and Parameter Selection. In order to be sure
of the correctness of the DIBE scheme and make the security
proof follow through, we need the following to satisfy.

(i) TrapGen in Lemma A.2 (Item 1) can work (𝑚 ≥6𝑛⌈log 𝑞⌉), and it returns TA satisfying ‖T̃A‖ ≥
O(√𝑛 log 𝑞).

(ii) SampleBasisLeft in Lemma A.2 (Item 2) can operate(𝜎 ≥ ‖T̃A‖ ⋅ 𝜔(√log (𝑚 + 𝑚)) = O(√𝑛 log 𝑞) ⋅𝜔(√log (𝑚 + 𝑚))).
(iii) SampleBasisRight in Lemma A.2 (Item 3) can operate(𝜎 ≥ 𝑠1(R��) ⋅ 𝜔(√log𝑚) ≥ 𝛽 ⋅ 𝜔(√log𝑚)).
(iv) In order to keep the correctness of the DIBE scheme,

i.e., Invert in Lemma A.2 (Item 4) can work (‖TF𝑖𝑑‖ <𝑝/(2√𝑚)), where ‖TF𝑖𝑑‖ ≤ O(𝜎 ⋅ 𝑚) given by both
SampleBasisLeft and SampleBasisRight.

(v) ReRand (Lemma A.3) in the security proof can oper-
ate (𝜃 > 𝜔(√log𝑚), and 𝜃�𝑞/(2𝜃𝑞) > 𝑠1([I� | R�

��∗]⊤),
where 𝑠1([I� | R�

��∗]⊤) ≤ (𝛽 + 1).
(vi) Lemma A.1 holds (𝑞 is super-polynomial and 𝛼/𝜃 =

negl(𝜆)).
(vii) Pr[Bad7] ≤ 2𝑚(2𝐵 + 1)𝑝/𝑞 = negl(𝑛) = 𝑛−�(1), where𝐵 = 𝜃�𝑞√𝑛.

To satisfy the above requirements, we set the parame-
ters in Table 2. The private key size, ciphertext siz,e and
ciphertext expansion factor in our scheme are O(𝑛2+3�),
O(𝑛1+� log(𝑚𝛽)), and O(𝑛� log(𝑚𝛽)/log 𝑡), respectively. To
optimize the ciphertext expansion factor, we can choose 𝑡 =𝑚𝛽, whichmakes the ciphertext expansion factor to beO(𝑛�).
�.�. Security of DIBE

Theorem 5. If H = (H.Gen,H.Eval) is a (1, V, 𝛽, 𝛾, 𝛿)
LPHF with high min-entropy from {0, 1}� to Z�×�

� , where 𝛾 is
negligible, 𝛿 > 0 is noticeable and independent of the modulus𝑞, and large enough V = poly(𝑛).�en, the above DIBE scheme
DIBE is PRIV1-ID-INDr-secure with respect to 2−� log �-hard-
to-invert auxiliary inputs, assuming DLWE�,�,�,�,H is hard.

According to Lemma A.1, it is easy for us to get the
following corollary.

Corollary 6. If H = (H.Gen,H.Eval) is a (1, V, 𝛽, 𝛾, 𝛿)-
LPHF with high min-entropy from {0, 1}� to Z�×�

� , where 𝛾
is negligible, 𝛿 > 0 is noticeable and independent of the
modulus 𝑞 and large enough V = poly(𝑛). �en, the above
DIBE scheme DIBE is PRIV1-ID-INDr-secure with respect to2−� log �-hard-to-invert auxiliary inputs, assumingDLWE�,�,�,�
is hard, where 𝑧 △= (𝑘 log (𝑡) − 𝜔(log(𝜆)))/log (𝑞).
Proof of �eorem �. Let A be a PPT adversary that breaks
the PRIV1-ID-INDr-security with auxiliary inputs of the
DIBE scheme. Moreover, let 𝜖 = 𝜖(𝜆) and 𝑄 = 𝑄(𝜆) ≤
V be its advantage and the upper bound of the num-
ber of IBE.KGen(⋅) queries, respectively. And let 𝐼∗ ={𝑖𝑑∗, {𝑖𝑑�}�∈[�]} denote the challenge ID along with the
queried IDs. For any distribution M over Z�

� , let H = {ℎ}
be a set of 𝑧−� log (�)-hard-to-invert functions with respect to
M.

In order to prove the security of this DIBE scheme, we
define a sequence of games. In each game, the challenger
selects a uniform bit coin $← {0, 1}, while the adversary
A finally returns a guess bit coin� to the challenger. The
challenger sets ĉoin = coin� in the first game; these values
might be different in the latter games. In the following, we
define 𝑋� as the event that ĉoin = coin.

Game0: this game is the original PRIV1-ID-INDr game
with auxiliary inputs. By definition, we have

Pr [𝑋0] − 12
 =
Pr [ĉoin = coin] − 12



 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/1816393, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Security and Communication Networks 5

Table 2: Parameter Selection of Generic DIBE Construction.

Parameters Description Setting𝜆 security parameter𝑛 PK-lattice row dimension 𝑛 = 𝜆ℓ the length of identity ℓ = 𝑛𝑚 PK-matrix column number O(𝑛 log 𝑞)𝑚 matrix column number 𝑚 = 𝑚𝜎 SampleBasisLeft,SampleBasisRight width max{𝛽, √𝑚} ⋅ 𝜔(√log 𝑛)𝑝 rounding parameter O(𝜎 ⋅ 𝑚3/2)𝑡 message space 𝑚𝛽𝑞 modulus the prime nearest to 2�𝜂 , 0 < 𝜂 < 1𝜃 error width 𝜔(√log 𝑛)𝜃� error width 𝛽 ⋅ 𝜔(√log 𝑛)

= Pr [coin� = coin] − 12
 = 𝜖.

(3)

Game1: this game is identical to Game0 except that the
challenger changes the setup and challenge phase as below.

Setup. It first generates a pair (A,TA) $←
TrapGen(1�, 1�, 𝑞), whereA ∈ Z�×�

� and TA ∈ Z�×�
� .

