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Certified Robust Accuracy of Neural Networks
Are Bounded Due to Bayes Errors

Ruihan Zhang(B) and Jun Sun

Singapore Management University, Singapore, Singapore
{rhzhang,junsun}@smu.edu.sg

Abstract. Adversarial examples pose a security threat to many critical sys-
tems built on neural networks. While certified training improves robustness, it
also decreases accuracy noticeably. Despite various proposals for addressing this
issue, the significant accuracy drop remains. More importantly, it is not clear
whether there is a certain fundamental limit on achieving robustness whilst main-
taining accuracy. In this work, we offer a novel perspective based on Bayes errors.
By adopting Bayes error to robustness analysis, we investigate the limit of certi-
fied robust accuracy, taking into account data distribution uncertainties. We first
show that the accuracy inevitably decreases in the pursuit of robustness due to
changed Bayes error in the altered data distribution. Subsequently, we establish
an upper bound for certified robust accuracy, considering the distribution of indi-
vidual classes and their boundaries. Our theoretical results are empirically evalu-
ated on real-world datasets and are shown to be consistent with the limited suc-
cess of existing certified training results, e.g., for CIFAR10, our analysis results
in an upper bound (of certified robust accuracy) of 67.49%, meanwhile existing
approaches are only able to increase it from 53.89% in 2017 to 62.84% in 2023.

1 Introduction

Neural networks have achieved remarkable success in various applications, including
many security-critical systems such as self-driving cars [24], and face-recognition-
based authentication systems [44]. Unfortunately, several security issues of neural net-
works have been discovered as well. Arguably the most notable one is the presence
of adversarial examples. Adversarial examples are inputs that are carefully crafted by
adding human imperceptible perturbation to normal inputs to trigger wrong predic-
tions [25]. Their existence poses a significant threat when the neural networks are
deployed in security-critical scenarios. For example, adversarial examples can mis-
lead road sign recognition systems of self-driving cars and cause accidents [24]. The
increasing adoption of machine learning in security-sensitive domains raises concerns
about the robustness of these models against adversarial examples [38].

To defend against adversarial examples, various methods for improving a model’s
robustness have been proposed. Two main categories are adversarial training [3,58]
and certified training [35,45], both of which aim to improve a model’s accuracy in the
presence of adversarial examples. Adversarial training works by training the network
with a mix of normal and adversarial examples, either pre-generated or generated during
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Fig. 1. The picture at left may look like a cat. In fact, it can be the back of a dog.

training. Methods in this category do not provide a formal robustness guarantee [63],
leaving the system potentially vulnerable to new types of adversarial attacks [31,49].

In contrast, certified training aims to provide a formal guarantee of robustness. A
method in this category typically incorporates robustness verification techniques [60]
during training, i.e., they aim to find a valuation of network parameters such that the
model is provably robust with respect to the training samples. However, they are found
to reduce the model’s accuracy significantly [9]. Recent studies have shown that state-
of-the-art certified training can result in up to 60% accuracy drop on CIFAR-10 [32] (at
vicinity size 8/255). This is unacceptable for many real-world applications. Although
numerous researchers attempt to enhance certified training methods, there seems to be
an invisible hurdle preventing them from achieving a level of accuracy similar to that
of vanilla models. Despite attempts to explore it using the limit of certain abstraction
domains [33], in general, whether there is such a theoretical upper bound on certified
robust accuracy or not remains an open problem.

In this work, we offer a novel perspective and argue that Bayes errors may be one
of the reasons why there is such an invisible hurdle. The Bayes error, in the context of
statistics and machine learning, is a fundamental concept related to the inherent uncer-
tainty in any classification system [20]. It represents the minimum error rate for any
classifier on a given problem and is determined by the overlap in the probability distri-
butions of the classes to be predicted [13]. Thus, we study whether the Bayes errors put
a limit on certified robust accuracy.

To understand how Bayes Error is relevant, we can consider it from the uncertainty
in neural network learning. Most existing classifiers learn using a data set which gives a
unique and certain label for each input [26]. Yet, this may not be the case in reality. That
is, not every input may have a 100% certain label (due to reasons such as information
loss during the picture-capturing process). Intuitively, we show a real-world example in
Fig. 1. This image looks like a cat, while it is, in fact, also possible to be a dog. The
point is that unless we know how this photo was taken, and there is no information
loss during the photo taking, there may always be a certain level of uncertainty when
we label the data. These uncertainties call for Bayes errors and actually bounds both
vanilla and certified robust accuracy.

This work has two objectives. First, we aim to analyse whether the quest for robust-
ness inevitably decreases model accuracy, from the perspective of Bayes errors. This
requires examining how the inherent, irreducible error in class probability distributions
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influences the robustness of classifiers (with respect to perturbations). We show that
given the definition of robustness, the data distribution undergoes a convolution within
the vicinity (i.e., the region around an input which is defined by the perturbation bud-
get). Second, we intend to quantify this potential decrease, i.e., what are the upper
bounds on the optimal certified robust accuracy? We show that such an upper bound can
be derived independently from the classification algorithm. Through a detailed explo-
ration of how each input may contribute to the Bayes errors, our study aims to enhance
the understanding of their contribution to classification robustness.

We apply our analysis to multiple benchmark data sets and the corresponding mod-
els. From every data set, we observe that the convolved distribution has an increased
Bayes error compared with the original distribution. This implies that pursuing robust-
ness would in turn increase uncertainty, and decrease accuracy as we show in our anal-
ysis. Second, we contrast the state-of-the-art (SOTA) certified robust accuracy against
the upper bound derived using our approach. This is to verify if the bound is empir-
ically effective. We find that the bound is indeed higher than the state-of-the-art cer-
tified robust accuracy. We further investigate the relationship between the robustness
upper bound and the perturbation vicinity size. When vicinity size grows, we expect-
edly obtain a decreased upper bound, on every data set used in our study.

2 Preliminary and Problem Definition

In this section, we review the relevant background of this study, including the funda-
mentals of robustness in machine learning, e.g., its definition and verification. We also
recall statistical decision theory, highlighting its relevance to classification. After that,
we define our research problem.

