
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2019

Constructing strong designated verifier signatures from key Constructing strong designated verifier signatures from key

encapsulation mechanisms encapsulation mechanisms

Borui GONG

Ho Man AU

Haiyang XUE
Singapore Management University, haiyangxue@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
GONG, Borui; AU, Ho Man; and XUE, Haiyang. Constructing strong designated verifier signatures from key
encapsulation mechanisms. (2019). Proceedings of the 2019 18th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, August 5-8. 586-593.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9184

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Constructing Strong Designated Verifier Signatures from Key Encapsulation
Mechanisms

Borui Gong∗, � Man Ho Au∗ and Haiyang Xue†∗
∗ Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

csbgong@comp.polyu.edu.hk, csallen@comp.polyu.edu.hk
† State Key Laboratory of Information Security, IIE, CAS, Beijing, China

haiyangxc@gmail.com

Abstract—A designated verifier signature (DVS) allows a
signer to convince a verifier that a message has been endorsed
in a way that the conviction cannot be transferred to any third
party. This is achieved by the property that the signature can
be generated by one of them. Since DVS is publicly verifiable,
a valid DVS implies that the signature must be created by
either the signer or the verifier. To enhance privacy of signers’
identity, a strong DVS (SDVS) disallows public verification.

In this paper, we investigate various aspects of SDVS
with making two contributions. Firstly, we consider SDVS in
the multi-user setting and propose two strengthened models,
namely, multi-user and multi-user+. To illustrate the signif-
icance of our models, we show that it is possible to forge
an SDVS when the attacker is given signatures from an
honest signer to multiple dishonest verifiers. Secondly, we
give a generic construction of SDVS from Key Encapsulation
Mechanism (KEM) and Pseudorandom Function (PRF) in
the standard model. Our generic construction is secure in
the multi-user setting if the underlying KEM and PRF are
secure. We also give instantiations based on DDH and LWE
assumptions respectively.

Keywords-Signature, SDVS, Standard Model, KEM, Post-
Quantum

I. INTRODUCTION

The concept of undeniable signature was first proposed

by Chaum et al. [6]. It consists of a signer named Alice

and a verifier named Bob. When Bob wants to verify the

signature created by Alice, he must interact with Alice

through an interactive verification protocol. This means

that the verifier cannot check the validity of signature by

himself. In other words, the signer has complete control of

the signature in order to avoid other undesirable verifiers

from getting convinced of its validity. However, because of

blackmailing [8] and mafia [7] attacks, undeniable signatures

may not always achieve their goals.

Motivated by the need to give signer control over who

could verify his/her signatures, Jakobsson et al. [14] pro-

posed a designated verifier signature (DVS) scheme with

briefly discussing the concept of strong designated verifier

signature (SDVS). Their DVS scheme is the first non-

interactive undeniable signature scheme by using designated

� corresponding author

verifier proof. In their scheme, only designated verifier can

be convinced by the signature’s validity or invalidity without

requiring any interaction with the presumed signer. This

scheme follows a very simple approach: each user holds two

key pairs, one for generating signatures while the other for

encrypting signatures. When Alice (signer) wants to generate

a signature to Bob (verifier), she first uses her signing key to

generate a signature, followed by encrypting it under Bob’s

encryption key. Once Bob receives the signature, he decrypts

it first and verifies its validity. This simple approach requires

an encryption followed by a verification, which is therefore

less efficient than desired.

The notion of SDVS was first formalized by Saeednia et

al. [21]. The concept of privacy of signer’s identity (PSI)

was then formalized by Laguilaumie et at. [15]. It means

that no third party can distinguish which signer generates

the signature without verifier’s secret key, which actually

captures property in strong designated verifier signature.

Since its introduction, many SDVS schemes have been

proposed. Huang et al. [13] proposed the first short des-

ignated verifier signature scheme with its identity-based

variant. Huang et al. [11] proposed the first SDVS scheme

in standard model, based on DDH problem. Subsequently,

new schemes under various assumptions (e.g. DBDH, CDH,

GDH, R-SIS) have been proposed [1], [5], [23]. However,

they are under specific hardness assumptions. Their security

are analyzed in single-user setting. That is, the attacker is

given the public keys of the target signer and verifier, and

may issue queries with respect to these two entities.

In this paper, we initiate the study of SDVS in the

multi-user setting. We observe that existing models may not

capture attacks in practice. Specifically, adversary may have

access to signatures generated for different designated veri-

fiers; Furthermore, adversary may obtain useful information

from signatures generated by other signers on the target

verifier. In other words, the adversary may produce valid

signatures collaborating with dishonest signers. However,

these attacks are not captured by the existing models where

adversary is restricted to issue queries with respect to the

target signer and verifier. Indeed, we give an example below

to show that a secure SDVS scheme in the existing models

586

2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data Science And Engineering

2324-9013/19/$31.00 ©2019 IEEE
DOI 10.1109/TrustCom/BigDataSE.2019.00084

can be broken in the first case.

Consider the following SDVS scheme. Let G , GT be

cyclic groups of the same order and ê : G ×G → GT be a

bilinear pairing between these groups. Let g be a generator

of G . Further assume H : {0, 1}∗ → G be a hash function

from {0, 1}∗ to G . The public-secret key pair of our example

scheme is set as (pk , sk) = (gx, x).