Then, it computes (𝐾�, 𝑡𝑑) ← H.TrapGen(A,G).
Finally, it outputs 𝑚𝑝𝑘 = (A, 𝐾�) and keeps the
trapdoor 𝑡𝑑 private.
Challenge Phase. The challenger directly uses (𝐾�, 𝑡𝑑)
to generate the challenge ciphertext.

According to the property of statistically close trapdoor keys,
we have |Pr[𝑋1] − Pr[𝑋0]| < negl(𝜆).

Game2: this game is identical to Game1 except that the
challenger performs the following additional step at the end
of the game. The challenger first defines

𝜏 (𝑡𝑑, �̂�, 𝐼∗)
= {{{

0 if Ŝ��∗ = 0 and Ŝ��𝑗 is invertible for all 𝑗 ∈ [𝑄]
1 otherwise,

(4)

where (R̂��∗ , Ŝ��∗) =H.TrapEval(𝑡𝑑, �̂�, 𝑖𝑑∗) and (R̂��𝑗
, Ŝ��𝑗) =

H.TrapEval(𝑡𝑑, �̂�, 𝑖𝑑�). Then, the challenger proceeds the
following steps:

Abort Check: in the setup phase, the challenger gen-
erates a pair of (𝐾�, 𝑡𝑑). If 𝜏(𝑡𝑑, 𝐾�, 𝐼∗) = 1, the
challenger aborts the game and sets ĉoin

$← {0, 1}
ignoring the output of A. Otherwise, the following
equation holds:

H.TrapEval (𝑡𝑑, 𝐾�, 𝑖𝑑)
= {{{

AR�
��∗ if 𝑖𝑑 = 𝑖𝑑∗

AR�
�� + S���G otherwise.

(5)

Artificial Abort: Fix 𝐼∗; let 𝑝 be the probability𝑝 = Pr[𝜏(𝑡𝑑, �̂�, 𝐼∗) = 0] over the random
choice of (𝑡𝑑, �̂�). Then, the challenger samples
O(𝜖2 log(𝜖−1)𝛿−1 log(𝛿−1)) times the probability 𝑝 by
independently running (�̂�, 𝑡𝑑) ← H.TrapGen(A,
G) and evaluating 𝜏(𝑡𝑑, �̂�, 𝐼∗) to compute an estimate𝑝�. Then if 𝑝� ≥ 𝛿, the challenger will abort with
probability (𝑝�−𝛿)/𝑝� and sets ĉoin $← {0, 1} ignoring
the output ofA.

Finally, when receiving coin� from A, the challenger sets
ĉoin = coin�.

For 𝑖 ∈ {2, 3, 4, 5, 6, 7}, let 𝑝� be the probability that the
challenger does not abort in the abort check stage in Gamei,
and let 𝑝� be the probability in the artificial abort stage of
Gamei defined by 𝑝� = Pr[𝜏(𝑡𝑑, �̂�, 𝐼∗) = 0]. Since the
adversary might obtain some information of 𝑡𝑑 from the
challenge ciphertext, the probability 𝑝� might not be equal to
the probability 𝑝�. Formally, let Γ� be the absolute difference
between 𝑝� and𝑝� (i.e., Γ� = |𝑝�−𝑝�|). Aswe show in Lemma 8,
we have Pr [𝑋2] − 12

 ≥ 12𝜖 (𝛿 − Γ2) . (6)

So as not to interrupt the proof ofTheorem 5,we intentionally
skip the proof for the time being.

Game3: this game is identical to Game2 except that the
challenger changes setup, phases 1 and 2, and challenge phase
as below.

Setup. It first selects a random matrix A $← Z�×�
� .

Then, it computes (𝐾�, 𝑡𝑑) ← H.TrapGen(A,G).
Finally, it outputs 𝑚𝑝𝑘 = (A, 𝐾�) and keeps the
trapdoor 𝑡𝑑 private.
Phase 1. When receiving the private key query
with identity 𝑖𝑑, the challenger first computes(R�

��, S���) = H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑). If S��� is not
invertible, the challenger aborts the game and sets
ĉoin

$← {0, 1}. Otherwise, it computes 𝑠𝑘�� =
SampleBasisRight(A,G,R�

��, S���,TG, 𝜎) and sends𝑠𝑘�� toA.
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6 Security and Communication Networks

Challenge Phase.Thechallenger computes (R�
��∗ , S���∗)= H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑∗). If S��∗ ̸= 0, the challenger

aborts the game and sets ĉoin
$← {0, 1}. Otherwise,

when coin = 0, we have
ĉ = F⊤��∗m = [[

A⊤m

(R�
��∗)⊤ A⊤m

]
] ∈ Z

�

� . (7)

Then, the challenger computes c∗0 = ⌊ĉ⌉�. Finally, the
challenger returns (c∗coin, ℎ(m)) to the adversary A.
Phase 2.The challenger responds as in Phase 1, when
receiving the private key query with identity 𝑖𝑑 ̸= 𝑖𝑑∗.

It is easy to see that

Pr [𝑋3] = Pr [𝑋2]
and Pr [Γ3] = Pr [Γ2] . (8)

Game4: in this game, the challenger changes the way that the
challenge ciphertext is created when coin = 0.

Challenge Phase. The challenger computes(R�
��∗ , S���∗) =H.TrapEval(𝑡𝑑,𝐾�, 𝑖𝑑∗). If S��∗ ̸= 0, the

challenger aborts the game and sets ĉoin
$← {0, 1}.

Otherwise, when coin = 0, the challenger first picks
m

$← Z�
� and chooses e1

$← DZ𝑚 ,��, e2 $← DZ𝑚 ,��

and computes

ĉ = ĉ1 + ĉ2 = [[
A⊤m

(R�
��∗)⊤A⊤m

]
] + [

e1
e2
]

= [[
A⊤m + e1

(R�
��∗)⊤A⊤m + e2]] .

(9)

Then, the challenger computes c∗0 = ⌊ĉ⌉�. Finally, the
challenger returns (c∗coin, ℎ(m)) to the adversary A.