In machine learning, the learner, denoted as a function h : X → Y, is used to
predict outputs h(x) ∈ Y based on a (possibly high dimensional) input point x ∈ X.
The quality of h can be measured by a problem-dependent loss function �(h,x, y) [66].
The choice of the loss function depends on the specific problem and data. Common
options include the cross-entropy loss for classification and the mean squared error loss
for regression. We focus on the classification problem in this work. Classification is the
problem of assigning a class to each input [34], i.e., the learner’s task is to map an input
to a discrete class and the learner is often called a classifier.

Definition 1 (Classifier). In machine learning, a classifier maps an input x from an
input space X to a discrete class y in the output space Y. The output space Y is a
(typically finite) set of discrete categories. Formally,

h : x �→ ŷ, x ∈ X, ŷ ∈ Y, Y = { classi | i ∈ Z
+, i ≤ Ny } (1)

where Ny is the total number of categories the classifier can assign such that |Y| = Ny .

For example, a spam classifier maps an email to { spam, non-spam }. The input
vector for an email may embody the length of the message, the frequency of cer-
tain keywords in the body of the message, or the vectorised email body [34]. A
learning example contains an input and a label. A classifier can learn from labelled
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email examples and predict labels for other email examples. The classifier’s predic-
tions are then compared with the labels of the email under test to measure the per-
formance of the classifier, e.g., a zero-one misclassification loss may be defined over
{ spam, non-spam } × { spam, non-spam } by l(ŷ, y) = 1ŷ �=y . A lower loss on the test
sample set indicates a more accurate classifier.

2.1 Robustness in Classification

A classifier may not be robust as small changes in input data might lead to significant
changes in the predictions made by a classifier [47]. Consider the spam classifier exam-
ple. Surprisingly, the removal of a single seemingly unimportant word from an email
may switch the classifier’s decision from spam to non-spam [55]. This phenomenon
highlights the existence of adversarial examples, which are defined as follows.

Definition 2 (Adversarial example [17,25]). Given a classifier h : X → Y and an
input-label pair (x, y) ∈ X × Y, an adversarial example x′ ∈ X is an input that is
similar to x but is classified wrongly, e.g., h(x′) �= y. The difference between x and x′

can be measured by a distance function d, and we often require the distance between
x′ and x to be smaller than some threshold ε. We assume x is correctly classified, i.e.,
h(x) = y.

Consider the case of the spam email. If a single word is removed, the Levenshtein
distance (a measure of the number of edits needed to change one text into another) is
1. An adversarial example based on such a small change could be used with malicious
intent. Even though removing a common word like ‘just’ does not alter the nature of a
spam email, it might be enough to prevent it from being detected by the spam classifier.
Therefore, robustness against such attacks is needed such that spam would not evade
detection by just changing a few words. Formally, robustness is defined as follows [30].

Definition 3 (Classifier robustness against perturbations). Given classifier h
and example (x, y) ∈ X × Y, we say that h is robust with respect to vicinity
{x′ | d(x,x′) ≤ ε }, i.e., Rob (

h,x, y; (d, ε)
)
, only if the following condition is sat-

isfied.
¬∃ x′ ∈ X. d(x,x′) ≤ ε ∧ h(x′) �= y (2)

Definition 3 involves the concept of vicinity, which is a subset of the input space, i.e.
⊂ X. It is usually determined by an input and a budget for perturbation. For instance,
give an input x, we can define its vicinity as Vx = {x′ | d(x,x′) ≤ ε }. However,
this set representation may be inconvenient sometimes. Thus, we give an equivalent
function form as follows.

vx(x′) =

⎧
⎨

⎩

(∫
Vx

dx′′
)−1

, if x′ ∈ Vx

0, otherwise
(3)
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Fig. 2. 1D visualizations of vicinity function and Bayes error. A vicinity function is a rectangular
function that returns a constant value if an input is in the vicinity. We use two PDFs of the
truncated normal distribution to visualise the Bayes error.

Essentially, Equation (3) can be viewed as a probability density function uniformly
defined over the vicinity around an input x. Now we shift the x-coordinate by x, we get

v0(x′ − x) =

⎧
⎨

⎩

(∫
V0

dx′′
)−1

, if x′ − x ∈ V0

0, otherwise
(4)

Assuming that the vicinity function is translation invariant, we can drop the subscript
0, and use a positive constant εv to represent

∫
V0

dx′′. Thus, the vicinity function v :
X → { 0, ε−1

v } can be expressed as

v(x) =

{
ε−1
v if x ∈ V0

0, otherwise
(5)

Since these representations are equivalent, we choose either representation based on the
contexts. An example of a one-dimensional input’s vicinity is shown in Fig. 2a.

Achieving robustness is challenging. Verifying whetherRob
(
h,x, y;Vx

)
holds for

a given classifier h is complicated since examining every example within a vicinity is
impractical. Consequently, accurately estimating a classifier’s robustness on specific
inputs, as well as its robustness on a given data distribution, presents significant chal-
lenges. Existing methods for evaluating robustness include empirical evaluation (i.e.,
adversarial attacks) [14], robustness verification [17,28], and others [57].

Adversarial attacks take one or more steps to search for adversarial examples within
a vicinity. Let AttS

(
h,x, y;Vx

)
denote the success of an attack in finding adversarial

examples in Vx . The failure rate of this attack on classifier h can serve as an estimation
for the classifier’s expected robustness, as outlined below.

AttS
(
h,x, y;Vx

) → ¬Rob
(
h,x, y;Vx

)
(6)
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Another perspective contends that any non-zero rate of false negatives in the detec-
tion of adversarial examples is problematic. To this end, a conditionVrob is to be estab-
lished, such that given a classifier h, it satisfies

∀ (x, y) ∈ X × Y. Vrob
(
h,x, y;Vx

) → Formula 2 (7)

This method refers to robustness verification and the condition Vrob is the verification
result of robustness. There are two categories of robustness verification methods, i.e.,
incomplete deterministic verification [28] and complete deterministic verification [28].
Any deterministic verification method that fulfils Formula 7 qualifies as an incomplete
verification. If a method further fulfils Formula 8, it qualifies as a complete verifica-
tion. In both cases, if the verification result Vrob

(
h,x, y;Vx

)
is True, i.e., verified,

the classifier is considered to have deterministic robustness certification [28] for input
x within the vicinity Vx , and the average certification likelihood is often called certi-
fied robust accuracy [45]. Certified robust accuracy can serve as a lower bound for the
classifier’s expected robustness.

