
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2024

Partial solution based constraint solving cache in symbolic Partial solution based constraint solving cache in symbolic

execution execution

Ziqi SHUAI

Zhenbang CHEN

Kelin MA

Kunlin LIU

Yufeng ZHANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
SHUAI, Ziqi; CHEN, Zhenbang; MA, Kelin; LIU, Kunlin; ZHANG, Yufeng; SUN, Jun; and WANG, Ji. Partial
solution based constraint solving cache in symbolic execution. (2024). Proceedings of the ACM on
Software Engineering. 1, (FSE), 2493-2514.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9179

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ziqi SHUAI, Zhenbang CHEN, Kelin MA, Kunlin LIU, Yufeng ZHANG, Jun SUN, and Ji WANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9179

https://ink.library.smu.edu.sg/sis_research/9179

Partial Solution Based Constraint Solving Cache in Symbolic
Execution

ZIQI SHUAI∗, National University of Defense Technology, China

ZHENBANG CHEN∗†, National University of Defense Technology, China

KELIN MA, National University of Defense Technology, China

KUNLIN LIU, National University of Defense Technology, China

YUFENG ZHANG, Hunan University, China

JUN SUN, Singapore Management University, Singapore

JI WANG†, National University of Defense Technology, China

Constraint solving is one of the main challenges for symbolic execution. Caching is an e�ective mechanism

to reduce the number of the solver invocations in symbolic execution and is adopted by many mainstream

symbolic execution engines. However, caching can not performwell on all programs. How to improve caching’s

e�ectiveness is challenging in general. In this work, we propose a partial solution-based caching method for

improving caching’s e�ectiveness. Our key idea is to utilize the partial solutions inside the constraint solving

to generate more cache entries. A partial solution may satisfy other constraints of symbolic execution. Hence,

our partial solution-based caching method naturally improves the rate of cache hits. We have implemented

our method on two mainstream symbolic executors (KLEE and Symbolic PathFinder) and two SMT solvers

(STP and Z3). The results of extensive experiments on real-world benchmarks demonstrate that our method

e�ectively increases the number of the explored paths in symbolic execution. Our caching method achieves

1.07x to 2.3x speedups for exploring the same amount of paths on di�erent benchmarks.

CCS Concepts: • Software and its engineering→ Automated static analysis.

Additional Key Words and Phrases: Symbolic Execution, Constraint Solving, Cache

ACM Reference Format:

Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang. 2024. Partial Solution

Based Constraint Solving Cache in Symbolic Execution. Proc. ACM Softw. Eng. 1, FSE, Article 110 (July 2024),

22 pages. https://doi.org/10.1145/3660817

∗Ziqi Shuai and Zhenbang Chen contributed equally to this work and are co-�rst authors.
†Zhenbang Chen and Ji Wang are the corresponding authors.

Authors’ addresses: Ziqi Shuai, State Key Laboratory of Complex & Critical Software Environment, State Key Laboratory

of High Performance Computing, College of Computer, National University of Defense Technology, Changsha, China,

szq@nudt.edu.cn; Zhenbang Chen, State Key Laboratory of Complex & Critical Software Environment, College of Computer,

National University of Defense Technology, Changsha, China, zbchen@nudt.edu.cn; Kelin Ma, State Key Laboratory of

Complex & Critical Software Environment, College of Computer, National University of Defense Technology, Changsha,

China, kelinma@nudt.edu.cn; Kunlin Liu, State Key Laboratory of Complex & Critical Software Environment, State Key

Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha,

China, klliu18@nudt.edu.cn; Yufeng Zhang, College of Computer Science and Electronic Engineering, Hunan University,

Changsha, China, yufengzhang@hnu.edu.cn; Jun Sun, School of Information Systems, Singapore Management University,

Singapore, Singapore, junsun@smu.edu.sg; Ji Wang, State Key Laboratory of Complex & Critical Software Environment,

State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology,

Changsha, China, wj@nudt.edu.cn.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART110

https://doi.org/10.1145/3660817

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0009-0003-0575-5074
HTTPS://ORCID.ORG/0000-0002-4066-7892
HTTPS://ORCID.ORG/0009-0001-1874-4820
HTTPS://ORCID.ORG/0009-0003-4384-430X
HTTPS://ORCID.ORG/0000-0001-6082-4501
HTTPS://ORCID.ORG/0000-0002-3545-1392
HTTPS://ORCID.ORG/0000-0003-0637-8744
https://doi.org/10.1145/3660817
https://orcid.org/0009-0003-0575-5074
https://orcid.org/0000-0002-4066-7892
https://orcid.org/0009-0001-1874-4820
https://orcid.org/0009-0003-4384-430X
https://orcid.org/0000-0001-6082-4501
https://orcid.org/0000-0002-3545-1392
https://orcid.org/0000-0003-0637-8744
https://doi.org/10.1145/3660817

110:2 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

1 INTRODUCTION

Symbolic execution [King 1976] is a precise program analysis technique powered by constraint

solving [Baldoni et al. 2018; Cadar and Sen 2013]. It has a number of successful applications in

software engineering, such as automatic test case generation [Cadar et al. 2011], bug detection

[Cadar et al. 2006], and bound veri�cation [Deng et al. 2006], to name a few. The e�ectiveness of

symbolic execution relies on the underlying constraint solving techniques. The advancement of

constraint solving has led to improved e�ectiveness and e�ciency of symbolic execution, which

enables its application in a broader range of scenarios.

Symbolic execution analyzes a programP by executing it symbolically.P’s inputs are represented

as symbolic values, each of which represents any concrete value in the input domain. During the

analysis, symbolic execution maintains a path condition (%�) for each state (. %� is a quanti�er-free

�rst-order logic formula representing the requirements the inputs must satisfy to reach (. %� is CAD4

for the initial state. Then, symbolic execution performs symbolic computations for statements such

as addition and updates the symbolic store. The magic happens when executing branch statements.

Suppose a branch statement (with condition 2) is executed at state (with a path condition %� .

Symbolic execution calculates 2’s symbolic expression 12 and checks the feasibility of 2’s two

branches by invoking the underlying constraint solver. If %� ∧ 12 is satis�able [Kroening and

Strichman 2008], which indicates that the true branch is feasible, symbolic execution proceeds to

analyze the code in the true branch and update the %� of (’s successor to %� ∧12 . The other branch

is similar. If a branch’s condition is unsatis�able, symbolic execution abandons the branch. If both

branches are feasible, symbolic execution forks a new state from the current state to explore the

paths corresponding to both branches. In this way, the path space of P is systematically explored.

However, constraint solving is a complex and time-consuming procedure, and it usually dominates

the time spent by symbolic execution [Baldoni et al. 2018]. Moreover, due to the high complexity,

constraint solver may fail to solve some formulas produced by symbolic execution within a given

time budget. In such cases, symbolic execution usually abandons the state and may fail to explore

certain program paths. Consequently, the e�ectiveness and e�ciency of symbolic execution depend

heavily on constraint solving. Optimizing the e�ciency of constraint solving is critical for improving

the performance of symbolic execution.

Caching is an e�ective optimizationmethod to reduce the number of constraint solver invocations

and then alleviate the burden of the constraint solving in symbolic execution. In fact, caching is

commonly used in existing mainstream symbolic executors [Cadar et al. 2008; Pasareanu et al.

2008]. The basic idea of caching is as follows: a formula, in its normal form, and its solving result are

cached, so that they can be reused when solving identical or similar formulas in the future. Usually,

the normalized formula and the result form a key-value pair in a caching map. Caching proves

highly e�ective for speci�c benchmarks. For example, KLEE’s caching mechanism substantially

reduces the number of solver invocations in Coreutils benchmarks [Cadar et al. 2008]. Nevertheless,

its e�ectiveness might vary across di�erent benchmarks. Besides, the e�ectiveness of cache may

also depend on the search heuristic of symbolic execution. Therefore, enhancing the e�ectiveness

of the caching mechanism presents a challenging task. There exists work that tries to improve the

e�ectiveness of caching for the formulas of symbolic addresses [Trabish et al. 2021]. However, the

approach is designed for speci�c kinds of formulas (or programs). Improving caching’s e�ectiveness in

general is still a challenging problem, similar to the cache hit rate problem [Hennessy and Patterson

2012] in computer architecture research.

We observe that constraint solving is also a search procedure over the input space. Given a path

condition %� , the constraint solver tries di�erent variable assignments and �nally �nds a solution

if %� is satis�able or proves %�’s unsatis�ability. During this procedure, the solver tries many

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:3

1 // In total , foo has 4 paths.

2 int foo(int8_t a, int8_t b) {

3 if(a + b >= 10) {

4 if(2 * b - a >= 5) {

5 if(2 * a - b >= 15) {

6 printf("Path #1\n");

7 return 1;

8 }

9 }

10 }

11
12 printf("Path #2-#4\n");

13 return 0;

14 }

(a) A small example program.

1

v = {a ↦ x, b ↦ y},

π = true

pc : if (a + b ≥ 10)

2

v = {a ↦ x, b ↦ y},

π = x + y ≥ 10

pc : if (2 * b − a ≥ 5)

3

v = {a ↦ x, b ↦ y},

π = x + y < 10

pc : return 0

x + y ≥ 10 x + y < 10

4

v = {a ↦ x, b ↦ y},

π = x + y ≥ 10 ∧ 2y − x ≥ 5

pc : if (2 * a − b ≥ 15)

2y − x ≥ 5

5

v = {a ↦ x, b ↦ y},

π = x + y ≥ 10 ∧ 2y − x < 5

pc : return 0

2y − x < 5

6

v = {a ↦ x, b ↦ y},

π = x + y ≥ 10 ∧ 2y − x ≥ 5 ∧ 2x − y ≥ 15

pc : return 1

7

v = {a ↦ x, b ↦ y},

π = x + y ≥ 10 ∧ 2y − x ≥ 5 ∧ 2x − y < 15

pc : return 0

2x − y ≥ 15 2x − y < 15

1

2

[3]* 4*

[5]*

6*

(b) Symbolic execution tree of foo.

Fig. 1. The example program and its symbolic execution tree. Without caching, the program requires 6 rounds

of constraint solving. With the state-of-the-art caching technique, the 3rd and 5th (in bracket) times of solving

can be saved under DFS strategy. With our partial solution-based caching method, the 3rd to 6th (noted with

*) times of solving can be saved.

intermediate values, called partial solutions. A partial solution satis�es only some sub-formulas of

%� . Hence, a partial solution corresponds to another part of the input space, which may satisfy

other path conditions of the program under symbolic execution [Zhang et al. 2020]. So, we can

utilize partial solutions during constraint solving to improve the e�ectiveness of cache.