Before analyzing the difference between Game3 and Game4,
we first define a “bad event” as follows: Bad4

△= ⌊ĉ1 +[−𝐵, 𝐵]�⌉� ̸= ⌊ĉ1⌉�, where 𝐵 = 𝜃�𝑞√𝑛.
If Bad4 does not occur for some 𝑐1, then we have

⌊ĉ⌉� = [[
⌊A⊤m + e1⌉�

⌊(R�
��∗)⊤A⊤m + e2⌉

�

]
]

= [[
⌊A⊤m⌉�

⌊(R�
��∗)⊤A⊤m⌉

�

]
] = ⌊F

⊤
��∗m⌉� .

(10)

It immediately follows that for any adversary APr [𝑋4] − Pr [𝑋3] ≤ Pr [Bad4]
and Pr [Γ4] − Pr [Γ3] ≤ Pr [Bad4] . (11)

Game5: in this game, the challenger changes the way that the
challenge ciphertext is created when coin = 0

Challenge Phase. The challenger computes(R�
��∗ , S���∗) =H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑∗). If S���∗ ̸= 0, the

challenger aborts the game and sets ĉoin
$← {0, 1}.

Otherwise, when coin = 0, the challenger first
picks m

$← Z�
� and e

$← DZ𝑚 ,�� and computes
b = A⊤m + e. It runs the algorithm ReRand to get ĉ;
i.e.,

ĉ = ReRand([[
I�

(R�
��∗)⊤]] , b, 𝜃𝑞,

𝜃�𝑞2𝜃𝑞) (12)

in the Lemma A.3, where I� is the unit matrix of size𝑚 ×𝑚.
According to the property of the algorithm ReRand,
we have

Pr [𝑋5] = Pr [𝑋4]
and Pr [Γ5] = Pr [Γ4]

and Pr [Bad5] = Pr [Bad4] .
(13)

Game6: in this game, the challenger changes the way that the
challenge ciphertext is created when coin = 0.

Challenge Phase. The challenger computes (R�
��∗ ,

S���∗) = H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑∗). If S���∗ ̸= 0, the
challenger aborts the game and sets ĉoin

$← {0, 1}.
Otherwise, when coin = 0, the challenger first picks
k

$← Z�
� , e $← DZ𝑚 ,�� and sets b = k + e. Then, it

computes

ĉ = ReRand([[
I�

(R�
��∗)⊤]] , b, 𝜃𝑞,

𝜃�𝑞2𝜃𝑞) ∈ Z�

� . (14)

We construct an algorithm B against the problem
DLWE�,�,�,�,H as follows. Given the problem instance

of LWE (A,b = k + e) ∈ Z�×�
� × Z�

� , where e
$← DZ𝑚 ,��.

The task of B is to distinguish whether k = A⊤m for
m

$← Z�
� or k

$← Z�
� . This subtle change from the standard

DLWE�,�,�,�,H is done only for convenience of the proof. B
simulates the security game for the adversary A. If k = A⊤m,
the view ofA corresponds to Game5; otherwise, the view of
A corresponds to Game6. As a result, we get thatPr [𝑋6] − Pr [𝑋5] ≤ DLWE�,�,�,�,H,Pr [Γ6] − Pr [Γ5] ≤ DLWE�,�,�,�,H,Pr [Bad6] − Pr [Bad5] ≤ DLWE�,�,�,�,H.

(15)

Game7: in this game, the challenger changes the way that the
challenge ciphertext is created when coin = 0.
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Security and Communication Networks 7

Challenge Phase.Thechallenger computes (R�
��∗ , S���∗)= H.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑∗). If S���∗ ̸= 0, the challenger

aborts the game and sets ĉoin
$← {0, 1}. Otherwise,

when coin = 0, the challenger computes

ĉ = ĉ1 + ĉ2 = [[
k

(R�
��∗)⊤ k]] + [

e1
e2
]

= [[
k + e1

(R�
��∗)⊤ k + e2]] ,

(16)

instead of running the algorithmReRand, where e1
$←

DZ𝑚 ,��, e2
$← DZ𝑚 ,��, k

$← Z�
� .

According to the property of the algorithm ReRand, we have

Pr [𝑋7] = Pr [𝑋6]
and Pr [Γ7] = Pr [Γ6]

and Pr [Bad7] = Pr [Bad6] .
(17)

Because for 𝑖𝑑∗ ∈ ID the statistical distance between(A, 𝐾�, k, (R�
��∗)⊤k) and (A, 𝐾�, k,u) is negligible in 𝜆, where

u
$← Z�

� , ĉ1 is statistically close to uniform distribution over
Z�

� , therefore for uniform ĉ1,

Pr [Bad7] ≤ 2𝑚 (2𝐵 + 1) 𝑝𝑞 = negl (𝜆) , (18)

by assumption on 𝑞 and 𝜃�. In the meantime, because ĉ is
statistically close to uniform distribution overZ�

� , we can get
that

Pr [𝑋7] = 12
and Pr [Γ7] = 0.

(19)

Summing up (6), (8), (11), (13), (15), (17), (18), and (19), we can
get

DLWE�,�,�,�,H ≥ 𝜖𝛿6 − negl (𝜆) . (20)

In order to prove Theorem 5, we should prove that (6)
holds. We will use Lemma 28 in the full version of the work
[5], which is described as follows.