∀ (x, y) ∈ X × Y. Vrob
(
h,x, y;Vx

) ← Rob
(
h,x, y;Vx

)
(8)

These verification methods can be used to optimise classifiers during training, and such
a practice refers to certified training [28,53], which is defined as follows.

min
h

E(x,y)∼D

[

sup
x′∈V(x), k �=y

(
�(h,x′, y) − �(h,x′, k

)
]

(9)

Here, the neural network verification methods are used to soundly approximate the
worst loss that can be induced by any perturbation within the vicinity of each train-
ing sample. However, after years of research [6,46,64], certified training still faces
challenges. Existing certified training methods often result in a significant drop in the
model’s accuracy [10,40]. For instance, the best accuracy achieved by certified training
is typically half of that of the standard training on the CIFAR-10 data set [45,51]. Such
a significantly reduced accuracy often means that the model is unacceptable in practice.

In summary, to evaluate whether h attains robustness at example (x, y) within the
vicinity Vx , existing methods include checking AttS

(
h,x, y;Vx

)
through adversarial

attacks orV
(
h,x, y;Vx

)
through robustness verification. The expected robustness over

a given distribution D, denoted by

E(x,y)∼D

[
1

Rob
(
h,x,y;Vx

)
]

(10)

which can be overestimated by attack success rate (E(x,y)∼D [1AttS]) or underestimated
by certified robust accuracy (E(x,y)∼D [1Vrob]). 1condition is the indicator function that
returns 1 if the condition is True, and 0 otherwise.

2.2 Bayes Rules for Distributions

In the following, we introduce the notion of Bayes Error and how it reflects a classifi-
cation distribution. We consider a scenario where an input x is to be classified into one
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class in Y, in particular, y = k with prior class probability P (y = k) where k ∈ Y. Let
p(x|y = k) denote the class likelihood, that is, the conditional probability density of x
given that it belongs to class k. The probability that the input x belongs to a specific
class k, namely the posterior probability p(y = k|x), is given by Bayes’ theorem.

p(y = k|x) = p(x|y = k)P (y = k)
p(x)

(11)

where p(x) is the probability density function of x, i.e., p(x) =
∑

k∈Y
p(x|y =

k)P (y = k). This classifier assigns an input x to the class with the highest poste-
rior and is called the Bayes classifier, which is the optimal classifier. The classification
error associated with the Bayes classifier is outlined as follows.

Definition 4 (Bayes error). Given a distribution D over X × Y, the error associated
with the Bayes classifier is called the Bayes error (rate), denoted as βD. The Bayes
error can be expressed [13,15] as:

βD = E(x,y)∼D

[
1 − max

k
p(y = k|x)

]

=
∫ (

1 − max
k

p(y = k|x = x)
)

p(x)dx
(12)

Besides, since the Bayes classifier is optimal [42], this optimality gives rise to the fol-
lowing definition of the Bayes error [34].

βD = min
measurable h

E(x,y)∼D

[
1h(x) �=y

]
(13)

where the Bayes error is defined as the minimum of the errors achieved by measurable
functions h : X → Y. Hereby, (any) classifier h with an error rate equal to βD can be
called a Bayes classifier.

An example illustrating the Bayes error is given in Fig. 2b. The Bayes error funda-
mentally reflects the inherent uncertainty in classification tasks. It is the (irreducible)
minimal error rate achievable by any classifier for a specific problem, influenced by
the overlap amount among the class probability distributions. An input having a cer-
tain (deterministic) label can be formally expressed as maxk p(y = k|x = x) = 1.
We can also represent this using the ceiling �·
 or floor �·� function within the inter-
val [0, 1]. Specifically, the ceiling function returns the smallest integer greater than or
equal to the input. Consequently, it returns 1 for any number from 0 (exclusive) up to
1 and returns 0 if the input is 0. This shows that the input’s label has uncertainty if
1 − maxk p(y = k|x = x) > 0 and does not have uncertainty otherwise. We write
KD = {x | 1 − maxk p(y = k|x = x) > 0 } to denote the set of every input whose
label has uncertainty. The Bayes error provides a yardstick for other classifiers [18,42],
e.g., a classifier may be deemed effective if its error rate approximates the Bayes error.

As highlighted in Eqs. (11) and (12), the calculation of Bayes error is contin-
gent upon knowing the prior distribution. In practical situations, since this distribu-
tion is not analytically known, the strategy is to estimate Bayes error using the observ-
able portion of the distribution, e.g., training data characteristics, through approxima-
tions [11,19,52,61] or by computing its upper [5,13,21] and lower [1,65,67] bounds.
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Fig. 3. Visualizing the convolution of distributions, the marginal contribution to Bayes error, and
the bounds of robustness error and certified robust accuracy.

Problem Definition. Next, we define the problem that we study. Despite the many pro-
posals on certified training, noticeable suboptimality in robustness persists, especially
compared with vanilla accuracy. Our objective is to ascertain whether this limitation
comes from insufficient optimisation, or if there exists a fundamental upper bound that
inherently limits the certified robust accuracy. Furthermore, if such an upper bound does
exist, we aim to investigate how we can compute it, and how we can validate our result.

3 An Upper Bound of Robustness from Bayes Error

In this section, we present a method that attempts to address our research problem
defined above, from a Bayes error perspective. Particularly, we hypothesise that the
Bayes error plays a vital role in estimating the robustness that can be achieved by any
classifier. First, we prove that certified training increases the Bayes error, which poses
an upper bound on the robustness that can be achieved by any classifier. Second, we
present how the upper bounds of certified robust accuracy can be calculated from a
given distribution.

3.1 Certified Training Increases Bayes Error

Certified robustness can be viewed as a way of optimizing the classifier with an altered
data distribution instead of the original distribution [37]. This is because due to the
requirement of robustness, an input may be forced with a label of some of its neigh-
bors in the vicinity, instead of its original label. In the following, we investigate how
the robustness requirement influences the data distribution, further affecting the Bayes
error. We hypothesise that the altered distribution worsens Bayes error. We begin by
defining a “label-assignment” action that alters a distribution, from a local perspective.

