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Abstract Bitcoin, which was initially introduced by Nakamoto, is the most disruptive and impactive

cryptocurrency. The core Bitcoin technology is the so-called blockchain protocol. In recent years, several

studies have focused on rigorous analyses of the security of Nakamoto’s blockchain protocol in an asynchronous

network where network delay must be considered. Wei, Yuan, and Zheng investigated the effect of a long

delay attack against Nakamoto’s blockchain protocol. However, their proof only holds in the honest miner

setting. In this study, we improve Wei, Yuan and Zheng’s result using a stronger model where the adversary

can perform long delay attacks and corrupt a certain fraction of the miners. We propose a method to analyze

the converge event and demonstrate that the properties of chain growth, common prefix, and chain quality

still hold with reasonable parameters in our stronger model.

Keywords blockchain, bitcoin, random oracle, delay, consensus protocol
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rupted by long delay attackers. Sci China Inf Sci, 2020, 63(3): 130104, https://doi.org/10.1007/s11432-019-9916-5

1 Introduction

Since the introduction of Bitcoin [1], a series of studies [2–11] have focused on analyzing the security of

Nakamoto’s blockchain protocol, which is the core of the Bitcoin system. Garay et al. [12] provided the

first rigorous cryptographic analysis of the basic properties of Nakamoto’s blockchain protocol. In order

to improve the security of the blockchain protocol, Wu et al. [13] suggested adding a supervising auditor.

Considering the power of network delays, Pass et al. [14] analyzed Nakamoto’s blockchain protocol in

an asynchronous network with ∆-bounded delays; however, their analysis only holds for short delays,

i.e., ∆ ≪ 1/np, where n is the number of miners and p is mining hardness. Recently, Wei et al. [15]

investigated the security of Nakamoto’s blockchain against long delay attacks where ∆ = O(1/np) or

even ∆ > 1/np. Notice that their security proof is only considered in the honest miner setting, which

means the adversary neither has any hash power nor corrupts any miner. Thus, a natural question is:

What if the adversary can corrupt some miners and control a fraction of the total computational power

in long delay attacks?

Our contribution. In this paper, we extend the results of a previous study [15] and analyze

Nakamoto’s blockchain using a stronger model wherein the adversary can perform long delay attacks
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Figure 1 Comparison of the previous study [14] and this study. The blue curve indicates the maximum value of µ, i.e.,

the parameter under which the common prefix of the blockchain protocol can be proved [14]. The red curve indicates the

maximum value of µ in this study where the probability of delay α is set to 1. The yellow curve shows when the best

attack succeeds in violating the common prefix [14]. Note that if the parameter µ is above the yellow curve, the blockchain

protocol will be insecure.

and corrupt a fraction of the miners. More precisely, in our model, there are (1 + µ)n miners in total,

µn of which are corrupted miners fully controlled by the adversary. Here, the adversary can control the

mining strategy of the corrupted miners as well as their associated computational power and communica-

tion capability. For instance, the adversary can broadcast the chains maintained by µn corrupted miners

at any round. Since the adversary can generate blocks using corrupted miners while performing a long

delay attack, we refine the definition of chain quality in order to capture the quality of the majority of

honest miners’ chains. Note that the chain quality property is not discussed by Wei et al. [15] due to the

honest miners setting. Our result demonstrate that the properties of chain growth, common prefix, and

chain quality hold on the condition that (1+αnp∆)µ < (1− η)(1−np(1+α∆)), which is compared with

the previous condition [14] in Figure 1.

As shown in Figure 1, we can prove the security of the blockchain protocol under a looser condition

than the boundary proposed by Pass et al. [14]. We emphasize that the corruption in our model is static,

which means the adversary can control a fixed group of miners. However, the adversary in previous

study [14] can perform adaptive corruption but short delay attack, which means the adversary can select

a certain number of the miners arbitrarily and control them.

Therefore, an interesting problem is how to evaluate the security of the blockchain protocol in a model

that allows adaptive corruption and long delay.

Main analysis techniques. Ref. [15] provides a method called TreeMC to simplify the security analysis

of Nakamoto’s blockchain when considering long network delay. However, this types of method cannot

be applied directly to our setting directly wherein the adversary can perform long delay attacks and can

also control a certain fraction of the miners. The main difficulty of the analysis in our model is that the

adversary may destroy the converge event defined in [15] by broadcasting “corrupted” blocks mined by

corrupted miners. To address this problem, we introduce a probability experiment called the Bernoulli

race to estimate the number of “corrupted” blocks during the execution of the blockchain protocol. Then,

we identify a special event, which we refer to as converge, that may imply the elimination of all forks

in our model. By comparing the number of converge events with the number of “corrupted” blocks, we

show the probability that the adversary can maintain long forks is negligible, which implies the security

of the blockchain.
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2 Preliminaries

In this section, we review the blockchain protocol. Note that we adopt the notations used in previous

studies [12, 14].

2.1 Notation

A blockchain C is a sequence of ordered blocks C =
−→
B where B denotes a block. |C| denotes the number

of blocks in C. Let Cr
i denote the chain of miner i at round r. C⌊k denotes the chain C, which removes

the last k blocks of C. C⌊k = ε if k > |C|. C1 � C2 means there exists some k > 0 such that C1 = C
⌊k
2 ,

i.e., C1 is a prefix of C2. B(n, p) denotes the binomial distribution with n trials and success probability

p. Let D be a distribution and random variable X ∼ D. If Pr[X > 0] = 1, we consider D a non-negative

distribution. Let X1 ∼ D1 and X2 ∼ D2 be independent random variables. If X = X1 +X2, then the

distribution of X is denoted as D1 +D2. Similarly, D1 −D2 denotes the distribution of X = X1 −X2.

2.2 Blockchain protocol

Nakamoto’s blockchain protocol is captured by a simplified protocol called (Π, C) in [15], where the

adversary is responsible for delivering all the messages. The simplified Nakamoto’s blockchain protocol

has been described in [12, 14, 15]. (Π, C) is directed by an environment Z(1κ). At the beginning of the

protocol, each honest miner i owns a genesis block C0
i = B0. The protocol proceeds in rounds, which are

globally referenced by miners and the adversary. Let p denote the mining hardness, which means each

miner can succeed in mining with probability p per round. In each round, each honest miner runs Π to

maintain a chain C as follows.