Lemma 7 (see [5]). Let 𝐼∗ be a (𝑄 + 1)-ID tuple {𝑖𝑑∗,{𝑖𝑑�}�∈[�]} denoting the challenge ID along with the queried
IDs, and 𝜂(𝐼∗) define the probability that an abort does not
happen in Game2. Let 𝜂��� = max 𝜂(𝐼∗) and 𝜂��� =

min 𝜂(𝐼∗). For 𝑖 = 1, 2, we set 𝑋� as the event that ĉoin = coin

at the end of Gamei. �en,

Pr [𝑋2] − 12
 ≥ 𝜂���

Pr [𝑋1] − 12


− 12 (𝜂��� − 𝜂���) .
(21)

Lemma8. IfH is a (1, V, 𝛽, 𝛾, 𝛿)-LPHFwith highmin-entropy
and 𝑄 ≤ V, then |Pr[𝑋2] − 1/2| ≥ (1/2)𝜖(𝛿 − Γ2).
Proof. According to Lemma 7,we only need to compute 𝜂��� ,𝜂���, and 𝜂���−𝜂���. By the definition of𝑝2 and𝑝2 inGame2,
we have 𝜂(𝐼∗) = 𝑝2(𝛿/𝑝�), where𝑝� is an estimate of 𝑝2. Since
the challenger always samples O(𝜖−2 log(𝜖−1)𝛿−1 log(𝛿−1))
times the probability 𝑝2 to compute 𝑝�, according to the
Chernoff bounds, we have Pr[𝑝� > 𝑝2(1 + 𝜖/8)] < 𝛿(𝜖/8)
and Pr[𝑝� < 𝑝2(1 − 𝜖/8)] < 𝛿(𝜖/8). As a result, the following
equations hold:

𝜂��� ≤ (1 − 𝛿 𝜖8)𝑝2 𝛿𝑝2 (1 − 𝜖/8) ,
𝜂��� ≥ (1 − 𝛿 𝜖8)𝑝2 𝛿𝑝2 (1 + 𝜖/8) ≥

7𝛿𝑝29𝑝2 ,
𝜂��� − 𝜂��� ≤ (1 − 𝛿 𝜖8) 𝜖𝛿𝑝24 (1 − 𝜖2/64) 𝑝2 ≤

16𝜖𝛿𝑝263𝑝2 .
(22)

Finally, we have |Pr[𝑋2] − 1/2| ≥ 7𝛿𝑝2/9𝑝2 ⋅ 𝜖 − 1/2 ⋅16𝜖𝛿𝑝2/63𝑝2 ≥ 𝜖𝛿(𝑝2 − Γ2)/2𝑝2 ≥ (1/2)𝜖(𝛿 − Γ2).
4. Constructions of LPHFs with
High Min-Entropy

In [4], Zhang et al. proved that the IBE schemes in [4–6] imply
instantiations of LPHFs with high min-entropy. In fact, the
IBE scheme in [10] also implies an instantiation of LPHFwith
high min-entropy.

In this section, we show that LPHFs with high min-
entropy can be constructed from partitioning functions with
compatible algorithms [7]. Moreover, we prove that the
adaptively secure and anonymous IBE schemes in [8, 9]
naturally imply instantiations of LPHFs with high min-
entropy. In a word, the adaptively secure and anonymous IBE
schemes in [4–10] naturally imply instantiations of LPHFs
with high min-entropy.

�.�. From Partitioning Functions with Compatible Algorithms
[	]. Let FPF : KPF × ID → {0, 1} be a partitioning func-
tion with associating 𝛿PF-compatible algorithms (Encode,
PubEval,TrapEval) (see the Appendix). We assume ID ={0, 1}�. Now, we show how to construct a (1, V, 𝛽, 𝛾, 𝛿)-LPHF
with high min-entropy defined by us from the partitioning
functionFPF :KPF × ID → {0, 1}.

A hash function H : ID → Z�×�
� consists of two

algorithms (H.Gen,H.Eval) which are defined as follows:
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8 Security and Communication Networks

(i) H.Gen(1�) → 𝐾lphf : it first computes 𝐾PF
$←

PrtSmp(1�, 𝑄, 𝜖). Then, it gets 𝑘 ∈ {0, 1}� by operat-
ing the algorithm Encode(𝐾PF). Finally, it randomly
chooses matrices B1, . . . ,B�

$← Z�×�
� , B

$← Z�×�
� ,

and returns these 𝑢 + 1 matrices; i.e., 𝐾lphf fl{B1, . . . ,B�,B}.
(ii) H.Eval(𝐾lphf , 𝑖𝑑 ∈ ID) → Z ∈ Z�×�

� : for 𝑖𝑑 ∈ ID, it
first gets B�� by running the algorithm PubEval(𝑖𝑑 ∈
ID, {B� ∈ Z�×�

� }�∈[�]). Then, it returns Z = B + B��.

The associating algorithms H.TrapGen and H.TrapEval are
defined as follows.

(i) H.TrapGen(1�,A,G) → (𝐾�
lphf , 𝑡𝑑): it first com-

putes 𝐾PF
$← PrtSmp(1�, 𝑄, 𝜖). Then, it gets 𝑘 ∈{0, 1}� by operating the algorithm Encode(𝐾PF).

Finally, it randomly chooses matrices R1, . . . ,R�,
R

$← {−1, 1}�×� and returns 𝐾�
lphf fl {AR1 + 𝑘1G,. . . ,AR� + 𝑘�G,AR} and 𝑡𝑑 = {𝐾PF,R1, . . . ,R�,R}.

(ii) H.TrapEval(𝑡𝑑, 𝐾�
lphf , 𝑖𝑑 ∈ ID) → (R�

�� ∈ Z�×�
� , S���∈ Z�×�

� ) : for 𝑖𝑑 ∈ ID, it defines R�
�� = R+

TrapEval(𝐾PF, 𝑖𝑑,A, {R�}�∈[�]) and S�� = FPF(𝐾PF,𝑖𝑑) ⋅ I�, where I� denotes the identity matrix of𝑛 × 𝑛. In this case, 𝑠1(R�
��) ≤ √𝑚 ⋅ √2𝑚 ⋅ ‖R +

TrapEval(𝐾PF, 𝑖𝑑,A, {R�}�∈[�])‖∞ ≤ √2𝑚 ⋅ (1 + 𝛿PF).
Now, we show that this construction satisfies the following
properties:

(i) Correctness:H.Eval(𝐾�
lphf , 𝑖𝑑) = B+PubEval(𝑖𝑑, {AR�+𝑘�G}�∈[�]) = AR + (A ⋅ TrapEval(𝐾, 𝑖𝑑,A, {R�}�∈[�]) +

FPF(𝐾PF, 𝑖𝑑) ⋅G) = AR�
�� + S���G.