Suppose there is a distribution D over the space X × Y. From a local (example)
perspective, an example (x, y) ∈ X × Y assigns its label to a specific domain S ⊂ X

(S can be a vicinity) by directly altering the joint probability in S. Specifically, this
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alteration is a process that adds Δp(y = y,x = x) to the original p(y = y,x = x),
and adds Δp(y = y,x = x′) to the original p(y = y,x = x′) for any example x′ ∈ S,
where Δp denotes a change in the joint distribution function (of x, y) such that

Δp(y = k,x = x) =

{
0, if k �= y

pori(y = k,x = x)
(

1∫
S
dx′ − 1

)
, otherwise

Δp(y = k,x = x′) =

{
0, if k �= y

1∫
S
dx′ pori(y = k,x = x), otherwise

(14)

We then explain why this label assignment aligns with the robustness criteria. In the
context of robustness, for every input in the training set, every neighbour point in the
vicinity around the input gets the label of this input. Meanwhile, an input may fall within
more than one vicinity. Thus, an input gets labels assigned from multiple neighbours,
and each label’s influence depends on its source’s joint probability. Intuitively, examples
with higher joint probability have a stronger influence on its vicinity.

Equation (14) captures the effect of an input’s label on its neighbours, from an indi-
vidual input perspective. We next set out from a distributional perspective which is
supposed to match our individual input perspective. When all examples in the original
distribution concurrently assign labels to their respective vicinity, the effect is equiva-
lent to convolving this given distribution with the vicinity (function). This convolved
distribution represents the target of certified robustness optimization, as captured by
Throrem 1.

Theorem 1. Given a distribution D for classification, optimising for higher certified
robustness does not optimise the classifiers to fit D. Rather, it optimises classifiers
towards D ∗ v, i.e., convolved distribution between D and vicinity v(x).

Proof. Optimising for certified robustness tunes classifiers to have a higher probability
of satisfying Formula 2. Therefore, the objective is to maximise

E(x,y)∼D

[
�
∫

X

v(x − x′) · 1y=h(x′)dx
′�

]

=
∑

k

∫

X

�
∫

X

v(x − x′) · 1k=h(x′)dx
′�p(x, k)dx

(15)

Denote μk(x) =
∫
X

v(x − x′) · 1k=h(x′)dx
′, then the objective can be expressed as∑

k

∫
X
�μk∗(x)�p(x, k)dx. Suppose μk for each x is the variational function we tune

to maximise the objective. As the floor function is monotonically increasing, maximis-
ing the original objective is equivalent to maximising

∑
k

∫
X

μk(x)p(x, k)dx, which
equals

∑

k

∫

X

∫

X

v(x − x′) · 1k=h(x′)dx
′p(x, k)dx

=
∑

k

∫

X

∫

X

v(x′ − x)p(x, k)dx · 1k=h(x′)dx
′

(16)
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Observe the convolution form (pk ∗v)(x′) =
∫
X

v(x′ −x)p(x, k)dx, and the objective
becomes

∑
k

∫
X
(pk ∗ v)(x′) · 1k=h(x′)dx

′. Thus, the target distribution of optimising
for certified robustness is indeed the convolved distribution of the given one. ��
Note that Throrem 1 is not particularly for existing certified training approaches but
rather any approach to achieving certified robustness. Hereafter, we use D to denote the
original distribution, p to denote the conditional distributions (of each class) from D,
D′ to denote the convolved distribution, and q to denote the conditional distributions
(of each class) from D′. Thus, the Bayes error of D′ can be expressed as

βD′ = E(x,y)∼D′

[
1 − max

k
q(y = k|x)

]
(17)

The subsequent question is to study the Bayes error with respect to the convolved dis-
tribution D′. Throrem 2 suggests that Bayes error grows when D is transformed into
D′, as illustrated in Fig. 3a.

Theorem 2. Given a distribution D for classification, its convolved distribution D′ has
an equal or larger Bayes error, i.e., βD ≤ βD′ .

Proof. Consider D is a distribution of random variables x and y. Let pk(x) be the
conditional distribution of x given y = k. We need to prove that the Bayes error between
pk is less than or equal to the Bayes error between pk ∗ v, where v is a probability
density function (PDF). First, let us prove that ((maxk(pk)) ∗ v)(x) ≥ maxk((pk ∗
v)(x)). Expanding both sides, we get

∫
maxk(pk(x − x′)v(x′))dx′ at left. We get

maxk(
∫

pk(x − x′)v(x′)dx′) at right. We can see that left ≥ ∫
pk(x − x′)v(x′)dx′

for any k. Therefore, the maximum can be brought out from the integral and thus the left
side is proved to be greater than or equal to the right side. Then, we use the equality that
the integral of ((maxk pk) ∗ v)(x) is actually the same as the integral of (maxk pk)(x).
This is because v itself is a PDF. Therefore, we get

∫ (
1 − (max

k
pk)(x)

)
dx ≤

∫ (
1 − max

k
((pk ∗ v)(x))

)
dx (18)

��
Intuitively, when robustness is required, new labels are assigned to data in the vicin-

ity of the training inputs. But, these new labels sometimes contradict the original labels
or contradict themselves. As a result, the convolved distribution invariably exhibits
larger uncertainty, represented by an increased Bayes error. For instance, let us con-
sider a separable distribution with a unique boundary. The condition d(x,x′) ≤ ε
implies that x and x′, near the boundary, should be assigned the same label even if
their ground-truth labels are different, leading to a non-zero Bayes error.

3.2 Irreducible Robustness Error and Robustness Upper Bound

We have proved that the optimal robustness is equal to or lower than the optimal accu-
racy. We now would like to find a quantitative upper bound for robustness. We first
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define the irreducible expected error rate across all classifiers regarding robustness, as
expressed in Equation (19) where ζ�

D represents the irreducible robustness error on dis-
tribution D.

ζ�
D = inf

measurable h
E(x,y)∼D

[
1 − 1

Rob
(
h,x,y;Vx

)
]

(19)

This concept is analogous to Equation (13), where the Bayes error is described as the
irreducible vanilla error rate achievable by any classifier. Then, the upper bound of
expected robustness is 1 minus the lower bound of ζ�

D.
Recall Definition 3, the condition Rob(h,x, y; (d, ε)) holds only if Formula 2 is

met, where (x, y) ∈ X × Y. Nevertheless, Formula 2 alone is not a sufficient condition
for Rob

(
h,x, y; (d, ε)

)
. According to Definition 2, Rob

(
h,x, y; (d, ε)

)
also requires

that no input in the vicinity of x should be classified incorrectly, as expressed in For-
mula 20. Formally, Rob

(
h,x, y; (d, ε)

) ⇐⇒ Formula 2 ∧ Formula 20.

