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Abstract—Passive Displacement Cooling (PDC) has gained
popularity as a means of significantly reducing building energy
consumption overheads, especially in tropical climates. PDC
eliminates the use of mechanical fans, instead using chilled-
water heat exchangers to perform convective cooling. In this
paper, we evaluate the impact of different parameters affecting
occupant comfort in a 1000m2 open-floor area (consisting of
multiple zones) of a ZEB (Zero Energy Building) deployed with
PDC units and tackle the problem of setting the temperature
setpoint of the PDC units to assure occupant thermal comfort.
We tackle two key practical challenges: (a) the zone-level (i.e.,
occupant-experienced) temperature differs significantly, depend-
ing on occupancy levels, from that measured by the ceiling-
mounted thermal sensors that drive the PDC control loop, and
(b) sparsely deployed sensors are unable to distinguish between
ambient temperature variations across neighboring zones. Using
extensive real-world measurement data (collected over 60 days),
we devise a trace-based model that helps identify the optimum
combination of PDC setpoints, collectively across multiple zones,
while accommodating variations in the occupancy levels and
weather conditions. We deploy OcAPO on our real-world testbed
to demonstrate its efficacy: while OcAPO reliably assures occu-
pancy comfort within a tolerance of 0.2◦C, the current practice
of occupancy-agnostic rule-based setpoint control violates this
tolerance value 75.2% of the time.

Index Terms—HVAC control, thermal comfort, Smart Building
Management, occupancy estimation

I. INTRODUCTION

Commercial buildings generate ∼33% of the world’s total
energy consumption, within which HVAC represents the dom-
inant (38%, translating to 12% of the global energy demand)
consumption load [1]. Passive Displacement Cooling (PDC)
technologies1 have gained significant transaction as an energy-
efficient cooling mechanism (reducing the cooling energy
overhead by ∼15%), especially in tropical regions where
heating support is typically unnecessary. PDCs fundamentally
dispense with the use of energy-consuming fans for forced
air circulation, and instead utilize the principles of natural
convective cooling, where chilled air (typically cooled by heat
exchange with chilled water pipes) drifts towards the lower
portions of the room while warmer air rises towards the ceil-
ing. Combining such PDC with occupancy-aware control [2],
can further lower the overall energy cost.

Early research on occupancy-aware HVAC control relied
principally on a binary estimator occupancy (occupied vs. un-
occupied), often using PIR [3] or CO2 sensing [4] to estimate

1https://www.daikin.com.sg/product-series/pdv/

whether a region has any occupants or not, and accordingly ac-
tivate or deactivate cooling functions. To overcome the natural
transients (hysteresis) associated with cooling, more sophisti-
cated methods employ occupancy prediction techniques [5, 6]
to control HVAC valves preemptively, initiating the cooling
down of a space before the anticipated arrival of human
occupants. These strategies have, however, been predominantly
tested in traditional compartmentalized commercial spaces,
where individual layouts (e.g., office or meeting rooms) are
effectively thermally isolated.

Fig. 1: Layout of Collaborative Workspace (Testbed)

In this work, we tackle the problem of performing efficient,
occupancy-aware PDC-based cooling in more modern, open-
plan workspaces where the lack of explicit walls/partitions
implies a strong mutual correlation between the thermal states
of nearby or neighboring spaces. Our goal is to intelligently
adjust the temperature set points, which in turn activate or
deactivate PDC controllers, so as to assure occupant thermal
comfort in such open spaces where the aggregate number of
occupants can exhibit significant variation. As a specific exem-
plar of this problem, we tackle the issue of occupancy-aware,
thermal comfort preserving, PDC control of a ∼1000m2

open-plan collaboration space on one floor of an operational
university ZEB (Zero-Energy Building). Figure 1 illustrates
the layout of our collaborative workspace, which consists of
8 zones (virtually divided into 3 areas), each individually
controlled by a ceiling-mounted PDC air vent that chills cold
air that drifts downwards, while the hot air rises. For this
specific deployment, the PDC vents open up to circulate the
cool air when the nominal room temperature, measured via



ceiling-mounted temperature sensors, exceeds the zone’s PDC
setpoint and closes when this temperature falls below the
zone’s PDC setpoint.