(ii) Statistically close trapdoor keys: according to the Left-
over Hash Lemma, the statistical distance between
the distributions {A,B1, . . . ,B�,B} and {A,AR1 +𝑘1G, . . . ,AR�+𝑘�G,AR} is negligible. As a result, the
statistical distance between {A, 𝐾lphf } and {A, 𝐾�

lphf } is
negligible; i.e., 𝛾 = negl(𝜆).

(iii) Well-distributed hidden matrices: for all (𝐾�
LPHF,𝑡𝑑) ← H.TrapGen(1�,A,G), any inputs 𝑖𝑑∗, 𝑖𝑑1,. . . , 𝑖𝑑V such that 𝑖𝑑∗ ̸= 𝑖𝑑� for any 𝑗 ∈ [V]. Then,

Pr [S���∗ = 0 ∧ S���1 , . . . , S���V ∈ I�]
= Pr [FPF (𝐾PF, 𝑖𝑑∗) = 0 ∧FPF (𝐾PF, 𝑖𝑑1) = ⋅ ⋅ ⋅
= FPF (𝐾PF, 𝑖𝑑V) = 1] ≥ 𝛾min (𝜆) .

(23)

In a word, this construction is (1, V, √2𝑚 ⋅ (1 + 𝛿PF),
negl(𝜆), 𝛾min(𝜆))-LPHF. Finally, we show that this LPHF
possesses Property 1, i.e., with high min-entropy.

(i) For any (𝐾�
lphf , 𝑡𝑑) ← H.TrapGen(1�,A,G), any𝑖𝑑 ∈ ID, and its corresponding (R�

��, S���) =

H.TrapEval(𝑡𝑑, 𝐾�
lphf , 𝑖𝑑), the following distributions

are statistically close:

(A, 𝐾�
lphf , k, (R�

��)⊤ k) = (A,AR, {AR� + 𝑘�G} , k,
(R + TrapEval (𝐾, 𝑖𝑑,A, {R�}�∈[�]))⊤ k) ≈ (A,U,
{AR� + 𝑘�G} , k, u) ≈ (A, 𝐾�

lphf , k, u) ,
(24)

where U
$← Z�×�

� , u $← Z�
� , k $← Z�

� . It can been
seen that the second and the third distributions are
negl(𝜆)-close, by applying Leftover Hash Lemma for[A | k⊤] ∈ Z(�+1)×�

� and R.

In [7], Yamada elaborately constructed two partitioning
functionsFMAH based onmodified admissible hash function
[16] and FAFF based on affine function. As a result, we can
get two LPHFs with high min-entropy from bothFMAH and
FAFF, which are denoted byHMAH andHAFF, respectively.

�.�. From Yam�
 [�] and KY�
 [�]. In [8], Yamada proposed
an adaptively secure and anonymous IBEwith asymptotically
short parameters. In particular, the master public key consists
of O(ℓ1/2) basic matrices. In this part, we show that their
construction implies a LPHF with high min-entropy. For
simplicity, we denotes it byHYam16 : ID → Z ∈ Z�×�

� , where
ID = {0, 1}�. In their construction, there exists an efficiently
computable injective map S that maps an element 𝑖𝑑 ∈ ID
to a subset S(𝑖𝑑) of [1, 𝑡]2, where 𝑡 = ⌈√ℓ⌉. The algorithms(HYam16.Gen,HYam16.Eval) are defined as below.

(i) HYam16.Gen(1�) → 𝐾 : it picks random matrices
B0

$← Z�×�
� ,B�,�

$← Z�×�
� for (𝑖, 𝑗) ∈ [2] × [𝑡] and

returns 𝐾 = (B0, {B�,�}(�,�)∈[2]×[�]).
(ii) HYam16.Eval(𝐾, 𝑖𝑑) → Z ∈ Z�×�

� : for all 𝑖𝑑 ∈ ID,
the algorithm HYam16.Eval is defined as follows:

HYam16.Eval (𝐾, 𝑖𝑑) = B0

+ ∑
(�1,�2)∈S(��)

B1,�1
⋅G−1 (B2,�2

)
∈ Z�×�

� .
(25)

The associating algorithms HYam16.TrapGen and HYam16.TrapEval are defined as

(i) HYam16.TrapGen(1�,A,G) → (𝐾�, 𝑡𝑑): it first selects
random elements 𝑦0 $← [−4(ℓ + 1)𝑛2� + 1, 0] and
𝑦�,� $← [1, 2𝑛�], where 𝑐 = 𝑐1 + 𝑐2 and 𝑐1, 𝑐2 satisfy that𝑛�1/2 ≥ 𝑄+1 and 𝑛−�2 ≤ 𝜖. Then, it randomly chooses
matrices R0,R�,�

$← {−1, 1}�×�. Finally, it computes
B0 = AR0 + 𝑦0G and B�,� = AR�,� + 𝑦�,�G returns𝐾� = {B0,B�,�} and 𝑡𝑑 = {𝑦0, 𝑦�,�,R0,R�,�}.
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Security and Communication Networks 9

(ii) HYam16.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑) → (R�
�� ∈ Z�×�

� , S��� ∈
Z�×�
� ) : for 𝑖𝑑 ∈ ID,

R�
�� = R0 + ∑

(�1,�2)∈S(��)

(R1,�1
G−1 (B2,�2

) + 𝑦1,�1R2,�2
) ,

S��� = (𝑦0 + ∑
(�1,�2)∈S(��)

𝑦1,�1 ⋅ 𝑦1,�2) ⋅ I�.
(26)

In this case, 𝑠1(R�
��) ≤ 𝑚(1 + 4ℓ𝑛�).

Now, we show that this construction satisfies the following
properties:

(i) Correctness: it is easy to verify that H.Eval(𝐾�, 𝑖𝑑) =
AR�

�� + S���G.
(ii) Statistically close trapdoor keys: according to the Left-

over Hash Lemma, the statistical distance between
the distributions (A,B, {B�,�}(�,�)∈[2]×[�]) and (A,AR0 +𝑦0G, {AR�,� + 𝑦�,�G}(�,�)∈[2]×[�]) is negligible.