(1) If the last block of C is mined by himself, go to step (2). Otherwise, the miner receives messages

from Z, creates a block B, and extends C to CB with probability p. If the miner succeeds in extending

C, send the new blockchain to the adversary A. In this case, we say the miner mines a block B after

chain C.

(2) On receiving the chains delivered by the adversaryA, choose the longest chain, e.g., C′. If |C′| > |C|,

set C = C′ and go to the next round.

Remark. In step (1), to avoid consecutive mining, the miner checks whether he has mined the last

block of his chain. This means an honest miner cannot mine two consecutive blocks in a chain. This

modification to the block chain protocol was proposed in a previous study [15]. This modification can

prevent some possible forks. In addition, a miner is unlikely to mine two consecutive blocks in practice

if the number of miners is sufficiently large. Therefore, this restriction on miner behavior is reasonable.

However, we emphasize that such restriction is invalid for corrupted miners in our model. In addition,

the modification may lead to a slight decline in total mining power, and, similar to a previous study [15],

we ignore such a change in our proof due to the large number of miners.

2.3 Adversary with corrupted miners

The adversary in our model is similar to that of [15] with the exception that he can corrupt µn miners,

where µ ∈ [0, 1]. Note that there are (1 + µ)n miners in total. We emphasize that the corruption in our

model is static. Therefore, our adversary is more powerful than that of [15] but weaker than that of [14]

in terms of corruption attack, where the adversary can perform adaptive corruption and “short” delay

attacks. As in [15], we also assume that if the adversary fails to delay the target chain, the chain will be

diffused to other miners immediately. After the behavior of the honest miners in a round, the adversary

behaves as follows.

Execution of adversary at round r:

• Mining. Each corrupted miner obtains a valid chain C from the adversary and attempts to mine

an arbitrary block B after C with probability p. If the corrupted miner succeeds in mining a block, CB

becomes a new valid chain and is sent to the adversary.
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• Receiving. The adversary receives chains from honest and corrupted miners and selects the chain

he wants to delay. However, if the selected chain is from an honest miner, it can only be delayed with

probability α. The delayed chains from honest miners are tagged as “delayable”. The undelayed chains

are tagged as “undelayable”, and chains from corrupted miners are tagged as “corrupted”. Then, all the

chains together with their tags and the round r are stored in a list T .

• Distribution. The adversary selects chains in T to be distributed and these chains will be received

by all miners at the next round. However, the following two types of chains must be distributed at the

current round.

(1) Chains tagged as undelayable.

(2) Chains tagged as delayable for ∆ rounds.

After Distribution, the current round ends.

Remark. Note that the adversary can create “forks” among honest miners by distributing more than

one chains at a round. For example, the adversary distributes chains C1 and C2 in a round such that

|C1| = |C2|. He sends (C1, C2) to honest miner i but (C2, C1) to honest miner j. Suppose C1 and C2 are

longer than i and j’s chains. Then, i will accept C1 as his chain while j will accept C2. As a result, a

fork is created between miner i and j.

We say an honest miner is “being delayed” if his chain is being delayed by the adversary. Due to the

no consecutive mining constraint, a delayed honest miner will not mine a block until he accepts a new

chain mined by others.

3 Properties of the proposed blockchain model

Three basic properties characterize the security of blockchain protocol, i.e., chain growth, common prefix,

and chain quality. We adopt the definitions of chain growth and common prefix given in a previous

study [15] and supplement the definition of chain quality.

3.1 Chain growth

Let view(Π, C, A, Z, κ) denote the joint view of all honest miners and |view(Π, C, A, Z, κ)| denote the

number of rounds during the execution of the protocol.

Definition 1 ([15]). Given view(Π, C, A, Z, κ) and two rounds r1, r2 such that r1 < r2 6 |view(Π, C, A, Z,

κ)|. For λ ∈ (12 , 1] and integer t > 0, if

Pr
i,j
[|Cr2

j | − |Cr1
i | > t] > λ, (1)

we say the blockchain grows by at least t blocks with majority λ ∈ (12 , 1] from round r1 to r2, where the

probability is taken over all the selections of i, j ∈ [n].

Define chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) as the maximum value of t satisfying (1) as follows:

chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) = max

{

t|Pr
i,j
[|Cr2

j | − |Cr1
i | > t] > λ

}

.

Definition 2 ([15]). The blockchain protocol (Π, C) has chain growth rate g ∈ R with majority λ ∈ (12 , 1]

if there exists some constant c and negligible functions ǫ1, ǫ2 such that for every κ ∈ N, T > c log(κ) and

every r 6 |view(Π, C,A, Z, κ)| − T , the following holds:

Pr
[

chain-increase
(Π,C)
A,Z,κ(r, r + T, λ) > gT

]

> 1− ǫ1(κ)− ǫ2(gT ), (2)

where the probability is taken over the randomness of the protocol.
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3.2 Common prefix

Definition 3 ([15]). Given view(Π, C, A, Z, κ) and round r 6 |view(Π, C, A, Z, κ)|. For λ ∈ (12 , 1] and

integer k > 0, if

Pr
i,j

[(

Cr
i
⌊k � Cr

j

)

∧
(

Cr
j
⌊k � Cr

i

)]

> λ, (3)

set common-prefix
(Π,C)
A,Z,κ(r, k, λ) = 1; otherwise common-prefix

(Π,C)
A,Z,κ(r, k, λ) = 0. Here the probability is

taken over all the selections of i, j ∈ [n].

Definition 4 ([15]). A blockchain protocol (Π, C) satisfies the common prefix property with parameter

λ ∈ (12 , 1] if there exists some constant c and negligible functions ǫ1 and ǫ2 such that for every κ ∈ N,

T > c log(κ) and every r 6 |view(Π, C,A, Z, κ)| , the following holds

Pr
[

common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1

]

> 1− ǫ1(κ)− ǫ2(T ), (4)

where the probability is taken over the randomness of the protocol.