The collaboration space presents a couple of difficult chal-
lenges that we believe to be representative of legacy environ-
ments where the PDC system, including vents and PLC control
logic, have been deployed by commercial vendors and which
we now seek to augment with more sophisticated occupancy-
aware control techniques. (Note that the only means of pro-
grammatic external control is via setpoint alteration, as the
underlying low-level PLC control logic is not accessible.)
• The temperature sensors, whose readings are compared

against the programmed set points, are mounted on the
ceiling. Both our empirical studies (detailed in Section IV-B)
and prior research [7] provide evidence that the actual
floor/table-level ambient temperature, experienced by the
human occupants, is higher than the temperature measured
at the ceiling. Moreover, we shall show (Section IV-A) that
this table-vs.-ceiling discrepancy is a function of different
occupancy levels, with the ambient temperature being much
higher under high occupancy.

• While the 8 zones in the exemplar workspace each have
their individual PDC controller, the ceiling-level temperature
sensor is deployed more sparsely, with one temperature
sensor serving multiple (typically 2-3) zones. Given the
open-plan layout of the space, this implies that the reading
captured by the sensor is also a combined function of
the possibly different temperature values in each of the
constituent zones.

Any practical solution for dynamic setpoint adjustment must
thus be able to (a) accommodate the varying occupancy
levels of different zones, (b) estimate each zone’s table-level
temperature from the ceiling-level thermal sensor readings,
and (c) control a set of setpoints jointly.

We present our approach, called OcAPO2, that effectively
tackles these challenges. Broadly, OcAPO operates as follows.
First, by utilizing extensive empirical training data, it builds a
lookup table that correlates the desired table-level zone-level
temperature to appropriate temperature setpoint values under
varying levels of {occupancy levels, external weather condi-
tions}. Subsequently, during operational deployment, we build
a practical 15-20 minute lookahead, occupancy prediction sys-
tem that combines real-time, non-binary occupancy estimates
(derived by executing vision-based DNNs on infrastructural
camera feeds) with historical occupancy data to predict zone-
level occupancy. Finally, using the occupancy and external
weather measurements, OcAPO derives and sets temperature
setpoints for multiple adjacent zones collectively so as to
minimize a measure of occupant thermal discomfort.
Key Contributions: We make the following key contributions:
• Using extensive real-world measurements and observational

data, we quantify both how (a) the relationship between a
setpoint value and the occupant-perceived (table-level) am-
bient temperature is occupancy level dependent, and (b) the
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occupant-perceived ambient temperature differs (is usually
higher than) the ceiling-level temperature sensor readings
under varying levels of occupancy. These findings not only
motivate the need for an occupancy-aware PDC control
logic, but also reveal the need to move beyond simple binary
(occupied vs. unoccupied) occupancy estimates.

• We demonstrate the practical challenge of non-binary occu-
pancy prediction (i.e., over 15-20 min lookahead intervals)
for different regions of an open plan university collaboration
space, where student movement patterns exhibit a high level
of spontaneity. To tackle this challenge, we instead combine
the diurnal occupancy trend (number of occupants in the
morning/afternoon/evening) with real-time video sensing-
based occupancy estimation to obtain reasonably accurate
predictors for occupancy 15-20 mins in advance.

• We construct a trace-based model to find, given the weather
condition and estimated per-zone occupancy, the optimum
tuple of zone setpoints that minimize the cumulative devia-
tion from a target ambient temperature (23.5◦C). The model
utilizes a lookup table, where the occupancy is expressed in
4-levels (unoccupied, low, medium, high) and the weather
conditions are represented by 2◦C intervals. This approach
results in relatively low error across a range of occupancy
conditions, achieving mean error of 0.3◦C under low, 0.3◦C
under medium, and 0.1◦C under high occupancy levels.

