
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

Exploring the potential of ChatGPT in automated code refinement: Exploring the potential of ChatGPT in automated code refinement:

An empirical study An empirical study

Guo QI

Junming CAO

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Shangqing LIU

Xiaohong LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
QI, Guo; CAO, Junming; XIE, Xiaofei; LIU, Shangqing; LI, Xiaohong; CHEN, Bihuan; and PENG, Xin. Exploring
the potential of ChatGPT in automated code refinement: An empirical study. (2024). ISCE '24:
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, Lisbon, Portugal,
April 14-20. 1-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9175

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Guo QI, Junming CAO, Xiaofei XIE, Shangqing LIU, Xiaohong LI, Bihuan CHEN, and Xin PENG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9175

https://ink.library.smu.edu.sg/sis_research/9175

Exploring the Potential of ChatGPT in Automated Code
Refinement: An Empirical Study

Qi Guo∗
Tianjin University
Tianjin, China

Junming Cao∗
Fudan University
Shanghai, China

Xiaofei Xie
Singapore Management University

Singapore

Shangqing Liu†
Nanyang Technological University

Singapore

Xiaohong Li†
Tianjin University
Tianjin, China

Bihuan Chen
Fudan University
Shanghai, China

Xin Peng
Fudan University
Shanghai, China

ABSTRACT
Code review is an essential activity for ensuring the quality and
maintainability of software projects. However, it is a time-consuming
and often error-prone task that can significantly impact the devel-
opment process. Recently, ChatGPT, a cutting-edge language model,
has demonstrated impressive performance in various natural lan-
guage processing tasks, suggesting its potential to automate code
review processes. However, it is still unclear how well ChatGPT
performs in code review tasks. To fill this gap, in this paper, we
conduct the first empirical study to understand the capabilities of
ChatGPT in code review tasks, specifically focusing on automated
code refinement based on given code reviews. To conduct the study,
we select the existing benchmark CodeReview and construct a new
code review dataset with high quality. We use CodeReviewer, a
state-of-the-art code review tool, as a baseline for comparison with
ChatGPT. Our results show that ChatGPT outperforms CodeRe-
viewer in code refinement tasks. Specifically, our results show that
ChatGPT achieves higher EM and BLEU scores of 22.78 and 76.44
respectively, while the state-of-the-art method achieves only 15.50
and 62.88 on a high-quality code review dataset. We further iden-
tify the root causes for ChatGPT’s underperformance and propose
several strategies to mitigate these challenges. Our study provides
insights into the potential of ChatGPT in automating the code
review process, and highlights the potential research directions.

1 INTRODUCTION
Code review is a software quality assurance activity in software
development and maintaince, which involves the systematic ex-
amination of source code to identify and rectify errors, improve
code quality, and ensure compliance with coding standards. The
code review process typically consists of writing code reviews and
refining code based on the review comments received, with the
ultimate goal of enhancing software quality. Code review has be-
come an integral part of many software development projects, as it
has been widely recognized for its effectiveness in improving the
overall reliability and maintainability of software systems.

∗This work was done while both authors were visiting students at Singapore Manage-
ment University. Both authors contributed equally to this work.
†Corresponding author.

However, code review can be a time-consuming and resource-
intensive process, requiring significant manual effort to review and
refine code, especially in popular projects with numerous contri-
butions. For example, Bosu et al. [3] discovered that, on average,
developers allocate approximately six hours per week preparing
code for review or reviewing others’ code. Moreover, the increasing
complexity of modern software systems and the need for more
frequent releases have made code review even more challenging.
To address this issue, recent research [40, 42] has been conducted
to automate various aspects of code review, such as generating re-
view comments and refining code. In particular, the learning-based
approaches [19, 44] that rely on Large Language Models (LLMs)
such as CodeT5 [45] and CodeBERT [9] have demonstrated promis-
ing results in automating code review, reducing the manual effort
required for code reviews.

Recently, OpenAI introduced ChatGPT [27], a revolutionary tech-
nology capable of transforming various sectors, including software
engineering tasks. ChatGPT, an advanced version of GPT-3.5 [30],
is a fine-tuned model that excels at understanding and executing
instructions. This capability distinguishes it from other pre-trained
models and makes it a promising candidate for tasks that require
prompts or instructions. The code refinement process, which is
contingent upon code review and previous code versions, aligns
well with strengths of ChatGPT. Since human reviews can serve
as prompts for code refinement, it is natural to investigate the
potential of using ChatGPT for this task.

In this paper, we take the first step towards investigating the
potential of ChatGPT for code refinement based on the given review
comments. Note that although code-to-code refinement (i.e., Chat-
GPT directly generates refined code from original code) is also a
research problem, there are still major concerns regarding the qual-
ity of the refined code [43]. Therefore, we focus on the refinement
based on given review in this paper, which is different from code-to-
code refinement. Specifically, we focus on three main problems: 1)
How does ChatGPT perform compared to the state-of-the-art meth-
ods? 2) In which cases does ChatGPT underperform, and what are
the underlying reasons? 3) How thse challenges can be mitigated?
By answering these questions, we can gain a deeper understanding
of the potential and challenges of ChatGPT for automated code
refinement tasks.

ar
X

iv
:2

30
9.

08
22

1v
1

 [
cs

.S
E

]
 1

5
Se

p
20

23

ICSE 2024, April 2024, Lisbon, Portugal Guo and Cao, et al.

To answer the above questions, we conduct comprehensive ex-
periments to evaluate ChatGPT’s performance in code refinement
tasks. Considering the sensitivity of ChatGPT to different settings,
we first design the experiment to evaluate its performance on two
main factors, i.e., different prompts and temperatures. Then we
select the optimal configuration and compare ChatGPT with state-
of-the-art techniques [45] on standard benchmarks [19]. To eval-
uate the generalizability of different techniques, we create a new
dataset by collecting code reviews from repositories not included
in the standard benchmarks and recent code reviews from the same
repositories included in the standard benchmarks. Based on the
evaluation results, we perform an in-depth analysis of the root
causes and devise preliminary strategies for mitigating different
challenges.

Overall, the results provide valuable insights into the perfor-
mance of ChatGPT in code refinement tasks. Our findings demon-
strate that different prompts and temperature settings can have a
significant impact of up to 5% and 15% on ChatGPT’s Exact Match
(EM) scores in code refinement tasks. Lower temperature settings
yield better and more stable results, and describing the code re-
view scenario in the prompt helps enhance ChatGPT’s performance.
Compared to the state-of-the-art model CodeReviewer, ChatGPT
demonstrates better generalization capabilities in our newly gener-
ated dataset. Specifically, ChatGPT achieves EM and BLEU scores
of 22.78 and 76.44, respectively, on the new dataset, while CodeRe-
viewer only reaches 15.50 and 62.88 for EM and BLEU scores, re-
spectively. However, we also found that ChatGPT struggles on tasks
involving refining documentation and functionalities, mainly due to
a lack of domain knowledge, unclear location, and unclear changes
in the review comments. These limitations could potentially be re-
solved by improving review quality and using more advanced large
language models such as GPT-4. Our study highlights the poten-
tial of ChatGPT in code refinement tasks and identifies important
directions for future research.

In summary, this paper makes the following contributions:
• We conduct the first empirical study on evaluating ChatGPT’s
potential in code refinement tasks based on review comments.

• We analyze the challenges of ChatGPT in code refinement tasks
and propose potential mitigation strategies, laying the ground-
work for future research on better incorporating ChatGPT.

• We release a new dataset that contains high-quality code reviews,
which could be useful for future research in this area.

2 BACKGROUND
2.1 Code Review Process
During the code review process, a contributor submits code changes
to implement new features, refactor code, or fix bugs. When the
contributor believes the code changes are ready for review and to
be merged into the main branch, he or she initiates a pull request
and invite reviewers to examine the changes. After reviewing the
code changes, a reviewer may provide review comments in natural
language, represented as 𝑅. Based on these review comments, the
contributor makes modifications on the original code 𝐶1 and sub-
mits the revised code𝐶2. The code difference between𝐶1 and𝐶2 is
denoted as 𝐷 : 𝐶1 → 𝐶2. It is worth noting that the above process
represents only one review cycle, while a complete pull request may

involve multiple rounds of review cycles. In this work, without loss
of generality, we focus solely on the single-round scenario, where to
generate the revised submitted code 𝐶2 with models automatically,
based on the a given review comment 𝑅 and the original submitted
code 𝐶1 within each pull request.

2.2 ChatGPT
ChatGPT [27] is a famous example of Large languagemodels (LLMs),
unveiled by OpenAI. ChatGPT was developed by employing a GPT-
3.5 series model and training it using reinforcement learning from
human feedback (RLHF) [30, 38]. Owing to the RLHF training pro-
cess, ChatGPT has exhibited remarkable proficiency across multiple
dimensions, encompassing the generation of high-quality responses
to human inputs, the refusal of inappropriate queries, and the capac-
ity for self-correction of prior errors based on subsequent dialogues.