3.3 Chain quality

Definition 5. Let qualityk(C, ρ) = 1 if, in any consecutive sequence of more than k blocks in chain

C, there are at most ρk blocks mined by corrupted miners.

Given view(Π, C, A, Z, κ), if

Pr
i
[qualityk(C

r
i , ρ) = 1] > λ, (5)

define chain-quality
(Π,C)
A,Z,κ(r, ρ, k, λ) = 1. Otherwise, chain-quality

(Π,C)
A,Z,κ(r, ρ, k, λ) = 0. Here the

probability is taken over all the selections of i ∈ [n].

Definition 6. The blockchain protocol (Π, C) has the chain quality at round r with parameter ρ and

majority λ ∈ (12 , 1] if there exists some constant c and negligible functions ǫ1, ǫ2 such that for every

κ ∈ N, k > c log(κ), the following holds

Pr
[

chain-quality
(Π,C)
A,Z,κ(r, ρ, k, λ) = 1

]

> 1− ǫ1(κ)− ǫ2(k), (6)

where the probability is taken over the randomness of the protocol.

4 TreeMC model

We refer to the TreeMC model introduced in [15]. The TreeMC model is useful to capture the evolution of

the main chains of the blockchain protocol. Informally, TreeMC is a tree that can record the state of the

main chains, where the nodes of TreeMC are the blocks and the branches are chains broadcast to honest

miners. TreeMC has many good properties that are suitable to prove the properties of the blockchain

protocol defined above. We follow the lemmas in [15] and provide the relation between TreeMC and the

view of (Π, C) in term of chain quality.

4.1 TreeMC

TreeMC is initialized to the root B0. In each round, TreeMC records the chains as follows.

• AddBlock. When the adversary broadcasts a chain C = (B0, B1, . . . , Bl), search the branch (or

paths from root to leaves) C′ in TreeMC such that C′ = C⌊k with the smallest k. Note that the C′

exists and is unique. Then, extend C′ with the last k ordered blocks of C. Since the adversary can

broadcast more than one chain in a round, one node of TreeMC may be extended with more than one

branch simultaneously. If this occurs, we say the adversary creates a “fork”.

• DeleteBlock. After the adversary completes Distribution in a round and Addblock is done, assume

the depth of TreeMC is d. Delete “useless” blocks or forks such that only the branches Cs satisfying the

following conditions remain.
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(1) |C| = d.

(2) For any branch C′ with length d, the last block of C was added to TreeMC no later than the last

block of C′.

As shown above, TreeMC records the chains that are broadcast by the adversary and may be accepted

by honest miners. If a chain C is broadcast but is shorter than the longest broadcast chain or there was

another C′ of the same length broadcast earlier, C cannot be stored in the tree due to the DeleteBlock

operation. In addition, all branches on TreeMC at the end of a round are of equal depth and the depth of

TreeMC never decreases.

The properties of TreeMC in our static corruption setting are described as follows.

Lemma 1. Properties of TreeMC.

(1) If new blocks are successfully added to TreeMC at the end of a round, then the depth of TreeMC

increases.

(2) If the depth of TreeMC increases from d to d + l at a round where l > 2, then. in this round, all

blocks with depth greater than d+ 1 are mined by the adversary.

(3) (Converge) If only one block is added to TreeMC at the end of a round, then there will be no fork

on TreeMC and the depth increases by 1.

Proof. Properties (1) and (3) are the same as those in [15]; however, property (2) differs due to

corrupted miners. The proofs of the properties (1) and (3) given in [15] hold in our setting and thus are

omitted. We only need to prove property (2).

Suppose the depth of TreeMC increases from d to d + l at a round where l > 2. That means a chain

with length of at least l+2 is broadcast while previously broadcast chains are no longer than l. Thus, no

honest miner has accepted a chain longer than l + 1, and no block can be mined by honest miners after

position l + 2. Therefore, the blocks after position l + 2 are mined by the adversary.

4.2 Relation between TreeMC and the view of (Π, C)

TreeMC shows the possible states that are maintained by the majority of honest miners. Although there

may be some chains that are not recorded in TreeMC due to the adversarial delay, we show that the

difference between TreeMC and the actual view of the main chains of (Π, C) is negligible. The following

lemmas describe the relations between TreeMC and the view of (Π, C). Note that we only provide the proof

of Lemma 5. The proofs of Lemmas 2–4 are similar to those in [15]. Although the adversary controls a

certain number of corrupted miners, the proofs of the lemmas still hold because the differences between

TreeMC and the view of (Π, C) are caused by delay rather than corrupted miners.

Lemma 2. Assume 1/2 < λ 6 1 − 8αp∆. Let mr
delay be the number of honest miners who are being

delayed at round r. We have

Pr

[

mr
delay >

(1 − λ)n

4

]

< e−poly(κ), (7)

where the probability is taken over the randomness of the protocol and poly(·) is a polynomial function.

Over-delayr denotes an event where mr
delay > (1−λ)n

4 occurs. Due to Lemma 2, for any r, we have

Pr[Over-delayr] < e−poly(κ).

Lemma 3. Given (Π, C, A, Z, κ), assume 1/2 < λ 6 1 − 8αp∆. Let drtree be the depth of TreeMC at

round r. The chain growth property of (Π, C) is described as follows:

Pr
[

chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) > dr2tree − dr1tree

]

> 1− 2e−poly(κ). (8)

Lemma 4. Given (Π, C, A, Z, κ), assume 1/2 < λ 6 1 − 8αp∆. Let d be the depth of TreeMC. If all

branches of TreeMC at round r have a common prefix of length d− T , we obtain

Pr
[

common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1

]

> 1− 2e−poly(κ). (9)



Yuan Q, et al. Sci China Inf Sci March 2020 Vol. 63 130104:7

Lemma 5. Assume 1/2 < λ 6 1 − 8αp∆. If in any consecutive k blocks of any branch of TreeMC in

round r, there are at most ρk blocks mined by corrupted miners, we obtain

Pr
[

chain-quality
(Π,C)
A,Z,κ(r, ρ, k, λ) = 1

]

> 1− 2e−poly(κ). (10)

Proof. TreerMC denotes the set of all branches on TreeMC in round r, and Delayr denotes the set of

delayed chains in round r. Lemma 5 is obvious if Cr
i ∈ TreerMC for all honest miner i; however, not all

Cr
i s are recorded by TreeMC. Thus, we must demonstrate that most chains of honest miners are recorded.