• We conduct pilot studies on the ZEB collaborative space,
evaluating the efficacy of OcAPO’s occupancy-aware dy-
namic setpoint control logic vs. the baseline of constant
24◦C setpoint, over a span of 3 days under natural, real-
world occupancy conditions. We empirically show how
dynamic occupancy-aware setpoint adaptation is important
for assuring occupant comfort: over a total deployment
period of 14.5 hours, OcAPO specified setpoint readings
that are distinct from the ambient objective of 24◦C for
70.6% of the time–i.e., a total of 636 minutes and resulted
in a mean cumulative deviation of 0.2◦C. In contrast, the
baseline constant setpoint method exceeded the tolerance
range 23.0-24◦C 75.2% of the time, with a mean deviation
of 0.8◦C.

II. RELATED WORK

The evidence of research in demand-driven HVAC control
based on occupancy and weather conditions goes back for
decades [8]. However, the evolution in hardware and the sub-
sequent establishment of programmatic interfaces to control
HVAC give rise to new challenges and possibilities. Dong
et. al. [9] utilized the indoor temperature and CO2 levels,
indoor and outdoor RH levels and occupancy state provided
by a motion sensor to perform non-linear model predictive
controls of HVAC parameters. PIR sensors have proven to
reduce energy consumption by 18% [10] in long-term us-
age. Researchers have also used other sensing modalities,
such as WiFi [11] and vision, to estimate occupancy and
perform HVAC actuation. Nagarathinam et. al. [12] discuss
the possibility of maintaining optimum thermal comfort by
modeling the mean radiant temperature of the room at different



occupancy levels, and appropriately adjusting each AHU’s (Air
Handling Unit) operating parameters. They demonstrate an
energy savings of 15%.

Some early research [13], [14] has applied Markov and
Regression-based models to control HVAC, taking into ac-
count the current and predicted occupancy. Researchers have
developed model predictive control (MPC) strategies [6], [15]
[16] to perform real-time HVAC adaptation, while adhering
to system constraints. Smarra et. al. [17] use random forest-
based MPC for HVAC control, achieving an impressive energy
savings of 49.5%.

More recently, reinforcement learning (RL) based ap-
proaches have been proposed to support data-driven HVAC
control. Various machine learning algorithms (e.g., [18, 19,
20], [21], [22] [23]) have been propposed to learn the depen-
dencies between various features affecting the thermal comfort
of users. Chen et.al. [24] developed an RL-based differential
MPC policy for HVAC control that reduced average HVAC
energy consumption by 16.7%.

Despite this extensive body of research using state-of-the-art
techniques, the actual deployment of extensive sensor instru-
mentation to support smart HVAC control has been muted.
Operational deployments, such as the real-world university
space that we shall experimentally study, primarily use motion
and temperature sensing input as part of a rule-based PDC
control policy. In our rule-based deployment, the PDC setpoint
is set a static value of 24◦C, with the PDC valve closing when
no motion is found for 30mins and re-opening whenever the
motion is subsequently detected. Motion sensors, however not
only often fail to detect stationary humans but also provide
only binary occupancy status–this significantly limits the ef-
ficacy of the PDC systems. To overcome these shortcomings,
we shall adopt a data-driven, non-binary occupancy based PDC
control logic.

III. TESTBED AND DATA COLLECTION

We first describe our target operating space and the data
collection mechanism for PDC setpoint control.

A. TestBed - Collaborative Zone

Our testbed is a collaborative shared workspace of area
1000m2 used by students of our university campus. It is
logically divided into 8 zones virtually represented as 3
different areas, with no physical demarcation between them
(Fig 1). A building management system (BMS) manages each
zone equipped with PDC units for cool air circulation at the
ceiling level. The PDC relies on the natural convection process
of pushing the hot air up towards the ceiling generated by the
occupants OR other heat-generating equipment/devices in the
space while pushing down the cold air towards the ground
level. The cold air is driven by the PDC valves, which are
opened between 0-100% based on an internal PLC-based PID
(proportional integral derivative) controller. The valve behavior
depends on the difference between the ceiling-mounted (room)
temperature sensor reading and the setpoint of each zone: the
valves open if the room temperature is above the PDC setpoint,

and close if the room temperature drops below this setpoint.
Because this is a real-time operational building, we are con-
strained to adjust the PDC setpoint between 22◦C and 26◦C
and do not have any direct control over the opening/closing of
PDC valves. In our testbed, PDC valves open up during the
operational hours of the building (8.30 AM to 10.30 PM on
weekdays). The testbed is characterized by a single ceiling-
mounted temperature sensor providing nominal temperature
readings for each area, comprising multiple zones: Area-1
consisting of Z15, Z16 and Z17 (sensor mounted on Z16),
Area-2 consisting of Z7, Z8 and Z9 (sensor mounted on Z8)
and Area-3 consisting of Z11 and Z12 (sensor mounted on
Z12).