Considering the characteristics of ChatGPT usage [33], it is natu-
ral to explore its potential in automating code reviews [49]. Specifi-
cally, we propose a conversational approach to delegate the code
refinement task to ChatGPT, where the original code and review
comment are provided as a task input in a coherent linguistic struc-
ture. ChatGPT will return the revised code along with the reasoning
behind the modifications, precisely aligning with the desired out-
put of the task. The performance of ChatGPT in this approach
depends significantly on two parameters: prompt and temperature.
The prompt serves as a cue for ChatGPT to understand the intended
task, while temperature can be used to control the level of creativity
and diversity in responses of ChatGPT.

3 STUDY DESIGN
3.1 Overview and Research Questions
The main focus of this paper is to evaluate and understand the
capabilities of ChatGPT in code refinement tasks. Fig. 1 shows the
overview of this paper. To conduct our study, we collect existing
benchmarks, including the CodeReview dataset, and state-of-the-art
code refinement tools such as CodeReviewer [19], for comparisons.
However, given the potential risk that the dataset could be used to
be trained in ChatGPT and CodeReviewer, we create a new code
review dataset (named CodeReview-New) consisting of two parts:
new code reviews from the same repositories as CodeReview dataset
but collected more recently (i.e., CodeReview-NewTime), and code
reviews from repositories using different languages that are not
included in CodeReview dataset (i.e., CodeReview-NewLanague).
We next introduce the research questions we aim to investigate and
their relationships.

RQ1 Impact of ChatGPT Settings: Howdo different prompt
and temperature settings affect ChatGPT’s performance in
the code refinement task?As the effectiveness of ChatGPT highly
depends on the prompts and temperatures used, we first evaluate
the impact of different settings of ChatGPT on code refinement.
We designed five prompts based on whether a concreate scene is
provided and whether detailed requirements are given. We also se-
lected five temperature settings ranging from 0 to 2, with intervals
of 0.5 (i.e., 0, 0.5, 1, 1.5 and 2.0). We evaluated and compared the
effects of 25 combinations of these five prompts and five temper-
ature settings based on the CodeReview dataset. Our evaluation

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study ICSE 2024, April 2024, Lisbon, Portugal

Datasets

CodeReview
(829 repos)

CodeReview-NewTime
(232 repos)

CodeReview-NewLanguage
(240 repos)

Research Questions

RQ1: Impact of ChatGPT
Settings

-Prompt and Temperature

RQ2: Effectiveness of ChatGPT
on Code Refinement

-Quantitative Comparative Analysis

RQ3: Understanding Strengths
and Weaknesses of ChatGPT

-Qualitative Comparative Analysis

RQ4: Root Cause Analysis
and Potential Mitigation

-Case Study

CodeReviewer
(CodeT5)

ChatGPT
(GPT-3.5-turbo, GPT-4)

Optimal
Setting

Comparative
Results

Bad
Cases

Tools

Figure 1: Overview of our study

of ChatGPT in the subsequent research questions is based on the
optimal prompt and temperature settings obtained from RQ1.

RQ2 Effectiveness of ChatGPT on Code Refinement: How
does ChatGPT’s performance compare to state-of-the-art
methods?We aim to investigate the effectiveness of ChatGPT in
code refinement tasks compared to state-of-the-art methods. To an-
swer this question, we compare ChatGPT’s performance with that
of the state-of-the-art code refinement tool, CodeReviewer [19]. We
replicated and fine-tuned the CodeReviewermodel and evaluated its
performance alongside ChatGPT on both the existing CodeReview
dataset and the new dataset CodeReview-New we created.

RQ3 Strengths and Weaknesses of ChatGPT: In which
cases does ChatGPT perform well or not? To address this ques-
tion, we conduct a qualitative study based on the results obtained
from RQ2. Specifically, we annotate 200 samples each from the
CodeReview and CodeReview-New datasets manually, labeling the
quality of reviews (i.e., relevance and information levels) and code
change types. We then evaluate the performance of ChatGPT on
data with various review qualities and code change categories.

RQ4 Root Causes and Potential Mitigation Strategies for
Underperforming Cases: What are the underlying causes for
the underperformance of ChatGPT, and how can wemitigate
these challenges? Based on the analysis of RQ3, we aim to further
understand the root causes of ChatGPT’s underperforming cases
and how to address this limitations. We investigated the 206 cases
from the 400 annotated samples in RQ3 where ChatGPT failed to
make accurate predictions and summarized the categories of root
causes. Based on the root causes, we attempt to study the impact
of improving review quality and enhancing models in mitigating
the issues of ChatGPT.

3.2 Experiment Settings
3.2.1 Dataset. To conduct the study, we utilize two datasets: the
CodeReview dataset [19] and a new dataset created by us, denoted
as CodeReview-New.

CodeReview (CR): We first select CodeReview [19] that is a
widely used dataset in code review task. This dataset was crawled
from the top 10,000 repositories from GitHub based on their star
ranking, and includes nine programming languages, namely C,
C++, C#, Go, Java, JavaScript, PHP, and Python. Repositories that
do not have an explicit data redistribution license and fewer than
1,500 pull requests (PRs) are filtered out. The dataset consists of

review comments 𝑅 associated with their corresponding code diff
𝐷 : 𝐶1 → 𝐶2. To ensure a high-quality dataset, samples with the
same review comment associated with multiple code diffs or a sin-
gle code diff associated with multiple comments are filtered out.
Additionally, the dataset is divided into a pre-training dataset and
multiple downstream task datasets, and we used the code refine-
ment downstream task dataset in our study. This dataset comprises
829 repositories and 125,653 PRs. We follow the same partition
method as CodeReviewer [19] for a fair comparison, and divide the
dataset into training set, validation set and test set, with proportions
of 85%, 7.5%, and 7.5%, respectively.

CodeReview-New (CRN): Additionally, we create a new code
review dataset, CodeReview-New, due to two reasons: 1) we observe
that there are some low-quality code review data in CodeReview,
which could affect the comparisons between ChatGPT and the base-
line CodeReviewer; 2) the data distribution in the CodeReview test
data could be very similar to that in the pre-train and fine-tuning
dataset, and may even have been used by the selected models (i.e.,
ChatGPT [30] and CodeT5 [45]). The new dataset is constructed to
better evaluate the generalization capabilities of models. To address
these two concerns, we design more strict filtering rules to filter
low-quality reviews; and select code reviews that is unlikey to be
used in the pre-training process.

To ensure the quality of the CodeReview-New dataset, we im-
plemented several strict rules based on our analysis of the quality
issues present in CodeReview. Only code reviews that met these
rules were retained in our dataset. Firstly, we ensured that the code
changes are only about a single code hunk, which is necessary
because the baseline CodeReviewer we select only accepts a single
piece of code as input. Secondly, we filtered out changes that were
unrelated to code, such as changes to README files. Finally, we
ensured the relevance between the review comment 𝑅 and the code
changes 𝐷 by collecting the original code piece 𝐶1 that contains
the review comment 𝑅.

To prevent ChatGPT from using CodeReview-New during the
pre-training process, we only collected data from January 1, 2022,
onwards, as ChatGPT’s training data only extends up to 2021 [27].
Furthermore, CodeReview dataset also does not contain data after
January 1, 2022, which makes it fair to compare CodeReviewer
model and ChatGPT. In addition to the repositories included in
CodeReview, we crawled code reviews from additional 1,400 repos-
itories (top 200 repositories for each language based on their star
ranking) using seven programming languages: Swift, Objective-C,

ICSE 2024, April 2024, Lisbon, Portugal Guo and Cao, et al.

Kotlin, SQL, Perl, Scala, and R, which are not included in CodeRe-
view. In total, we selected 2,029 repositories, with 829 from the
CodeReview repository and 1,200 new repositories with different
programming languages.

After applying the filtering rules and selecting pull requests
based on time, we only have 467 repositories out of the initial 2,029
repositories. The exclusion of the other 1,562 repositories can be
attributed to two main reasons: first, we used stricter filtering rules
compared to the construction of the CodeReview dataset, and sec-
ond, we only selected pull requests created on or after January 1,
2022, which resulted in the exclusion of some projects that had few
PRs during this period. As shown in Table 1, the dataset consists
of samples from two types of repositories: 9,117 samples from 232
repositories that are also included in the CodeReview dataset, de-
noted as CodeReview-NewTime (CRNT); 5,451 samples from 240
new repositories that have different programming languages with
the repositories in CodeReview dataset, denoted as CodeReview-
NewLanguage (CRNL). Some languages, such as SQL and Perl, have
a smaller amount of data due to fewer pull requests or a smaller
number of reviews.