(iii) Well-distributed hidden matrices: for all (𝐾�, 𝑡𝑑) ←
H.TrapGen(1�,A,G), any inputs 𝑖𝑑∗, 𝑖𝑑1, . . . , 𝑖𝑑V
such that 𝑖𝑑∗ ̸= 𝑖𝑑� for any 𝑗 ∈ [V]. Then,

Pr [S���∗ = 0 ∧ S���1 , . . . , S���V ∈ I�] = Pr [Fy (𝑖𝑑∗)
= 0 ∧Fy (𝑖𝑑1) ̸= 0 ⋅ ⋅ ⋅ = Fy (𝑖𝑑V) ̸= 0]
≥ 𝜖232 (ℓ + 1) 𝑄2

,
(27)

whereFy(𝑖𝑑) = 𝑦0 + ∑(�1,�2)∈S(��)
𝑦1,�1 ⋅ 𝑦1,�2 .

In a word, this construction is (1, V, 𝑚(1 + 4ℓ𝑛�), negl(𝜆),𝜖2/32(ℓ+1)𝑄2)-LPHF.Then, we show thatHYam16 is a LPHF
which possesses Property 1, i.e., with high min-entropy.

(i) Property 1. For any (𝐾�, 𝑡𝑑) ← HYam16.TrapGen(1�,A,G), any 𝑖𝑑 ∈ ID and its correspond-
ing (R�

��, S���) = HYam16.TrapEval(𝑡𝑑, 𝐾�, 𝑖𝑑), the
following distributions are statistically close:

(A, 𝐾�, k, (R�
��)⊤ k)

= (A,AR0 + 𝑦0G, {AR�,� + 𝑦�,�G} , k, (R0 + R�)⊤ k)
≈ (A,U, {AR�,� + 𝑦�,�G} , k, u) ≈ (A, 𝐾�, k, u) ,

(28)

where R� = ∑(�1,�2)∈S(��)
(R1,�1

G−1(B2,�2
) + 𝑦1,�1R2,�2

),
U $← Z�×�

� , u $← Z�
� , k

$← Z�
� . The second and the

third distributions are negl(𝜆)-close, by applying the
Leftover Hash Lemma for [A⊤ | k] ∈ Z(�+1)×�

� and
R0.

Remark �. The subsequent work by Katsumata and Yamada
[9] showed that, for the ring version of Yamada’s scheme

[8], it is possible to reduce the magnitude of 𝑠1(R�
��) (which

influences the selection of modulus 𝑞). We do not see any
obstacle preventing us from constructing a programmable
hash function with high min entropy from ideal lattices,
according to the IBE scheme of [9].

5. Instantiations of Generic
DIBE Construction

As mentioned in Section 4, there are many LPHFs with
high min-entropy in [4–10]. However, except the LPHF with
high min-entropy used in [3], there only exist other four(1, V, 𝛽, 𝛾, 𝛿) LPHFs with high min-entropy which satisfy the
requirement that 𝛿 is independent of the modulus 𝑞, under
the LWE assumption. These four LPHFs with high min-
entropy are briefly described in the following.

(i) HZCZ16 in ZCZ16 [4]: a (1, V, 𝜇Vℓ𝑚1.5 ⋅ 𝜔(√log𝑚),
negl(𝜆), 1/𝑁) LPHF with high min-entropy, where𝑁 ≤ 16V2ℓ and 𝜇 = ⌈log𝑁⌉. Additionally, the key
ofHZCZ16 only consists of 𝜇 = ⌈log𝑁⌉matrices.

(ii) HMAH in Yam17 [7]: a (1, V, 𝑚4𝑢(ℓ + 1), negl(𝜆),
O(𝜖�/𝑄�)) LPHF with high min-entropy, where 𝑢 =𝜔(log2𝜆), V is an arbitrary polynomial in 𝜆 and 𝜑 > 1
is the constant satisfying 𝑠 = 1 − 2−1/�, where 𝑠 ∈{0, 1} is the relative distance of the underlying error
correcting code. We can take 𝜑 as close to 1 as one
wants. In addition, the key of HMAH only consists of𝑢 = 𝜔(log2𝜆)matrices.

(iii) HAFF inYam17 [7]: a (1, V, poly(𝜆), negl(𝜆),O(𝜖/ℓ2𝑄))
LPHF with high min-entropy, where V is an arbitrary
polynomial in 𝜆. Furthermore, the key of HAFF only
consists of 𝜔(log 𝜆)matrices.

(iv) HYam16 in Yam16 [8] (our Section 4.2): a (1, V, 𝑚(1 +4ℓ𝑛�), negl(𝜆), 𝜖2/32(ℓ + 1)𝑄2) LPHF with high min-
entropy, where V is an arbitrary polynomial in 𝜆, 𝑐 =𝑐1 + 𝑐2 and 𝑐1, 𝑐2 satisfy that 𝑛�1/2 ≥ 𝑄 + 1 and 𝑛−�2 ≤𝜖. Moreover, the key of HYam16 only consists of √𝜆
matrices.

Embedding these four LPHFs with high min-entropy into
our generic DIBE construction, we can obtain four PRIV1-
ID-INDr-secureDIBE schemes in the auxiliary-input setting,
under the lWE assumption. Please seemore details in Table 3.

Appendix

Preliminaries

Lattice Background. For positive integers 𝑞, 𝑛, 𝑚, and a
matrix A ∈ Z�×�

� , the 𝑚-dimensional integer lattices are
defined as

Λ � (A) = {y : y = A⊤s for some s ∈ Z�}
and Λ⊥� (A) = {y : Ay = 0 mod 𝑞} . (A.1)

Let S be a set of vectors S = {s1, . . . , s�} inR�. We use S̃ ={s̃1, . . . , s̃�} to denote the Gram-Schmidt orthogonalization

 2037, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/1816393, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 Security and Communication Networks

Table 3: Four Adaptively Secure DIBE Schemes in the Auxiliary-Input Setting.