Assume Cr
i 6∈ TreerMC and consider the following two cases.

• Case 1. Cr
i ∈ Delayr. If Over-delayr does not occur, |Delayr| 6

(1−λ)n
4 . Here, we obtain

Pr
i

[

Cr
i ∈ Delayr|Over-delayr

]

6
|Delayr|

n
=

1− λ

4
. (11)

• Case 2. Cr
i 6∈ Delayr. Here, C

r
i was distributed by the adversary, added to TreeMC due to AddBlock,

and then deleted due to DeleteBlock in round r′ 6 r. Due to Lemma 1, dr
′

tree > |Cr
i | and dr

′

tree 6 drtree;

thus, we obtain dr
′

tree = |Cr
i | = drtree. Therefore, there exists another branch C∗ such that |C∗

tree| = drtree
and C∗

tree is added to TreeMC before Cr
i . r

∗ denotes the round in which C∗
tree is added. C

∗
tree is distributed

by the adversary in round r∗; however, miner i did not update his state with C∗
tree. Thus, Cr∗

i must

be no shorter than C∗
tree. Therefore, |Cr∗

i | = |Cr
i | = drtree and Cr∗

i = Cr
i . Thus, we conclude that Cr

i

was created no later than r∗ but was distributed in round r′ > r∗, which means miner i was delayed in

round r∗ and Cr
i ∈ Delayr∗ . Similarly, if Over-delayr∗ does not occur, then |Delayr∗ | 6

(1−λ)n
4 . Here,

we obtain

Pr
i

[

Cr
i 6∈ TreerMC ∧ Case 2|Over-delayr∗

]

6 Pr
i

[

Cr
i ∈ Delayr∗ |Over-delayr∗

]

6
|Delayr∗ |

n
=

1− λ

4
.

Therefore the probability of Cr
i 6∈ TreerMC conditioned by Over-delayr ∧ Over-delayr∗ is given as

follows:

Pr
i

[

Cr
i 6∈ TreerMC|Over-delayr ∧Over-delayr∗

]

6 Pr
i

[

Cr
i 6∈ Tree

r
MC ∧Case 1|Over-delayr

]

+ Pr
i

[

Cr
i 6∈ Tree

r
MC ∧ Case 2|Over-delayr∗

]

6
1− λ

4
+

1− λ

4
=

1− λ

2
.

In any consecutive at least k blocks of any branch of TreeMC in round r, there are at most ρk

blocks mined by corrupted miners; thus, we obtain qualityk(r, C, ρ) = 1 for all C ∈ TreerMC. Sup-

pose Over-delay does not occur in round r and r∗. Then, we obtain Pr
i
[Cr

i 6∈ TreerMC] 6
1−λ
2 . Therefore,

we obtain

Pr
i

[

qualityk(C
r
i , ρ) = |Over-delayr ∧Over-delayr∗

]

> 1−
1− λ

2
> λ, (12)

which means if Over-delayr ∧Over-delayr∗ occurs, we obtain chain-quality
(Π,C)
A,Z,κ(r, ρ, k, λ) = 1.

Consider the event Over-delayr ∧Over-delayr∗ . If r∗ 6 r −∆, chains delayed at r∗ are broadcast

prior to round r. Since mr
delay is determined by the number of miners delayed from rounds r −∆+ 1 to

r, here, Over-delayr and Over-delayr∗ are independent events. If r −∆ < r∗ < r, the probability of

Over-delayr∗ will be less than when Over-delayr does not occur. Therefore, we obtain

Pr
[

chain-quality
(Π,C)
A,Z,κ(r, ρ, k, λ) = 1

]

> Pr
[

Over-delayr ∧Over-delayr∗

]

= 1− Pr[Over-delayr]− Pr
[

Over-delayr∗ |Over-delayr

]

> 1− Pr[Over-delayr]− Pr[Over-delayr∗ ]

> 1− 2e−poly(κ).

This completes the proof.
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5 Main theorems and proofs

In this section, we analyse the three basic properties of (Π, C) using TreeMC in our model, where the

adversary can perform the long delay attack and corrupt miners.

5.1 Chain growth

Theorem 1 (Chain growth). Assume 1/2 < λ 6 1 − 8αp∆. The blockchain protocol (Π, C) has the

chain growth rate g = (1−δ)f
1+αf∆ with majority λ, where f = 1− (1− p)

n
≈ np.

Proof. Due to Lemma 3, we only need to focus on the depth growth of TreeMC. Given TreeMC during

the execution of (Π, C), in round r0, the depth of TreeMC is dr0tree. Assume the depth becomes dr0tree + t at

round rt; thus, we should prove that t
rt−r0

> g with overwhelming probability.

Without loss of generality, assume there is no miner delayed in round r0; otherwise, select r
′
0 such that

there is no miner delayed in round r′0 and d
r′0
tree = dr0tree. Obviously, r′0 < r0. In the following, we prove

t
rt−r′0

> g and then we obtain t
rt−r0

> t
rt−r′0

> g.

For any integer i, there may be more than one block at position dr0tree+ i. Here, let Bi be the first block

at position dr0tree + i mined by honest miners. Note that Bi may not exist because it is possible that all

blocks at position i are mined by corrupted miners. Let ri be the round in which the depth of TreeMC

increases to dr0tree + i. Rounds r0 to rt are divided into t periods, where period i denotes rounds from

ri−1 to ri Obviously, Bi can only be mined in period i, and each period i comprises a mining phase and

a delay phase. The mining phase of period i begins when Bi−1 is added to TreeMC and ends when Bi is

mined. The rest of period i is the delay phase. Note that the mining phase of period 1 begins at round

r0. If Bi does not exist, the mining phase of period i is set to the entire period.