3.2.2 Evaluation Models. To compare the performance of ChatGPT
with the state-of-the-art tool, we chose CodeReviewer [19], which
is a recent state-of-the-art method for code refinement. In this
paper, we apply ChatGPT in a similar way to CodeReviewer, by
generating revised code𝐶2 based on reviews 𝑅 and original code𝐶1.
We chose CodeReviewer over other methods as it is demonstrated to
be more effective than other methods such as AutoTransform [40]
and Trans-Review [44]. Based on our evaluation results, we believe
that ChatGPT can also surpass other models. Furthermore, our main
focus is to understand the strengths and weaknesses of ChatGPT
and identify potential improvement directions for future research
on the code review process.

CodeReviewer: It utilizes a T5model architecture comprising 12
Transformer encoder layers and 12 decoder layers, amounting to 223
million parameters [35]. The model is initialized using the weight
parameters of CodeT5 [45]. Subsequently, the pre-training is carried
out with three objectives: Diff Tag Prediction, Denoising Objective,
and Review Comment Generation. In this study, we employed the
same pre-trained CodeReviewer model and fine-tuned it using the
𝐶𝑜𝑑𝑒𝑅𝑒𝑣𝑖𝑒𝑤𝑡𝑟𝑎𝑖𝑛 and 𝐶𝑜𝑑𝑒𝑅𝑒𝑣𝑖𝑒𝑤𝑣𝑎𝑙𝑖𝑑 datasets.

ChatGPT:We accessed and evaluated ChatGPT with the default
GPT-3.5-Turbo model using the OpenAI API [30]. Unlike CodeRe-
viewer, we did not fine-tune ChatGPT and only performed a zero-
shot style evaluation. The ChatGPT API was accessed in March
2023, at a total cost of 150 USD. When comparing T5 and GPT-3.5,
both models are large language models, but they have some differ-
ences. T5 is a general-purpose language model that uses a denoising
autoencoder objective, which involves predicting masked or cor-
rupted tokens in the input text. In contrast, ChatGPT is trained on a
large dataset of conversational text, making it better at generating
responses appropriate for use in a chatbot context. One key differ-
ence between the two models is that ChatGPT is fine-tuned with
Reinforcement Learning from Human Feedback (RLHF), which uses
human feedback in the training loop to make it more effective in
generating appropriate and coherent responses in various contexts.
During the evaluation, we designed different prompts based on the

original code and code review to obtain outputs from ChatGPT.
In RQ4, we also employed GPT-4 in ChatGPT in order to mitigate
the cases where GPT-3.5 made incorrect answers. GPT-4 [29] is
the latest multi-modal model designed to process both textual and
visual inputs, generating textual outputs.

3.2.3 Evaluation Metrics. Exact Match (EM) and BLEU are the two
widely adopted metrics in previous literature [19, 43, 44]. However,
we found that ChatGPT tends to generate more content including
additional code or more explanations, which could largely affect
the EM results and make the measurement less accurate. In the real
world, a contributor can easily trim these additional information
to obtain the correct. Hence, we propose two new variants of EM
and BLEU, called EM-trim and BLEU-trim, which more accurately
measures the results.

Exact Match (EM). A prediction is considered correct by EM
only if the predicted revised code is identical to the ground truth
revised code. The EM value is computed based on the percentage
of generated outputs that exactly match the ground truth.

Exact Match Trim (EM-trim) is a variant of the EM metric
that is more lenient in its measurement. EM-trim first performs a
trim on the generated output (denoted as𝐶′

2) before calculating the
EM score. Specifically, if the first line of the ground truth text can
be found in the generated output𝐶2, we trim the generated content
before the first line of 𝐶2. Similarly, if the last line of the ground
truth text can be found in the generated output 𝐶2, we trim the
generated content after the last line of 𝐶2. After the trim process,
the EM-trim score is calculated using the trimmed content 𝐶′

2 and
the ground truth text. The EM-trim metric is more lenient than the
traditional EM metric, as it ignore other irrelevant information.

BLEU is a common metric used to measure the quality of gen-
erated text in neural translation models [32]. We use the BLEU-4
variant, which calculates the overlap of 4-grams between𝐶2 and the
ground truth [19, 43, 44]. The range of BLEU-4 scores lies between
0% and 100%, with 100% indicating a perfect match. The average
BLEU-4 score of all test samples serves as the overall evaluation re-
sult. Similar to EM-trim, we also design BLEU-trim that calculates
the BLEU-4 score between the trimmed output 𝐶′

2 and the ground
truth text.

4 EVALUATION RESULTS
4.1 RQ1 Impact of Prompts and Temperatures
4.1.1 Setup. Prompts and temperatures are two crucial parame-
ters that can significantly impact the performance of ChatGPT in
code refinement tasks. To determine the optimal values for these
parameters, we conducted an experiment to evaluate their impact
on code refinement. Note that while temperatures and prompts
are parameters utilized by ChatGPT, they are not applicable to run
CodeReviewer. CodeReviewer solely relies on the concatenation of
old code and code reviews as its input.

Specifically, temperature is a parameter that controls the level
of randomness and creativity in the generated output of ChatGPT.
Higher temperature settings tend to produce more diverse and inno-
vative responses, but with a higher risk of generating nonsensical
or irrelevant output. In order to explore the effects of different tem-
perature settings in ChatGPT, which ranges from 0 to 2, we chose

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study ICSE 2024, April 2024, Lisbon, Portugal

Table 1: The statistics of CodeReview-New dataset.

Language 𝐶𝑅𝑁𝑇 𝐶𝑅𝑁𝐿

Ruby Go Py C# JS C++ Java C PHP Swift Obj-C Kt SQL PL Scala R
#Samples 377 2,843 2,115 703 427 700 1,194 335 423 864 81 1,932 96 116 1,682 680
Total 9,117 5,451

Table 2: Impact of different prompts and temperatures on performance of ChatGPT.

Pr. Temperature=0 Temperature=0.5 Temperature=1.0 Temperature=1.5 Temperature=2.0 Avg (Tem.≤1.5)
EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T

P1 19.22 (0.23) 73.58 (0.22) 18.30 (0.54) 72.82 (0.53) 16.48 (0.77) 71.15 (0.45) 12.27 (1.65) 64.62 (0.57) 6.49 (0.75) 28.76 (1.21) 16.57 70.54
P2 21.48 (0.33) 77.49 (0.27) 19.76 (1.01) 76.40 (0.95) 16.66 (0.77) 74.12 (0.29) 11.69 (0.71) 65.48 (0.10) 3.59 (0.57) 14.82 (0.24) 17.40 73.37
P3 16.40 (0.23) 75.37 (0.17) 15.76 (0.27) 74.66 (0.41) 13.02 (1.02) 71.92 (1.33) 9.06 (0.09) 63.36 (0.88) 3.89 (0.25) 21.50 (0.37) 13.56 71.33
P4 19.22 (0.10) 75.30 (0.16) 18.62 (0.59) 74.68 (0.42) 16.98 (0.36) 72.66 (0.81) 11.83 (0.77) 65.62 (0.22) 6.39 (0.49) 25.21 (0.93) 16.66 72.06
P5 21.16 (0.44) 76.66 (0.29) 19.93 (0.37) 76.35 (0.43) 16.89 (0.85) 74.69 (0.78) 10.48 (0.50) 63.96 (1.08) 1.78 (0.75) 14.25 (0.29) 17.11 72.92
Avg 19.50 75.68 18.47 74.98 16.01 72.91 11.06 64.61 4.43 20.91 16.26 72.05

five specific temperature values (i.e., 0, 0.5, 1.0, 1.5, and 2.0) due to
the high cost of ChatGPT API.

To select the prompts, we followed the established best prac-
tices [1, 14] which suggests that prompts could include four types
of elements, i.e., Instruction, Context, Input Data and Output Indi-
cator. We have tried prompts with various combinations of these
four elements. During our preliminary exploration stage, we exper-
imented with a total of 14 prompts. Due to budget constraints, we
selected the 5 best-performing and representative prompts:

(1) Prompt 1 (P1): the simplest prompt.We only provided the
basic requirement of generating new code based on the old code
and review, without additional description.

(2) Prompt 2 (P2): P1 + Scenario Description. P2 was designed
based on Prompt 1 but included a scenario description that
asked ChatGPT to act as a developer and modify the code based
on review information from a pull request that is from the team
leader.

(3) Prompt 3 (P3): P1 + Detailed Requirements. P3 included
detailed requirement information, such as keeping the original
content and format of the code as much as possible and not
completing any code snippets in the old code or modifying any
code not mentioned in the review.