B. Data Collection

Our testbed is equipped with Beckhoff PLC and is interfaced
with our research servers using the OPC-UA interface. We
subscribe to the relevant OPC tags (room temperature (RTTS),
setpoint value (CRSP), and valve control (VALC)); the PLC
notifies our server of updated readings whenever the value of
one of these tags changes. The existing infrastructure does
not record the fine-grained changes at the zone or occupant
level. Hence, we collect fine-grained table-level (ambient)
temperature data for each zone by placing two tripod-mounted
Texas instrument BLE sensor tags per zone 3. Each sensor is
connected to a Raspberry Pi device and transmits temperature
data once every minute via Bluetooth. We then averaged the
temperature from 2 sensors of each zone to obtain the zone-
level ambient temperature data. We collected data intermit-
tently over 4 months between February - March 2022 for
measuring the temperature with different occupancy levels and
May - June 2022 during the holiday season when there were
no occupants.

During this period, we collected the room temperature data
to understand (i) the effect of varying weather conditions, (ii)
the effect of varying occupancy while adjusting PDC setpoints
between 22.5◦C and 25.0◦C in increments of 0.5◦C, and
(iii) the effect of PDC setpoint modification on each zone
and its neighboring zones. To evaluate the effect of different
parameters, we vary the setpoints at different times of the
day (Morning, Afternoon, and Evening). While we had the
liberty of varying all the PDCs concurrently when the space
was unoccupied, we had to be mindful of preserving occupant
comfort whenever the space was occupied. Hence, we always
kept one zone in each area at 24◦C while varying the PDC
setpoint of the other zones in each area between 22.5◦C and
25◦C. For each area, we collected the temperature data for
different combinations of zone setpoints and under different
occupancy levels, with every zone experiencing a temperature
between 22.5− 25◦C. However, we did not experience high
occupancy in the morning and evening times. To understand
the phenomena of change in room temperature for varying
weather conditions, we also crawled the temperature data
for the weather station closest to the academic building

3https://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG



from the national real-time weather database 4. To estimate
the occupancy, we use feeds from existing ceiling-mounted
cameras to count the number of people in each zone. We
use a state-of-the-art object detector (YOLOV3) to compute
bounding boxes across persons detected in the scene. We
extract the object’s pixel coordinates (Xmin, Ymin, Xmax,
Ymax, Xcenter, Ycenter) and localize the bounding boxes to
the zone’s physical coordinates using a logistic regressor.

IV. EMPIRICAL FINDINGS ON PDC SETPOINT CONTROL

We now discuss several key findings on how occupancy and
ceiling-based sensor readings affect occupant thermal comfort.

A. Impact of Occupancy and Weather Conditions

We individually evaluate the impact of occupancy and
weather conditions on the room temperature (measured at both
the ceiling and table/occupant levels). Although it is well-
established that, in principle, occupancy and weather impact
the room temperature, we conduct a fine-grained analysis of
how the ambient (occupant-level) temperature is affected by
these factors. We first find all the dates and timeslots where the
PDC setpoints remained constant, for a given area, throughout
the day. We then bin the weather conditions and occupancy
values, by (a) quantizing occupancy into 4 distinct levels: {No:
0; Low:1-3; Med:4-7; High:>8}, and (b) quantizing external
temperature into 6 bins, {22:22.0-24.0; 24:24.1-26.0; 26:26.1-
28.0; 28:28.1-30.0; 30:30.1-32.0; 32:32.1-34.0}, which collec-
tively capture the climatic variation of temperature observed.
For comparative analysis, we first identify similar weather
conditions across the four months (Feb-Mar and May-Jun
2022) under zero occupancy, with the observation period
classified into Morning (8-13:00 Hrs), Afternoon (13-18:00
Hrs), and Evening (18-23:00 Hrs).