Schemes
# of

Z�×�
� matrix|mpk|

Rounding
Parameter𝑝

Message
Space𝑡

Sample
Width𝜎

Reduction
Cost

DIBEMAH 𝜔(log2 𝜆) Õ(𝑛6.5+5.5�) Õ(𝑛6+5�) Õ(𝑛5+4�) O(𝜖�+1𝑄�
)†

DIBEAFF 𝜔(log𝜆) poly(𝑛) poly(𝑛) poly(𝑛) O( 𝜖2ℓ2𝑄)
DIBEZCZ16 O(log𝑄) Õ(𝑛�+4+3�) Õ(𝑛�+3.5+2.5�) Õ(𝑛�+2.5+1.5�)‡ O( 𝜖ℓ𝑄2

)
DIBEYam16

√𝜆 Õ(𝑛�+3.5+2.5�) Õ(𝑛�+3+2�) Õ(𝑛�+2+�)§ O( 𝜖3ℓ𝑄2
)

|mpk|, |ct| show the size of the master public keys and ciphertexts, respectively. � and � denote the number of key extraction queries and the advantage,
respectively. poly(�) represents a fixed but large polynomial that does not depend � and �. To measure the reduction cost, we show the advantage of the LWE
algorithm constructed from the adversary against the corresponding DIBE scheme.
† � > 1 is the constant satisfying � = 1 − 2−1/� , where � ∈ {0, 1} is the relative distance of the underlying error correcting code. We can take � as close to 1 as
one wants.
‡ � is the smallest integer satisfying that �� ≥ � + 1.
§ � = �1 + �2 and �1, �2 are the smallest integers satisfying that ��1/2 ≥ �+ 1 and �−�2 ≤ �.

of the vectors s1, . . . , s� in that order and ‖S‖ to denote the
length of the longest vector in S. For a real-valued matrix R,
let 𝑠1(R) = max‖u‖=1‖Ru‖ (respectively, ‖R‖∞ = max ‖r�‖∞)
denote the operator norm (respectively, infinity norm) of R.

For x ∈ Λ, define the Gaussian function 𝜌�,c(x) overΛ ⊆ Z� centered at c ∈ R� with parameter 𝑠 > 0 as𝜌�,c(x) = exp(−𝜋‖x − c‖/𝑠2). Let 𝜌�,c(Λ) = ∑x∈Λ 𝜌�,c(x), and
define the discreteGaussian distribution overΛ asDΛ,�,c (x) =𝜌�,c(x)/𝜌�,c(Λ), where x ∈ Λ. For simplicity, 𝜌�,0 andDΛ,�,0 are
abbreviated as 𝜌� andDΛ,�, respectively.

Learning with Errors Assumption. The learning with
errors (LWE) problem, denoted by LWE�,�,�,�, was first pro-
posed by Regev [17]. For integer 𝑛,𝑚 = 𝑚(𝑛), a prime integer𝑞 > 2, an error rate 𝛼 ∈ (0, 1), the LWE problem LWE�,�,�,� is
to distinguish the following pairs of distributions: {A,A⊤s+e}
and {A,u}, where A $← Z�×�

� , s $← Z�
�, u $← Z�

� and e $←
DZ𝑚 ,��. Regev [17] showed that solving decisional LWE�,�,�,�
(denoted by DLWE�,�,�,�) for 𝛼𝑞 > 2√2𝑛 is (quantumly) as
hard as approximating the SIVP and GapSVP problems to
within Õ(𝑛/𝛼) factors in the worst case.

LemmaA.1 (see [18],Theorem 5; [3], Lemma 7). Let 𝑘 log 𝑡 >
log 𝑞 + 𝜔(log(𝜆)), 𝑡 = poly(𝜆). Let D be any distribution over
Z�
� and H be the class of all functions ℎ : Z�

� → {0, 1}∗ that
are 2−�log(�) hard to invert with respect to the distribution D.
For any super-polynomial 𝑞 = 𝑞(𝜆), any𝑚 = poly(𝑛), and any𝛼, 𝜃 ∈ (0, 1) such that 𝛼/𝜃 = negl(𝜆), then the following pairs
of distributions: (A,A⊤s + e, ℎ(s)) and (A,u, ℎ(s)) are hard to
distinguish, where A

$← Z�×�
� , s $← D ⊆ Z�

� , u $← Z�
� and

e
$← DZ𝑚 ,��. Assume the (standard) LWE�,�,�,� assumption,

where 𝑧 △= (𝑘 log (𝑡) − 𝜔(log (𝜆)))/log (𝑞).
For simplicity, we use DLWE�,�,�,�,H to denote the prob-

lem of distinguishing the above two distributions: (A,A⊤s +
e, ℎ(s)) and (A,u, ℎ(s)). According to Lemma A.1, assuming

the DLWE�,�,�,�, then the DLWE�,�,�,�,H problem is also

intractable, where 𝑧 △= (𝑘 log(𝑡) − 𝜔(log(𝜆)))/log(𝑞). In the
following, we describe some useful facts that will be used in
our generic DIBE construction.

Gadget Matrix. As mentioned by [6], for 𝑚 > 𝑛⌈log 𝑞⌉,
there exists a full-rank matrix G ∈ Z�×�

� such that the latticeΛ⊥�(G) has a public known basis TG ∈ Z�×�
� with ‖T̃A‖ ≤√5. Moreover, there exists a deterministic PPT algorithmG−1

which takes the input U ∈ Z�×�
� and outputs V = G−1(U)

such that V ∈ {0, 1}�×� and GV = U.

Lemma A.2. Let 𝑝, 𝑞, 𝑛,𝑚 be positive integers with 𝑞 ≥ 𝑝 ≥ 2
and 𝑞 prime. �ere exists PPT algorithms such that

(1) ([��, �]): TrapGen(1�, 1�, 𝑞) a randomized algorithm
that, when 𝑚 ≥ 6𝑛⌈log 𝑞⌉, outputs a pair (A,TA) ∈
Z�×�
� × Z�×� such that A is statistically close to

uniform inZ�×�
� and TA is a basis ofΛ⊥�(A), satisfying‖T̃A‖≤O(√𝑛 log 𝑞) with overwhelming probability.