(4) Prompt 4 (P4): P1 + Concise Requirements. Similar to P3,
P4 also included requirement information that is more concise.

(5) Prompt 5 (P5): P4 + Scenario Description. P5 was a combi-
nation of Prompts 2 and 4, containing both scenario description
and requirement information.

Specifically, the instruction, context, and output indicator in P1
are all simplest. P2, building upon P1, provides a more detailed
context description, while P3, also building upon P1, offers a more
detailed output indicator [8]. Figure 2 illustrates the construction
strategies for Prompt 1 and Prompt 2. The details of the other
prompts are available on our website [6].

To evaluate the effectiveness of ChatGPT under different parame-
ters, we accessed the ChatGPT API and performed code refinement
on the CodeReview dataset. Due to the cost of running the Chat-
GPT API, we randomly selected 500 data entries from the test set
of the CodeReview dataset to reduce the number of API calls. To
account for the radomness of ChatGPT predictions, we repeated
each setting ten times, i.e., making ten ChatGPT API requests on

Prompt 1 (P1): simplest prompt Prompt 2 (P2): P1 + Scenario Description

code snippet:``` ```

code review:

Please generate the revised
code according to the review

As a developer, imagine you've submitted a pull request
and your team leader requests you to make a change to a
piece of code. The original code being referred to in the
hunk of code changes is:``` ```
There is the code review for this code:

Please generate the revised code according to the review

original
code

review comment original code

review comment

Figure 2: Construction strategies of Prompt 1 and Prompt 2

each sample under each setting. We obtained the average of the ten
repetitions as the final results.

4.1.2 Results. Table 2 displays the results of our evaluation of
ChatGPT under different temperature and prompt settings. Values
in parentheses represent standard deviations. Notably, the evalua-
tion results indicate that setting temperature to 0 achieves the best
performance for each prompt. As the temperature increases, the
performance of ChatGPT decreases significantly. For example, the
temperature of 2.0 achieves the worst results. This phenomenon
may be due to the fact that generating new code is a complex and
precise task, and high temperature can result in unstable and ran-
dom results, which are more creative but less reliable. Furthermore,
we investigated the results of 500 sampled data with temperature
set to 0 with P2, and found that most of the results remain consis-
tent. Specifically, 309 of the data produced the same answers for all
10 runs, while 110 of the data produced only 2 different answers
among 10 runs. This finding further underscores the strong stability
of using temperature set to 0 for code generation tasks. Overall,
the results suggest that using lower temperature settings tends to
produce more stable and better output for code generation tasks.

Comparing the effects of different prompts under stable temper-
ature settings (0, 0.5, and 1.0), we observed that P2 and P5 achieved
significantly better results than others. Considering the compara-
tive results between P1 and P2, as well as the results between P4 and
P5, we can infer that the inclusion of additional scenario descrip-
tions is beneficial in improving the understanding and performance
of ChatGPT. Furthermore, we noticed that P3 performed worse
than P4, despite both prompts containing more requirement infor-
mation. Sometimes, P3 even performed worse than the simplest
prompt, P1. For example, P1 achieved higher EM-trim scores than
P3 in all three temperature settings, but P1 was generally worse
than P4. This indicates that while providing additional requirement

ICSE 2024, April 2024, Lisbon, Portugal Guo and Cao, et al.

Table 3: Impact on trainset and validset.

Pr. Temperature=0 Temperature=0.5 Temperature=1 Temperature=1.5 Temperature=2
EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T EM-T BLEU-T

P1 18.1 70.77 18.28 70.44 16.15 68.91 14.08 63.21 2.31 6.93
P2 21.55 74.21 20.23 73.52 17.99 71.42 13.45 61.94 1.26 3.57
P3 16.21 71.2 16.15 71.32 13.97 69.14 10.4 62.87 1.59 4.34
P4 18.28 71.45 17.82 71.32 16.44 68.82 12.36 62.48 1.82 5.02
P5 20.11 76.17 19.48 75.62 17.7 72.88 9.94 51.69 0.37 2.62
Avg 18.85 72.76 18.39 72.44 16.45 70.23 12.05 60.44 1.47 4.50

Table 4: Comparisions between Prompt 2 and other prompts.

Prompts P1 P3 P4 P5
EM-T P-value (P2 is superior) 4.20E-06 7.69E-09 2.24E-06 0.5320
BLEU-T P-value (P2 is superior) 9.44E-09 2.30E-09 1.26E-07 0.0039

information could be helpful (compared to P1 and P4), too much
complex information could harm the performance (P3). It could
be because detailed requirement information is more complex to
understand by ChatGPT, leading to unstable results.

To investigate whether the findings of prompts and temperatures
also hold across the entire dataset, we conducted an additional ex-
periment. We randomly selected 1,000 data points from the training
sets and validation sets of CodeReview dataset, and replicated the
experiment. Due to budget constraints, we repeated the experi-
ments for temperatures greater than 1.5 only twice, whereas for
other temperature settings, we repeated them 10 times. The results,
presented in Table 3, align closely with the findings in Table 2.
Overall, both the EM and BLEU metrics demonstrate comparable
performance to that on the test data, further reinforcing the consis-
tent conclusions drawn concerning the influence of temperature
and prompt settings as mentioned above.

Table 4 shows the p-value regarding EM-T and BLUE-T between
P2 and other prompts with t-test [36]. We can observe that, expect
for EM-T P-value (0.5320) between P2 and P5, all p-values are less
than 0.005. It implies that P2 significantly outperforms P1, P3, and
P4 in terms of both EM-T and BLEU-T scores. As for P5, in terms of
EM-T, there is no significant difference between P2 and P5. How-
ever, considering the BLEU-T values, P2 is significantly better than
P5. Taking into account these factors, we finally selected P2 for
conducting the experiments in this paper.

In the case of unstable temperature settings (1.5 and 2.0), we
observed that the overall performance decreased. Note that, we
also tried the fine-grained temperature interval (i.e., 0, 0.1, 0.2, . . . ,
0.9, 1.0) on P2, the results show the similar trend with the larger
interval 0.5. The results can be found in the website. However, we
still noticed that P1 and P4 outperformed other prompts in general.
This could be because P1 and P4 are simpler and provide less infor-
mation, resulting in more stable results under higher temperature
settings. In contrast, prompts with more information may make
ChatGPT more creative but also more unstable when set with a
higher temperature.

Answers to RQ1: The configuration of parameters and temper-
atures has a significant impact on ChatGPT’s performance on
code refinement. In most cases, lower temperature settings tend
to produce better and more stable results. Prompts involving
concise scenario descriptions tend to produce better results.

4.2 RQ2 Effectiveness of ChatGPT
Based on the best parameters from RQ1 (i.e., temperature = 0 and
prompt 2), we then evaluate ChatGPT on the test dataset of CodeRe-
view (CR) and CodeReview-New (CRN). Table 5 presents the com-
parative results between ChatGPT and CodeReviewer. The column
#Samples show the number of samples. CodeReview-NewTime
(CRNT) and CodeReview-NewLanguage (CRNL) represent the re-
sults of two new datasets we constructed (see Table 1), respec-
tively, where CodeReview-NewTime refers to code reviews in the
same repositories with code review and CodeReview-NewLanguage
refers to code reviews in different repositories with new program-
ming language. Note that we have also evaluated the performance
of ChatGPT on the training and validation datasets of CodeRe-
viewer. The detailed results of these evaluations are available on
our website [6] due to space limitations. The results demonstrate
similar performance to that observed on the test dataset and show
the consistent conclusions drawn regarding the impact of tempera-
ture and prompt settings in RQ1. We can see that ChatGPT achieves
stable results across different datasets. In particular, the evaluation
results suggest that ChatGPT performs better on CodeReview-New
compared to CodeReview due to the higher quality of reviews in
CodeReview-New.

We further conducted an in-depth analysis to understand the
lower performance of CodeReviewer compared to ChatGPT on the
new dataset. We identified 2,283 cases from the new dataset where
ChatGPT provided a correct response while CodeReviewer did not.
We randomly selected 150 of them for the manual analysis. Through
our analysis, we identified 4 main root causes:
• (34) Inaccurate understanding of the review content. We have ob-
served that some code reviews contain unclear information, such
as ambiguous location references, unclear changes, or requiring
domain-specific knowledge, which is challenging for the CodeRe-
viewer model to comprehend.

• (62) Over deletion. CodeReviewer model exhibits a tendency to
inaccurately delete code snippets. Specifically, in 30 cases, the
CodeReviewer model erroneously deleted correct code snippets
that should have been preserved. Additionally, in 32 cases, the
model deleted a significant portion of code snippets that required
modifications, resulting in excessive deletions.

• (10) Extra modification. In some cases, CodeReviewer model may
introduce unnecessary modifications to code snippets that do
not require any changes.