We track both the zone-level ambient (measured using
BLE-equipped TI temperature sensors) and the ceiling-level
temperature values. For exposition, we use a representative
combined PDC setpoint value of (25, 24, 25) for Area-1 (Z15-
16-17). Fig 2 and Fig 3 illustrate the recorded temperature for
two different weather buckets, namely, ∼ 25◦C and ∼ 33◦C,
with this area completely unoccupied. We observe that the
average ceiling temperature recorded at 25◦C is ∼24.1◦C, and
the valves were only open for an average duration of 70%
(varying between 1%-80%). At 33◦C, the ceiling temperature
rises up to 24.5◦C, and the valves remain open throughout
at 100%. While the ambient temperature was significantly
different for external temperatures of 24◦C and 32◦C, the
differences were marginal between 22◦ and 28◦C. Fig 4 and
Fig 5 illustrate the variation in room temperature for two
different occupancy conditions, using the setpoint temperature
setting of (25, 24, 25) for the three zones Z15-Z16-Z17. We
observe that the average ceiling temperature for low occupancy
was recorded to be 25.0◦C, while for high occupancy, the
ceiling temperature remained at 24.7◦C (as valves opened up
due to high temperature). We also note that the ambient zone
temperature recorded under low occupancy is significantly

4https://data.gov.sg/dataset/realtime-weather-readings

lower than that at high occupancy. The valves for Z15 and
Z17 remained shut throughout the low occupancy, while for
high occupancy, the valves opened up to 50% as the ceiling
temperature increased up to 25.2◦C.

B. Impact of PDC Setpoint on Ceiling and Zone Temperature

With the objective of understanding the coupled effect of
PDC setpoint values across adjacent zones, we simultaneously
adjusted the PDC setpoint of two zones (Z15 & Z17 for Area-
1, and Z7 & Z8 for Area-2) in decrements of 0.5◦C every 30
mins, starting from 25C, and subsequently reversing the steps
(in 0.5◦C increments) back to 25◦C. Because the experiment
was performed in an occupied setting, we maintained a consis-
tent temperature of 24C for Z16 in Area-1 and Z9 in Area-2.
For Area-3, we varied the temperature for both zones. All the
experiments were performed under high occupancy conditions.
Fig 6 illustrates the variation in room temperature (ceiling and
zone level) for all three areas. We list our observations as
follows:
• Gradual change in zone temperature: A change in PDC

setpoint starts to manifest an impact on occupant-level tem-
perature values after a gap of ∼20 mins. However, it can take
longer if the setpoint temperature is higher than the room
temperature. For instance, as observed in Area-3 (Z11-12),
the temperature drops only after the setpoint temperature
was set at 24.0◦C. This is unlike the phenomena illustrated
in Area-1 (Z15-16-17), where the temperature drops after 20
mins immediately after the setpoint temperature is reduced
from 25◦C to 24.5◦C.

• Impact on Nearby Zones: For Area-1, we observe that
the ambient temperature for zone Z16 reaches the optimum
temperature of 24◦C only when we lower the PDC setpoints
of the other two zones. The zone level temperature of Z15
and Z17 does not reach the optimum temperature in this ex-
periment. However, we observe that the temperature reaches
23.5◦-24◦C if the zone’s setpoint is retained at a lower
temperature for a longer duration. For Area-3, we observe
that occupant level temperature drops to the optimum level
of 24.0◦C when both zones are set at 23◦C. The data reveals
the non-trivial effects of thermal coupling between zones,
which motivates us to adopt a strategy of adjusting zone
setpoints collectively, rather than individually.