When the signer (with public/secret key (pks,sks)) gen-

erates a signature σ for the designated verifier (with

public/secret key (pkv, skv)) on message m, it computes

signature σ = ê(pk sks
v , H(m)). This signature’s validity

can be verified by the verifier through checking if σ
?
=

ê(pk skv
s , H(m)). It can be proven easily that the scheme

is unforgeable in the single-user setting under the BDH

hardness assumption, where H is a random oracle. In

addition, it enjoys PSI since identifying the actual signer

implies solving the DBDH problem.

In practice, however, the signer may generate signatures

for different designated verifiers. If the attacker is given

signatures for verifiers whose keys are under its control,

our example scheme is not secure any more. To be more

specific, assume the attacker would like to forge on mes-

sage m for verifier pkv . The attacker may first creates a

“rouge key” of the form pk ′v = (pkv)
k for some randomly

chosen k. He may request a signature from the signer on

message m with respect to pk ′v . The signature is of the form

σ = ê(pk sks
v , H(m)). The attacker can compute σ′ = σ

1
k as

a valid forgery on m under pkv . In other words, an SDVS

scheme secure in the existing model may not be sufficient

when the scheme is used in a more complicated situation,

with involving multiple users in practice.

To address this issue, we strengthen existing models and

propose two models, namely, multi-user and multi-user+. In

our first model (multi-user), adversary can issue queries from

given lists of signers and verifiers, and also corrupt them;

In our second model (multi-user+), adversary can obtain

signatures from the signer on any verifiers of its choice (i.e.

the verifier’s public keys are created by the adversary).

We also propose a generic construction of SDVS from

KEM and PRF. We prove that our generic construction gives

secure SDVS in the multi-user (resp. multi-user+) model

provided that the underlying KEM is IND-CPA (resp. IND-

CCA) secure1 and that PRF is pseudorandom. It means

that any progress made in KEM implies advances in SDVS

based on our generic construction. We would like to remark

that our generic construction does not rely on the random

oracle model so we can base on KEM schemes with different

features. We also give two instantiations based on DDH

assumption and two lattice-based versions.

1Looking ahead, we also require that the encapsulation process of the
underlying KEM can be separated into two phases in which the first phase is
independent from the receiver’s public key. We observe that many existing
KEM fulfil this requirement.

A. Our Contributions

We proposed strengthened security models of SDVS in

the multi-user setting. We also proposed a generic approach

to construct SDVS in the enhanced models. Specifically, we

made the following contributions.

• We proposed two security models of SDVS to model

security requirements in the multi-user setting, namely,

multi-user and multi-user+.

• We proposed a generic construction of SDVS from

KEM and PRF. We proved that our generic construction

is secure in the standard model assuming the security

of the underlying KEM and PRF.

Table I summarizes differences between the existing

SDVS security models and our two models. Let S and V
denote lists of signers and verifiers’ public keys chosen

by the challenger. We can see from table I that in the

existing models, the adversary can only issue queries with

respect to the specific challenge signer and verifier. In our

enhanced models, the adversary can make additional queries

beyond the challenge identities or can issue queries on the

verifier chosen by himself adaptively. In other words, the

adversary can access more information in our models than

in the original model. Our models can also corrupt queries,

meaning that the adversary can request for privacy keys of

any public keys in S and V except the challenge public keys

(also chosen by the adversary).

B. Related Work

Motivated by undeniable signature [6] which was pro-

posed in 1989, Jakobsson et al. [14] proposed the notion

of designated verifier signature (DVS) and the concept of

strong designated verifier signature (SDVS).

In the study of SDVS, Shahrokh et al. [21] first presented

its formal definition in 2003. Susilo et al. [22] introduced a

variant in the identity-based setting. It was further enhanced

in [10], [13] with additional features. Huang et al. [12],

[13] proposed its efficient variants respectively by using

short signatures. Huang et al. [11] also proposed an efficient

variant in 2011. Hou et al. [9] proposed a designed desig-

nated verifier transitive signature. Additional features like

non-delegatability have been considered in [1], [17], [24].

Geotae [20] introduced the first lattice-based construction in

the standard model in 2016.

C. Outline

This paper is organized as followed. In the next section,

we relate the underlying KEM and PRF schemes with

their security requirements and the definition of DVS. In

section III, we give definitions on SDVS with our extended

models. We then give our generic construction in section

IV, followed by the security proofs in section V. In section

VI, we give four instantiations based on our construction. We

compare our instantiations with the existing SDVS schemes.

We give our conclusion in the end of this paper.

587

Table I
DIFFERENCES BETWEEN EXISTING MODELS AND OUR MODELS

Challenge Public Keys (pks, pkv) Signature Queries (pks, pkv)
Existing Model pks ∈ S, pkv ∈ V, |S| = 1, |V| = 1 pks ∈ S, pkv ∈ V, |S| = 1, |V| = 1

Multi-user pks ∈ S, pkv ∈ V pks ∈ S, pkv ∈ V
Multi-user+ pks ∈ S, pkv ∈ V pks ∈ S, no restriction on pkv

S and V indicate signers and verifiers’ public key lists chosen by the challenger
pks and pkv indicate signer and verifier’s public keys respectively

II. PRELIMINARIES

Definition 1 (KEM): A standard key encapsulation mech-
anism (KEM) consists of the following three PPT algorithms.