• (44) Hard to understand the ground truth provided in the code block.
Our analysis has revealed that, in some cases, reviewers have
accurately suggested changes within the code block. However,

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study ICSE 2024, April 2024, Lisbon, Portugal

Table 5: Quantitative evaluation results.

Dataset Tool #Samples EM EM-T BLEU BLEU-T

𝐶𝑅
CodeReviewer 13,104 32.49 32.55 83.39 83.50

ChatGPT 16.70 19.47 68.26 75.12

𝐶𝑅𝑁
CodeReviewer 14,568 14.84 15.50 62.25 62.88

ChatGPT 19.52 22.78 72.56 76.44

𝐶𝑅𝑁𝑇
CodeReviewer 9,117 15.75 16.31 62.01 62.47

ChatGPT 19.60 22.44 72.90 76.55

𝐶𝑅𝑁𝐿
CodeReviewer 5,451 13.21 14.05 62.67 63.61

ChatGPT 19.39 23.40 71.97 76.25

CodeReviewer fails to recognize that the code within these blocks
represents the ground truth, leading to incorrect modifications.
In summary, the main root cause appears to be the different

understanding ability of the models. The CodeReviewer model
struggles with comprehending some unclear reviews, while Chat-
GPT demonstrates a stronger ability to capture the underlying
semantics accurately. We have included examples that illustrate
the root causes and the different performance of the models on our
website [6].

AlthoughChatGPT outperformsCodeReviewer on the new dataset,
the results are still not as good as expected, with an EM-trim score
of only 22.78. This indicates that ChatGPT still requires signifi-
cant improvement in code refinement tasks, motivating further
exploration of its strengths and weaknesses in RQ3 and RQ4.

Furthermore, our observations indicate that ChatGPT often gen-
erates additional text that explains its code refinements. This extra
text can offer both advantages and disadvantages. On one hand, it
provides explanations that assist users in understanding the code
refinements and assessing the reasonableness of the changes made.
On the other hand, it may require users to make an additional ef-
fort to remove this extra text when submitting the refined code.
However, we believe that automatic filtering out such extra text is
relatively easier since ChatGPT frequently encloses the code with
code blocks, typically denoted by three backticks.

Answers to RQ2: Overall, ChatGPT demonstrates better gen-
eralization capabilities than CodeReviewer when applied to un-
seen dataset. However, its effectiveness is still limited, with
EM-trim and BLEU-trim scores of only 22.78 and 76.55, respec-
tively.

4.3 RQ3 Strengths and Weaknesses of ChatGPT
4.3.1 Setup. To gain a deeper understanding of the strengths and
weaknesses of ChatGPT, we conducted a qualitative analysis on
the results of RQ2. Specifically, we randomly selected 400 samples,
including 200 samples each from the CodeReview and CodeReview-
New datasets, which achieved 90% confidence level and 5.8% con-
fidence interval. Then we manually annotated them along three
dimensions: the relevance of the review comment to the code re-
finement (Comment Relevance), the information provided by the
review comment (Comment Information), and the categories of
code changes (Code Change Category). Our aim was to identify
the strengths and weaknesses of ChatGPT based on these three
dimensions.

We employed a rigorous annotation process for the manual study
of ChatGPT on the selected samples. To facilitate the annotation

135 150

29
29

36 21

0

50

100

150

200

250

CR CRN

Relevance

Perfect Partial Not

95 95

59 40

46 65

0

50

100

150

200

250

CR CRN

Information

ConSugg VagSugg VagQues

Figure 3: Data quality of CodeReview and CodeReview-New.

process, we developed a annotation website that allowed annotators
to view the review comment, the original code𝐶1, the ground truth
revised code 𝐶2, and the original pull request link in a single page.
The annotators were able to refer to the code, discussions, and
commits in the original pull request if necessary to determine the
annotation categories. Two co-authors independently annotated the
samples along the three dimensions. When discrepancies occurred
between the annotations of the two co-authors, a third author
was consulted to resolve the issue through discussion. Conflicts
were resolved every 50 samples, and annotation standards were
aligned over eight rounds to ensure consistency and accuracy in the
annotation process. It took 14 people days to perform the annotation
in total. The final Cohen’s Kappa coefficient [26] for Comment
Relevance, Comment Information, and Code Change Category was
0.675, 0.696 and 0.888 respectively, suggesting moderate, moderate
and strong agreement between the two annotators.

Comment Relevance measures the degree of relevance be-
tween the review comments and the code changes in the test dataset,
reflecting the quality of the dataset. The relevance of the comments
is divided into three levels:

• Level 1 (Not): There is no apparent relationship between the
code change and the review comment.

• Level 2 (Partial): The suggestions in the review comment are
partially implemented in the code change, or some refinement in
the code change is not present in the suggestions of the comment.

• Level 3 (Perfect): The code changes strictly follow the review
comment, and there is a clear correspondence between them.
In other words, the suggestion of the review comment is fully
implemented in the code change, and the code refinement is
entirely contained within the review comment.

Comment Information measures the sufficiency and clarity
of the instructions contained in the comment regarding the code
change, which reflects the difficulty for the contributor or a model
to refine the code. For example, a comment like “There are spaces
missing” is more informative than “This function name does not
describe well what it does.” We followed the definition of comment
information from [19], and divided the comment information into
three levels:

• Level 1 (Vague Question): The review comment only gives a
general direction for modification (e.g., “we should maintain the
consistency of variable naming”) without clear suggestions for
changes.

ICSE 2024, April 2024, Lisbon, Portugal Guo and Cao, et al.

79.60
72.11 71.63

84.73

73.56
68.21

27.72

5.17
1.75

34.74

10.10
6.31

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Perfect Partial Not ConSugg VagSugg VagQues

BLEU-trim EM-trim

Figure 4: Qualitative results of ChatGPT on data with differ-
ent review information levels.

• Level 2 (Vague Suggestion): The review comment provides spe-
cific suggestions for modification (e.g., “changing it with camel
case style”), but does not directly specify the location of the code
that should be modified.

• Level 3 (Concrete Suggestion): The review comment includes
explicit requests for adding or modifying code snippets (e.g.,
“changing the variable name ’testfile’ to ’testFile”’) or explicitly
identifies code snippets to be removed.
Code Change Category is used to measure the intention of the

code changes. We followed the taxonomy in [44] and defined the
categories based on our annotations. There are 4 major categories,
including Documentation Category, Feature Category, Refactoring
Category, and Documentation-and-Code Category.
• Documentation Category represents code changes that only
add, modify, or remove documentation. Modifications according
to conventions (Documentation-conventions) may also involve
additions, modifications, or deletions, but we separated it for
easier analysis of the unique challenges it poses to the model’s
prediction of revised code.

• Feature Category represents code changes in terms of func-
tional logic, such as adding, modifying, or removing code.

• Refactoring Category refers to non-functional code refactoring,
including renaming code entities (Refactoring-rename), swap-
ping two code snippets (Refactoring-swap), and updating code
based on coding standards (Refactoring-conventions).

• Documentation-and-Code Category represents code changes
that include both documentation and code modifications.
Figure 3 presents the results of the annotation on the CodeReview

dataset and the CodeReview-New dataset, which measures com-
ment relevance and comment information. The results show that,
compared to the CodeReview dataset, CodeReview-New dataset,
constructed with stricter filtering rules, has more samples with
perfect relevance levels (150 vs. 135) and fewer samples with not
relevance levels (21 vs. 36), indicating higher quality. Furthermore,
the CodeReview-New dataset has fewer samples with vague sug-
gestion level (40 vs. 59) and more samples with vague question level
(65 vs. 46) than the CodeReview dataset.

Figure 4 illustrates the results of ChatGPT on different comment
relevance and information levels. The figure highlights that Chat-
GPT performs the best when the comments are classified as perfect
relevance, outperforming both partial and not relevance levels. In

SMU Classification: Restricted

Original Review: “`markTableForAnalyze` (without r)”

ChatGPT (GPT-3.5) Result: Ground Truth:

- private void analyzeTables() {
+private void markTableForAnalyze () {
 // take a local copy and clear
because in rare cases we can call
- // back into markTableForAnalyzer
while iterating here
+ // back into markTableForAnalyze
while iterating here
 HashSet<Table> tablesToAnalyzeLocal
= tablesToAnalyze;

private void analyzeTables() {
 // take a local copy and clear
because in rare cases we can call
- // back into markTableForAnalyzer
while iterating here
+ // back into markTableForAnalyze
while iterating here
 HashSet<Table> tablesToAnalyzeLocal
= tablesToAnalyze;

Fix Strategy 1: ChatGPT (GPT-3.5) + Revised Review.
Revised Review: “At the line: back into markTableForAnalyze,
change it to `markTableForAnalyze` (without r).”