• Varying relation between ceiling and zone temperature:
The ceiling temperature for Area-2 (Z7-8-9), and Area-
3 (Z11-12) is significantly lower than the occupant-level
temperature. We hypothesize that this phenomena, observed
consistently across multiple areas, is because (a) the density
of occupants in the two areas is, on average lower by
70% compared to Area-1, and (b) the ceiling tempera-
ture sensor is mounted on one of the unoccupied zones
of both areas, and thus unable to accurately capture the
heat generated within the occupied zone. As developing a
precise mathematical model relating ambient to ceiling-level
zone temperature seems very challenging and would require
significantly more data, we instead design OcAPO to adopt
a more empirical data-driven approach.



Fig. 2: Weather Average Temperature - 25C Fig. 3: Weather Average Temperature - 33C

Fig. 4: Room Temperature during high occupancy Fig. 5: Room Temperature during low occupancy
Fig. 6: Recorded Room Temperature for Varying PDC Setpoints

V. PROPOSED PDC SETPOINT CONTROL

Ideally, PDC setpoint control should use a time series model
that factors in the time-varying occupancy levels and the
gradual evolution in the room temperature data. However,
building such a supervised time series model requires a
significant amount of data, capturing fine-grained variations
in ambient room temperature, external weather and occupancy.
For practical use, we instead develop a trace-based model that
uses the observed testbed data to build a lookup table that
captures the first-order relationship between these attributes.
We then use diurnal models of occupancy and real-time
occupancy estimates, obtained by applying object detection
vision DNNs over camera data (images captured via CCTV
cameras in the infrastructure), together with a comfort cost
function (CCF), to determine the optimal tuple of setpoints
over small (15 minute) time intervals.

A. Short-Term Occupancy Prediction

As per our analysis reported in Section IV-B, it takes ∼20
mins to cool an area. Accordingly, our approach chunks time in
20 min windows (or epochs), and seeks to perform one-epoch
lookahead occupancy prediction (i.e., 20 mins ahead of time).

However, predicting such coarse-grained zone-level occupancy
using historical data at 15-20 minute temporal granularity is
challenging due to unpredictable fluctuations both in (a) the
number of occupants in each zone, (b) their arrival time and
stay duration. However, we do observe a simple diurnal trend
for each zone across different day segments–morning (8am-
1pm), afternoon (1pm-3.30; 3.30-6.30) and evening (6.30-
10.30pm). For example, Figure 7 plots the diurnal occupancy
over one week for Area-1 (comprising zones Z15, Z16 and
Z17). In addition, for our analysis and model building, we
use the 4 distinct occupancy levels {No, Low, Medium and
High} explained earlier. We see that while no clear short-
term trend (defined by the divergence from a moving average
value) is visible, the occupancy typically is Low-Medium in
the morning, High in the afternoon and Low in the evening.
Accordingly, at the start of daily segment, we use the observed
diurnal value; for all subsequent 20-min intervals in that
segment, we approximate the predicted one-step lookahead
occupancy based on the current epoch’s real-time occupancy
estimate (obtained from the camera feeds).



Fig. 7: Diurnal Occupancy Trend (1 week, Area 1)

B. Lookup Table For Trace-Based Model

Using the data collected over 60 days, we populate a lookup
table that helps compute the optimum combination of PDC
setpoints that help maintain occupant thermal comfort (23.5C-
24C). As observed, a zone’s temperature decreases ∼20 mins
after a reduction in PDC setpoint, and vice versa. The table
(illustrated in Table I) consists of different combinations of
PDC setpoints (SP), weather data, ceiling temperature, and am-
bient table-level temperature data recorded by BLE-equipped
temperature sensors (S 15, S 16, S 17). As described in
Section IV-A, the weather values are quantized into 6 bins;
for each combination of PDC setpoints, our lookup table
consists of 20 mins data. While a 3-zone area conceptually
contains 36 = 81 unique tuples (each setpoint can have 6
values between (22.5◦C,25◦C), our training data was collected
typically using 10 different combinations, which proved to be
sufficient for effective PDC control.