Let Ri
mine and Ri

delay denote the number of rounds of mining and delay phases of period i, respectively.

Here, Rmine = Σt
i=1R

i
mine and Rdelay = Σt

i=1R
i
delay; thus, Rmine +Rdelay = rt − r0.

To estimate Rmine and Rdelay, we consider the extended periods. Period i is extended by not changing

the mining process in period i; however, the adversary attempts to delay the distribution of chains of

length dr0tree + i for as long as possible. Here, let Ri∗
mine and Ri∗

delay be the number of rounds in the mining

and delay phases, respectively, in extended period i. It is obvious that Ri
mine 6 Ri∗

mine and Ri
delay 6 Ri∗

delay.

Next, we analyse Ri
mines and Ri

delays separately.

At the beginning of the mining phase of extended period i, all honest miners have chains of length

dr0tree + i− 1. Here, let f be the probability that some honest miners mine successfully in a round. Thus,

we obtain f = 1 − (1 − p)n. The mining phase of extended period i ends when Bi is mined. Therefore,

Ri∗
mine is distributed geometrically with probability f . Since all Ri∗

mine are independent variables, the sum

R∗
mine = Σt

i=1R
∗
mine follows negative binomial distribution NB(t, f). Due to Chernoff bound for negative

Binomial distribution [15], we obtain

Pr

[

R∗
mine >

(1 + δ1)t

f

]

< e−poly1(δ
2
1t), (13)

where 0 < δ1 < 1/2 and poly1(δ
2
1t) =

δ21t

3f .

Here, Ri
mine 6 Ri∗

mine; thus, we obtain Rmine 6 R∗
mine. Therefore, we obtain

Pr

[

Rmine >
(1 + δ1)t

f

]

6 Pr

[

R∗
mine >

(1 + δ1)t

f

]

< e−poly(δ21t). (14)

At the beginning of the delay phase of extended period i, block Bi is mined by an honest miner. With

probability 1−α, Bi is undelayable, which implies that Bi will be broadcast immediately. Then, Ri∗
delay =

0; otherwise, the adversary can delay Bi for at most ∆ rounds. As a result, we obtain E[Ri∗
delay] 6 α∆.

Here, Ri∗
delays are independent variables with the same distribution. Let R∗

delay = Σt
i=1R

i
delay. Due to

the Chernoff bound, we obtain

Pr[R∗
delay > (1 + δ2)tE[Ri∗

delay]] < e−poly2(δ
2
2t), (15)
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where 0 6 δ2 6 1/2 and poly2(δ
2
2t) =

δ22tE[Ri∗
delay]

3 .

Since Ri
delay 6 Ri∗

delay, we obtain Rdelay 6 R∗
delay. Thus, we obtain

Pr[Rdelay > (1 + δ2)tE[Ri∗
delay]] 6 Pr[R∗

delay > (1 + δ2)tE[Ri∗
delay]] < e−poly2(δ

2
2t). (16)

According to inequalities (14) and (16), we obtain

Pr

[

rt − r0 6
(1 + δ1)t

f
+ (1 + δ2)tE[Ri∗

delay]

]

> 1− negl(t), (17)

where negl(t) = e−poly1(δ
2
1t) + e−poly2(δ

2
2t) is a negligible function with t.

With sufficiently small δ1, δ2, pick δ > 0 such that

1

1− δ

(

1

f
+ E[Ri∗

delay]

)

= (1 + δ1)
1

f
+ (1 + δ2)E[Ri∗

delay]. (18)

Then, we obtain

Pr

[

rt − r0 6
t

(1− δ)f
(1 + fE[Ri∗

delay])

]

> 1− negl(t). (19)

Therefore, we have

Pr

[

t >
(1− δ)f

1 + fE[Ri∗
delay]

(rt − r0)

]

> 1− negl(t). (20)

Since E[Ri∗
delay] 6 α∆, we obtain

Pr

[

t >
(1− δ)f

1 + αf∆
(rt − r0)

]

> 1− negl(t). (21)

Due to Lemma 3, chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) > drttree−dr0tree with probability at least 1−2e−poly(κ).

Due to inequality (21), drttree − dr0tree > g(rt − r0) with probability at least 1− negl(t). Thus, we obtain

Pr
[

chain-increase
(Π,C)
A,Z,κ(r0, rt, λ) > g(rt − r0)

]

> 1− 2e−poly(κ) − negl(t), (22)

which completes the proof of Theorem 1.

5.2 Common prefix

For the common prefix, the proof in [15] does not hold in our corrupted miner setting because it is difficult

to analyze the convergence event. To address this issue, we introduce a new probability experiment called

the Bernoulli race.

Definition 7 (Bernoulli race experiment). Let Xi, Yi be independent random variables. For integer i,

Xi = 1 with probability p (otherwise, Xi = 0), while Yi = 1 with probability q (otherwise, Yi = 0). Here,

let R = Σk
i=1Xi, where k denotes the first i such that Yi = 1. Variable R is said to have a Bernoulli race

distribution BR(p, q).

We then consider the sum of variables that have Bernoulli race distribution with the same parameters.

Definition 8 (Repeated Bernoulli race). Here, R1, R2, . . . , Rk are independent random variables. For

i ∈ [k], Ri has a Bernoulli race distribution BR(p, q). Let R =
∑k

i=1 Ri. Variable R is considered to have

a repeated Bernoulli race distribution RBR(k, p, q).

Lemma 6. RBR(k, p, q) = NB(k, q
1−(1−p)(1−q) ) + B(k, p)− k.

Proof. Here, let Xi, Yi be the independent random variables in a Bernoulli race experiment, and

Pr[Xi] = p and Pr[Yi] = q. Then, the joint distribution of (Xi, Yi) is given as follows:

(Xi, Yi) =























(1, 1), with probability pq,

(1, 0), with probability p(1− q),

(0, 1), with probability q(1− p),

(0, 0), with probability (1− p)(1− q).