Fix Strategy 2: ChatGPT (GPT-4) + Original Review.
GPT-4 Explanations: “Based on the code review, the reviewer has
requested to change the comment mentioning markTable-
ForAnalyzer to markTableForAnalyze. Here‘s the revised code: …”

Figure 5: An example of unclear location and the mitigation.

addition, ChatGPT performs the best on reviews that contain con-
crete suggestion information, while performing similarly for vague
suggestions and vague questions. The results imply that the quality
of data significantly impacts ChatGPT’s performance, as reviews
with low relevance and low information do not provide enough
context and information for ChatGPT to make accurate predictions.

Table 6 summarizes the results across different code change
categories. It shows that ChatGPT performs best in the Refactor
category with an EM-trim of 37.50% and a BLEU-trim of 83.58%, in-
dicating that ChatGPT has a good understanding of how to perform
code refactoring. However, the Documentation-and-Code category
is the weakest performing category, with an EM-trim of 0% and
a BLEU-trim of 64.09%, which highlights the difficulty in making
simultaneous changes to code and documentation while maintain-
ing consistency. When comparing minor categories, ChatGPT is
best at handling remove-type code changes, followed bymodify and
add categories. Additionally, we observed that some of predictions
about updates and adds are actually correct, but do not strictly
match the ground truth answers, which will be discussed in RQ4.
The results also suggest that ChatGPT is skilled at updating code
based on conventions, with EM-trim values of 23.08% and 44.12%
for Documentation-convention and Refactor-convention samples,
respectively, while the average EM-trim for the Documentation
and Refactor categories is lower at 17.78% and 37.50%, respectively.

Answers to RQ3: ChatGPT performs better on high-quality re-
views with concrete suggestions, while its performance is worse
on reviews with low relevance and low information. Further-
more, ChatGPT demonstrates the highest performance on code
refactoring tasks, while its performance is lower on tasks that
involve refining documentation and functionalities.

4.4 RQ4 Root Causes Analysis and Mitigation
In RQ4, we aim to further understand the root causes of ChatGPT’s
underperforming cases and identify potential solutions for improve-
ment. Specifically, we collect 206 underperforming cases that met

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study ICSE 2024, April 2024, Lisbon, Portugal

Table 6: Results of ChatGPT on different code changes.

Doc-add Doc-rem Doc-mod Doc-con Feat-add Feat-rem Feat-mod Ref-ren Ref-swap Ref-con Doc&Code
#Sample 14 8 55 13 21 52 153 24 6 34 20
EM-T 0.00 50.00 16.36 23.08 4.76 23.08 19.61 29.17 33.33 44.12 0.00
BLEU-T 52.65 87.24 81.16 67.45 75.40 73.27 79.43 85.88 82.14 82.22 64.09

SMU Classification: Restricted
Original Review: “return data directly”

ChatGPT (GPT-3.5) Result: Ground Truth:

private fun genericError(data:
Payload): Payload {
- data.apply {
- success = false
- resultType = GENERIC_ERROR
- result = arrayOfNulls(0)
- }
+data.success = false
+data.resultType = GENERIC_ERROR
+data.result = arrayOfNulls(0)
 return data
}

private fun genericError(data:
Payload): Payload {
+ return data.apply {
- data.apply {
 success = false
 resultType = GENERIC_ERROR
 result = arrayOfNulls(0)
 }
- return data
}

Fix Strategy 1: ChatGPT (GPT-3.5) + Revised Review.

Revised Review: “return the result of `data.apply { ... }` directly.”

Fix Strategy 2: ChatGPT (GPT-4) + Original Review.
GPT-4 Explanations: “Instead of modifying the `data` object and then
returning it, we can simply return the result of `data.apply { ... }`
directly. This makes the code more concise and easier to read. Here‘s
the revised code: …”

Figure 6: An example of unclear changes and the mitigation.

two criteria: 1) the reviews have perfect relevance and 2) the EM-trim
scores calculated based on outputs of ChatGPT were 0.

4.4.1 Root Cause Analysis. Table 7 presents the results of the root
cause analysis, which includes two major categories of root causes:
inaccurate measurement and incorrect prediction.

Inaccurate Measurement Category refers to false positives
where the predicted refinement by ChatGPT is correct based on our
manual inspection, but the measurement metrics, such as EM or EM-
trim, are low due to the strict matching. Four types of root causes
were identified in this category: Insignificant Omission (IO), where
ChatGPT did not return unmodified code segments but correctly
returned the modified parts; Unexpected Grammar Fix (UGF), where
ChatGPT fixed grammar errors in the documentation that were not
present in the ground truth revised code;Code Style Difference (CSD),
where the predicted code by ChatGPT is semantically identical to
the ground truth revised code, with differences only in whitespace,
line breaks, and other code style aspects that do not affect code
semantics, and the review comment did not explicitly prohibit the
change of code style. Reasonable Improvement (RI), refers to cases
where ChatGPT’smodifications are highly reasonable and represent
an improvement over the original version.

Incorrect Prediction Category refers to true positive cases
where ChatGPT made incorrect answers compared to the ground
truth revised code. We identified three types of root causes in this
category. Need Domain Knowledge (NDK) refers to cases where the
review comment does not provide the necessary repository-related

SMU Classification: Restricted
Original Review: “This should probably be boolean, with a default of 0, so we don't mess
up other people's existing settings.”

ChatGPT (GPT-3.5) Result: Ground Truth:

Schema::table('settings', function (Blueprint
$table) {
- $table->tinyInteger('labels_display_model’)
+ $table->boolean('labels_display_model’)
- ->default(1);
+ ->default(false);

Schema::table('settings', function (Blueprint
$table) {
- $table->tinyInteger('labels_display_model’)
+ $table->boolean('labels_display_model’)
- ->default(1);
+ ->default(0);

Figure 7: An example of model fallacy.

domain knowledge to complete the modification (e.g., “change this
as the style in anotherFile”). Unclear Location (UL) refers to cases
where the review comment does not provide a specific location
for the code to be modified. For example, in Figure 5, the review
does not clearly indicate the location of the changes, and Chat-
GPT (GPT-3.5) erroneously modifies the function name as well.
Although contributors can see the specific location of the review
comment on the GitHub pull request interface, such information is
not provided to ChatGPT, following the same settings as CodeRe-
viewer [19]. Unclear Changes (UC) refers to cases where the review
comment has a lower information level, causing ChatGPT to be
unable to determine the specific modifications needed, resulting in
underperformance. For example, in Figure 6, ChatGPT (GPT-3.5)
mistakenly assumes that the review suggests returning the result
of “data.apply...” to data itself due to the vague comment. Model
Fallacy (MF) refers to cases where the review is accurate and clear
from the perspective of human, yet ChatGPT fails to handle them
correctly. It suggests that the observed issues are more likely to
be inherent to the model itself rather than solely stemming from
the quality of the review. As an illustration, in Figure 7, ChatGPT
(GPT-3.5) mistakenly believes that the review suggests changing
default(1) to default(false).

As presented in Table 7, 51 (20.39%) of the underperforming cases
were caused by inaccurate EM measurement. For the remaining
164 (79.61%) cases where ChatGPT outputs incorrect answers, the
majority 107 (51.94%) cases were caused by the lack of domain
knowledge required to complete the modification. Another 44 cases
(21.36%) were due to unclear location information in the review
comment, while 13 cases (6.31%) were caused by unclear instruc-
tions provided in the review comments.

4.4.2 Mitigation Strategies. We further investigated potential miti-
gation to improve ChatGPT on the underperforming cases in the
Incorrect Prediction category as Need Domain Knowledge requires
more information. In general, mitigation can be conducted from
two main directions: improving the quality of review comments
and enhancing the models used for code refinement. Improving the
review quality can be achieved through two avenues: designing best
practices for reviewers to provide high-quality reviews and developing

ICSE 2024, April 2024, Lisbon, Portugal Guo and Cao, et al.

Table 7: Results of root cause analysis.

Inaccurate Measurement Incorrect Prediction
Type IO UGF CSD RI NDK UL UC MF

#Samples 13 2 19 8 107 32 11 14

tools to assist in refining low-quality reviews if the reviewers cannot
provide high-quality ones. In this study, we would like to inves-
tigate whether providing more precise reviews and using more
advanced models can improve the performance of LLMs on the
code refinement task. We leave the study of advanced mitigation
strategies (e.g., automatic review refinement) as the future work.

For the cases related to Unclear Location and Unclear Changes, we
identified three strategies for improving the quality of reviews and
models: incorporating specific location information in the review
(abbreviated as Loc.), providing more explicit review comments
(abbreviated as Exp.), and using more advanced GPT-4 model in
ChatGPT. When utilizing GPT-4, in addition to employing the orig-
inal review directly (abbreviated as Dir.), we can also add specific
location information or provide more explicit review comments
if needed. We aim to study whether the strategies could mitigate
these challenges of ChatGPT.