In this paper, we propose a partial solution-based caching mechanism to optimize the constraint

solving in symbolic execution. Partial solutions exist extensively in di�erent kinds of constraint

solving techniques, e.g., SAT/SMT solving. We have instantiated our idea of partial solution to SAT

solving and record the partial solutions corresponding to the con�icts in the con�ict-driven clause

learning (CDCL)-based SAT solving, which is the mainstream SAT solving method [Kroening and

Strichman 2008]. Based on it, our method supports three bit-vector SMT theories: QF_ABV, QF_BV,

QF_ABVFP, all of which convert bit-vector formulas to SAT formulas and invoke a SAT solver

for the real job. Like other caching mechanisms, our method also requires a trade-o� between the

e�ectiveness of caching and its overhead. In this paper, we use two key parameters to achieve

the trade-o�. The general guidelines for choosing parameter values are also provided. However,

picking the optimal values for these parameters remains an open problem. We have implemented

the partial solution-based caching on two symbolic executors (i.e., KLEE [Cadar et al. 2008] and

SPF [Pasareanu et al. 2008]) and two backend solvers (i.e., STP [Ganesh and Dill 2007] and Z3

[de Moura and Bjørner 2008]). The experimental results on representative benchmark programs

indicate the e�ectiveness of our caching method. In summary, the main contributions of this paper

are as follows.

• We propose a partial solution-based caching method to improve caching’s e�ectiveness in

symbolic execution. Our method is general and orthogonal to existing search heuristics.

• We instantiated our method for two SMT solvers and two state-of-the-art symbolic executors.

• We have carried out extensive experiments to evaluate our method. The experimental results

demonstrate the generality of our method. Our cachingmethod achieves the speedups ranging

from 1.07x to 2.3x for exploring the same amount of paths.

2 ILLUSTRATION

This section illustrates how our approach works with a small program shown in Figure 1a (denoted

by P). The function foo takes two 8-bit signed integer inputs a and b and returns an integer.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:4 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

2.1 Symbolic Execution

The symbolic execution of P starts by assigning symbolic values G and ~ to inputs a and b,

respectively. Then, the state space of P is explored in a state-forking manner. Assuming that we

use the depth-�rst search (DFS) strategy and execute the true branch �rst, the resulting symbolic

execution tree is shown in Figure 1b. Each node in the �gure represents a symbolic state, and

the gray block attached to the left shows its ID. The symbolic store, path condition, and program

counter are denoted by E , c , and ?2 , respectively. The numbers in red attached to the edges indicate

the order of constraint solving.

In total, symbolic execution needs to decide the satis�ability of the following six path constraints:

G + ~ ≥ 10 (1)

G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5 (2)

G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5 ∧ 2 × G − ~ ≥ 15 (3)

G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5 ∧ 2 × G − ~ < 15 (4)

G + ~ ≥ 10 ∧ 2 × ~ − G < 5 (5)

G + ~ < 10 (6)

Hence, the traditional symbolic execution without any optimization has to invoke the constraint

solver six times to solve the above path constraints. Next, we present the state-of-the-art constraint

solving caching mechanism and our partial solution-based caching method.

2.2 Constraint Solving Caching

Many mainstream symbolic executors, such as KLEE, incorporate constraint solving caching and

reusing mechanisms. Constraint solving results are reused when the symbolic executor needs to

check a new path condition. The followings are commonly used caching and reusing mechanisms

[Cadar et al. 2008; Visser et al. 2012].

• The �rst one is strict reusing, where a new constraint� must strictly match one of the key in

cache map. It is important that� should be normalized to improve the caching’s e�ectiveness.

For example, the results of solving G > 0 can be reused for ~ > 0.

• The second one is subset-based reusing. Suppose that the new constraint is � =
∧

0≤8≤= 28 .

We use S(�) to represent the set {28 | 0 ≤ 8 ≤ =}. If there exists a cache pair [�1, '1] such

that S(�1) ⊂ S(�), we check whether '1 satis�es � and return '1 if the cache hits. If '1 is

UNSAT, we return UNSAT directly.

• The third one is superset-based reusing. If there exists a cache pair (�1, '1) such that S(�) ⊂

S(�1) and '1 is a solution, then we return '1 as the result.

If all these three fail to �nd a cache entry that can decide the satis�ability of new constraint, we

call it a cache miss, and we invoke the solver to check the constraint. In principle, the e�ectiveness

of these three mechanisms is determined by the program under analysis, the search heuristic, and

the underlying solver.

Consider the program in Figure 1a. Recall that we use DFS search strategy for symbolic execution.

The �rst solving is inevitable, i.e., solving G + ~ ≥ 10. Suppose that the solution is (G : 10, ~ : 0).

After solving, we have the following key-value pair in the cache map.

[G + ~ ≥ 10, (G : 10, ~ : 0)] (7)

Then, when we solve the second path constraint G +~ ≥ 10∧2×~−G ≥ 5, there does not exist exact

matching in the cache. The cache miss occurs even though we can use the subset-based reusing

technique since the formula G +~ ≥ 10 was satis�able. So we need to invoke the solver to solve the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:5

formula. Assuming the solving returns (G : 26, ~ : 17), we add the following new key-value cache

pair to the cache map.

[G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5, (G : 26, ~ : 17)] (8)

Then, when solving the third path constraint, the solution in the above cache pair can satisfy the

constraint because the solution satis�es 2 × G − ~ ≥ 15. So, the third path constraint is hit. Hence,

we have saved one time of constraint solving. Next, for the fourth constraint, none of the cache

pairs can hit the constraint. So we add the following cache pair.

[G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5 ∧ 2 × G − ~ < 15, (G : 7, ~ : 31)] (9)

Then, similar to the third constraint, the cache pair in equation (7) also hits the �fth path constraint

G + ~ ≥ 10 ∧ 2 × ~ − G < 5. Solving the last constraint G + ~ < 10 cannot be hit by any cache pairs,

and we need to invoke the solver. After solving, the following cache pair is added.

[G + ~ < 10, (G : 0, ~ : 9)] (10)

In summary, also as indicated by Figure 1b, if we use the caching mechanisms, P’s symbolic

execution needs four times constraint solving and produces four cache pairs. The solvings of the 3rd

and 5th path conditions are omitted. Both of the hitting cases are due to subset-based reusing.

2.3 Partial Solution-Based Caching

The partial solutions for solving a path constraint %� are the solver’s intermediate solutions (e.g.,

the con�icts during SAT solving) when searching for a %�’s solution. The partial solutions may

satisfy some sub-formulas of %� . During the solving process, the solver tries the partial solutions

but abandons them, which are not reported to the users. Because most constraint solving algorithms

are search algorithms, partial solutions exist extensively in di�erent constraint solvers. For example,

bit-vector related SMT theories are widely adopted by the mainstream symbolic executors [Cadar

et al. 2008; Poeplau and Francillon 2020; Yun et al. 2018] for precise program representation.

Bit-vector SMT theories usually convert the bit-vector constraint to a SAT formula according to

the machine number semantics and invoke the backend SAT solver for solving. SAT solving is a

counterexample guided search procedure [Kroening and Strichman 2008], in which the assignments

causing con�icts are the partial solutions. Hence, given a bit-vector formula %� , we can get the

partial solutions by solving %�’s equisatis�able [equ 2023] SAT formula and wrap them as %�’s

partial solutions.

For the example program P, if we use bit-vectors to represent P’s input variables, we have the

following partial solutions1 when solving G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5.

(G : 4, ~ : 64) (G : 0, ~ : 0) (G : 58, ~ : 81) (11)

Note that the �rst partial solution (G : 4, ~ : 64) actually satis�es the above formula, because we get

the partial solution during the SAT solving process. The solved SAT formula is equisatis�able with

the above bit-vector formula due to the conjunctive normal form (CNF) conversion for SAT solving

[Kroening and Strichman 2008]. Hence, a partial solution of solving the SAT formula may satisfy the

bit-vector formula.

We observe that the search procedure of constraint solving is also searching the program’s input

space because the variables of the constraints are also the program’s input variables, e.g., a and b in

the example program. The partial solutions of solving one path constraint may satisfy the program’s

other constraints. Hence, we can utilize partial solutions to enrich the constraint solving cache map

during symbolic execution to improve the e�ectiveness of cache. Speci�cally, we can attach more

1All partial solutions in this subsection are collected by our variant of Z3 while solving the QF_BV formulas.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:6 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

solutions to each cache entry and construct more cache entries. Assuming we have a solved path

constraint %� =
∧

0≤8≤= 28 , cache entries can be derived from the following two methods:

• Prefix(%�) : {
∧

0≤ 9<8 2 9 | 0 ≤ 8 ≤ =}, where each element represents a pre�x of the path

constraint %� .

• O�ThePath(%�) : {
∧

0≤ 9<8 2 9 ∧ ¬28 | 0 ≤ 8 ≤ =}, where each element represents the path

constraint of a branch that is not taken in the current path, commonly referred to as an

o�-the-path branch.

For example, assuming %� is � ∧ � ∧ � , we can construct the following set of cache entries:

{�, � ∧ �, ¬�, � ∧ ¬�, � ∧ � ∧ ¬�}.

Next, we will show how to leverage partial solutions to improve the caching of constraint solving.

We assume that the search strategy is still DFS. The solving of the �rst path constraint G + ~ ≥ 10

will only have the �nal solution but without any partial solutions. Hence, same as before, the cache

map only has the following cache pair, where the value of each pair is a solution set.

[G + ~ ≥ 10, {(G : 10, ~ : 0)}] (12)

Then, when solving the second path constraint G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5, besides the solution

(G : 26, ~ : 17), we will have the three partial solutions in (11). We can utilize these partial solutions

to enrich the cache map. For each partial solution ?B , we check whether ?B can satisfy any pre�x

of the second path constraint or path constraint of any o�-the-path branch (denoted by 2). If ?B

can satisfy 2 , we add ?B to the value (i.e., solution set) of the cache pair whose key is 2 . Hence, the

cache map after solving the second path condition contains the following cache pairs.

[G + ~ ≥ 10, {(G : 10, ~ : 0), (G : 4, ~ : 64)}]

[¬(G + ~ ≥ 10), {(G : 0, ~ : 0), (G : 58, ~ : 81)}]

[G + ~ ≥ 10 ∧ 2 × ~ − G ≥ 5, {(G : 26, ~ : 17)}]

Then, same as before, the third path constraint will be hit by the second one’s solution. However,

when solving the fourth path constraint (4), the cached solution (G : 4, ~ : 64) can satisfy the

constraint, and the solution will be tried by the subset-based reusing mechanism. Same as before,

the cache entries will hit the �fth path constraint. Besides, the last condition G + ~ < 10 will be hit

by strict reusing mechanism. In summary, we need two times of constraint solving if we enrich the

cache map by partial solutions (see Figure 1b), improving the e�ciency of P’s symbolic execution.