C. Real-Time Setpoint Control

We utilize the lookup table entries, together with input
values for current weather and predicted occupancy (which
together serve as a table index), to determine the “optimal”
setpoint control values. For occupancy estimation, a state-of-
the-art YoLov3 object detector [25] is executed on the camera
images to obtain bounding boxes for human objects, which are
then translated into real-world physical coordinates. For each
matching (weather, occupancy) entry, we compute the CCF
value by computing the cumulative deviation from the ideal
ambient temperature (23.5◦C for occupied; 25◦C for unoccu-
pied). Algorithm 1 details the CCF computation. Intuitively,
the setpoint choice seeks to minimize the weighted sum of any
deviations from the ideal ambient temperature. To emphasize
user comfort, we apply a higher penalty (weight=2) if the
projected temperature is higher than the desired value (i.e., if
users will feel warmer); to concurrently prevent unnecessary
cooling, we apply a lower penalty (weight=0.5) if the projected
temperature is lower than the desired value.

VI. EXPERIMENTAL RESULTS

We now quantify the performance of the proposed OcAPO
approach. We test our approach in an uncontrolled (i.e., occu-
pancy driven by natural usage) testbed setting. We compare our
system to the baseline rule-driven, time-of-day based “BMS”
(Building Management System) system. Both approaches were
evaluated over 3 consecutive days (Wed, Thu, Fri), on separate

Algorithm 1 Trace-Based Lookup Algorithm

Input: Weather temperature (w), and Estimated Occupancy
(o) for next 15-min epoch.
for j ∈ All Combination of PDC Setpoints
(Weather=w,Occup=o) do

for Minutes 1..20 do
calculate CCF(j)=∑
k∈zones

(2∗(23.5−zjk)∗I(zjk > 23.5)&I(ojk ̸= Unoccupied)+

0.5*(zjk − 23.5) ∗ I(zjk < 23.5)& ∗ I(ojk ̸=
Unoccupied) +
0.5 ∗ |zjk − 25.0| ∗ I(ojk = Unoccupied) where zjk
represents the predicted ambient temperature of the kth

zone under the jth setpoint setting & I(. . .) represents
the Indicator function.

end for
end for
Find the combination which has the lowest cost–i.e.,
argminj CCF (j)

weeks. Our evaluation focuses on (a) OcAPO’s ability to
maintain optimal thermal comfort during the deployment, (b)
Occupancy Estimation errors, and (c) dynamic PDC setpoint
control of OcAPO compared to the currently operating base-
line.

A. Thermal Comfort

We placed BLE sensors on tripod stands at the occupant
level to measure thermal comfort. Fig 8 and 9 illustrates the
zone and ceiling temperature recorded during the BMS PDC
setpoint control and OcAPO’s deployment phase, respectively,
for Area-3 (Zone-11 and 12). Note that Zone 12 was never
occupied in the deployment phase of both BMS and OcAPO.
We calculate the comfort level only for Zone 11. We observe
that OcAPO successfully maintains a thermal comfort of
23.3◦C during the entire occupancy period. However, the BMS
system does not maintain thermal comfort and is above the
comfort level on average by 1.2◦C. In Area-2, Zone 8 was
never occupied. OcAPO’s achieved a comfortable ambient
temperature of 23.8◦C in Zones 7 and 9 during the occupancy
period, while BMS deviated from the ideal settings by an aver-
age of 1.1◦C. In Area-1, however, both BMS and OcAPO were
able to successfully assure thermal comfort with a deviation of
0.5◦C and 0.3◦C, respectively. This can be explained by noting
that in Area 1 (unlike Areas 2 & 3), the readings of the ceiling-
mounted thermal sensor (placed directly above the occupants)
are consistent with the occupant-level ambient temperature
(see Figure 6). Overall, OcAPO was able to maintain an
average ambient temperature of 23.8◦C under low, 23.8◦C
under medium, and 23.5◦C for high occupancy conditions.