¬∃ (x′, y′) ∈ X × Y. p(x′, y′) > 0 ∧ d(x,x′) ≤ ε ∧ h(x′) �= y′ (20)

Equation (20) suggests that if the ground-truth labels of inputs in the vicinity of x
are different from the labels of x, then a prerequisite of robustness is missing such
that robustness cannot be attained. The conjunction of Formula 2 and 20 clarifies that
robustness asks for general correctness across the (local) input domain, rather than just
local consistency. From this conjunction, we can derive that for a classifier to attain
robustness at an input, it is necessary that the posterior probability associated with this
input is entirely certain, which is formally captured in Throrem 3. Further, given a
distribution, the proportion of examples with uncertain labels can serve as a lower bound
for the proportion of examples without robustness.

Theorem 3. Given a distribution D over X × Y, the irreducible robustness error is
greater than or equal to the probability that an input is in KD.

ζ�
D ≥

∫
�1 − max

k
p(y = k|x = x)
 p(x)dx ≥ βD (21)

When �1−maxk p(y = k|x = x)
 = 0, there is one and only one class has a posterior
probability of 1 at input x, resulting in a non-zero contribution to the Bayes error.

Proof. Assume some classifier h attains robustness at input x, and the posterior proba-
bility is not certain, i.e., 1 − maxk p(y = k | x = x) > 0. The latter infers that there
exists some (non-zero probability) examples of (x, y1) pair and some (x, y2) pair, and
y1 �= y2. The prediction for x differs from at least one of either y1 and y2. Formally, the
latter condition in our assumption entails (h(x) �= y1 ∨ h(x) �= y2), which then entails

∃x′ ∈ Vx . h(x′) �= y1 ∨ h(x′) �= y2 (because x ∈ Vx )

∃x′ ∈ Vx ∃y′ ∈ Y. p(x′, y′) > 0 ∧ h(x′) �= y′ (Disjunction Elimination)
(22)

Condition (22) contradicts the former condition in our assumption, i.e., Condi-
tion 20. Thus, robustness may only be attained if there is no label uncertainty at an
input. ��
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Uncertainty contributes to an irreducible error in both vanilla accuracy and robust-
ness. The irreducible robustness error is at least the Bayes error. We are further inter-
ested in refining this boundary in scenarios where we know the value of the Bayes
error but lack information about the posterior probabilities. To this end, we develop
Corollary 1.

Corollary 1. Given a distribution D over X × Y, its irreducible robustness error is at
least as large as the Bayes error multiplied by the number of classes divided by one less
than the number of classes, i.e.,

ζ�
D ≥ |Y|

|Y| − 1
βD (23)

where |Y| denotes the number of classes.

Proof. we have that ζ�
D ≥ ∫

KD
p(x)dx =

∫
KD

(1 − maxk p(y = k|x = x) +
maxk p(y = k|x = x))p(x)dx = βD +

∫
KD

(maxk p(y = k|x = x))p(x)dx ≥∫
KD

p(x)/ |Y| dx+ βD. Thus, we can prove that
∫
KD

p(x)dx ≥ βD |Y| /(|Y| − 1) ��

In Throrem 3 and Corollary 1, the lower bounds for the ζ�
D are established based on that

a single input needs to have a deterministic label. Still, there are additional conditions
that, if unmet, will prevent a classifier from attaining robustness for a given input. For
instance, we can expand the certainty requirement from a single input to encompass any
input within its vicinity. The input neighbours in the vicinity with uncertain labels can
also contribute to the irreducible robustness error. Given an input x such that x /∈ KD,
if there exists an x′ within this vicinity of x such that x′ ∈ KD, robustness at x cannot
be attained. All such x forms a domain K

∗
D. K∗

D can be considered as a thin margin
around KD, as shown in Fig. 3b. This expansion results in a more stringent condition.
Consequently, we will likely identify a tightened lower bound for ζ�

D.

Corollary 2. Given a distribution D over X × Y, then

ζ�
D ≥ 2 · εeff · pmin ·

(∫

KD

dx

) dim X−1
dim X

+
∫

KD

p(x)dx (24)

where εeff denotes the radius of the vicinity according to the definition of robustness,
e.g., for L2-perturbation, εeff equals to the radius ε. For general perturbations,

πdimX/2

Γ
(

dimX

2 + 1
)εdimX

eff =
∫

X

�v(x)
dx (25)

Proof. K
∗
D emerges when a perturbation vicinity sweeps along the boundary of KD

and the isoperimetric inequality suggests that the volume of this marginal domain is
minimized when both vicinity and KD are dimX-spheres.

Thus, a lower bound of the volume ofK∗
D can be expressed as the volume difference

between two concentric spheres which is again greater than the product of their radius
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difference and the surface area of the inner sphere. Thus, the volume of K∗
D is lower

bounded by

εeff · vol(KD)
dim X−1
dim X · 2π

dimX/2

Γ
(

dimX

2

)
(

π− dimX/2Γ

(
dimX

2
+ 1

)) dim X−1
dim X

(26)

where Γ represents the gamma function, and for all positive real numbers Γ (z) =∫ ∞
0

tz−1e−t dt. We further simplify Equation (26) to εeff ·vol(KD)(dimX−1)/(dimX) ·γ,
where γ ≥ 2 for dimX > 1 and a lower bound of vol(K∗

D) is thus 2 · εeff ·
(
∫
KD

dx)(dimX−1)/(dimX). In very high dimensions, the (minimum) volume of K∗
D

is almost linearly related to the volume of KD. The irreducible error contributed by
the marginal domain to robustness can be expressed as

∫
K∗

D
p(x)dx. It is greater

than or equal to
∫
K∗

D
pmindx, where pmin = minx p(x). Thus, this irreducible error

≥ pmin · vol(K∗
D), contributes to the irreducible robustness error as the first term in

Equation (24). This corollary is particularly useful if we know the non-zero pmin of the
distribution. ��

In short, Throrem 3, Corollary 1, and Corollary 2 suggest how we can get lower
bounds of irreducible robustness error ζ�

D from the original distribution D, with lower
bound from Corollary 2 being the tightest among three. Given a distribution, ζ�

D has two
sources. One is the examples that have uncertain labels (which contribute to the error
directly), and the other is the examples that have neighbours whose labels are uncertain
(which contribute to the error indirectly). Additionally, when the Bayes error βD of a
distribution is non-zero, the irreducible error of robustness ζ�

D is also non-zero and is
greater than the Bayes error.