3 PARTIAL SOLUTION-BASED CACHING

3.1 Symbolic Execution with Solving Cache

Algorithm 1 shows the main procedure of our method. The procedure maintains a worklist of

symbolic program states. Each state B is a tuple (;, %�,"), where ; is the location of the current

to-be-executed statement, %� is the path condition along the history of the current state, and"

is a map containing the symbolic expression of each variable. For brevity, we de�ne " on the

expressions of variables, e.g., we de�ne " on condition 0 > 1 as " [0 > 1] := " [0] > " [1]. We

use �02ℎ4 to maintain the global cache of constraint solving results. The whole procedure is a

while loop until all the states are covered or some stop criterion is satis�ed (e.g., timeout). One

can choose a strategy to select an open state from the worklist (Line 5). The most commonly used

strategies include depth-�rst search, breadth-�rst search, and so on [Baldoni et al. 2018]. Once

a state (;, %�,") is selected, the corresponding statement is executed symbolically. For brevity,

we only show the case of branch statement. If the statement BC<C (;) is a conditional statement

8 5 (�) 6>C> ; ′, the procedure checks the feasibility of both branches. A cache-based constraint

solving method, i.e., CacheAndSolve (Algorithm 2), is invoked to check the satis�ability of �C (i.e.,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:7

Algorithm 1: Symbolic Execution Framework

SE(P)

Data: P is a program

1 begin

2 F>A:;8BC ← {(;0, CAD4, ∅)} ⊲ entry point of P

3 �02ℎ4 ← (∅, ∅)

4 whileF>A:;8BC ≠ ∅ ∧ ¬BC>?�A8C4A8>= do

5 (;, %�,") ← Select(F>A:;8BC) ⊲ search heuristic

6 switch BC<C (;) do

7 case 8 5 (�) 6>C> ; ′ do

8 �C ,�5 ← %� ∧" [�], %� ∧ ¬" [�]

9 if CacheAndSolve(�02ℎ4,�C) then

10 F>A:;8BC .8=B4AC ((; ′,�C , "))

11 end

12 if CacheAndSolve(�02ℎ4,�5) then

13 F>A:;8BC .8=B4AC ((; + 1,�5 , "))

14 end

15 end

16 ...

17 end

18 end

19 end

%� ∧ " [�]) and �5 (i.e., %� ∧ ¬" [�]). If one branch is feasible, a new open state is added to

worklist. In the new state, the path condition is also updated as �C or �5 accordingly.

Algorithm 2 shows how to use cache to reduce the times of constraint solving. For simplicity, we

do not di�erentiate a set of atomic constraints with their conjunction. For clarity, we use two modules

'�02ℎ4 and (�02ℎ4 to implement the �02ℎ4 in Algorithm 2. Each key 2 of both caches is a set of

atomic constraints. '�02ℎ4 stores solving results (i.e., SAT and UNSAT) and (�02ℎ4 stores a set of

solutions for each key. The solving target q is compared with each key in the cache. Due to the

existence of e�cient algorithm for indexing and querying sets [Ho�mann and Koehler 1999], the

time overhead of cache lookup is often not signi�cant. If there exists a key 2 of '�02ℎ4 (denoted by

2 ∈̂ '�02ℎ4) such that 2 = q , then the corresponding result (�02ℎ4 [2] can be used directly, without

the need of invoking the constraint solver (Line 3). If q ⊂ 2 and '�02ℎ4 [2] = SAT (Line 5), it implies

that q is satis�able because 2 contains more constraints than q . In such case, we can use the solution

to 2 as the result by restricting the solution to the variables in q . In Line 6, we use (�02ℎ4 [2] ↓ q to

denote such restriction. Additionally, we iterate through all pre�xes of q in descending order of

length, as the solution space of longer pre�x more closely resembles that of q . For each pre�x (?A4 5),

we employ the subset-based reusing mechanism only when 2 = ?A4 5 . Speci�cally, if '�02ℎ4 [2] is

UNSAT, q must be unsatis�able too because q contains more constraints than 2; Otherwise, we

take a quick test by checking whether 2’s solution can satisfy q (Line 15). Here one detail is that

one can concretize variables not involved in 2 . For example, a common strategy is setting a variable

to be 0. In Line 14, function Concretize returns the chosen values for the variables not involved in

2 , where + (q) denotes the set of the variables in the constraint q . If the solution of 2 (with other

concretized value, if any) passes the test (denoted by (B ∪ 2A) |= q , Line 15), it means that we �nd a

solution for q with a very low cost, i.e., cache hit. We return the solution.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:8 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

Algorithm 2: Cache and solve

CacheAndSolve(�02ℎ4, q)

Data: �02ℎ4: a ('�02ℎ4 : 2C → {SAT,UNSAT}, (�02ℎ4 : 2C → 2
S) pair, where C denotes a set of

atomic constraints and S denotes a set of solutions, q : a path condition

1 begin

2 if ∃2 ∈̂ '�02ℎ4 · 2 = q then

3 return '�02ℎ4 [q] = SAT ? (SAT, (�02ℎ4 [2]) : UNSAT ⊲ cache hit, strict reusing

4 end

5 if ∃2 ∈̂ '�02ℎ4 · q ⊂ 2 ∧ '�02ℎ4 [2] = SAT then

6 return (SAT, (�02ℎ4 [2] ↓ q) ⊲ cache hit, superset-based reusing

7 end

8 for each ?A4 5 in Prefix(q) do

9 if ∃2 ∈̂ '�02ℎ4 · 2 = ?A4 5 then

10 if '�02ℎ4 [2] = UNSAT then

11 return UNSAT ⊲ cache hit, subset-based reusing

12 end

13 else

14 2A ← Concretize(+ (q) \+ (2))

15 if ∃B ∈ (�02ℎ4 [2] · (B ∪ 2A) |= q then

16 return (SAT, B ∪ 2A) ⊲ cache hit, subset-based reusing

17 end

18 end

19 end

20 end

21 (A4B, partial-solutions) ← SmtSolving(q,+ (q)) ⊲ cache miss, solve and update cache

22 '�02ℎ4 [q] ← A4B

23 i2 ← Prefix(q) ∪ O�ThePath(q)

24 for each ?B in partial-solutions do

25 for each 2 ∈ i2 do

26 if ?B |= 2 and (�02ℎ4 [2] .size() < B then

27 '�02ℎ4 [2] ← SAT

28 (�02ℎ4 [2] ← (�02ℎ4 [2] ∪ {?B}

29 end

30 end

31 end

32 ... ⊲ process solving result, omit for brevity

33 end

Cache hits can reduce the constraint solving overhead e�ectively. At Line 21, the algorithm

invokes an underlying SMT constraint solver supporting partial solutions. Here, + (q) is also

passed to trace symbolic variables and assist the constraint solver in �ltering redundant partial

solutions, which will be clari�ed in Section 3.2. The solving results include not only the solution

(i.e., SAT with a variable assignment or UNSAT) for q but also a set of partial solutions. Then, the

algorithm constructs a set of constraints i2 to enrich the cache (Line 23). These constraints are from

two sources: pre�xes of q (computed by Prefix) and path constraints of q ’s o�-the-path branches

(computed by O�ThePath). For each constraint 2 in i2 , if a partial solution ?B satis�es 2 and the

size of (�02ℎ4 [2] does not exceed an integer B (Line 26), we add ?B into (�02ℎ4 [2]. It is intuitive

that tracking the pre�xes and o�-the-path branches can signi�cantly increase the e�ectiveness

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:9

Algorithm 3: Bit-vector SMT solving

SmtSolving(q,+)

Data: q : a bit-vector SMT formula, + : symbolic variables passed by symbolic execution

1 begin

2 q ′ ← Simplify(q)

3 (q?A>? , [1011 ...1:]) ← bitblast(q ′,+) ⊲ trace encoding of symbolic variables

4 (A4B, partial-solutionsB0C) ← CDCL(q?A>? , [1011 ...1:])

5 partial-solutions1E = reconstruct(partial-solutionsB0C)

6 return (A4B, partial-solutions1E)

7 end

of the cache. This is because they are highly likely to appear as subsets in the subsequent path

constraints, owing to the incremental analysis style employed in symbolic execution. Therefore,

solutions to such carefully crafted sub-constraints are more likely to be reused. For instance, if we

get a partial solution (G : 1, ~ : 2) when solving G + ~ ≤ 5 ∧ ~ > 3, we store (G : 1, ~ : 2) into both

(�02ℎ4 [G + ~ ≤ 5] and (�02ℎ4 [G + ~ ≤ 5 ∧ ~ ≤ 3]. In this way, a query G + ~ ≤ 5 ∧ ~ ≤ 3 ∧ ~ > 0

in the future would have a cache hit. This corresponds to the subset case at Line 16 of Algorithm

2. Since other sub-constraints do not serve as pre�xes for any path constraint, we intentionally

disregard them to minimize the cache size, thereby reducing the overhead of cache lookup. Given

that constraint solving generates numerous partial solutions [Zhang et al. 2020], the algorithm

enhances the e�ectiveness of the constraint solving cache compared to vanilla symbolic execution.

Algorithm 2 can be naturally extended to other caching techniques, such as Green [Visser

et al. 2012], Utopia [Aquino et al. 2017], and so on. Regardless of the speci�c caching mechanism

employed, whenever a cache miss occurs, the solver must be invoked to make the �nal decision.

Therefore, it is always possible to enrich the cache using partial solutions obtained from the solver

and then the improved cache can be queried. In summary, our caching method is orthogonal to

other caching mechanisms, as further explained in Section 4.

3.2 Partial Solutions in SAT Solver

Bit-vector SMT theories are widely used in many symbolic execution engines to precisely represent

programs. To solve a bit-vector formula, the classical pipeline, as shown in Algorithm 3, involves

applying word-level simpli�cation rules to the formula, converting the simpli�ed formula to a

propositional CNF formula through Tseitin transformation (known as bit-blasting [Kroening and

Strichman 2008]), and then using a SAT solver for solving. Hence, we fetch the partial solutions

during SAT solving to support the extraction of partial solution for all bit-vector SMT theories,

including QF_ABV, QF_BV, QF_ABVFP, and so on. Since bit-blasting often introduces redundant

propositional variables that are unnecessary for reconstructing bit-vector partial solutions (Line 5),

Algorithm 3 traces the encoding of symbolic bit-vector variables at Line 3 and generates a vector

of symbolic propositional variables, denoted as [1011 ...1:]. For example, when encoding a 64-bit

bit-vector multiplier expression, the Tseitin transformation produces 20,417 propositional variables

[Kroening and Strichman 2008]. However, only 128 (i.e., the bits of two 64-bit bit-vector variables)

of these variables are necessary to reconstruct bit-vector partial solutions. In such a case, Algorithm

3 generates a vector of size 128, i.e., [1011 ...1127]. The SAT solver then uses this vector to optimize

the generation of partial solutions (Line 4). It is important to note that our method is not limited to

bit-vector related theories and can be naturally extended to other theories, as the existence of partial

solutions is widespread.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:10 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

Algorithm 4: CDCL reporting partial solutions

CDCL(q?A>? , [1011 ...1:])

Data: q?A>? : a propositional CNF formula, [1011 ...1:]: a vector of traced propositional variables