• KeyGen: The randomized key generation algorithm

returns public/secret key pair (pk, sk) with input 1k,

where k is a security parameter. This algorithm can be

expressed as, KeyGen(1k)→ (pk, sk).
• Encap: The encapsulation algorithm takes public key

as input, returning key K with its encapsulation C. It

can be written as, Encap(pk)→ (K,C) ∈ Kpk ×Cpk.

• Decap: The decapsulation algorithm takes secret key

sk and encapsulation C as input. It returns correspond-

ing key K or outputs ⊥ to indicate invalid encapsula-

tion. It can be written as, Decap(C, sk) = K or ⊥.

Definition 2 (2-Phase KEM): We call a KEM scheme as

a 2-phase KEM if its Encap algorithm can be divided into

the following two phases.

• Encap1 : It will first choose a random value w
$←− Q

and output C, it can be written as, Encap1(w)→ C.

• Encap2 : In the second phase, it takes C, public key pk
and w as input. It finally returns K, whose encapsula-

tion is C. It can be written as, Encap2(C, pk ,w)→ K.

Definition 3 (Security of KEM): We call a KEM scheme

is (t, εcpa)-CPA (resp. (t, qd, εcca)-CCA) secure if there does

not exist such a PPT adversary who can win the following

game in time t with at least εcpa (resp. εcca) advantage (resp.

after making qd decryption queries). The game between a

challenger C and an adversary A is as follows.

1) Setup: By inputing security parameter k, challenger C
generates a pair of keys (pk, sk) ← KeyGen(1k) and

gives pk to the adversary A.

2) Phase 1 (Only in CCA game): In this phase, adversary

A submits a string Ci to decapsulation oracle Odec.

The oracle will return decapsulation result decsk(Ci).
3) Challenge: In the challenge phase, A issues encap-

sulation queries to C. Encapsulation oracle Oenc ran-

domly selects b ∈ {0, 1} and computes (C∗,K∗) ←
Encap(pk). Challenger C will return (C∗,K∗) if

b = 0; otherwise, it will return (C∗,K ′) where

K ′ $←− {0, 1}|K∗|. (C∗ is called target ciphertext)

4) Phase 2 (Only in CCA game): Phase 2 is the same as

Phase 1 with the restriction that submitted encapsula-

tion query Ci should not be identical to C∗.

5) Guess: A outputs a guess b′ of b and wins the game

if b′ = b. The advantage of A in winning this game

is defined as

εcpa(resp. εcca) = 2(Pr[b′ = b]− 1

2
).

The scheme is secure if εcpa (resp. εcca) is negligible.

Definition 4 (PRF): Assuming that the inputs of the pseu-
dorandom function (PRF) we considered here can be arbi-

trary. Let {0, 1}l be its output. Let F = {PRFk}k∈N be

a function set such that any variable PRFk assumes values

in the set of {0, 1}∗ → {0, 1}l. F is called an efficiently

computable pseudorandom function ensemble if

1) (efficient computation) I and V are PPT algorithms

and there is a mapping function φ, mapping from

strings to functions, such that φ(I(1k)) and PRFk are

identically distributed and V (i, x) = (φ(i))(x).
2) ((t, εprf)-pseudorandomness) For any PPT distin-

guisher D, he can not distinguish a PRF function to a

real random function with negligible probability.∣∣Pr[DPRFk(1k) = 1]− Pr[DRFk(1k) = 1]
∣∣ < εprf

where R = {RF k}k∈N is the set involving RF k.

RF k is uniformly distributed over {0, 1}∗ → {0, 1}l.
Definition 5 (DVS): A designated verifier signature

(DVS) consists of the following three PPT algorithms.

• KG: The key generation algorithm takes 1k as input

where k is security parameter, followed by returning a

public/secret key pair (pk, sk). This algorithm can be

written as, KG(1k)→ (pk, sk).
• Sign: The signing algorithm takes message m, signer’s

public and secret keys (pks, sks) and designated ver-

ifier’s public key pkv as input. It will return sig-

nature σ of message m, which can be written as

Sign(sks, pks, pkv,m)→ σ.

• Ver: The verification algorithm takes signature σ, cor-

responding message m, verifier’s public and secret keys

(skv, pkv) and signer’s public key pks as input. It will

output 1 if it is a valid signature, otherwise it will output

0. It can be written as Ver(skv, pkv, pks,m, σ)→ b (b
is 1 if the signature is valid, otherwise b is 0).

Correctness: The correctness of DVS requires that for

any KG(1k) → (pks, sks), KG(1k) → (pkv, skv) and any

message m ∈ {0, 1}∗, we have the following,

Pr[Ver(skv, pkv, pks,m, Sign(sks, pks, pkv,m)) = 1] = 1.

588

III. OUR STRENGTHENED MODELS

In this section, we present our strengthened models which

allow the attacker to issue queries with respect to multiple

verifiers, some of which may be corrupted or with keys cho-

sen adversarially. The difference is summarized in Table I.

Formally, our strengthened models are defined as followed.
Definition 6 (Unforgeability): An SDVS scheme is un-

forgeable in multi-user (resp. multi-user+) setting if no PPT

adversary can forge a valid signature on a message of its

choice without knowing the signer and verifier’s secret key.
The following game between challenger C and PPT ad-

versary A formally defines unforgeability.