Theoretically, there is another way to tighten the bound provided by Throrem 3.
If we know the convolved distribution D′ obtained in Sect. 3.1, the ζ�

D can be calcu-
lated as p(x ∈ KD′), i.e., the probability (in convolved distribution) that input has a
deterministic label. Thus,

ζ�
D = E(x,y)∼D′

[
1 − �max

k
q(y = k|x)�

]
(27)

Since D′ = D ∗ v, as vicinity size grows, the Bayes error of D′ also grows, and thus
the irreducible robustness error ζ�

D grows.
The least upper bound of robustness on a given data distribution D can then be

written as 1 − ζ�
D, and 1 minus any lower bound of ζ�

D presented above serves as an
upper bound of robustness on a given data distribution D. These upper bounds are
directly derived from the data distribution D and the vicinity function v, independent
of any specific classifier.

Although we have been using both Formulae 2 and (20) throughout this subsection,
the existing studies only rely on Formula 2 [28] for practical evaluation of certified
robust accuracy. Intuitively, we sometimes do not know the true label of a neighbour x′

in an input x’s vicinity, and thus use the x’s label instead. Consequently, the correctness
of x′ prediction is neglected. Instead, only the consistency between predictions on x′

and x, as well as the correctness of prediction on x, are considered. This simplifica-
tion could result in a different certified robust accuracy for classifiers and exceed our
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upper bounds of robustness on a given data distribution (Throrem 3). To this end, we
also present the irreducible robustness error ζD in Equation (28) and the corresponding
upper bound for such robustness on a given data distribution 1 − ζD. We use Fig. 3c to
illustrate its effect.

ζD =
∫

K
D†

q(x)dx+
∫

X\K
D†

(
1 − max

k
q(y = k|x = x)

)
q(x)dx (28)

where D† is a distribution obtained from convolving the vicinity function v and the
“hardened” distribution of D′, i.e., each phard(y = kmax|x = x) = q(x) and for other
k �= kmax, phard(y = k|x = x) = 0. Then, pD† = phard ∗ v. Recall that q is the
conditional distribution of D′. In Equation (28), its first term suggests no input close to
the boundary can attain robustness. For inputs not close to the boundary, as indicated
by the second term, their optimal robustness on a given data distribution depends on
the correctness of the prediction. In terms of Fig. 3c, the first term corresponds to the
shaded area bounded by the vicinity, and the second term corresponds to all shaded
areas outside the curve. Although Equation (28) has tackled the label-missing chal-
lenges in practice, this theoretical evaluation of the irreducible error (in certified robust
accuracy) could still rely on the knowledge of distribution. Thus, distribution estimating
techniques are also needed when facing sampled data from an unknown distribution.

4 Experiment and Results

In this section, we empirically test our results discussed above by designing and answer-
ing three research questions: 1) does certified training always result in a classifier on a
distribution with a higher Bayes error; 2) is our computed upper bound of robustness
indeed higher than the robustness achieved by all the existing certified training classi-
fiers; and 3) does the upper bound of robustness change when the vicinity increases,
and if so how does it change?

The experiments are conducted with four data sets: two synthetic ones (i.e., Moons
and Chan [8]) and two standard benchmarks (i.e., FashionMNIST [59] and CIFAR-
10 [23]). Moons is used for binary classification with two-dimensional features, where
each class’s distribution is described analytically with specific likelihood equations,
and uses a three-layer Multi-Layer Perceptron (MLP) neural network for classification.
The Chan data set, also for binary classification with two-dimensional features, differs
in that it does not follow a standard PDF pattern, requiring kernel density estimation
(KDE) for non-parametric PDF estimation, and also uses the three-layer MLP. Fash-
ionMNIST, a collection of fashion item images, involves a 10-class classification task
with 784-dimensional inputs (28×28 pixel grayscale images). Each class has an equal
prior probability, and their conditional distributions are estimated non-parametrically
using KDE. CIFAR-10 uses images with a resolution of 32×32 pixels. Similar to Fash-
ionMNIST, it has a balanced class distribution and is estimated using KDE. We use a
seven-layer convolutional neural network (CNN-7) [45] as the classifier of both Fash-
ionMNIST and CIFAR-10. We adopt a direct approach [20] to compute the original
Bayes error of both FashionMNIST and CIFAR-10 [20].
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Fig. 4. The conditional distribution before and after convolution for (a, b) Moons and (c, d) Chan.
For both Moons and Chan, L∞ size is set at ε = 0.15. We also report the Bayes error to show
the change of inherent uncertainty in each distribution.

To train the classifiers, two approaches are adopted, i.e., empirical error mini-
mization (ERM [54]) for standard training, and the state-of-the-art (SOTA) small-box
method for certified training [35]. The performance of these classifiers is evaluated
using two metrics: vanilla accuracy and certified robust accuracy [35]. Note that, cer-
tified robust accuracy measures the proportion of predictions that can be certified as
robust in terms of satisfying Formula 2.

RQ1: Does the Bayes error indeed grow when certified training is applied? We would
like to check if the Bayes error indeed sees a growth when certified training is used. To
do that, we first need to obtain the altered distribution used in the context of certified
training. As explained in Sect. 3.1, certified training extends the label of an input to its
vicinity, and thus results in a convolutional effect across the entire given distribution.
Therefore, we can obtain a convolved distribution of each given distribution with each
vicinity. Then, we compare the original distribution and the convolved distribution of a
given data set, and the Bayes error of the distribution before and after convolution.