(23)
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The counter variable counts the number of events Xi = 1. If (Xi, Yi) = (1, 0), counter = counter + 1.

Here, if (Xi, Yi) = (0, 1), counter is output. If (Xi, Yi) = (1, 1), counter + 1 is output. Thus, the output

of counter follows the distribution p BR(p, q).

Since event (Xi, Yi) = (0, 0) has no effect on counter, we focus on the conditional probability under

(Xi, Yi) 6= (0, 0). The probability distribution of (Xi, Yi) conditioned on (Xi, Yi) 6= (0, 0) is given as

follows:

(Xji , Yji) =































(1, 1), with probability
pq

1− (1− p)(1− q)
,

(1, 0), with probability
p(1− q)

1− (1− p)(1− q)
,

(0, 1), with probability
q(1− p)

1− (1− p)(1− q)
.

(24)

Here, let Zi = 1 if Yji = 1; otherwise, Zi = 0. Then, we obtain

Zi =















1, with probability
q

1− (1− p)(1 − q)
,

0, with probability
p(1− q)

1− (1− p)(1 − q)
.

(25)

Consider the series of Zi, which follows Bernoulli distribution with probability q
1−(1−p)(1−q) . When

Zi = 0, counter = counter + 1. When Zi = 1, counter is output if Xji = 0 or counter + 1 is output if

Xji = 1. Here, G(p) denotes a geometric distribution with probability p. Before counter is output, the

number of events that Zi = 0 follows the distribution G( q
1−(1−p)(1−q) ) − 1. Therefore, the probability

distribution of the output of counter is obtained as follows:

counter ∼















G

(

q

1− (1 − p)(1− q)

)

, with probability p,

G

(

q

1− (1 − p)(1− q)

)

− 1, with probability 1− p.

(26)

Here, TP(p) denotes a Bernoulli distribution with probability p. Then, we obtain

counter ∼ G

(

q

1− (1− p)(1 − q)

)

+ TP(p)− 1. (27)

This means that BR(p, q) = G( q
1−(1−p)(1−q) )+TP(p)−1. Moreover, RBR(k, p, q) is the sum of k indepen-

dent random variables with distribution BR(p, q). Here, we obtain RBR(k, p, q) = NB(k, q
1−(1−p)(1−q) ) +

B(k, p)− k because the negative binomial distribution is the sum of the independent identical geometric

distribution, and the binomial distribution is the sum of the independent identical Bernoulli distribution.

Lemma 7. Here, let R1, R2, . . . , Rn be independent random variables with identical distribution such

that Ri ∼ RBR(k, p, q) for all i ∈ [n]. In addition, let R =
∑n

i=1 Ri. Then, we obtain R ∼ RBR(kn, p, q).

The proof of Lemma 7 is obvious due to Lemma 6; thus, this proof is omitted.

Next, we investigate the structure of TreeMC. If there is a fork in TreeMC, we define the fork depth as

follows.

Definition 9 (Fork depth). Given TreeMC at round r, B is the latest block in TreeMC such that

(1) B is the only block with depth d;

(2) B is mined by an honest miner.

Suppose the depth of TreeMC is d + T . Here, TreeMC has fork depth T , and B denotes the fork block

of TreeMC.

Thus, the depth can be considered the estimation of the length of the longest fork in TreeMC. The key

to the proof of the common prefix is given in Lemma 8.

Lemma 8. Assume (1+αnp∆)µ < (1−η)(1−np(1+α∆)) for constant η. Here, TreeMC has fork depth

T with probability negl(T ), where negl is a negligible function.
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Proof. Here, the main idea is to prove that the rate of mining by corrupted miners is less than the rate

of “convergence” with overwhelming probability.

Suppose TreeMC has fork depth T . The adversary must create a fork from depth d + 1 to d + T on

TreeMC. We divide set W = {d+1, d+2, . . . , d+T } into two subsets W1, W2. Here, W1 = {d+ t|t ∈ [T ],

there is a block mined by honest miners at depth d+ t}, and W2 = W \W1. Note that T1 and T2 denote

the number of elements in W1 and W2, respectively.

We also divide rounds during which the depth of TreeMC increases from d to d+T into T periods, as in

the proof of chain growth. We then analyze the upper bound of the number of blocks mined by corrupted

miners over T rounds.

(1) Consider t such that d+ t ∈ W1. Let Bt be the first block mined by honest miners in period t. The

mining phase ends at the round wherein Bt is mined, and then the delay phase starts. Here, Rt
mine and

Rt
delay denote the number of rounds in the mining and delay phases, respectively.

In the mining phase, a corrupt miner i can mine blocks until the first block is mined by honest miners.

The probability of miner i mining a block is p in each round, while the probability of honest miners

mining a block is f = 1 − (1 − p)n. Here, let St,i
mine be the number of blocks mined by miner i in the

mining phase of period d+ t. Therefore, we obtain St,i
mine ∼ BR(p, f).

Since St,i
mine are independently identically distributed, we obtain St

mine =
∑µn

i=1 S
t,i
mine and St

mine ∼

RBR(µn, p, f) ,where St
mine is the number of blocks mined by all corrupted miners.

Here, Smine =
∑t∈W1 St

mine is the number of the blocks mined by corrupted miners in all mining phases

in period t ∈ W1. According to Lemma 7, we obtain Smine ∼ RBR(µnT1, p, f).