(2) ([��]): SampleBasisLeft(A,B,TA, 𝜎) a randomized
algorithm that, given a full rank matrix A ∈ Z�×�

� , a
matrix B ∈ Z�×�

� , a basis TA of Λ⊥�(A), and a para-
meter 𝜎 ≥ ‖T̃A‖⋅𝜔(√log(𝑚 + 𝑚)), then outputs a basis
TF of Λ⊥�(F) for F = [A | B] with ‖TF‖ ≤ O(𝜎 ⋅ 𝑚).

(3) ([�]): SampleBasisRight(A,G,R, S, u,TG, 𝜎) a ran-
domized algorithm that, given a full rank matrix A ∈
Z�×�
� , a matrix R ∈ Z�×�

� , an invertible matrix S ∈
Z�×�
� , a vector u ∈ Z�

�, and 𝜎 ≥ ‖T̃G‖ ⋅ 𝑠1(R) ⋅𝜔(√log𝑚), then outputs a basis TF of Λ⊥�(F) for F =[A | AR + SG] with ‖TF‖ ≤ O(𝜎 ⋅ 𝑚).
(4) ([��]): Invert(c,A,TA) that, given a full rank matrix

A ∈ Z�×�
� , a basisTA ofΛ⊥�(A)with ‖TA‖ < 𝑝/(2√𝑚),

and c = ⌊A⊤m⌉�, outputsm, wherem ∈ Z�
� with 𝑡 ≤ 𝑞.
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(5) (Generalized Le�over Hash Lemma [�, ��]): for𝑚 > (𝑛 + 1) log 𝑞 + 𝜔(log 𝑛) and prime 𝑞 > 2, let
R

$← {−1, 1}�×� and A
$← Z�×�

� and B
$← Z�×�

� be
uniformly random matrices. �en the distribution (A,
AR,R⊤w) is negl(𝑛)-close to the distribution(A,B,R⊤w) for all vector w ∈ Z�

� . When w is
always 0, this lemma is called Le�over Hash Lemma.

In [9], Katsuamta and Yamada introduced the “Noise
Rerandomization” lemma which plays an important role in
the security proof because of creating a well distributed
challenge ciphertext.

Lemma A.3 (noise rerandomization [9]). Let 𝑞, 𝑤,𝑚 be
positive integers and 𝑟 a positive real number with 𝑟 >
max {𝜔(√log𝑚), 𝜔(√log𝑤)}. For arbitrary column vector b ∈
Z�
� , vector e chosen from DZ𝑚 ,�, any matrix V ∈ Z�×�, and

positive real number 𝜎 > 𝑠1(V), there exists a PPT algorithm
ReRand(V,b + e, 𝑟, 𝜎) that outputs b� = Vb + e� ∈ Z� where
e� is distributed statistically close toDZ𝑤 ,2�8.

Partitioning Functions with Compatible Algorithms.
In [7], Yamadadefined the notion of partitioning functions by
slightly generalizing the balanced admissible hash function
[16] and used this notion to construct compact adaptively
secure lattice IBE schemes. Furthermore, in order to con-
struct IBE from lattices, the underlying partitioning function
should be compatible with the structure of lattices.

Definition A.� (see [7]). Let F = {F� : K� × ID� →{0, 1}} be an ensemble of function families. We say that F is
a partitioning function, if there exists an efficient algorithm
PrtSmp(1�, 𝑄, 𝜖), which takes as input polynomially bounded𝑄 = 𝑄(𝜆) ∈ N and noticeable 𝜖 = 𝜖(𝜆) ∈ (0, 1/2] and outputs
K such that

(1) there exists 𝜆0 ∈ N such that Pr[𝐾 ∈ K� : 𝐾 $←
PrtSmp(1�, 𝑄, 𝜖)] = 1 for all 𝜆 > 𝜆0. Here, 𝜆0 may
depend on functions 𝑄(𝜆) and 𝜖(𝜆)

(2) for 𝜆 > 𝜆0, there exists 𝛾max(𝜆) and 𝛾min(𝜆)
that depend on 𝑄(𝜆) and 𝜖(𝜆) such that for all𝑖𝑑1, . . . , 𝑖𝑑�, 𝑖𝑑∗ with 𝑖𝑑∗ ∉ {𝑖𝑑1, . . . , 𝑖𝑑�}; the follow-
ing holds

𝛾max (𝜆) ≥ Pr [F (𝐾, 𝑖𝑑1) = ⋅ ⋅ ⋅F (𝐾, 𝑖𝑑�) = 1
∧F (𝐾, 𝑖𝑑∗) = 0] ≥ 𝛾min (𝜆) . (A.2)

And the function 𝜏(𝜆) defined as 𝜏(𝜆) = 𝛾min(𝜆)𝜖(𝜆)−(𝛾max(𝜆) − 𝛾min(𝜆))/2 is noticeable. The probability is
taken over the choice of 𝐾 $← PrtSmp(1�, 𝑄, 𝜖).

The deterministic algorithms (Encode, PubEval,
TrapEval) are called 𝛿PF-compatible with a function
family {F� : K × ID → {0, 1}} if they are efficient and
satisfy the following properties:

(i) Encode(𝐾 ∈K) → 𝑘 ∈ {0, 1}�.

(ii) PubEval(𝑖𝑑 ∈ ID, {B� ∈ Z�×�
� }�∈[�]) → B�� ∈ Z�×�

� .

(iii) TrapEval(𝐾 ∈ K, 𝑖𝑑 ∈ ID,A ∈ Z�×�
� , {R� ∈

Z�×�
� }�∈[�]) → R�� ∈ Z�×�

� .
We require that the following holds:

PubEval (𝑖𝑑, {AR� + 𝑘�G}�∈[�])
= AR�� +F (𝐾, 𝑖𝑑) ⋅G, (A.3)

where 𝑘� is the 𝑖-th bit of 𝑘 = Encode(𝐾 ∈ K) ∈{0, 1}�. Furthermore, if R� ∈ {−1, 0, 1}�×� for all 𝑖 ∈[𝑢], we have ‖R��‖∞ ≤ 𝛿PF.
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