We use the Moons and Chan data sets, setting a L∞ vicinity at ε = 0.15. Then,
we get the convolved distribution of each data set (using FFT-based convolution, imple-
mented through scipy.signal.fftconvolve) and the results are demonstrated
in Fig. 4. Observing the comparison shown in Fig. 4(a, b) and (c, d), we can see that
the original distribution has gone through a “melting” process, i.e., the peaks of each
distribution becomes lower, and the spread increases. For example, in Fig. 4b, the upper
moon’s centre region (around x1 = 0, x2 = 0.6) has a higher concentration of inputs
from the lower moon than that in (a). This is because convolution with a rectangular
function, e.g., vicinity function in our case, is essentially smoothing the original condi-
tional distribution.

To quantify the increased overlap between the density function of each distribution
after convolution, we compute their Bayes error. For Moons, the original Bayes error
(Fig. 4a) is 8.54%, while the Bayes error after convolution is 9.24%. Similarly, for Chan,
Bayes error increases from 5.39% (c) to 9.66% (d). As expected, the Bayes errors do
grow, with the growth ranging from 8% to nearly 80%.
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Fig. 5. Upper bounds of robustness/accuracy and the state-of-the-art classifier’s performance.
The L∞ vicinity size for certified training /certified robust accuracy for each data set is ε =
0.15, 0.15, 0.1, 2/255 for Moons, Chan, FashionMNIST, and CIFAR-10.

We find that convolving with the same vicinity function results in very different
growth in the Bayes error. This is likely due to the shape of the original density func-
tion. For instance, each moon in the Moons distribution can be approximately seen
as a single-modal distribution, and the density function does not have sharp changes.
In contrast, the density function of each class’s conditional distribution in Chan has
sharper value changes at the central region (around x1 = 0, x2 = 0.5). This may sug-
gest that the Chan distribution exhibits a larger shape change to its original distribution
after convolution than Moons. Particularly, in Chan, we observe that the class with
the highest probability at the central region changes. Originally, class-0 examples have
a higher density in this region. However, after convolution, we can see from Fig. 4d
that this region is filled more with class-1 examples than class-0 examples. Essentially,
this change shows a significant prediction change in the Bayes classifier. This is likely
because convolution has a larger influence on the distributions with features with high
(2D) frequencies.

In summary, by comparing the Bayes error before and after distribution alteration,
we conclude that the Bayes error does increase when certified training is used, which
aligns with Throrem 2. Moreover, the distribution alteration has a larger impact on dis-
tributions with high-frequency features than on originally smooth distributions.

RQ2: Is our upper bound of robustness empirically effective? Next, we check whether
the computed upper bound of robustness is indeed higher than the existing robustness
evaluation in practice. To do that, we apply the closed-form Equation (28) numerically
to compute the irreducible robustness error ζD for each data set/distribution D. The
upper bound of certified robust accuracy is 1 − ζD. Then, we use ERM and certified
training to optimise the corresponding classifier of each data set. As such, we get two
trained classifiers for each data set. For each classifier, we compute its performance
metrics and compare the classifiers’ performance against our upper bounds. We remark
that the accuracy and certified robust accuracy may fluctuate when the sample size is
not sufficiently large, as seen in Fig. 6. For example, if we are only given five samples,
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there is a high chance we get a very high or very low accuracy. For this reason, we
gradually increase the sample size of test sets and observe its converged value.

Fig. 6. As sample size grows, the accuracy converges to a value below 1 - Bayes-error. Similarly,
the certified robust accuracy converges to a value below our upper bound of robustness. The
figures are computed based on the Moons data set.

The results are shown in Fig. 5. For each data set, the computed value ζD is detailed
in the caption. The certified robust accuracy is represented by bars in the graph. For
example, the MLP for the Moons dataset (seen in Fig. 5a) is trained twice. Initially,
it is trained with ERM, achieving a vanilla accuracy of 91.23%, which is nearly the
optimal vanilla accuracy of 91.46% (calculated as 1−8.54%). Here, the certified robust
accuracy is about 80% with an L∞ vicinity of ε = 0.15. When trained a second time
with certified training, the MLP’s vanilla accuracy slightly decreases to 89.66%, but its
certified robust accuracy improves by 5.1%, at 84.24%. The improved certified robust
accuracy is below the theoretical upper bound (marked by a dashed line in Fig. 5a, below
the annotation ζD), which is calculated to be 85.72% (1−14.28%). Furthermore, the gap
between the certified robust accuracy of this classifier and its upper limit is relatively
small, approximately 1.5% in absolute percentage points.

Based on the result, we have multiple observations. First, we find that 1 − ζD con-
sistently exceeds the certified robust accuracy achieved by state-of-the-art method [35]
across various datasets in Fig. 5. This gap, ranging from 1.5% to 7.1%, indicates the
potential for further improving classifier robustness within these theoretical limits. For
example, the Moons dataset has a small gap, suggesting limited room for improvement,
while larger gaps in datasets like the Chan, FashionMNIST, and CIFAR-10 indicate
more significant opportunities for increasing the robustness.

Second, we note that ζD consistently surpasses the Bayes error βD by a significant
margin for all D. For example, in the Moons dataset, ζD is 14.2%, which is 66% higher
than its βD of 8.54%. This implies that robustness against perturbations is challenging,
even when the inherent uncertainty of the data is considered. In datasets like Fashion-
MNIST and CIFAR-10, despite their low Bayes error of 3.1%-5.2%, their ζD are at
least six times higher (25.0%-32.7%). This indicates that factors other than inherent
data uncertainty are affecting robustness. These factors are likely the newly generated
uncertainty from certified training. Moreover, some gaps between ζD and βD are partic-
ularly large (e.g., Fig. 5b). Such instances highlight the robustness challenges presented
by each dataset can vary. Recall Fig. 4d, the distribution of Chan can be particularly
sensitive to convolution with vicinity.
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Third, recall that the upper bound ζD and certified robust accuracy are based on For-
mula 2 and Equation (28), and they do not consider the correctness of the label (Defini-
tion 2). If we take into consideration the correctness of the examples in the vicinity, we
can compute a tighter bound ζ�

D based on Equation (20), and certified robust accuracy
(from Def. 2) is calculated by sampling a large finite number of neighbours of the input
and evaluating their correctness. As the test sample size grows, more examples appear
in the vicinity of some training samples, and the likelihood of correctly predicting all
of them decreases. This result is also illustrated in the right-most columns in Fig. 5.
As observed, certified robust accuracy (from Def. 2) is always lower than 1 − ζ�

D. For
instance, the certified robust accuracy of Moons (and Chan) decreases from 84.24%
(and 32.35%) respectively to less than 10−7, and that of FashionMNIST (and CIFAR-
10) decreases from 73.78% (and 60.12%) to 41.66% (and 54.26%) respectively. Such
large reductions indicate a potential need for rethinking the robustness requirement,
which may lead to different ways of defining and achieving robustness.