(2) In the delay phase, Rt
delay = 0 if Bt is undelayable. If Bt is delayable, then Rdelay 6 ∆. Here, let

Rdelay =
∑t∈W1 Rt

delay. As in the proof of (16), we obtain

Pr[Rdelay > (1 + δ1)T1E[Ri
delay]] < e−

δ21T1E[Ri
delay]

3 , for 0 6 δ1 6 1. (28)

E[Ri
delay] 6 α∆ and T1 6 T ; thus, we obtain

Pr[Rdelay > (1 + δ1)Tα∆] < e−
δ21Tα∆

3 , for 0 6 δ1 6 1. (29)

Here, we select a sufficiently small δ1 such that (1+ δ1)Tα∆ is an integer. Let bad1 be an event where

Rdelay > (1 + δ1)Tα∆. If bad1 does not occur, Rdelay is less than (1 + δ1)Tα∆ rounds. In these rounds,

the adversary can also use corrupted miners to mine blocks. Since each miner can mine successfully with

probability p, µn corrupted miners have at most (1+δ1)Tα∆µn opportunities to mine a block. Let Sdelay

be random variable such that Sdelay ∼ B((1 + δ1)Tα∆µn, p), which can be considered the upper bound

of the number of blocks mined by corrupted miners in the delay phases.

(3) Consider t such that d+ t ∈ W2. Here, we cannot divide rounds into two phases because no honest

miner succeeds. In other words, in period t, corrupted miner i can only mine blocks before an honest

miner succeeds. Let St,i
mine∗ be the number of blocks mined by miner i in period t. We extend period t as

long as possible to obtain the upper bound of St,i
mine∗. In fact, when period t is extended until an honest

miner succeeds and the upper bound of St,i
mine∗ has a Bernoulli race distribution BR(p, f). Similarly,

Smine∗ denotes the upper bound of the number of blocks mined by all corrupted miners. Thus, we obtain

Smine∗ ∼ RBR(µnT2, p, f).

(4) In addition, corrupted miners can mine blocks prior to the T periods. Here, assume B is the fork

block of TreeMC, and the position of B is d. Since B is mined by an honest miner, it may be delayed by

the adversary. If so, corrupted miners can mine blocks after B until period 1 starts. Suppose that the

number of blocks mined in this manner is Spre. Thus, we obtain Spre ∼ B(µn∆, p).

Let ST be the upper bound of the number of blocks mined by corrupted miners in T periods. Thus,

we obtain

ST = Smine + SDelay + Smine∗ + Spre

∼ RBR(µnT1, p, f) + B((1 + δ1)Tα∆µn, p) + RBR(µnT2, p, f) + B(µn∆, p)
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∼ RBR(µnT, p, f) + B((1 + δ1)Tα∆µn, p) + B(µn∆, p)

∼ NB

(

µnT,
f

1− (1− p)(1 − f)

)

+ B((((1 + δ1)αT + 1)∆+ T )µn, p)− µnT

∼ NB

(

µnT,
1− (1− p)n

1− (1− p)n+1

)

+ B((((1 + δ1)αT + 1)∆+ T )µn, p)− µnT.

Let ST
1 ∼ NB(µnT, 1−(1−p)n

1−(1−p)n+1 ). Therefore, according to the Chernoff bound, we obtain

Pr[ST
1 > (1 + δ2)µT (n+ 1)] < e−

δ22µT (n+1)

3 , (30)

where we use 1−(1−p)n

1−(1−p)n+1 ≈ np
(n+1)p = n

n+1 to obtain the inequality above. Here, an event where ST
1 >

(1 + δ2)µT (n+ 1) is denoted bad2.

Let ST
2 ∼ B((((1 + δ1)αT + 1)∆+ T )µn, p). According to the Chernoff bound, we obtain

Pr[ST
2 > (1 + δ3)α∆µnpT ] < e−

δ23α∆µnpT

3 . (31)

An event where ST
2 > (1 + δ3)α∆µnpT is denoted bad3.

Therefore, if bad1, bad2, and bad3 do not occur, we have

ST = ST
1 + ST

2 − µnT

6 (1 + δ2)µT (n+ 1) + (1 + δ3)α∆µnpT − µnT

6 (1 + δ4)µT (1 + αnp∆),

where δ2, δ3 are selected as sufficiently small.

In addition, we focus on an event called converge. Here, random variable convergei = 1 denotes

an event where converge occurs in period i ∈ W1. Let Bi be the first block mined by honest miners

in period i and suppose Bi is mined in round ri. For i ∈ W1, convergei = 1 in period i implies the

following:

(1) Only one honest miner mines successfully in round ri.

(2) The chain in which Bi lies is undelayable or is delayable while there is no new block mined by

honest miners in following ∆ rounds.

If convergei = 1, Bi is the only block mined by honest miners in period i. In addition, Bi can be the

only block at position d + i mined by honest miners because an honest miner can only mine a block at

position d+ i in period i. If convergei = 1 and corrupted miners do not mine a block at position d+ i,

Bi will become the only block at position d + i. As a result, there will be no fork when the depth of

TreeMC increases to d+ t.

Note that the above two conditions of converge are independent. Since i ∈ Wi, Bi exists; thus, the

probability of condition (1) is obtained as follows:

np(1− p)
n−1

1− (1− p)n
>

np(1− p)
n−1

np
= (1− p)

n−1
> 1− np. (32)

The probability of condition (2) is expressed as follows:

1− α+ α(1− p)
n∆

> 1− α+ α(1 − np∆) = 1− αnp∆. (33)

Since these two conditions are independent, we obtain

Pr[convergei = 1] > (1− np)(1− αnp∆) > 1− np(1 + α∆). (34)

To create a fork from depth d+ 1 to d+ T , the adversary must use corrupted miners to mine at least

one block at position d+ t such that converget = 1. In addition, since there is no block mined by honest

miners at position d + t such that t ∈ W2, the adversary must also mine at least one block at such a
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position. Here, DT denotes the lower bound of the number of blocks mined by an adversary in T periods.

Thus, we obtain

DT ∼ B(T1, 1− np(1 + α∆)) + T2. (35)

To obtain the lower bound, let DT
1 ∼ B(T1, 1− np(1 + α∆)) and DT

2 ∼ B(T2, 1 − np(1 + α∆)). Here,

it is obvious that DT
2 < T2. According to the Chernoff bound, we obtain the following:

Pr[DT
1 +DT

2 < (1 − δ5)(T1 + T2)(1 − np(1 + α∆))] < e−
(1+δ25)(T1+T2)(1−np(1+α∆))

3 . (36)

An event where DT
1 +DT

2 < (1− δ5)(T1 + T2)(1− np(1 + α∆)) is denoted bad4.