1 begin

2 %(← ∅ ⊲ a set of partial solutions

3 while True do

4 while BCP() = ⊥ do

5 if 2DA">34; ↓ [1011 ...1:] ∉ %(then

6 %(← %(∪ {2DA">34; ↓ [1011 ...1:]}

7 end

8 102:CA02: ← AnalyzeConflict()

9 if 102:CA02: < 0 then

10 return (UNSAT, %(.size() > ? ? UniformSample(%(, ?) : %()

11 end

12 Backtrack(102:CA02:)

13 end

14 if ¬Decide() then

15 return (SAT, %(.size() > ? ? UniformSample(%(, ?) : %()

16 end

17 end

18 end

Modern SAT solvers are usually based on the famous CDCL framework, which improves the

classical DPLL framework by introducing backtracking with con�ict-driven clause [Kroening

and Strichman 2008]. Algorithm 4 shows the basic CDCL framework and how we collect partial

solutions (%() within the CDCL framework. The procedure explores the solution space (essentially,

a binary tree) systematically. The procedure of boolean constraint propagation, i.e., BCP, utilizes unit

propagation [Kroening and Strichman 2008] to analyze whether the current intermediate assignment

(2DA">34;) can cause a con�ict. If there is no con�ict, Decide selects a variable to assign a value

(true or false). If BCP detects a con�ict, a learned clause re�ecting the con�ict’s root cause is

generated and added into the formula to prevent the con�icts of the same reason in the future

search. Then, the search procedure backtracks to the level suggested by the con�ict-driven learning

procedure. When a con�ict arises, we store the current intermediate assignment, projected onto

the traced propositional variables (denoted by 2DA">34; ↓ [1011 ...1:]), as a SAT partial solution

(Line 6). Tracking only these bits consumes signi�cantly less memory than monitoring the entire

intermediate assignment. A con�ict is considered valuable if it can generate a distinct projection,

yielding a unique partial solution. We employ a hash-based search algorithm to identify such

valuable con�icts, treating the projection as an integer vector to compute its hash value (Line 5).

This optimization allows us to discard redundant projections resulting in the same partial solution,

thereby further reducing memory consumption and alleviating the burden on quick test due to the

smaller number of partial solutions. If all the variables are assigned and there is no con�ict, the

formula is satis�able. As we can see, the SAT solving may return partial solutions despite of the

formula’s result, which means that we can always increase the number of cache entries. Moreover,

if the �nal size of %(exceeds an integer ? , the algorithm performs uniform sampling [Forsyth

2018] on %(and select ? of them to return (Line 10&15).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:11

3.3 Discussion

When utilizing partial solutions in our cache, there are two types of time overhead that can

potentially result in unfavorable outcomes. On the one hand, for each partial solution returned by

the solver, our method needs to check which constraint in i2 the partial solution can satisfy (Line

26 in Algorithm 2). However, this process may be time-consuming when the partial solution set is

large. On the other hand, in the subset-based reusing, our method takes a quick test by checking

whether some solutions of a cache entry can satisfy the path constraint (Line 15 in Algorithm 2).

The quick test may also introduce overhead when too many solutions are attached to the cache

entry. Hence, there exists a trade-o� between the caching’s e�ectiveness and its time overhead.

With regard to the two types of time overhead mentioned earlier, our method con�gures two key

parameters, ? and B , to achieve a trade-o� for each. Speci�cally, ? controls the number of

partial solutions returned by the solver, while B represents the maximum size of the solution set

for each cache entry. Intuitively, a larger ? or B allows us to expand the cache more e�ectively,

but it also introduces greater time overhead. Therefore, the selection of these parameter values

is crucial and closely related to the format of formulas and the speci�c constraint solver being

used. While there is no one-size-�ts-all solution for choosing parameter values, there are some

common standards that can be applied. Generally, as the constraint-solving process becomes more

challenging and generates more partial solutions, the value of ? should be set higher. The value

of another parameter, B , depends on the structural complexity of the path constraints in symbolic

execution because the quick test essentially involves iterating through constraints. Since constraints

with simpler structures incur lower time overhead during scanning, the value of B could be set

higher to increase cache hits.

4 IMPLEMENTATION AND EVALUATION

4.1 Implementation

We have implemented partial solution-based caching method on multiple existing mainstream SMT

solvers and symbolic execution engines.

SMT Solvers.We have extended two state-of-the-art constraint solvers to support partial solutions

on the level of SAT solving. STP [Ganesh and Dill 2007] is an SMT solver mainly aimed at QF_BV and

QF_ABV logic. Since STP employs an external backend SAT solver, i.e., Minisat [Eén and Sörensson

2003], we modi�ed Minisat to generate SAT-based partial solutions. In STP, these SAT-based partial

solutions are reconstructed for SMT formulas. We also extended STP’s interfaces for symbolic

executors to obtain the partial solutions. Z3 [de Moura and Bjørner 2008] is a general purpose SMT

solver for many logics. We use Z3 for solving QF_BV and QF_ABVFP constraints. We modi�ed the

self-customized SAT solver in Z3 to support partial solutions. Similarly, we added the interfaces for

partial solutions to Z3. The versions of SMT solvers are STP 2.1.2 and Z3 4.8.8, respectively.

Symbolic executors. We have implemented the method on KLEE [Cadar et al. 2008] and SPF

[Pasareanu et al. 2008], i.e., two state-of-the-art symbolic executors for C and Java programs,

respectively. Both of the engines have cache-based solving optimization. We built our method

on KLEE 2.2-pre. Speci�cally, we modi�ed its counterexample caching mechanism to support

the caching based on partial solutions. Our implementation is based on KLEE’s existing cache

data structure, i.e., a map from a constraint to its solution. We replace the single solution of each

constraint with a solution set. To support the analysis of �oating-point programs, we also have

implemented our caching method on KLEE-Float [Liew et al. 2017], which is a variant of KLEE that

supports reasoning about �oating-point arithmetic. KLEE-Float uses the extended Z3 to collect

partial solutions when solving QF_ABVFP formulas. We have implemented our method on SPF

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:12 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

with Green [Visser et al. 2012] as the caching layer. We integrated our method into the Green

framework. The partial solutions were obtained from the extended Z3. Speci�cally, we implemented

our method on Green’s Grulia service [Taljaard 2019; Taljaard et al. 2020], which implements a

SAT-delta value [Aquino et al. 2017] based caching mechanism. We have developed our method

based on the commit a1261b0 in a fork of Green.

4.2 Research �estions

We conducted extensive experiments to answer the following three research questions:

• E�ectiveness: Can our method improve the e�ciency of symbolic execution? If our method is

e�ective, it should explore more paths or states than the vanilla within the same time budget.

• E�ciency: How e�cient is our caching method? Here, e�ciency means consuming less time to

explore the same number of paths during symbolic execution.

• Impact of parameter tuning: If we change the values of ? and B , can ourmethod still consistently

improve the e�ciency of symbolic execution?

4.3 Experimental Setup

Intuitively, the increased number of explored paths directly shows the e�ectiveness of our method.

Therefore, we use each of the previously mentioned symbolic executors to analyze the benchmark

programs with di�erent con�gurations and then collect the number of explored paths during sym-

bolic execution. To alleviate the nondeterminism of symbolic execution, we use two deterministic

search strategies to analyze programs, i.e., depth-�rst search (DFS) and breadth-�rst search (BFS).

For experiments on KLEE and KLEE-Float, we further use the default random-cover new (RCN)

search strategy to demonstrate the compatibility between our method and search heuristics. The

timeout of each analysis task is 30 minutes.

4.3.1 Experiment 1: QF_ABV-Based Analysis. The queries issued by KLEE are QF_ABV formulas.We

use the extended STP as the backend constraint solver for evaluation. Table 1 shows the benchmark

programs, which are collected from existing studies [Shuai et al. 2021; Trabish et al. 2021] and open-

source repositories like Github and Sourceforge. Since STP’s word-level simpli�cations are quite

Table 1. C benchmark programs in Experiment 1.

Name SLOC Brief Description

json-c 7288 A JSON implementation in C

apr 61201 Apache portable runtime framework

cmark 21658 C implementation of CommonMark language

fribidi 8816 GNU Unicode bidirectional algorithm

gas 52130 GNU Assembler

libinjection 13296 A library to detect SQL injection

libtommath 19682 A multiple-precision integer library

m4 93771 Unix macro processor

discount 5880 C implementation of Markdown language

pacparser 959 A library to parse proxy auto-con�g �les

ptx 2049 GNU permuted index generator

sha1-cd 2095 A tool to detect SHA-1 collisions in �les

smaz 274 Small strings compression library

sqlite3 134768 A popular SQL database system

sundown 3611 Markdown parser based on Upskirt library

Total 427478 15 real-world open-source C programs

powerful, many trivial queries

are decided during simpli�ca-

tion and do not reach the back-

end SAT solver. Therefore, we

chose benchmarks that are chal-

lenging to symbolic execution,

i.e., they issue lots of complex

QF_ABV formulas whose solv-

ings produce many partial solu-

tions during the analysis. In to-

tal, we collected 15 real-world C

libraries or programs with vari-

ous applications for evaluation.

For each library, we customized

test driver based on the attached

test suites. The values of ? and

 B are set to 250 and 50, respec-

tively. The timeout of STP is 30s.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

https://github.com/JHTaljaard/green/commit/a1261b0f6abc3a10b32279963c2dbbb94d0355c3
https://github.com/JHTaljaard/green

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:13

4.3.2 Experiment 2: QF_ABVFP-Based Analysis. We use KLEE-Float and the extended Z3 for eval-

uation. Z3 is used for solving QF_ABVFP formulas. In this experiment, all benchmarks are from

the GNU scienti�c library (GSL) [gsl 2023]. GSL is a renowned scienti�c computing numerical

library written in C, o�ering a wide range of valuable features like fundamental mathematical

functions. As a result, the implementation of GSL involves numerous �oating-point operations,

notably non-linear ones like multiplication. Hence, reasoning about GSL functions is highly chal-

lenging for symbolic execution. We randomly selected 32 functions from GSL as the entry points

and constructed a driver for each function to symbolize the input data. The detailed benchmark list

can be found in Table 3. In this case, both ? and B are set to 2500. The timeout of Z3 is 200s.

4.3.3 Experiment 3: QF_BV-Based Analysis. To validate the generalization ability, we apply our

method in the context of symbolic execution for Java programs. We use SPF equipped with Green

and Z3 for evaluation. Here, we use Z3’s QF_BV theory for solving. All benchmark programs

used in this experiment are sourced from the standard benchmarks within the Green framework

[Taljaard 2019; Taljaard et al. 2020], comprising a total of 23 Java programs2. Among them, 10

programs were excluded because they either did not produce any partial solutions during analysis

due to the simple structure of path constraints, or the vanilla Grulia service performed exceptionally

e�ciently on them, i.e., the analysis was completed within 1 minute. The remaining 13 programs

shown in Table 4 constitute the benchmark set for this experiment, with a total of 3,999 lines of

code. In this experiment, both ? and B are set to 100. The timeout for Z3’s QF_BV solving is 5s.