1) Setup: On input security parameter k, C runs KG
algorithm to obtain multiple signers and the verifiers’

public-secret key pairs. Let S = {pks1 , pks2 ..., pksm}
and V = {pkv1

, pkv2
..., pkvn

} be signers and verifiers’

public keys respectively. A is given S and V.

2) Queries: A can issue queries to the following oracles.

Note that A can also issue a corrupt query to obtain

the secret keys of signer and verifier in the lists (except

the challenge public keys, i.e. pk∗s and pk∗v).

• Osign: A can issue signing queries between signer

pks ∈ S and verifier pkv .

• Osim: A can request verifier pkv to simulate

signature on message m between signer pks ∈ S.

• Over:A can request verification queries on the pair

(m,σ) on the signer pks ∈ S and verifier pkv .

• Restrictions: In the multi-user setting, an addi-

tional restriction applies, namely, pkv ∈ V for

queries to Osign, Osim, Over. In the multi-user+

setting, pkv can be any value chosen by A.

3) Forgery: Finally, A outputs a forgery (m∗, σ∗) on

signer and verifier from lists and wins the game if,

• Ver(sk∗v , pk
∗
v , pk

∗
s ,m

∗, σ∗) = 1 , and

• A has not issued Osign and Osim on input m∗

on signer pk∗s and verifier pk∗v before.

The probability of forging a valid signature is denoted

by Pr[Forge]. An SDVS scheme is unforgeable if

Pr[Forge] < ε(k),

where ε(k) is negligible.

Definition 7 (Non-Transferability): An SDVS scheme is

non-transferable if there exists a PPT simulation algorithm

Sim which takes skv , pkv , pks and message m as input. It

outputs a simulated signature that is indistinguishable from

the real signature generated by the signer on the same m.
That is, for any PPT distinguisher D, any (pks, sks) ←

KG(1k), (pkv, skv) ← KG(1k) and any message m ∈
{0, 1}∗, it holds that
∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

σ0 ← Sign(sks, pks,m),
σ1 ← Sim(skv, pkv,m),

b
$←− {0, 1},

b′ ← D(pks, sks, pkv, skv, σb)

: b′ = b

⎤
⎥⎥⎦−

1

2

∣∣∣∣∣∣∣∣
< ε(k)

where ε(k) is a negligible function with security parameter

k. The random coins consumed by D and the probability

takes over the randomness used in KG, Sign and Sim. If the

probability is equal to 1
2 , we say that the SDVS scheme is

perfectly non-transferable.

Definition 8 (Privacy of Signer’s Identity (PSI)): We

call a scheme that satisfies privacy of signer’s identity (PSI)

in the multi-user (resp. multi-user+) setting if a third party

cannot tell whether the signature generated by signer S0

or by signer S1 correctly without knowing signer’s and

verifier’s secret key.

The game below, which is played by a challenger C and a

distinguisher D, formally defines privacy of signer’s identity

in the multi-user setting. Let S and V denote the lists of

signers and verifiers’ public keys generated by C, same as

the unforgeability game.

1) Setup: C generates public and secret keys for sign-

ers and verifiers. The corresponding public key lists,

namely, S and V, are given to distinguisher D.

2) Queries: D can adaptively issue Osign, Osim and Over

queries on signer pksi and verifier pkvi
, same as in the

unforgeability game. D can also corrupt secret keys on

signer and verifier from the lists.

3) Challenge: D chooses two signers, e.g. S∗0 and S∗1,

from S and one verifier pk∗v from V to be the challenge

identities. D submits a message m∗ and C tosses a coin

b ∈ {0, 1} and computes challenge signature σ∗ ←
Sign(sk∗sb , pk

∗
sb
, pk∗v ,m

∗). C then returns σ∗ to D.

4) Queries: D continues to issue queries as in step 2

with the restriction that no verification queries on

(m∗, σ∗, pk∗si) for any pk∗si ∈ {S∗0, S∗1}. Note that D
cannot corrupt challenge identities’ secret keys.

5) Guess: Finally, D outputs a guess b′ of b and wins

the game if b′ = b. The probability of D in winning

this game is defined as Pr[PSI]. An SDVS scheme

possesses PSI if∣∣∣∣Pr[PSI]− 1

2

∣∣∣∣ < ε(k),

where ε(k) is negligible.

Definition 9 (SDVS): An SDVS scheme is secure in the

multi-user (resp. multi-user+) setting if it possesses unforge-

ability, non-transferability and privacy of signer’s identity.

IV. OUR CONSTRUCTION

A. Overview of Our Construction

Our generic construction of SDVS relies on KEM and

PRF, where KEM must be 2-phase as discussed in Defini-

tion 2. This is not too restrictive since most KEM schemes

can satisfy this requirement. Our generic construction is

secure in the multi-user setting (resp. multi-user+ setting)

if PRF is secure and the underlying KEM is IND-CPA

secure (resp. IND-CCA secure). Below we give a high-level

description of our generic construction.

589

In our construction, we use KeyGen in KEM to generate

signer’s keys, i.e. (pks, sks) ← KeyGen(1k). We use the

first phase in KEM’s Encap, C ← Encap1(w), to generate

verifier’s keys, i.e. pkv ← C, skv ← w (w is the randomness

used in Encap1). To sign a message, the signer uses his

secret key to decapsulate C to obtain the session key, i.e.