Table 8 shows the results with different mitigation strategies.
The rows UL and UC refer to the cases under Unclear Location and
Unclear Changes, respectively. The results show that GPT-3.5, com-
bined with the corresponding mitigation techniques, can resolve
24/32 (75%) of Unclear Location cases and 6/11 (54.54%) of Unclear
Changes cases. By simply switching to GPT-4 without using mitiga-
tion techniques, it can resolve cases very close to those addressed by
GPT-3.5 with mitigation techniques. After applying the mitigation
techniques, GPT-4 can resolve 31/32 (96.88%) of Unclear Location
and 10/11 (90.91%) of Unclear Changes cases. Figure 5 and Figure
6 show two examples with different mitigations. By revising the
original review (i.e., adding location information and making it
more explicit), ChatGPT (GPT-3.5) can accurately refine the code.
Another method is to use a more advanced LLM, i.e., GPT-4, which
is capable of directly producing correct results without the need
for review revision. In addition, we show part of explanations gen-
erated by GPT-4, which are clear and reasonable. Moreover, unlike
GPT-3.5, GPT-4 often asks the reviewer for specific modification
locations or content when it cannot infer them from the review
comment. This is particularly useful when applied in real-world
scenarios, as it allows for iteratively helping the reviewer refine
their review comment until the model can better understand it,
ultimately improving the accuracy of the predicted code changes.

Answers to RQ4: The main root causes identified in our analy-
sis were the lack of domain knowledge, unclear location, and
unclear changes. Two potential directions for mitigating these
issues were identified: improving the large language model, such
as using GPT-4 instead of GPT-3.5, and improving the quality
of reviews, such as providing more clear information.

5 IMPLICATIONS
Our study provides implications for both developers seeking to
automate code refinement and researchers working in the code
review field.

Table 8: Results of mitigation strategies.

Strategy #Samples GPT-3.5 GPT-4
Loc. Exp. Total Dir. Loc. Exp. Total

UL 32 24 - 24 22 9 - 31
UC 11 - 6 6 6 - 4 10

Developers: Our findings show that ChatGPT has the potential
to significantly aid developers in code refinement tasks. However,
the results also suggest that developers must configure language
models like ChatGPT carefully, ensure review quality, and validate
output. Our study highlights the impact of temperature and prompt
configuration on performance, suggesting that using lower tem-
peratures and concise descriptions with scenario information can
lead to better and more stable results. Developers should therefore
carefully configure these parameters before using LLMs for code
refinement tasks. Regarding the reviewers who create the code re-
views, we have found that clearer reviews significantly aid ChatGPT
in understanding modification suggestions. We suggest reviewers
to write more specific and detailed review comments. Specifically,
the reviewers should be careful in using specific syntax (e.g., code
blocks) that may be difficult to be understood by ChatGPT. A safe
solution could be that the reviewers can check the clarity of the
review content with ChatGPT. For developers who utilize Chat-
GPT for automated code modification, we recommend conducting
a careful manual review of ChatGPT’s results. Especially for modi-
fications requiring strong domain knowledge or cases where the
review information is ambiguous, it is important to verify whether
ChatGPT correctly understands the reviewer’s intent and to check
for any unnecessary modifications or deletions made by ChatGPT.
One possible way is to read the ChatGPT’s explanation carefully to
check whether the model understands the reviewwell. Furthermore,
we recommend that users to choose advanced models if possible,
such as GPT-4, which offer enhanced understanding capabilities.

Researchers: Our study demonstrates that ChatGPT achieves
promising results but still has room for improvement. Specifically,
we identify some root causes of the underperformance of ChatGPT
and propose some strategies to mitigate these challenges. These
findings provide important guidance for future research in improv-
ing the performance of LLMs and enhancing the quality of code
reviews. Potential research directions include automatic genera-
tion of high-quality reviews, review refinement, and automatic
low-quality review detection and filtering. Furthermore, our study
highlights the limitations of existing metrics such as EM and BLEU,
suggesting the need for more accurate and reliable metrics for
evaluating the results of language models in code refinement tasks.

6 THREATS TO VALIDITY
The selected baseline model and benchmark could be a threat to the
validity of our results. We addressed this by selecting a state-of-the-
art method as reference and creating a new test dataset,𝐶𝑅𝑁 , with
stricter filtering rules. The randomness of ChatGPT predictions is
another potential threat to the validity of our results. To mitigate
this, we ran each setting ten times in RQ1, which provided us with
more reliable and stable results. In RQ2, we did not run multiple
times due to the high cost of accessing ChatGPT API. The prompts
settings we used for ChatGPT could be a threat, as there may be

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study ICSE 2024, April 2024, Lisbon, Portugal

other optimal prompts for code refinement tasks. Moreover, the dif-
ferent wording of the prompts could also impact the results. We try
to address this by following the existing best practices and selecting
a range of prompts with varying levels of complexity and speci-
ficity, which allowed us to study which types of prompts worked
best in different contexts. Another potential threat arises from the
comparison between ChatGPT and CodeReviewer, which involve
different settings. Specifically, in RQ1, we empirically determined
the optimal parameters for temperature and prompts in ChatGPT.
We assume that CodeReviewer also achieves its best performance
with its hyper-parameter settings.

The randomness of the selection of samples for the manual anno-
tation process could also be a threat. However, we believe that this
would not affect the overall conclusions drawn from our results,
especially on the performance of ChatGPT on different categories
in RQ3. The subjective nature of human decisions in the manual
annotation process is another potential threat to the validity of our
results. To address this, we obeyed a rigorous annotation process
with two co-authors independently annotating each sample and
a third author resolving any inconsistencies or conflicts through
discussion. Moreover, the final Cohen’s Kappa coefficient indicates
relatively high agreement between the two annotators.

7 RELATEDWORK
Pre-trained Models for SE: Large-scale pre-trained models has
revolutionized the field of natural language processing [7, 34], and
its application in the software engineering domain has shown
promising results [2, 15, 17]. Currently, pre-trained model archi-
tectures are mainly divided into encoder-only, decoder-only, and
encoder-decoder models [10, 16].

Encoder-onlymodels pre-train a bidirectional Transformer, which
can access token information before and after the current token
when training [9, 11, 21]. Decoder-only models allow the model to
access only the tokens preceding the current token during the train-
ing process [22, 39]. GPT-3 [5] also employs decoder-only architec-
tures and has a significantly larger parameter size (175 billion, 10x
more than any previous LLMs). Additionally, GPT-3.5-Turbo [28],
the default model of ChatGPT, adopt Reinforced Learning with
Human Feedback (RLHF) to enhance GPT3’s ability to understand
instructions and generate content aligned with human expecta-
tions. CodeT5 [45] is a typical pretraining model for code utilizing
an encoder-decoder architecture. It adopts the T5 [35] model and
considers crucial token type information from identifiers during
pretraining. CommitBART [20] also employs an encoder-decoder
architecture and is specially trained for commit representation.
There are also some works focusing on exploring the learned pro-
gram semantics for these pre-trained models in SE [23, 24] and
analyzing the robustness [21] and security [18] of these models.
Automating Code Review Activities: Studies have presented
evidence that developer spend a considerable amount of time on
code review activities [4, 31], both writing review comments for
other’s code and performing code changes according to other’s
comments [3, 25]. Consequently, numerous studies [12, 41, 48] have
been carried out on automating the code review (ACR) activities,
emphasizing their significance and potential impact [46].

According to the stages of code review, prior studies on ACR can
be categorized into three tasks [42, 44, 49]: (1) Code Change Recom-
mendation [19]: Before the contributor submits the original code
for review, the ACR model provides potential code changes that the
reviewer might suggest. (2) Review Comment Generation [43]: After
the contributor submits the code for review, the model provides
possible review comments for the reviewer, serving as a draft for
review comments. (3) Code Refinement [19, 43]: After the reviewer
provides review comments, the model suggests code changes for the
contributor by considering both the review comments and submit-
ted code. In this paper, we focus on the last task, Code Refinement,
as it is the final and most crucial step in code review activities.

Tufano et al. [42] introduced a Recurrent Neural Network (RNN)
based Neural Machine Translation (NMT) model for the code re-
finement task. CodeReviewer [19] utilized the CodeT5 model and
designed four pre-training tasks related to code review. Recently,
Zhou et al. [49] compared existing ACR techniques, including Trans-
Review [44], AutoTransform [40], and T5-Review [43]. They discov-
ered that CodeT5 outperformed existing ACR techniques in both
code change recommendation and code refinement tasks.