4.3.4 Determining ? and B . In Experiment 2, the values of ? and B are much larger compared

to the other two experiments. As clari�ed in Section 3.3, the value of ? is directly proportional to

the complexity of constraint solving, whereas the value of B is inversely proportional to the length

of path constraints in symbolic execution. In general, solving �oating-point constraints is more

challenging than solving other types of constraints [Kroening and Strichman 2008], often resulting

in a larger number of partial solutions. Hence, the value of ? is set much larger in Experiment 2 to

capture more partial solutions. At the same time, since the �oating-point constraints that cause the

solver to timeout are likely to be structurally simple, leading to extremely low traversal overhead, the

value of B is also set larger in Experiment 2. Speci�cally, the magnitudes of these two parameters

in the three experiments are chosen based on empirical experiments. To evaluate the impact of

parameter tuning, we also conducted extensive experiments with other parameter con�gurations.

In each experiment, the value of each parameter is selected from a set of three speci�c values

to re�ect the impact of parameter tuning. In total, there are 9 parameter con�gurations for each

experiment.

All experiments were performed on a multi-core server with 2.5GHz Intel(R) Xeon(R) Platinum

8269CY CPU. The operating system is Ubuntu 20.04 LTS shipped with Linux version 5.4.0-144-

generic. We carried out the experiments in parallel while restricting the number of parallel tasks to

ensure su�cient resources. Additionally, all experiments were repeated �ve times to minimize the

randomness. The experimental results are the average of �ve runs.

4.4 Experimental Results

Tables 2&3&4 show the detailed results of three experiments, respectively. "P" indicates the con-

�guration with our partial solution based caching method, while "O" indicates the original con-

�gurations. Under all search strategies, we collected the number of explored paths (#Paths) or

states (#States), cache hit rate (CHR) and time overhead (TO(s)) for each task. Speci�cally, CHR

is the proportion of queries that hit the constraint solving cache, out of the total number of queries.

2All 23 Java programs are available at https://bitbucket.org/Developer_Jan/green/src/master/jpf_exp/exs/voorbeelde/.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

https://bitbucket.org/Developer_Jan/green/src/master/jpf_exp/exs/voorbeelde/

110:14 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

Table 2. Detailed results of QF_ABV Experiment.

Programs Mode
DFS BFS RCN

#Paths CHR TO(s) #Paths CHR TO(s) #Paths CHR TO(s)

apr
P 107(33.8%) 0.847 1.24 84(10.5%) 0.703 0.77 87(29.9%) 0.765 0.87
O 80 0.793 0.0 76 0.671 0.0 67 0.721 0.0

cmark
P 1790(-7.3%) 0.485 213.49 1569(3.8%) 0.528 28.84 2569(5.9%) 0.576 28.01
O 1931 0.463 0.0 1511 0.502 0.0 2425 0.546 0.0

fribidi
P 336(23.1%) 0.924 9.75 8427(24.3%) 0.975 6.09 6925(2.2%) 0.971 4.19
O 273 0.909 0.0 6782 0.966 0.0 6773 0.966 0.0

gas
P 312(2.3%) 0.888 6.03 1541(12.2%) 0.895 1.09 2563(-13.3%) 0.906 0.9
O 305 0.876 0.0 1373 0.87 0.0 2955 0.906 0.0

json-c
P 409(3.0%) 0.565 65.39 569(28.7%) 0.557 71.71 492(41.8%) 0.556 67.1
O 397 0.35 0.0 442 0.236 0.0 347 0.209 0.0

libinjection
P 1007(-15.7%) 0.936 1.87 27373(1.7%) 0.936 4.3 16088(1.5%) 0.928 2.77
O 1194 0.946 0.0 26918 0.939 0.0 15856 0.924 0.0

libtommath
P 38006(5.1%) 0.933 24.62 27214(33.7%) 0.923 8.36 42238(98.7%) 0.96 6.63
O 36151 0.915 0.0 20347 0.917 0.0 21260 0.964 0.0

m4
P 14938(-26.4%) 0.965 124.29 75509(1.2%) 0.996 131.61 44140(31.4%) 0.99 129.03
O 20304 0.969 0.0 74645 0.995 0.0 33586 0.983 0.0

discount
P 86474(24.0%) 0.974 25.74 222984(9.8%) 0.999 3.68 274828(4.3%) 0.998 2.62
O 69764 0.972 0.0 203125 0.998 0.0 263373 0.997 0.0

pacparser
P 36(2.9%) 0.663 12.02 3668(5.9%) 0.96 5.13 5655(9.9%) 0.971 6.95
O 35 0.641 0.0 3465 0.95 0.0 5145 0.96 0.0

ptx
P 3312(28.4%) 0.985 10.67 151(-5.0%) 0.696 63.74 446(-6.3%) 0.778 29.74
O 2579 0.982 0.0 159 0.682 0.0 476 0.779 0.0

sha1-cd
P 80(9.6%) 0.596 38.26 1772(68.0%) 0.591 266.96 3180(34.3%) 0.568 551.15
O 73 0.52 0.0 1055 0.525 0.0 2367 0.52 0.0

smaz
P 52(26.8%) 0.622 34.65 154(51.0%) 0.628 17.81 106(89.3%) 0.619 19.84
O 41 0.601 0.0 102 0.564 0.0 56 0.58 0.0

sqlite3
P 42(-10.6%) 0.85 8.68 225(-6.2%) 0.823 20.96 173(8.8%) 0.685 11.95
O 47 0.839 0.0 240 0.801 0.0 159 0.581 0.0

sundown
P 1524(6.6%) 0.792 74.05 16244(0.0%) 0.84 50.07 26906(7.9%) 0.883 46.97
O 1430 0.723 0.0 16241 0.831 0.0 24929 0.87 0.0

Since many analysis tasks in Experiment 3 completed within the 30-minute time budget, we also

collected the analysis time (T(s)). Additional data, such as the number of solved constraints and

the count of generated partial solutions, that provide a deeper understanding of the proposed

method are available in our artifact. We do not present these data here for the sake of space. For

the convenience of readers, our method’s best results are presented in bold fonts in these tables.

4.4.1 Results of Experiment 1. As shown in Table 2, our caching method improves the numbers

of paths for 9 tasks under all search strategies. On average, our method improves the explored

paths by 7.0%, 16.0% and 23.1% under DFS, BFS, and RCN, respectively. The limited improvement

observed in our method during this experiment is attributed to KLEE’s counterexample cache

optimizations, which are highly e�ective for QF_ABV solving, particularly in the case of satis�able

queries. Indeed, the counterexample cache primarily operates at the level of satisfying assignments

[Palikareva and Cadar 2013], making it more suitable for con�rming the satis�ability of queries. As

a result, queries that do not hit the cache are more likely to be unsatis�able, which is not the target

of our method. For example, using the vanilla mode O, the average ratios of unsatis�able queries

among those reaching the solver are 0.7, 0.6 and 0.61 under DFS, BFS and RCN, respectively.

We also evaluated the e�ciency achieved by our method. Figure 2a shows the trend of explored

paths during symbolic execution. The X-axis represents the analysis time in minutes, while the

Y-axis displays the average number of explored paths for all programs. As shown in the �gure, our

method consistently increases the number of explored paths under any search strategy. Speci�cally,

our caching method achieves 1.07x, 1.11x and 1.15x speedup for exploring the largest number of

paths using the original caching method under DFS, BFS and RCN strategy, respectively.

4.4.2 Results of Experiment 2. The detailed results of using KLEE-Float equipped with our partial

solution-based cache to analyze the GSL functions are shown in Table 3. The table shows that our

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:15

0 5 10 15 20 25 30

0

1

2

3

·104

Analysis time in minutes

A
v
er
ag
e
n
u
m
b
er

o
f
ex
p
lo
re
d
p
at
h
s DFS+orig

DFS+ps

BFS+orig

BFS+ps

RCN+orig

RCN+ps

(a) Experiment 1

0 5 10 15 20 25 30

0

20

40

60

80

Analysis time in minutes
A
v
er
ag
e
n
u
m
b
er

o
f
ex
p
lo
re
d
p
at
h
s DFS+orig

DFS+ps

BFS+orig

BFS+ps

RCN+orig

RCN+ps

(b) Experiment 2

0 5 10 15 20 25 30

0

1

2

·104

Analysis time in minutes

A
v
er
ag
e
n
u
m
b
er

o
f
ex
p
lo
re
d
st
at
es DFS+orig

DFS+ps

BFS+orig

BFS+ps

(c) Experiment 3

Fig. 2. Path exploration trends in three experiments

method increases the number of explored paths for 29 tasks under all search strategies. The average

improvement in the number of explored paths is 71.0% under DFS, 70.8% under BFS, and 93.8% under

RCN, respectively. In this experiment, the cache hit rates (CHR) of the vanilla mode for various

tasks are often below 0.5. Besides, the average ratios of unsatis�able queries among those reaching

the solver are 0.4 for DFS, 0.47 for BFS and 0.4 for RCN, respectively. Clearly, when compared to

array constraints, the counterexample cache performs less e�ectively on �oating-point constraints,

which is attributed to the large search space involved in solving �oating-point constraints. Hence,

our method is more competitive in this experiment.

As shown by Table 3, there are some cases where our method produce negative results, such

as gsl_sf_gamma_inc_P_e. The reason is that solving �oating-point constraints is notoriously

challenging, especially for path constraints under the DFS strategy, where Z3 often times out.

In such cases, KLEE-Float fails to reach deep parts of the program and explores only the shal-

low states, where constraint solving is faster. However, with the help of our caching method,

KLEE-Float is able to explore deeply into the program. The more complex path constraints may

introduce more timeouts, slowing down constraint solving and path exploration, making our

method less e�ective. Also, for the same reason, our method does not have an advantage under

DFS compared to other search strategies in this experiment. On the other side of the coin, vanilla

KLEE-Float sometimes terminates early because Z3 times out at the beginning of the analysis, such

as gsl_poly_complex_solve_cubic. In contrast, our method enables KLEE-Float to continue its

analysis by leveraging the solving cache enriched with partial solutions. Consequently, the path

spaces explored by our method and the baseline method di�er. Our method consistently delves

more deeply into the program’s path space, which is usually desirable in practical applications.

Same as the �rst experiment, we also inspect the path exploration trend of analyzing �oating-

point programs. Figure 2b shows the trend of explored paths in this experiment during symbolic

execution. Similarly, our caching method consistently increases the number of explored paths

under all the experimented search strategy. Speci�cally, our method achieves 1.67x, 1.36x and 1.5x

speedups under DFS, BFS and RCN, respectively. These results indicate that our partial solution-

based caching method can also help the symbolic execution of �oating-point programs.