B. Dynamic PDC setpoint Control

We also studied the behavior of dynamic PDC setpoint
control (setting varying setpoints across zones for a given



TABLE I: Look-Up Table
Time Weather SP 1 SP 2 SP 3 O 1 O 2 O 3 S 15 S 16 S 17 CeilingTemp
T1 28 24.5 24 24 LOW HIGH HIGH 24.8 24.2 24.8 24.7
T10 28 24.5 24 24 LOW HIGH HIGH 24.5 23.8 24.5 24.3
T20 28 24.5 24 24 LOW HIGH HIGH 24.1 23.7 24.2 24.0

Fig. 8: Room Temperature Vs PDC Setpoint - BMS Fig. 9: Room Temperature Vs PDC Setpoint - OcAPO

area) compared to the occupancy-unaware static BMS control.
For Areas 2, and 3, we observe that OcAPO set the PDC
setpoint 1◦C above the BMS setpoint of 24◦C when the zone
is not occupied and 1-1.5◦C below the BMS setpoint when
the zone is occupied. OcAPO effectively executes dynamic
setpoint control to assure occupant thermal comfort. In the
unoccupied zones, OcAPO set the PDC setpoint at 25◦C–see,
for example, Zone-12 in Figure 9.

C. Occupancy Estimation

State-of-the-art object detectors experience errors (a) in
partially-occluded environments, (b) for more distant objects
that are smaller in size; such errors can cause OcAPO to
perform incorrect PDC setpoint control. While the the camera-
based occupancy estimator had an accuracy of 93.7% (in
classifying occupancy across the 4 bins), the use of temporal
smoothing (over multiple readings within a 15-minute win-
dow) helped reduce the estimation error by 23.8%. Overall,
over a 6-hour operational period, occupancy estimation errors
caused OcAPO to specify incorrect PDC setpoints thrice (i.e.,
for a total of 45 mins).

VII. DISCUSSION AND FUTURE WORK

Accommodating Transient Artifacts: OcAPO relies on the
data collected over a designated period to adjust the PDC
setpoints. However, the relationship between PDC setpoint
and table-level ambient temperature can experience short-term
deviations, due to usage artifacts (e.g., users operating a heat-
generating GPU server), which OcAPO currently is incapable
of tackling. Adapting to such localized “heat island” effects
requires additional and extensive sensor instrumentation, and
is also constrained by the longer response transient of PDC.
Cost and Scalability: OcAPO requires the creation of the
look-up table, using data collected to capture seasonal varia-
tions. While such variation is minimal in Singapore’s tropical
climate, the observation period will need to be much longer
(even spanning a year) for environments with greater seasonal
fluctuations. OcAPO’s computational overhead arises primar-
ily from executing the DNN models for real-time occupancy
estimation, and can be reduced by lowering the estimation

frequency (e.g., to once every 5 minutes). Scaling OcAPO
to all open-floor spaces on our campus will require more
intensive data collection, with 6 person-month effort, across
120 camera feeds. Supporting OcAPO will, however, require
first require capital investment to install PLC-controllable PDC
systems across all such spaces.
Modelling Historical Time-Varying Changes: OcAPO cur-
rently performs adaptation based on a model of ambient tem-
perature evolution over a 20 min window, and is thus oblivious
to the longer term ambient temperature readings and weather
conditions. In reality, it is likely that adaptation polices that
incorporate longer-term memory (e.g., 12 hour history) might
offer more optimal energy-vs.-comfort tradeoffs. However,
developing such “trajectory-based models” is hard and requires
significantly larger volumes of longitudinal training data.

VIII. CONCLUSION

Motivated by empirical observations of a material,
occupancy-dependent discrepancy between the temperature
recorded by ceiling-mounted sensors (which drives the PDC
control loop) and occupant-level ambient temperature in an
open plan collaborative ∼1000m2 workspace, we have intro-
duced OcAPO, an occupancy-aware, adaptive PDC setpoint
control system. OcAPO takes real-time and diurnal occupancy
estimates (obtained automatically by analyzing camera feeds),
together with current weather conditions, as input and and
utilizes a trace-based lookup table to dynamically specify an
optimum tuple of PDC setpoint values for a given area. A real-
world deployment of OcAPO establishes that it can maintain
an optimum thermal comfort (range: 23.5 − 24.0◦C ) with a
tolerance of 0.2◦C, compared to a conventional BMS system
(where the setpoint is always maintained at 24.0◦C) which
exceeds the optimal thermal comfort by ≥ 0.8◦C. Overall,
OcAPO is able maintain an average ambient temperature of
23.8◦C under low, 23.8◦C under medium, and 23.5◦C under
high occupancy conditions.
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