Ksv ← Decap(C, sks). He then uses this key in PRF to

sign message m, i.e. σ ← PRFKsv
(m). For verification,

verifier executes the second phase in Encap to acquire the

same session key, i.e. Ksv ← Encap2(C, pks, skv := w),

followed by checking σ
?
= PRFKsv

(m).

B. Details of Our Generic Construction

Given a KEM scheme K = (K.KeyGen, K.Encap,
K.Decap), which is a 2-phase encapsulation mechanism,

and a PRF function, we can construct a secure SDVS scheme

D = (D.KG, D.Sign, D.Ver). The construction is as follows.

1) D.KG: The key generation algorithm takes 1k as

input where k is the security parameter. It invokes

KeyGen in KEM to obtain signer’s keys, namely,

K.KeyGen(1k)→ (D.pks, D.sks). It also invokes the

first phase in Encap to obtain verifier’s keys, namely,

K.Encap1(w)→ C, (C,w)→ (D.pkv, D.skv).
2) D.Sign: The signing algorithm takes the signer’s

keys, the verifier’s public key and the message

as input, namely, (D.sks, D.pks, D.pkv , m). It

first runs the decapsulation algorithm in KEM to

obtain the key, i.e. K.Decap(D.pkv, D.sks) →
Ksv . It then takes key Ksv and message m
into PRF algorithm with returning signature σ,

PRFKsv
(m) → σ. The signing algorithm can be

written as, D.Sign(D.sks, D.pks, D.pkv,m)→ σ.

3) D.Ver: The verification algorithm takes the verifier’s

keys, public key of signer, the message and signa-

ture as input, namely, (D.skv , D.pkv , D.pks, m,

σ). It first runs the second phase of encapsulation

algorithm in KEM to compute key Ksv , namely,

K.Encap2(D.pkv, D.pks, D.skv)→ Ksv . It will then

invoke Ksv and message m into PRF to obtain its

signature σ′. If σ′ = σ, it returns 1; otherwise, it

returns 0. The whole verification algorithm can be

written as, D .Ver(D .skv ,D .pkv ,D .pks ,m, σ)→ b.

V. SECURITY OF OUR CONSTRUCTION

We prove that our SDVS scheme is secure if the under-

lying KEM and PRF schemes are secure.

Theorem 1: If the underlying KEM scheme is IND-CPA

(resp. IND-CCA) secure and PRF function achieves pseudo-

ramdomness, then we can construct a secure SDVS scheme

in the multi-user setting (resp. multi-user+ setting).

The proof of Theorem 1 is divided into the proof of the

following three lemmas, which stated that our generic con-

struction possesses unforgeability, non-transferability and

privacy of signer’s identity.

Lemma 1: If the underlying KEM scheme is IND-CPA

(resp. IND-CCA) secure and PRF is a pseudorandom func-

tion, then our constructed scheme D achieves the property of

unforgeability (in the multi-user setting) (resp. multi-user+

setting). That is, PrSDVS
A,D [Forge] is negligible.

Lemma 2: If the underlying KEM is IND-CPA (resp.

IND-CCA) secure and PRF achieves pseudorandomness, our

constructed scheme D is perfectly non-transferable.

Lemma 3: If the underlying KEM scheme is IND-CPA

(resp. IND-CCA) secure and PRF is a pseudorandom func-

tion, then our constructed scheme D (with multi-user setting)

(resp. multi-user+ setting) achieves the property of privacy

of signer’s identity (PSI). That is, PrSDVS
A,D [PSI] is no larger

than 1
2 , indicating that the adversary has no advantage

compared with randomly guessing the bit.

As we will see in the proof of Lemma 2, the scheme is

perfectly non-transferable so the queries to Osim can be

perfectly handled by Osign in the game of unforgeability and

privacy of signer’s identity. Hence, we only consider signing

and verification queries in these two games.

Proof: (of Lemma 1) For any PPT forger A, Pr[Forge]
in the multi-user (resp. multi-user+) setting is negligible as-

suming KEM scheme is IND-CPA (resp. IND-CCA) secure

and PRF achieves pseudorandomness.

We prove this lemma by using a sequence of games

played between a challenger C and an adversary A. Let Gi

denote the i-th game and Xi imply the event that A outputs

a valid forgery in game Gi . Let S and V denote two lists

for signers and verifiers, with m and n entities respectively.

G0: This game is with multi-user setting (resp. multi-

user+). Challenger C invokes adversary with S and V lists.

Adversary A can issue signing and verification queries on

the signer and verifier from the lists (resp. no restrictions on

the verifier in multi-user+). We can have that,

SDVS

Pr
A,D

[Forge(multi-user)](resp. multi-user+) = Pr[X0].

(1)

G1: In this game, the key used in PRF between challenge

identities pk∗s and pk∗v is randomly chosen, i.e. K ′ $←− N .

When A issues signing and verification queries between

them, C uses this key K ′ to response. The only difference

between this game and game 0 is the key used in PRF. If the

adversary can distinguish these two games, we can construct

an adversary A1 to break the IND-CPA (resp. IND-CCA)

game in KEM. Therefore, we have,

|Pr[X1]− Pr[X0]| ≤ mn · εcpa(resp. εcca). (2)

We construct adversary A1 in CPA (resp. CCA) game where

A1 is given challenge ciphertext (C∗,K∗) and public key

pk∗. A1 will simulate the game for the adversary in SDVS.