4.4.3 Results of Experiment 3. In addition to the symbolic execution of C programs, we also applied

our method to the symbolic execution of Java programs. Table 4 shows the detailed results of this

experiment. Because the analysis of some programs was completed quickly, in this experiment,

we compare our method and the baseline using two metrics: #States and T(s). Under DFS, there

are 3 programs whose path exploration is �nished within 30 minutes in all runs, i.e., Remainder,

Triangle and Operations. Compared with the vanilla, our method achieves speedups of 1.72x,

12.5x and 2.12x on the three programs, respectively. For the other programs, our method improves

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:16 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

Table 3. Detailed results of QF_ABVFP Experiment.

GSL Functions Mode
DFS BFS RCN

#Paths CHR TO(s) #Paths CHR TO(s) #Paths CHR TO(s)

gsl_cdf_beta_P
P 19(0.0%) 0.506 5.3 44(37.5%) 0.617 3.4 63(21.2%) 0.605 5.9
O 19 0.455 0.0 32 0.465 0.0 52 0.466 0.0

gsl_cdf_beta_Pinv
P 24(0.0%) 0.566 3.2 40(0.0%) 0.661 2.4 64(30.6%) 0.669 4.7
O 24 0.458 0.0 40 0.503 0.0 49 0.479 0.0

gsl_cdf_cauchy_Pinv
P 17(21.4%) 0.565 3.9 44(10.0%) 0.63 5.0 47(27.0%) 0.663 6.1
O 14 0.517 0.0 40 0.469 0.0 37 0.466 0.0

gsl_cdf_chisq_P
P 15(7.1%) 0.581 1.8 39(25.8%) 0.661 3.8 43(22.9%) 0.643 4.1
O 14 0.478 0.0 31 0.5 0.0 35 0.49 0.0

gsl_cdf_gumbel1_Q
P 14(16.7%) 0.571 1.1 27(42.1%) 0.634 1.3 33(17.9%) 0.602 1.8
O 12 0.462 0.0 19 0.573 0.0 28 0.538 0.0

gsl_cdf_gumbel1_Qinv
P 16(23.1%) 0.552 1.2 30(11.1%) 0.604 0.7 40(11.1%) 0.614 1.7
O 13 0.471 0.0 27 0.474 0.0 36 0.476 0.0

gsl_cdf_gumbel2_Pinv
P 24(26.3%) 0.588 0.8 45(7.1%) 0.651 1.5 64(45.5%) 0.675 1.9
O 19 0.519 0.0 42 0.558 0.0 44 0.507 0.0

gsl_cdf_weibull_Qinv
P 23(9.5%) 0.608 1.1 40(0.0%) 0.629 1.9 44(10.0%) 0.639 1.4
O 21 0.522 0.0 40 0.562 0.0 40 0.552 0.0

gsl_complex_exp
P 27(58.8%) 0.604 1.7 238(11.7%) 0.841 2.5 310(13.1%) 0.895 3.0
O 17 0.516 0.0 213 0.794 0.0 274 0.848 0.0

gsl_complex_log
P 27(58.8%) 0.603 1.5 238(11.7%) 0.845 2.6 295(4.6%) 0.892 3.1
O 17 0.513 0.0 213 0.794 0.0 282 0.85 0.0

gsl_complex_sinh
P 29(45.0%) 0.604 1.5 143(5.1%) 0.721 5.4 284(68.0%) 0.759 8.2
O 20 0.516 0.0 136 0.681 0.0 169 0.633 0.0

gsl_deriv_forward
P 11(22.2%) 0.589 1.6 13(30.0%) 0.625 1.9 15(25.0%) 0.647 1.6
O 9 0.462 0.0 10 0.459 0.0 12 0.457 0.0

gsl_diff_forward
P 10(11.1%) 0.541 0.2 10(42.9%) 0.57 0.7 15(50.0%) 0.604 0.6
O 9 0.513 0.0 7 0.506 0.0 10 0.493 0.0

gsl_eigen_genv_sort
P 17(30.8%) 0.617 1.4 75(27.1%) 0.833 2.9 50(56.2%) 0.656 2.9
O 13 0.459 0.0 59 0.783 0.0 32 0.519 0.0

gsl_integration_glfixed
P 11(10.0%) 0.569 3.8 22(15.8%) 0.628 3.2 29(20.8%) 0.582 4.3
O 10 0.477 0.0 19 0.493 0.0 24 0.5 0.0

gsl_integration_qawc
P 138(137.9%) 0.776 195.2 24(0.0%) 0.614 1.0 243(170.0%) 0.796 13.1
O 58 0.489 0.0 24 0.557 0.0 90 0.628 0.0

gsl_integration_qng
P 12(9.1%) 0.579 3.2 70(311.8%) 0.679 2.8 109(22.5%) 0.739 6.8
O 11 0.469 0.0 17 0.509 0.0 89 0.619 0.0

gsl_linalg_PTLQ_decomp
P 44(18.9%) 0.538 7.0 113(41.2%) 0.553 2.1 34(13.3%) 0.508 2.1
O 37 0.494 0.0 80 0.52 0.0 30 0.444 0.0

gsl_linalg_complex_LU_lndet
P 30(57.9%) 0.726 6.7 79(14.5%) 0.731 2.3 47(-2.1%) 0.627 2.8
O 19 0.476 0.0 69 0.543 0.0 48 0.491 0.0

gsl_poly_complex_solve_cubic
P 23(1050.0%) 0.776 3.0 25(1150.0%) 0.74 2.1 28(1300.0%) 0.753 2.5
O 2 0.286 0.0 2 0.286 0.0 2 0.286 0.0

gsl_poly_complex_solve_quadratic
P 20(66.7%) 0.746 4.9 60(160.9%) 0.676 5.8 58(123.1%) 0.697 5.6
O 12 0.459 0.0 23 0.482 0.0 26 0.484 0.0

gsl_poly_solve_quadratic
P 19(46.2%) 0.719 5.1 26(62.5%) 0.65 2.7 27(50.0%) 0.66 2.9
O 13 0.463 0.0 16 0.475 0.0 18 0.477 0.0

gsl_sf_airy_Ai_deriv_e
P 92(0.0%) 0.623 26.8 13(0.0%) 0.516 0.1 178(85.4%) 0.827 7.5
O 92 0.514 0.0 13 0.516 0.0 96 0.5 0.0

gsl_sf_bessel_In_scaled_e
P 95(61.0%) 0.717 30.2 58(28.9%) 0.559 4.9 48(11.6%) 0.614 2.3
O 59 0.481 0.0 45 0.5 0.0 43 0.51 0.0

gsl_sf_bessel_Inu_e
P 12(0.0%) 0.526 1.4 37(60.9%) 0.633 4.0 35(9.4%) 0.616 4.4
O 12 0.459 0.0 23 0.496 0.0 32 0.497 0.0

gsl_sf_bessel_Inu_scaled_asymp_unif_e
P 27(107.7%) 0.762 5.7 11(10.0%) 0.647 1.1 18(63.6%) 0.697 1.4
O 13 0.471 0.0 10 0.468 0.0 11 0.465 0.0

gsl_sf_bessel_Inu_scaled_e
P 12(9.1%) 0.538 1.4 36(50.0%) 0.624 4.3 37(27.6%) 0.638 4.6
O 11 0.457 0.0 24 0.496 0.0 29 0.496 0.0

gsl_sf_bessel_cos_pi4_e
P 25(92.3%) 0.573 1.2 106(3.9%) 0.685 4.0 139(37.6%) 0.744 5.0
O 13 0.515 0.0 102 0.636 0.0 101 0.582 0.0

gsl_sf_bessel_sin_pi4_e
P 23(64.3%) 0.572 1.2 106(2.9%) 0.687 3.8 139(44.8%) 0.744 5.0
O 14 0.511 0.0 103 0.634 0.0 96 0.581 0.0

gsl_sf_debye_1_e
P 165(217.3%) 0.827 32.5 79(68.1%) 0.78 11.4 144(585.7%) 0.831 28.6
O 52 0.492 0.0 47 0.492 0.0 21 0.491 0.0

gsl_sf_elljac_e
P 94(-1.1%) 0.605 88.6 71(9.2%) 0.584 3.3 108(16.1%) 0.634 5.6
O 95 0.497 0.0 65 0.502 0.0 93 0.493 0.0

gsl_sf_gamma_inc_P_e
P 14(-6.7%) 0.49 1.9 49(14.0%) 0.653 4.8 47(20.5%) 0.665 5.6
O 15 0.468 0.0 43 0.512 0.0 39 0.497 0.0

the number of explored states by 114.3%. Similarly, under BFS, there are 4 programs whose path

exploration is �nished within 30 minutes in all runs, i.e., Remainder, Triangle, Operations and

MagicIndex. The speedups are 1.85x, 5.63x, 2.25x and 80.67x, respectively. The improvements

in the number of states on other programs are 56.8%. On MagicIndex, our method signi�cantly

enhances cache hit rates, thereby improving the e�ciency of path exploration under both search

strategies. Unlike the second experiment, our caching method achieves better results on DFS for

Java programs. The reason is that the constraints generated from the benchmark programs are not

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:17

Table 4. Detailed results of QF_BV Experiment. Here, we focus on two metrics: #States and T(s).

Programs Mode
DFS BFS

#States CHR TO(s) T(s) #States CHR TO(s) T(s)

Remainder
P 957(0.0%) 0.761 160.6 285.8 957(0.0%) 0.771 178.6 298.6
O 957 0.24 0.0 491.0 957 0.156 0.0 551.6

BubbleSort
P 11777(17.9%) 0.283 312.5 1802.0 18255(41.8%) 0.323 159.7 1800.2
O 9992 0.044 0.0 1800.0 12876 0.144 0.0 1800.0

Dijkstra
P 8242(60.5%) 0.325 113.1 1800.0 8294(63.5%) 0.347 105.3 1800.0
O 5135 0.116 0.0 1800.0 5072 0.125 0.0 1800.0

NanoXML
P 48520(227.3%) 0.66 6.7 1800.0 99426(51.6%) 0.536 9.1 1800.0
O 14822 0.362 0.0 1800.0 65598 0.533 0.0 1800.0

SortedListInt
P 79704(377.2%) 0.846 57.8 1800.0 38491(95.5%) 0.817 11.8 1800.0
O 16703 0.686 0.0 1800.0 19684 0.695 0.0 1800.0

BinTree
P 15227(47.1%) 0.911 14.8 912.6 15227(21.6%) 0.899 17.2 1204.4
O 10353 0.829 0.0 1800.0 12522 0.842 0.0 1800.0

Triangle
P 2207(0.0%) 0.502 1.0 7.2 2207(0.0%) 0.474 1.5 19.8
O 2207 0.354 0.0 90.0 2207 0.303 0.0 111.4

Operations
P 15619(0.0%) 0.52 59.7 256.4 15619(0.0%) 0.465 58.7 262.8
O 15619 0.188 0.0 544.2 15619 0.222 0.0 591.2

Sorting
P 24219(80.0%) 0.561 127.3 1801.0 18714(25.1%) 0.36 48.6 1800.0
O 13459 0.256 0.0 1800.0 14959 0.181 0.0 1800.0

MagicIndex
P 7202(52.4%) 0.944 0.2 9.2 7202(0.0%) 0.956 0.2 10.8
O 4726 0.551 0.0 1788.6 7202 0.786 0.0 871.2

BinomialHeap
P 47461(106.5%) 0.939 86.7 1435.4 47303(21.1%) 0.939 65.6 1493.2
O 22978 0.885 0.0 1800.0 39063 0.925 0.0 1800.0

TreeMap
P 24640(120.2%) 0.942 58.7 1800.0 61411(131.7%) 0.961 30.1 1800.0
O 11188 0.888 0.0 1800.0 26499 0.93 0.0 1800.0

Median
P 12452(53.5%) 0.29 313.7 1802.0 17504(59.2%) 0.325 156.9 1800.0
O 8111 0.046 0.0 1800.0 10994 0.14 0.0 1800.0

particularly challenging for the solver. Constraint solving timeout never occurs, and our method

explores the same path space as the baseline, indicating that constraint solving tasks faced by our

method and the baseline are identical. Consequently, DFS generates longer constraints that result in

more partial solutions, leading to an increased number of cache entries and improved e�ectiveness.