Fig. 7. As epsilon increases, we plot the robustness upper bound change as well as classifiers’
certified robust accuracy change in the Moons and Chan dataset.

RQ3: How does the upper bound of robustness vary when the vicinity size grows? In
the following, we investigate what can influence the value of irreducible robustness
error/upper bound of certified robust accuracy. We already know that when the vicin-
ity grows, it empirically becomes more difficult for a classifier to be robust [35]. The
question is then: how about the irreducible robustness error? Is it dependent on the size
of the vicinity? If so, how are they correlated? To answer this question, we extend our
experiment to cover various vicinity shapes (L∞ and L2), and different vicinity sizes
(from 0 to 2).
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The results are shown in Fig. 7. Each sub-figure in Fig. 7 illustrates the impact of
increasing the vicinity size (ε) on the upper bound (1 − ζD). For instance, in Fig. 7a,
we present the change of 1 − ζD as well as the classifier’s certified robust accuracy
after certified training. We observe that for all datasets (Moons, Chan, FashionMNIST,
CIFAR-10) and norms (L∞ and L2), as the vicinity size grows, both the robustness
upper bound and certified robust accuracy decrease monotonically. This indicates an
inverse relationship between the upper bound and vicinity size. This finding aligns
with our intuition that when vicinity size grows it becomes more difficult for a clas-
sifier to be robust. Notably, the CIFAR-10/Chan dataset shows a sharper decline in the
upper bound than Moons/FashionMNIST, suggesting that some data distributions may
inherently withstand perturbation better, which is consistent with our previous findings.
Implementation of our experiment is available on our GitHub page1.

5 Related Works

This work is closely related to research on Bayes errors and certified training. Com-
puting the Bayes error of a given data distribution has been studied for over half a
century [12]. Several works have derived upper and lower bounds of the Bayes error
and proposed ways to estimate those bounds. Various f -divergences, such as the Bhat-
tacharyya distance [13] or the Henze-Penrose divergence [7,43], have been studied.
Other approaches include directly estimating the Bayes error with f -divergence repre-
sentation instead of using a bound [36], and computing the Bayes error of generative
models learned using normalizing flows [22,48]. More recently, a method has been
proposed to evaluate Bayes error estimators on real-world datasets [41], for which we
usually do not know the true Bayes error. While these existing studies concentrate on
vanilla accuracy, our approach extends the study into the realm of robustness. Besides,
some studies may argue that the real-world datasets are well-separated so therefore the
Bayes error predicted by the theorems may not be as severe [62]. However, due to
the information loss (photo-taking or compression), Bayes errors inevitably exist. For
instance, Over 1/3 of CIFAR-10 inputs have been re-annotated by human annotators to
have non-fixed labels (CIFAR-10H) [39], indicating non-zero uncertainty. Hence, cal-
culating irreducible error, regardless of severity, holds significance in understanding the
inherent limit of certified robustness.

Many certified training techniques have been developed to increase certified robust
accuracy, including branch-and-bound [4,16,56], linear relaxation [2,32,46], Lipschitz
or curvature verification [29,50], and others [27]. In addition, a number of training
techniques have been proposed specifically for improving certified robustness [28],
which include warm-up training [45], small boxes [35], and so on. Certified robust
accuracy has seen only limited growth over the past decade, prompting research efforts
to understand why. Besides the Bayes error perspective, there exists an explanation for
this problem from the standpoint of the abstraction domain [33]. However, note that
these studies often only focus on the concept of interval arithmetic. Additionally, fac-
tors such as the trade-off between certified robustness and vanilla accuracy have also
been explored [37,51].

1 https://github.com/cat-claws/irreducible-robustness-error.
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6 Conclusion

In this work, we study the limit of classification robustness against perturbations. We
are motivated by the observation that the robustness of existing certified classifiers tends
to be suboptimal, and hypothesise that there is an irreducible robustness error linked to
the classification distribution itself. We formally prove that this irreducible robustness
error does exist and is greater than the Bayes error. Further, we present how to calculate
the upper bound of robustness based on the data distribution and the vicinity within
which we demand robustness. Besides, this work also provides empirical experiments
that compute our upper bound on common machine learning data sets. Results show
that our robustness upper bound is empirically effective. We conclude that the limit of
classification robustness can be well elaborated from the Bayes error perspective and
we hope that the upper bound we derive can enlighten future developments on certified
training and other robust-classifier training.
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Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems. vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/
paper files/paper/2019/file/1ce3e6e3f452828e23a0c94572bef9d9-Paper.pdf

30. Lin, W., et al.: Robustness verification of classification deep neural networks via linear pro-
gramming. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11418–11427 (June 2019)

31. Liu, H., Zhu, X., Lei, Z., Li, S.Z.: Adaptiveface: adaptive margin and sampling for face
recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2019)

32. Lyu, Z., Guo, M., Wu, T., Xu, G., Zhang, K., Lin, D.: Towards evaluating and training ver-
ifiably robust neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4308–4317 (June 2021)

33. Mirman, M., Baader, M., Vechev, M.T.: The fundamental limits of interval arithmetic for
neural networks. CoRR abs/2112.05235 (2021). https://arxiv.org/abs/2112.05235

34. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT
Press (2012)

35. Müller, M.N., Eckert, F., Fischer, M., Vechev, M.T.: Certified training: small boxes are all you
need. CoRR abs/2210.04871 (2022). https://doi.org/10.48550/arXiv.2210.04871, https://doi.
org/10.48550/arXiv.2210.04871

36. Noshad, M., Xu, L., Hero, A.: Learning to benchmark: Determining best achievable misclas-
sification error from training data. arXiv preprint arXiv:1909.07192 (2019)

37. Pang, T., Lin, M., Yang, X., Zhu, J., Yan, S.: Robustness and accuracy could be reconcilable
by (proper) definition. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G.,
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