He randomly guesses a signer-verifier pair from the two lists

as challenge identities and sets, pk∗s = pk∗, pk∗v = C∗. The

590

key used between these identities is K∗. Note that A1 will

abort if he cannot guess the challenge identities correctly.

• In the multi-user+ setting, A can issue queries on

verifier pkvi
beyond the V list. To response this query,

A1 will make decapsulation queries on Ci ← pkvi

in CCA game (under pk∗s) and get the corresponding

key Ki. He then uses this key to response signing and

verification queries.

If the SDVS’s adversary successfully forges the signature,

A1 outputs 0, indicating that K∗ is the correct shared

key; Otherwise A1 randomly outputs a bit b′. Hence his

probability to win the game is mn · εcpa (resp. mn · εcca).

Therefore, the difference between game 0 and game 1 is

equal to mn times the advantage that A1 can distinguish

them in CPA (resp. CCA) game.

G2: In this game, we replace PRF with a truly random

function. It means that the signature is randomly chosen

from {0, 1}l in this game. We have,

|Pr[X2]− Pr[X1]| ≤ εprf. (3)

To obtain the above equation, we construct an adversary A2

to break the pseudorandomness of PRF with advantage εprf.

Given an oracle function F (·) which is either a pseudoran-

dom function chosen from F or a truly random function.

Here, A2 maintains a table T, which is initially empty.

When responding to signing queries on mi between pk∗s
and pk∗v , A2 returns σi if (mi , σi) exists in T; Otherwise, A2

submits message mi to function F and returns σi, followed

by storing it in table. When responding to verification

queries on (mi , σi), A2 will just return σ′i
?
= σi if mi

exists in the table with σ′i; Otherwise, A2 forwards message

mi to function F with obtaining a signature σ′i. He then

returns σ′i
?
= σi to adversary A with storing (mi, σ

′
i) in

table T. The pseudorandom function is deterministic so

that our simulation is perfect. Finally, A outputs a forgery

(m∗, σ∗) on pk∗s and pk∗v . A2 submits m∗ to function F
with obtaining σ∗′ and outputs 1 if σ∗′ = σ∗, indicating

that function F is chosen from F; Otherwise, he outputs 0.

Note that if F is chosen from F, this is actually game 1; If

F is a truly random function, this is game 2. Therefore, the

difference between these two games is whether function F is

chosen from F. Thus we can obtain equation (3). In game 2,

the signature between pk∗s and pk∗v is a truly random string.

After querying qsign, qsim and qver queries, the probability

that A outputs a valid forgery is up to

Pr[X2] ≤ (2l − qsign − qsim − qver)
−1

< (qsign + qsim + qver)2
−l,

(4)

which is negligible. Combing equations (2) to (4), we have,

SDVS

Pr
A,D

[Forge(multi-user)](resp. multi-user+)

= Pr[X0] ≤
2∑

i=1

|Pr[Xi]− Pr[Xi−1]|+ Pr[X2]

< mn · εcpa(resp. εcca) + εprf + (qsign + qsim + qver)2
−l.

(5)

We can see from equation (5) that the probability of breaking

the unforgeability in multi-user setting (resp. multi-user+

setting) is negligible, which completes our proof.

Proof: (of Lemma 2) To simulate the signer’s signature

on message m , the designated verifier does the following,

namely, K.Encap2(pkv, pks, skv) → Ksv , PRFKsv (m) →
σ. The verifier can simulate the signature by running the

second phase in Encap algorithm with inputting pkv , pks

and skv . The key Ksv that he can obtain is the same as

the key that the signer uses to generate signatures. Since

both the signer and the verifier can compute the same key,

they can generate the same signature on message m , i.e.

tag = PRFKsv
(m). Therefore, our constructed D scheme is

perfectly non-transferability.

Proof: (of Lemma 3) For any PPT distinguisher A in

SDVS’s PSI game, Pr[PSI] in the multi-user (resp. multi-

user+) setting is negligibly close to 1/2 assuming KEM
scheme is IND-CPA (resp. IND-CCA) secure and PRF
achieves property of pseudorandomness.

Let A be the distinguisher and C be the challenger

against privacy of signer’s identity game. Let K0 denote the

shared key between signer pk∗s0 and verifier pk∗v , K1 denote

shared key between pk∗s0 and verifier pk∗v . We consider the

following games played between A and C. Let Xi denote

the event that A outputs the correct guess bit in game Gi .

G0: This game is the PSI game with multi-user (resp.

multi-user+) setting. We can have,

SDVS

Pr
A,D

[PSI(multi-user)](resp. multi-user+) = Pr[X0]. (6)

G1: In this game, the key shared between pk∗s0 and pk∗v
used in PRF is randomly chosen, i.e. K ′

0
$←− N . When A

issues signing and verification queries on these identities, C
uses K ′

0 to response. The only difference between this game

and game 0 is the key used in PRF when responding oracles

between S0 and V . Thus we can have,

|Pr[X1]− Pr[X0]| ≤ mn · εcpa(resp. εcca). (7)

To obtain the above equation, we can construct an adversary

A1 to break the IND-CPA (resp. IND-CCA)’s game and the

analysis is identical to the game 1 of unforgeability and we

omit the details here.