Although, they evaluated large language models for code, such
as CodeT5 and CodeBERT, ChatGPT is significantly different from
these LLMs with RLHF and emergent abilities due to a much larger
number of parameters [27], thus need further evaluation. Despite
that ChatGPT have been evaluated on numerous NLP tasks [13]
and several software engineering tasks [37, 47], this paper presents
the first comprehensive empirical study exploring ChatGPT’s capa-
bilities in the code refinement task, to the best of our knowledge.

8 CONCLUSION
In this paper, we conduct an empirical study to investigate the
potential of ChatGPT in automating code review tasks, with a focus
on code refinement based on code reviews. We assess the impact of
various ChatGPT configurations and examine its effectiveness on
both standard code review benchmarks and a new dataset collected
by us. Our findings highlight the promising potential of ChatGPT
for code refinement, unveil the root causes of its underperformance,
and suggest potential strategies to overcome these challenges.

9 ACKNOWLEDGMENT
This work was partially supported by the National Key R&D Project
(2021YFF1201102), theNational Key R&DProgram of China (2021ZD
0112903), the National Natural Science Foundation of China (Grant
No. 61872262), the National Research Foundation, Singapore, and
the Cyber Security Agency under its National Cybersecurity R&D
Programme (NCRP25-P04-TAICeN). Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore and Cyber Security Agency of
Singapore.

ICSE 2024, April 2024, Lisbon, Portugal Guo and Cao, et al.

REFERENCES
[1] Fatih Kadir Akın. 2023. Awesome Chatgpt Prompts. https://github.com/f/

awesome-chatgpt-prompts.
[2] Gareth Ari Aye, Seohyun Kim, and Hongyu Li. 2021. Learning autocompletion

from real-world datasets. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 131–
139.

[3] Amiangshu Bosu and Jeffrey C Carver. 2013. Impact of peer code review on peer
impression formation: A survey. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, 133–142.

[4] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
useful code reviews: An empirical study at microsoft. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 146–156.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[6] ChatGPTCodeReview. 2023. ExtraResourceLinkage. https://sites.google.com/
view/chatgptcodereview.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[8] Guo et al. 2023. chatgptcodereview-settings. https://sites.google.com/view/
chatgptcodereview/impact-of-settings?authuser=0.

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[10] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin.
2022. UniXcoder: Unified Cross-Modal Pre-training for Code Representation.
arXiv:2203.03850

[11] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[12] Vincent J Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. 2021.
Towards automating code review at scale. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1479–1482.

[13] Nan Hu, Yike Wu, Guilin Qi, Dehai Min, Jiaoyan Chen, Jeff Z Pan, and Zafar Ali.
2023. An Empirical Study of Pre-trained Language Models in Simple Knowledge
Graph Question Answering. arXiv preprint arXiv:2303.10368 (2023).

[14] IBM. 2022. IBM Global AI Adoption Index 2022. https://www.ibm.com/watson/
resources/ai-adoption.

[15] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine
translation for automatic program repair. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[16] Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu. 2021. TreeBERT:
A tree-based pre-trained model for programming language. In Uncertainty in
Artificial Intelligence. PMLR, 54–63.

[17] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code pre-
diction by feeding trees to transformers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 150–162.

[18] Yanzhou Li, Shangqing Liu, Kangjie Chen, Xiaofei Xie, Tianwei Zhang, and Yang
Liu. 2023. Multi-target Backdoor Attacks for Code Pre-trained Models. arXiv
preprint arXiv:2306.08350 (2023).

[19] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.
2022. CodeReviewer: Pre-Training for Automating Code Review Activities. arXiv
preprint arXiv:2203.09095v1 (2022).

[20] Shangqing Liu, Yanzhou Li, Xiaofei Xie, and Yang Liu. 2023. CommitBART: A
Large Pre-trained Model for GitHub Commits. arXiv:2208.08100

[21] Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu. 2023. Con-
traBERT: Enhancing Code Pre-trained Models via Contrastive Learning. arXiv
preprint arXiv:2301.09072 (2023).

[22] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

[23] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming
Nie, and Yang Liu. 2023. The Scope of ChatGPT in Software Engineering: A
Thorough Investigation. arXiv preprint arXiv:2305.12138 (2023).

[24] Wei Ma, Mengjie Zhao, Xiaofei Xie, Qiang Hu, Shangqing Liu, Jie Zhang, Wenhan
Wang, and Yang Liu. 2022. Is Self-Attention Powerful to Learn Code Syntax and
Semantics? arXiv preprint arXiv:2212.10017 (2022).

[25] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336–347.

[26] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[27] OpenAI. 2023. ChatGPTblog. https://openai.com/blog/chatgpt.
[28] OpenAI. 2023. gpt-3.5-turbo. https://platform.openai.com/docs/models/gpt-3-5.
[29] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774
[30] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training
language models to follow instructions with human feedback. arXiv:2203.02155

[31] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the intents: An in-depth
empirical study on software refactoring in modern code review. In Proceedings of
the 17th International Conference on Mining Software Repositories. 125–136.

[32] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https:
//doi.org/10.3115/1073083.1073135

[33] Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga,
and Diyi Yang. 2023. Is chatgpt a general-purpose natural language processing
task solver? arXiv preprint arXiv:2302.06476 (2023).

[34] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[35] Colin Raffel, Noam Shazeer, AdamRoberts, Katherine Lee, SharanNarang,Michat-
gpt promptsel Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Explor-
ing the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
arXiv:1910.10683

[36] Scipy. 2023. ttest_ind. https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.ttest_ind.html.

[37] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
Analysis of the Automatic Bug Fixing Performance of ChatGPT. arXiv:2301.08653

[38] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to
summarize with human feedback. Advances in Neural Information Processing
Systems 33 (2020), 3008–3021.

[39] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443.

[40] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamtha-
vorn. 2022. AutoTransform: automated code transformation to support modern
code review process. In Proceedings of the 44th International Conference on Soft-
ware Engineering. 237–248.

[41] Patanamon Thongtanunam, chatgpt_promptskkrit Tantithamthavorn,
Raula Gaikovina Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto.
2015. Who should review my code? a file location-based code-reviewer recom-
mendation approach for modern code review. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER). IEEE,
141–150.

[42] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 25–36.

[43] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using pre-trained models to boost code
review automation. In Proceedings of the 44th International Conference on Software
Engineering. 2291–2302.

[44] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and
Gabriele Bavota. 2021. Towards automating code review activities. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
163–174.

[45] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, Online and Punta Cana, Dominican Republic, 8696–8708.

[46] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys
Poshyvanyk. 2022. A systematic literature review on the use of deep learning in
software engineering research. ACM Transactions on Software Engineering and

https://github.com/f/awesome-chatgpt-prompts
https://github.com/f/awesome-chatgpt-prompts
https://arxiv.org/abs/2005.14165
https://sites.google.com/view/chatgptcodereview
https://sites.google.com/view/chatgptcodereview
https://sites.google.com/view/chatgptcodereview/impact-of-settings?authuser=0
https://sites.google.com/view/chatgptcodereview/impact-of-settings?authuser=0
https://arxiv.org/abs/2203.03850
https://www.ibm.com/watson/resources/ai-adoption
https://www.ibm.com/watson/resources/ai-adoption
https://arxiv.org/abs/2208.08100
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-3-5
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1910.10683
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://arxiv.org/abs/2301.08653

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study ICSE 2024, April 2024, Lisbon, Portugal

Methodology (TOSEM) 31, 2 (2022), 1–58.
[47] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C. Schmidt.

2023. ChatGPT Prompt Patterns for Improving Code Quality, Refactoring, Re-
quirements Elicitation, and Software Design. arXiv:2303.07839

[48] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2015. Automati-
cally recommending peer reviewers in modern code review. IEEE Transactions

on Software Engineering 42, 6 (2015), 530–543.
[49] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, Junda He, and David Lo. 2023.

Generation-based Code Review Automation: How Far Are We? arXiv preprint
arXiv:2303.07221 (2023).

https://arxiv.org/abs/2303.07839

	Exploring the potential of ChatGPT in automated code refinement: An empirical study
	Citation
	Author

	Abstract
	1 Introduction
	2 Background
	2.1 Code Review Process
	2.2 ChatGPT

	3 STUDY DESIGN
	3.1 Overview and Research Questions
	3.2 Experiment Settings

	4 Evaluation Results
	4.1 RQ1 Impact of Prompts and Temperatures
	4.2 RQ2 Effectiveness of ChatGPT
	4.3 RQ3 Strengths and Weaknesses of ChatGPT
	4.4 RQ4 Root Causes Analysis and Mitigation

	5 Implications
	6 Threats To Validity
	7 RELATED WORK
	8 CONCLUSION
	9 Acknowledgment
	References