Another contributing factor is that the formulas under DFS are more uniform and therefore more

likely to be cached. Figure 2c shows the trend of explored states, where our method achieves 2.3x

and 2.0x speedups under DFS and BFS, respectively. As shown by the table and the �gure, the

partial solution-based caching method also works for the symbolic execution of Java programs.

4.4.4 Impact of Parameter Tuning. Intuitively, ? and B play a key role in our method. A natural

question arises: what impact do di�erent parameter con�gurations have on the e�ectiveness

of our method? Figures 3&4&5 shows the results of parameter tuning in the three preceding

experiments. The X-axis shows the values of ? and B , e.g., 250 + 50 indicates that ? is 250

and B is 50. The Y-axis shows the percentage increase in the number of explored paths or states.

Each circular point represents a individual subject, while each diamond-shaped point represents

the average value across all subjects under the corresponding parameter con�guration. Note that

subjects that terminate early in vanilla mode within the given time budget are ignored, such as

gsl_poly_complex_solve_cubic in Experiment 2, and Remainder, Triangle and Operations in

Experiment 3. Furthermore, we connect all the average values to indicate the �uctuations of these

values with parameter con�gurations.

From these three �gures, it can be observed that regardless of the search strategy and parameter

con�guration, the average values are always positive. Therefore, in each experiment, our method

consistently demonstrates the ability to enhance the average e�ciency of symbolic execution across

all subjects. Similarly, the median is always positive in any situation, indicating that our method is

consistently bene�cial on more than half of the subjects. However, there are also some subjects

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:18 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

50+

50

50+

250

50+

500

250+

50

250+

250

250+

500

500+

50

500+

250

500+

500

−40%

−20%

0%

20%

40%

60%

80%

(a) DFS

50+

50

50+

250

50+

500

250+

50

250+

250

250+

500

500+

50

500+

250

500+

500

−40%

−20%

0%

20%

40%

60%

80%

(b) BFS

50+

50

50+

250

50+

500

250+

50

250+

250

250+

500

500+

50

500+

250

500+

500

−20%

0%

20%

40%

60%

80%

100%

120%

(c) RCN

Fig. 3. Results of parameter tuning in Experiment 1.

500+

500

500+

2500

500+

5000

2500+

500

2500+

2500

2500+

5000

5000+

500

5000+

2500

5000+

5000

0%

50%

100%

150%

200%

(a) DFS

500+

500

500+

2500

500+

5000

2500+

500

2500+

2500

2500+

5000

5000+

500

5000+

2500

5000+

5000

0%

100%

200%

300%

400%

(b) BFS

500+

500

500+

2500

500+

5000

2500+

500

2500+

2500

2500+

5000

5000+

500

5000+

2500

5000+

5000

−100%

0%

100%

200%

300%

400%

500%

600%

(c) RCN

Fig. 4. Results of parameter tuning in Experiment 2.

50+

50

50+

100

50+

200

100+

50

100+

100

100+

200

200+

50

200+

100

200+

200

0%

100%

200%

300%

400%

(a) DFS

50+

50

50+

100

50+

200

100+

50

100+

100

100+

200

200+

50

200+

100

200+

200

20%

40%

60%

80%

100%

120%

140%

160%

(b) BFS

Fig. 5. Results of parameter tuning in Experiment 3.

for which the path growth is negative under certain parameter con�gurations. This suggests that

picking inappropriate values for parameters may incur negative outcomes. In addition, if we focus

on the impact of an individual parameter like B , i.e., keeping the value of ? �xed and changing

the value of B , we do not observe any correlation between the experimental results and the value

of B . The same holds for ? . Therefore, the impact of these parameters is a combined e�ect.

Figure 6 presents the standard deviations [Forsyth 2018] of the increasing percentages in the

number of explored paths or states for individual subjects under 9 parameter con�gurations. A larger

standard deviation suggests that our method’s e�ectiveness on the corresponding subject is more

Experiment 1 Experiment 2 Experiment 3

0%

50%

100%

150%

200% DFS

BFS

RCN

Fig. 6. Standard deviations of individual subjects in three experiments.

sensitive to parameter tun-

ing. Figure 6 indicates that

the impact of parameter

tuning is relatively small

in Experiment 3. Due to

the lower di�culty of con-

straint solving in Experi-

ment 3, our method gener-

ates fewer partial solutions

on many subjects. As a result, the e�ectiveness and overhead of our method are similar across

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:19

di�erent parameter con�gurations. On the contrary, the bene�ts of our method are signi�cantly

in�uenced by parameter tuning on certain subjects, especially in Experiment 2. Therefore, selecting

appropriate values for ? and B is crucial for these subjects, which remains an open problem.

4.4.5 Time & Memory Overhead. Thanks to the tracing of symbolic variables (c.f., discussion

in Section 3.3), the time and memory overheads introduced by our method are generally minor

compared to the 30-minute time budget and several gigabytes of memory budget. As Table 2&3&4

show, the time overheads of our method on major analysis tasks are typically less than 5.6%, 0.6%

and 5.6% in the three experiments, respectively. The analysis tasks in Experiment 2 incur extremely

low time overhead, which is primarily due to the shorter length of �oating-point constraints.

Furthermore, because the number of solver invocations in Experiment 2 is limited (owing to the

time-intensive nature of �oating-point constraint solving), there are fewer cache entries available

for expanding the partial solution-based cache. As a result, the size of the cache remains quite

small, leading to naturally low query overhead. Similarly, the memory overhead introduced by

partial solutions is rather low, never exceeding 3.9%, 2.3% and 5.0% in a single analysis task in

the three experiments. This is because each partial solution only records a small fraction of bits

corresponding to symbolic variables.

4.5 Threats to Validity

One internal threat of our work is the randomness brought by partial solution generation. Due

to the use of many heuristics in the CDCL framework, the search process of SAT solving is not

deterministic. Hence, solving the same query may result in di�erent partial solutions, which

may a�ect the experimental results. To ensure the soundness of our evaluation, we employed

deterministic search strategies and repeated our evaluation �ve times. The external threat is that

our benchmarks may be not representative. We will conduct more extensive experiments on various

benchmarks in the future.

5 RELATED WORK

Modern symbolic execution engine usually uses a cache module. For example, KLEE uses both

branch cache and counterexample cache [Palikareva and Cadar 2013]. The branch cache simply

stores the solving results (SAT or UNSAT) of branch queries, while the counterexample cache

makes good use of satisfying assignments, as clari�ed in Section 2. In addition, KLEE employs

many query optimizations including expression rewriting, constraint set simpli�cation, implied

value concretization, and constraint independence [Cadar et al. 2008]. These optimizations simplify

queries e�ectively and thereby increase the query cache’s hit rate. Pex [Tillmann and de Halleux

2008], another well-known symbolic execution engine, also uses constraint cache and independent

constraint optimization before invoking constraint solver.

Green [Visser et al. 2012] is a general constraint caching framework that can share results across

runs, programs and tools. Green factorises the formula into independent sub-formulas and then

canonizes the formula before storing into the cache. These steps can increase the cache hit rate

e�ectively. GreenTrie [Jia et al. 2015] extends Green to check the implication relationship between

constraints and store constraint solutions into tries. If the queried formula is implied by a satis�able

formula, or implies an unsatis�able formula, it returns without invoking the constraint solver. Recal

[Aquino et al. 2015] is another caching framework. Recal encodes simpli�ed formula as a matrix to

support e�cient checking whether a formula is contained in the cache. Recal+ [Aquino et al. 2015]

extends Recal by supporting particular logical implication between formulas as like GreenTrie.

Most of existing caching frameworks only support rigorous form matching or logical implication

checking. A recent proposed framework Utopia [Aquino et al. 2017] extends existing caching

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

110:20 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

framework by introducing imprecise matching between formulas. Instead of checking the form

of formulas, Utopia de�nes the distance between formulas based on the similarity of the solution

spaces of formulas. Formulas with small distance tend to share their solutions although theymay not

be equivalent. Utopia can increase the reusability of cached results beyond equivalent or contained

formulas. Cashew [Brennan et al. 2017] investigates the caching method in the context of model-

counting constraint solving for quantitative program analysis. The existing cache frameworks focus

on improving the usability of existing solutions. Our work is orthogonal to them. We increase the

cache items with the same amount of constraint solving computation. With the help of our work,

the cache can hit more formulas even when these formulas have not been met in the past analysis.

There also exist approaches that try to reduce the times of constraint solving or improve the

solving’s e�ciency in symbolic execution.Muse [Zhang et al. 2020], which inspires our caching

method, utilizes the partial solutions to generate multiple inputs by solving once for dynamic

symbolic execution. However, our method aims to improve constraint solving caching that works

with traditional symbolic execution in the state-forking style. This di�ers from Muse, which

operates within the context of concolic execution. Speculative symbolic execution (SSE) [Zhang

et al. 2012] proposes to execute the instructions speculatively by ignoring branch feasibility. Until

a limit is reached, SSE invokes the constraint solver to check the feasibility. In case of feasibility,

the solver invocations of the speculatively executed branches are saved. Liu et al. [Liu et al. 2014]

propose to utilize stack-based incremental solving to boost the solving in symbolic execution.

KLEE-Array [Perry et al. 2017] tries to eliminate the array constraints during symbolic execution

to improve the e�ciency. Shuai et al. [Shuai et al. 2021] propose to synergize symbolic execution

and constraint solving by using the array index information calculated in symbolic execution to

remove redundant array axioms during array constraint solving. Chen et al. [Chen et al. 2021]

propose to online synthesize a solving strategy [de Moura and Passmore 2013] during symbolic

execution to improve the e�ciency of constraint solving.