591

G2: In this game, we replace key K1 between pk∗s1 and

pk∗v used in PRF to a random string, i.e. K ′
1

$←− N . Similar

to game 1, we can have that,

|Pr[X2]− Pr[X1]| ≤ (m− 1)n · εcpa(resp. εcca)

< mn · εcpa(resp. εcca).
(8)

This is the same as the transition from G0 to G1.

G3: In game 3, we replace PRFK0 function used between

pk∗s0 and pk∗v to a truly random function . For every signing

query on message mi with pk∗s0 , the signer’s signature

is chosen at random from (0, 1)l instead of computing

PRFK0
(mi). We can have the following equation,

|Pr[X3]− Pr[X2]| ≤ εprf. (9)

To prove equation (9), we can construct an adversary A2 to

break the pseudorandomness of PRF with (t2, εprf), where

t2 ≈ t. The analysis is identical to the game 2 in lemma 1.

G4: In this game, we replace function PRFK1 with a truly

random function used between signer pk∗s1 and verifier pk∗v .

Similarly, we can have that,

|Pr[X4]− Pr[X3]| ≤ εprf. (10)

To obtain the above equation, we can use the same proof

strategy as in the transition between G2 and G3. Note that

signature σ∗ that distinguisher A receives in this game is

generated by truly random functions, therefore, he can only

randomly guess bit b with 1
2 probability. Hence, we have

the following equation,

Pr[X4] =
1

2
. (11)

Combining equations from (6) to (11), we obtain that,

SDVS

Pr
A,D

[PSI(multi-user)](resp.multi-user+)

= Pr[X0] ≤
4∑

i=1

|Pr[Xi]− Pr[Xi−1]|+ Pr[X4]

< 2mn · εcpa(resp. εcca) + 2εprf +
1

2
.

(12)

Because εcpa (resp. εcca) and εprf are all negligible. It’s easy

to see that the probability of breaking PSI game in multi-

user setting (resp. multi-user+ setting) is negligibly close to
1
2 , which completes our proof.

VI. INSTANTIATIONS AND COMPARISON

In this section, we give two instantiations called SDVS1

and SDVS2, which base on DDH assumption. Besides, we

give another two post-quantum safe instantiations, namely,

SDVS3 and SDVS4, based on LWE assumption.

We employ the well-known Diffie-Hellman key exchange

scheme and PRF function [19] to instantiate our first SDVS

scheme (SDVS1). Note that this key exchange scheme

satisfies our 2-phase KEM requirement. Following our con-

struction, the resulting SDVS1 is the same as the first scheme

proposed in [10]. Based on previous analysis, the scheme

in [10] is actually secure in multi-user setting. However,

since Diffie-Hellman key exchange is not known to be CCA-

secure, this scheme is not secure in multi-user+ setting. As

for the instantiation in multi-user+ setting, we use a CCA-

secure KEM scheme proposed in [2] and a PRF function

[19] to construct SDVS2, based on DDH assumption,.

As for the lattice-based versions, we construct SDVS3

scheme, based on a KEM [4] and a PRF function [3]. The

constructed SDVS4 scheme derives from [26] and [3], based

on LWE assumption. We omit details of these constructions

here due to page limitation.

In table II, we compare our four instantiations in multi-

user (resp. multi-user+) setting with the existing SDVS

schemes. We consider pairing, hash, PRF and exponentiation

operations, denoted by P, H, R and E respectively. Please

be noted that the figures of our constructed SDVS2 come

from [2] whose conclusion relies on the multi-exponential

with a sliding window algorithm described in [18].
We can see from table II that our schemes, SDVS1 and

SDVS2, are secure in multi-user and multi-user+ setting

respectively in the standard model. As for SDVS3 and

SDVS4, they are quite efficient compared with the lattice-

based SDVS scheme under the same security requirement.

VII. CONCLUSION

In this paper, we consider security of SDVS in the multi-

user setting. Specifically, we strengthened the original SDVS

models into multi-user (resp. multi-user+) models. We also

proposed a generic approach to construct SDVS in these

strengthened models from KEM and PRF, with proving

the security of our generic construction in the strength-

ened models. For comparison, we give two instantiations

in each strengthened model respectively and compare their

efficiency with the existing SDVS schemes.

The value we need to highlight here is that our method is

a generic way of constructing SDVS. Based on the methods

proposed in this paper, we can construct different specific

schemes satisfying diverse security requirements based on

various KEM schemes. Besides, any progress made on KEM
can be applied to construct improved SDVS schemes.

REFERENCES

[1] Maryam Rajabzadeh Asaar, Ali Vardasbi, and Mahmoud
Salmasizadeh. Non-delegatable strong designated verifier
signature using a trusted third party without pairings. In
Proceedings of Information Security 2013 (AISC 2013), pages
13–25. Australian Computer Society, 2013.

[2] Joonsang Baek, Willy Susilo, Joseph K. Liu, and Jianying
Zhou. A new variant of the cramer-shoup kem secure
against chosen ciphertext attack. In Applied Cryptography
and Network Security, pages 143–155. Springer, 2009.

[3] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudo-
random functions and lattices. In EUROCRYPT 2012, pages
719–737. Springer, 2012.