Therefore, if bad4 does not occur, we obtain

DT
> DT

1 +DT
2 > (1 − δ5)(1− np(1 + α∆))T. (37)

Here, the adversary has successfully created a fork from depth d+1 to d+T ; thus, we obtain ST > DT .

If all “bad” events do not happen, we obtain the following:

(1 + δ4)µT (1 + αnp∆) > (1− δ5)(1− np(1 + α∆))T. (38)

Thus, there exist some η′ > 0 such that

(1 + αnp∆)µ > (1 − η′)(1 − np(1 + α∆)), (39)

where η′ is determined by δ1, δ2, δ3. We pick these parameters properly such that η′ = η. As a result,

the inequality (39) contradicts the assumption (1 + αnp∆)µ < (1 − η)(1− np(1 + α∆)).

Therefore, at least one of the four “bad” events occurs. Thus, the probability that TreeMC will have

fork depth T is at most Pr[bad1] + Pr[bad2] + Pr[bad3] + Pr[bad4], which is expressed as follows:

exp

(

−
δ21α∆T

3

)

+exp

(

−
δ22µT (n+ 1)

3

)

+exp

(

−
δ23α∆µnpT

3

)

+exp

(

−
(1 + δ25)(1− np(1 + α∆))

3
T

)

, (40)

where the four terms in (40) are negligible in α∆T , µnT , αµnp∆T , and αµnp∆T , respectively, and the

last inequality follows from the assumption. In our model, we have ∆ = O(1/np); thus, Eq. (40) can

be expressed as negl(αµT ) = negl′(T ), where negl and negl′ are negligible functions. This completes the

proof.

Theorem 2. Assume 1/2 < λ 6 1− 8αp∆ and (1+αnp∆)µ < (1− η)(1−np(1 +α∆)) for constant η.

Here, the blockchain protocol (Π, C) satisfies the common prefix property with parameter λ.

Proof. Due to Lemma 8, the probability that TreeMC has fork depth T is negl′(T ). In other words, if

the depth of TreeMC is d, all branches in TreeMC have a common prefix of length d− T with probability

1 − negl′(T ). Due to Lemma 4, the view of (Π, C) satisfies common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1 with a

probability of at least 1− 2e−poly(κ). Therefore, given the view of (Π, C), we obtain

Pr
[

common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1

]

> 1− 2e−poly(κ) − negl′(T ),

which completes the proof of Theorem 2.

5.3 Chain quality

Theorem 3. Assume 1/2 < λ 6 1 − 8αp∆. Here, the blockchain protocol (Π, C) satisfies the chain

quality property at round r with parameters ρ = (1 + ǫ)( 1
g
+ ∆

k
)µnp and majority λ.

Proof. Let Bj+1, . . . , Bj+k be consecutive k blocks of a branch C of TreeMC. We say that B is honest if

it is mined by an honest miner or B is corrupted if it is mined by a corrupted miner. Here, the goal is to

prove that the fraction of corrupted blocks in Bj+1, . . . , Bj+k is at most ρ = (1+ δ)( 1
g
+ ∆

k
)µnp under the

condition that Bj and Bj+k+1 are honest. If Bj or Bj+k+1 is honest, we can extend Bj+1, . . . , Bj+k to
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Bj′ , . . . , Bj′′ such that j′ 6 j+1 < j+ k 6 j′′ and Bj′ and Bj′′ are honest, and the fraction of corrupted

blocks among Bj′ , . . . , Bj′′ is greater than that of Bj+1, . . . , Bj+k.

Here, rl denotes the round in which Bl is mined. Since Bj is honest, Bj must be broadcast no later

than round rj + ∆. As a result, d
rj+∆
tree > j. In contrast, Bj+k+1 is honest; thus, the longest chain

broadcast prior to rj+k+1 is of length j+ k, which means that d
rj+k+1−1
tree = j+ k. Therefore, the depth of

TreeMC increases by at most k from round rj +∆ to round rj+k+1 − 1. Due to Theorem 1, the depth of

TreeMC increases by at least g(rj+k+1−1−rj−∆) from round rj+∆ to round rj+k+1−1 with probability

1− negl(k). Thus, we obtain

g(rj+k+1 − 1− rj −∆) < k, (41)

and

rj+k+1 − 1− rj <
k

g
+∆ (42)

with probability 1− negl(k).

In addition, the sequence of blocks Bj+1, . . . , Bj+k can only be mined from round rj to round rj+k+1−1.

Here, let kcorrupt be the number of corrupted blocks mined from round rj to round rj+k+1 − 1. Due to

the Chernoff bound, we obtain

Pr[kcorrupt > (1 + δ)(rj+k+1 − 1− rj)µnp] < e−
δ2(rj+k+1−1−rj)µnp

3 . (43)

Note that all k blocks are mined in the rj+k+1 − 1− rj rounds. According to the Chernoff bound, we

obtain

Pr[k > (1 + δ′)(rj+k+1 − 1− rj)(1 + µ)np] < e−
δ′2(rj+k+1−1−rj)(1+µ)np

3 < e−
δ′2

3 k. (44)

This means that (rj+k+1 − 1− rj)np >
k

(1+δ′)(1+µ) with a probability of at least 1 − e−
δ′2k

3 . Thus, in

(43), e−
δ2(rj+k+1−1−rj)µnp

3 6 e
− δ2µ

3(1+δ′)(1+µ)
k
+ e−

δ′
2

3 k, which is considered the negligible function negl′(k).

From Eqs. (42) and (43), there are at most (1+δ)(k
g
+∆)µnp = ρk corrupted blocks in Bj+1, . . . , Bj+k

with probability at least 1− negl(k)− negl′(k). Therefore, due to Lemma 5, we obtain

Pr
[

chain-quality
(Π,C)
A,Z,κ(r, ρ, k, λ) = 1

]

> 1− e−poly(κ) − negl(k)− negl′(k), (45)

which completes the proof.
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