6 CONCLUSION

Caching optimizes the constraint solving in symbolic execution. We present a partial solution-based

constraint solving caching method to improve symbolic execution’s constraint solving. Our method

utilizes the partial solutions inside the constraint solver to improve caching’s e�ectiveness. Our

method is orthogonal with di�erent search strategies and the existing caching mechanisms. Besides,

due to the widespread existence of partial solutions, our method is applicable for many constraint

solvers. To balance the bene�ts of caching and its overhead, ourmethod relies on two key parameters.

However, determining the optimal values for these parameters remains an open problem. We

have implemented our method on two mainstream symbolic executors and SMT solvers. The

experimental results demonstrate our partial solution-based caching method’s e�ectiveness and

e�ciency. The future work lies in the following three aspects: (1) Apply our method on other SMT

theories and symbolic executors; (2) Utilize the domain knowledge in constraint solving to improve

the quality of partial solutions; (3) Design an automated parameter tuning algorithm that adaptively

adjusts the values of ? and B at runtime.

Data Availability.

The data of the experimental results is available at the following URL: https://github.com/zbchen/

pscache.git.

ACKNOWLEDGMENTS

This research was supported by National Key R&D Program of China (No. 2022YFB4501903) and

the NSFC Programs (No. 62172429, 62032024, and 62372162).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

https://github.com/zbchen/pscache.git
https://github.com/zbchen/pscache.git

Partial Solution Based Constraint Solving Cache in Symbolic Execution 110:21

REFERENCES

2023. Equisatis�ability. https://en.wikipedia.org/wiki/Equisatis�ability. Accessed September 25, 2023.

2023. GNU Scienti�c Library. https://www.gnu.org/software/gsl/. Accessed September 25, 2023.

Andrea Aquino, Francesco A. Bianchi, Meixian Chen, Giovanni Denaro, and Mauro Pezzè. 2015. Reusing constraint proofs

in program analysis. In Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,

Baltimore, MD, USA, July 12-17, 2015. 305–315. https://doi.org/10.1145/2771783.2771802

Andrea Aquino, Giovanni Denaro, and Mauro Pezzè. 2017. Heuristically matching solution spaces of arithmetic formulas to

e�ciently reuse solutions. In Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos

Aires, Argentina, May 20-28, 2017. 427–437. https://doi.org/10.1109/ICSE.2017.46

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic

Execution Techniques. ACM Comput. Surv. 51, 3 (2018), 50:1–50:39. https://doi.org/10.1145/3182657

Tegan Brennan, Nestan Tsiskaridze, Nicolás Rosner, Abdulbaki Aydin, and Tev�k Bultan. 2017. Constraint normalization

and parameterized caching for quantitative program analysis. In Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden, Wilhelm Schäfer, Arie

van Deursen, and Andrea Zisman (Eds.). ACM, 535–546. https://doi.org/10.1145/3106237.3106303

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs. In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI

2008, December 8-10, 2008, San Diego, California, USA, Proceedings. 209–224.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: automatically generating

inputs of death. In Proceedings of the 13th ACMConference on Computer and Communications Security, CCS 2006, Alexandria,

VA, USA, October 30 - November 3, 2006. 322–335. https://doi.org/10.1145/1180405.1180445

Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu, Koushik Sen, Nikolai Tillmann, and Willem

Visser. 2011. Symbolic execution for software testing in practice: preliminary assessment. In Proceedings of the 33rd

International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 1066–1071.

https://doi.org/10.1145/1985793.1985995

Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM 56, 2

(2013), 82–90. https://doi.org/10.1145/2408776.2408795

Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang. 2021. Synthesize solving

strategy for symbolic execution. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software Testing and

Analysis, Virtual Event, Denmark, July 11-17, 2021. 348–360. https://doi.org/10.1145/3460319.3464815

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.

337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Leonardo Mendonça de Moura and Grant Olney Passmore. 2013. The Strategy Challenge in SMT Solving. In Automated

Reasoning andMathematics - Essays inMemory ofWilliamW.McCune. 15–44. https://doi.org/10.1007/978-3-642-36675-8_2

Xianghua Deng, Jooyong Lee, and Robby. 2006. Bogor/Kiasan: A k-bounded Symbolic Execution for Checking Strong Heap

Properties of Open Systems. In 21st IEEE/ACM International Conference on Automated Software Engineering (ASE 2006),

18-22 September 2006, Tokyo, Japan. 157–166. https://doi.org/10.1109/ASE.2006.26

Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In Theory and Applications of Satis�ability Testing,

6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. 502–518.

https://doi.org/10.1007/978-3-540-24605-3_37

David A. Forsyth. 2018. Probability and Statistics for Computer Science. Springer. https://doi.org/10.1007/978-3-319-64410-3

Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-Vectors and Arrays. In Computer Aided Veri�cation, 19th

International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings. 519–531. https://doi.org/10.1007/978-3-

540-73368-3_52

John L. Hennessy and David A. Patterson. 2012. Computer Architecture - A Quantitative Approach, 5th Edition. Morgan

Kaufmann.

Jörg Ho�mann and Jana Koehler. 1999. A New Method to Index and Query Sets. In Proceedings of the Sixteenth International

Joint Conference on Arti�cial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages,

Thomas Dean (Ed.). Morgan Kaufmann, 462–467. http://ijcai.org/Proceedings/99-1/Papers/067.pdf

Xiangyang Jia, Carlo Ghezzi, and Shi Ying. 2015. Enhancing reuse of constraint solutions to improve symbolic execution. In

Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July

12-17, 2015. 177–187. https://doi.org/10.1145/2771783.2771806

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394. https://doi.org/10.

1145/360248.360252

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1109/ICSE.2017.46
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/3460319.3464815
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1109/ASE.2006.26
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-64410-3
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
http://ijcai.org/Proceedings/99-1/Papers/067.pdf
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

110:22 Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang

Daniel Kroening and Ofer Strichman. 2008. Decision Procedures - An Algorithmic Point of View. Springer. https://doi.org/10.

1007/978-3-540-74105-3

Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F. Donaldson, Rafael Zähl, and Klaus Wehrle. 2017. Floating-

point symbolic execution: a case study in n-version programming. In Proceedings of the 32nd IEEE/ACM International

Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. 601–612.

https://doi.org/10.1109/ASE.2017.8115670

Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri. 2014. A Comparative Study of Incremental Constraint

Solving Approaches in Symbolic Execution. In Hardware and Software: Veri�cation and Testing - 10th International Haifa

Veri�cation Conference, HVC 2014, Haifa, Israel, November 18-20, 2014. Proceedings. 284–299. https://doi.org/10.1007/978-

3-319-13338-6_21

Hristina Palikareva and Cristian Cadar. 2013. Multi-solver Support in Symbolic Execution. In Computer Aided Veri�cation -

25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. 53–68. https://doi.org/10.

1007/978-3-642-39799-8_3

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael R. Lowry, Suzette Person, and Mark

Pape. 2008. Combining unit-level symbolic execution and system-level concrete execution for testing NASA software. In

Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA,

July 20-24, 2008. 15–26. https://doi.org/10.1145/1390630.1390635

David Mitchel Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar. 2017. Accelerating array constraints in

symbolic execution. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,

Santa Barbara, CA, USA, July 10 - 14, 2017. 68–78. https://doi.org/10.1145/3092703.3092728

Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with SymCC: Don’t interpret, compile!. In 29th USENIX

Security Symposium, USENIX Security 2020, August 12-14, 2020. 181–198.

Ziqi Shuai, Zhenbang Chen, Yufeng Zhang, Jun Sun, and Ji Wang. 2021. Type and interval aware array constraint solving for

symbolic execution. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual

Event, Denmark, July 11-17, 2021. 361–373. https://doi.org/10.1145/3460319.3464826

Jan Taljaard. 2019. Optimised constraint solving for real-world problems.

Jan Taljaard, Jaco Geldenhuys, and Willem Visser. 2020. Constraint Caching Revisited. In NASA Formal Methods - 12th

International Symposium, NFM 2020, Mo�ett Field, CA, USA, May 11-15, 2020, Proceedings (Lecture Notes in Computer

Science, Vol. 12229), Ritchie Lee, Susmit Jha, and Anastasia Mavridou (Eds.). Springer, 251–266. https://doi.org/10.1007/978-

3-030-55754-6_15

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation for .NET. In Tests and Proofs - 2nd

International Conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4966),

Bernhard Beckert and Reiner Hähnle (Eds.). Springer, 134–153.

David Trabish, Shachar Itzhaky, and Noam Rinetzky. 2021. Address-Aware Query Caching for Symbolic Execution. In 14th

IEEE Conference on Software Testing, Veri�cation and Validation, ICST 2021, Porto de Galinhas, Brazil, April 12-16, 2021.

116–126. https://doi.org/10.1109/ICST49551.2021.00023

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: reducing, reusing and recycling constraints in

program analysis. In 20th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12,

Cary, NC, USA - November 11 - 16, 2012. 58. https://doi.org/10.1145/2393596.2393665

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A Practical Concolic Execution Engine

Tailored for Hybrid Fuzzing. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August

15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 745–761.

Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Tianqi Zhang, Kenli Li, and Ji Wang. 2020. Multiplex Symbolic Execution:

Exploring Multiple Paths by Solving Once. In 35th IEEE/ACM International Conference on Automated Software Engineering,

ASE 2020, Melbourne, Australia, September 21-25, 2020. 846–857. https://doi.org/10.1145/3324884.3416645

Yufeng Zhang, Zhenbang Chen, and Ji Wang. 2012. Speculative Symbolic Execution. In 23rd IEEE International Symposium

on Software Reliability Engineering, ISSRE 2012, Dallas, TX, USA, November 27-30, 2012. 101–110. https://doi.org/10.1109/

ISSRE.2012.8

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 110. Publication date: July 2024.

https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1109/ASE.2017.8115670
https://doi.org/10.1007/978-3-319-13338-6_21
https://doi.org/10.1007/978-3-319-13338-6_21
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1145/3460319.3464826
https://doi.org/10.1007/978-3-030-55754-6_15
https://doi.org/10.1007/978-3-030-55754-6_15
https://doi.org/10.1109/ICST49551.2021.00023
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/3324884.3416645
https://doi.org/10.1109/ISSRE.2012.8
https://doi.org/10.1109/ISSRE.2012.8

	Partial solution based constraint solving cache in symbolic execution
	Citation
	Author

	Abstract
	1 Introduction
	2 Illustration
	2.1 Symbolic Execution
	2.2 Constraint Solving Caching
	2.3 Partial Solution-Based Caching

	3 Partial Solution-Based Caching
	3.1 Symbolic Execution with Solving Cache
	3.2 Partial Solutions in SAT Solver
	3.3 Discussion

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Research Questions
	4.3 Experimental Setup
	4.4 Experimental Results
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