592

Table II
COMPARISON BETWEEN OUR INSTANTIATIONS AND EXISTING SDVS SCHEMES

SDVS1 SDVS2 [13] [25] [16] SDVS3 SDVS4 [20]

Signing Cost 1E+1R 2.78E+1R+1H 1E+1H 2E+1H 2H+1P PK Size (MB) 2.99×10−2 21.82 1.34

Verification Cost 1E+1R 1E+1R 1E+1H 2E+1H 2H+1P SK Size (MB) 1.49 ×10−2 8.44 49.59
Hardness Assumption DDH DDH GDH CDH+DDH GBDH Hardness Assumption LWE LWE LWE

Standard Model
√ √ × × × Standard Model

√ √ √
Multi-user+ × √ × × × Multi-user+ × √ ×

[4] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Dou-
glas Stebila. Frodo: Take off the ring! practical, quantum-
secure key exchange from lwe. In SIGSAC, pages 1006–1018.
ACM, 2016.

[5] Jie Cai, Han Jiang, Pingyuan Zhang, Zhihua Zheng, Guangshi
Lyu, and Qiuliang Xu. An efficient strong designated verifier
signature based on r-sis assumption. IEEE Access, 7:3938–
3947, 2019.

[6] David Chaum and Hans van Antwerpen. Undeniable signa-
tures. In Gilles Brassard, editor, CRYPTO’ 89 Proceedings,
pages 212–216. Springer New York, 1990.

[7] Yvo Desmedt, Claude Goutier, and Samy Bengio. Special
uses and abuses of the fiat-shamir passport protocol (extended
abstract). In CRYPTO ’87, pages 21–39. Springer, 1987.

[8] Yvo Desmedt and Moti Yung. Weaknesses of undeniable
signature schemes. In EUROCRYPT ’91, pages 205–220.
Springer, 1991.

[9] Shuquan Hou, Xinyi Huang, Joseph K. Liu, Jin Li, and Li Xu.
Universal designated verifier transitive signatures for graph-
based big data. Information Sciences, 318(10):144–156, 2015.

[10] Qiong Huang, Willy Susilo, and Duncan S. Wong. Non-
delegatable identity-based designated verifier signature. Cryp-
tology ePrint Archive, Report 2009/367, 2009.

[11] Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy
Susilo. Efficient strong designated verifier signature schemes
without random oracle or with non-delegatability. Interna-
tional Journal of Information Security, 10(6):373, Aug 2011.

[12] Xinyi Huang, Willy Susilo, Yi Mu, and Futai Zhang. Short
(identity-based) strong designated verifier signature schemes.
In ISPEC 2006, pages 214–225. Springer, 2006.

[13] Xinyi Huang, Willy Susilo, Yi Mu, and Futai Zhang. Short
designated verifier signature scheme and its identity-based
variant. International Journal of Network Security, 6(1):82–
93, 2008.

[14] Markus Jakobsson, Kazue Sako, and Russell Impagiazzo.
Designated verifier proofs and their applications. In EURO-
CRYPT 1996, pages 143–154. Springer, 1996.

[15] Fabien Laguillaumie and Damien Vergnaud. Designated
verifier signatures: Anonymity and efficient construction from
any bilinear map. In Security in Communication Networks,
pages 105–119. Springer, 2004.

[16] Fabien Laguillaumie and Damien Vergnaud. Designated
verifier signatures: Anonymity and efficient construction from
any bilinear map. In Security in Communication Networks,
pages 105–119. Springer, 2005.

[17] Han-Yu Lin, Tzong-Sun Wu, and Yi-Shiung Yeh. A dl based
short strong designated verifier signature scheme with low
computation. Journal of Information Science and Engineer-
ing, 27(2):451–463, 2012.

[18] Avanzi Roberto M. The complexity of certain multi-
exponentiationtechniques in cryptography. Journal of Cryp-
tology, 18(4):357–373, Sep 2005.

[19] Moni Naor and Omer Reingold. Number-theoretic con-
structions of efficient pseudo-random functions. J. ACM,
51(2):231–262, March 2004.

[20] Geotae Noh and Ik Rae Jeong. Strong designated verifier
signature scheme from lattices in the standard model. Security
and Communication Networks, 9(18):6202–6214, 2016.

[21] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch.
An efficient strong designated verifier signature scheme. In
ICISC 2003, pages 40–54. Springer, 2003.

[22] Willy Susilo, Fangguo Zhang, and Yi Mu. Identy-based strong
designated verifier signature schemes. In ACISP 2004, pages
313–324. Springer, 2004.

[23] Haibo Tian, Xiaofeng Chen, Fangguo Zhang, Baodian Wei,
Zhengtao Jiang, and Yi Liu. An efficient identity-based
strong designated verifier signature without delegatability. In
International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, pages 81–88, 2012.

[24] Haibo Tian and Jin Li. A short non-delegatable strong
designated verifier signature. Frontiers of Computer Science,
8(3):490–502, 2014.

[25] Raylin Tso, Takeshi Okamoto, and Eiji Okamoto. Practical
strong designated verifier signature schemes based on double
discrete logarithms. In Information Security and Cryptology,
pages 113–127. Springer, 2005.

[26] Jiang Zhang, Yu Yu, Shuqin Fan, and Zhenfeng Zhang.
Improved lattice-based cca2-secure pke in the standard model.
Cryptology ePrint Archive, Report 2019/149, 2019. https:
//eprint.iacr.org/2019/149.

593

	Constructing strong designated verifier signatures from key encapsulation mechanisms
	Citation

	Constructing Strong Designated Verifier Signatures from Key Encapsulation Mechanisms

