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DOWNSCALING OF PHYSICAL RISKS FOR CLIMATE SCENARIO DESIGN 

Enrico Biffis1 and Shuai Wang2 

Executive summary 

Southeast Asia is arguably one of the areas most vulnerable to natural disasters due to its dense 
population, coastal urbanization, and rainfall variability driven by the local monsoon systems. In this 
report, we focus on the impact of global warming in the region along four climate dimensions: 
temperature, precipitation, wind speed and coastal surge. The latter represents the surge of water 
from the ocean in excess of astronomical tides. Our objective is to downscale the outputs of global 
climate models to temporal and spatial resolutions of interest to market participants wishing to 
quantify climate risk vulnerability via climate stress testing exercises truly representative of their 
exposures at location. 

Throughout our study, we consider the representative concentration pathway 8.5 until 2050 
(referred to as RCP8.5-2050 henceforth), which is widely considered as a high emission scenario and 
often regarded as capturing the potential failure of the international community to coordinate to 
implement effective climate risk mitigation policies. As such our focus is broadly consistent with 
climate scenarios variously referred to as Business As Usual (BAU), No Additional Policy Action 
(NAPA), or Hot House3.  

Our downscaling approach uses machine learning techniques and places emphasis on the entire 
distribution of climate variables rather than just the evolution of their average/median level along a 
climate scenario. We are therefore able to discuss the impact of global warming on both the average 
level of climate variables of interest and the tail of their distributions. This allows us to disentangle 
systematic shifts in risk profiles from increases in the frequency and severity of extreme events. We 
summarize some of the main findings of the report in Figures A to C. 

Figure A depicts the changes in the four climate variables of interest across Southeast Asia along 
RCP8.5-2050. We compare global climate model outputs with those downscaled to a spatial 
resolution of 1km x 1km, which could be further refined on a demand basis. Results demonstrate 
how downscaling offers a more granular understanding of physical climate exposures, which can be 
considerably uneven across geographical areas of interest.  

Figure B summarizes the results obtained for Indonesia, Malaysia, Philippines, Thailand.  We develop 
a simple risk rating system indicating the extent to which a country experiences changes in the 
average vs. tail distribution of four climate variables of interest. Except for the Philippines, all 
countries experience sizeable increases in average temperature and windspeed. Extreme rainfall 
events, as opposed to average precipitation, should be the main concern of all countries studied, 
with Malaysia being the most vulnerable. Coastal surge mainly affects Indonesia and Malaysia, both 
at the average and tail level. 

Figure C offers examples of how downscaling can reveal considerable heterogeneity of exposures at 
the urban level. We provide tail risk examples for rainfall in Jakarta and Kuala Lumpur, revealing how 
exposures at location can vary between +100% and -80% relative to the outputs of coarser 
resolution models. Our study therefore suggests that market participants should rely on properly 
downscaled average and tail risk parameters to gauge physical risk at location.   

The final part of the report explores typhoon risk. By projecting and downscaling a key driver of 
typhoon risk, we find that the region is likely to experience an increase in its frequency and severity. 

 
1 Department of Finance and Brevan Howard Centre for Financial Analysis, Imperial College Business School; Sustainable 

Tech Lab at I-X, Imperial College London. 
2 Department of Civil and Environmental Engineering, Princeton University.  
3 See, for example, NGFS Climate scenarios for central banks and supervisors (2021) and Bank of England (2021). 

https://www.imperial.ac.uk/people/e.biffis
https://cee.princeton.edu/people/shuai-wang
https://ix.imperial.ac.uk/
https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors-june-2021
https://www.bankofengland.co.uk/-/media/boe/files/stress-testing/2021/the-2021-biennial-exploratory-scenario-on-the-financial-risks-from-climate-change.pdf


 

 

 

 

 

 

 

 

 

 

 

 

Figure A. Downscaling average impact of RCP8.5-2050. 

The four charts on the left use a global climate model and depict the impact of climate scenario RCP8.5-2050 on the 
average temperature, precipitation, windspeed and coastal surge across the geographies of interest. The charts on the 

right report the downscaled version of the results at a spatial resolution of 1km x 1km. 

Downscaling average impact and tail risk for climate scenario RCP8.5-2050. Country based risk scores are defined based 
on the aerial surface experiencing sizeable changes in distribution at the average level, or at the 90-th, 95-th, 97.5-th and 

99-th percentile levels. Risk scores are low (green), medium (yellow), high (orange) and severe (red), depending on the 
aerial surface affected by such changes. 

Figure B. Country risk scoring: average impact and tail risk along the RCP8.5-2050 scenario. 
 

Figure C. Downscaling at urban cluster level. 

Downscaling tail risk (97.5-th and 99-th percentile) at urban cluster level. Results are reported for precipitation (in mm 
per day) for Jakarta (lef charts) and Kuala Lumpur (right charts). The red markers on the color scales indicate the output 

of a global climate model. Without downscaling, Jakarta would simply appear colored in green (97.5th percentile) or 
yellow (99th percentile), whereas Kuala Lumpur would appear as yellow (97.5th percentile) or white (99th percentile). 

The results demonstrate how material the risk of over/under-estimating risk in the absence of appropriate downscaling. 
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1. Introduction 

A warm and moist atmosphere, primarily modulated by the tropical ocean, creates an ideal 
environment for extreme rainfall in Southeast Asia. Most countries in the region have long coastlines 
exposed to frequent coastal surges (of water from the ocean) as well as typhoons. The variability of 
rainfall patterns in Southeast Asia is quite significant due to the local monsoon systems. For 
instance, rainfall in Thailand and the Philippines is largely influenced by the South Asian summer 
monsoon creating heavy rainfall during the May-September period, whereas the boreal winter 
monsoon brings extreme rainfall to countries such as Singapore and Malaysia between November 
and March. 

Global warming is associated with at least three physical risks that are relevant in SEA: 

• Sea level rise, resulting from the thermal expansion of seawater and melting of land-based 
ice sheets and glaciers. 

• Increase in precipitation, resulting from warmer air being able to hold more water vapor—
with a rate of 7% per degree rise in temperature4. 

• Changes in rainfall variability associated with changes in the monsoon system in Southeast 
Asia5.  

Sea level rise and increase in precipitation are broadly associated with a worsening risk profile of 
storm surge and excess rainfall events, which can be broadly understood with global models, but 
require downscaling to properly gauge impact at location. Changes in rainfall variability, however, 
cannot be easily analyzed with global models, as they are modulated by an evolving monsoon 
system. This in turn makes it challenging to predict the footprint of storm surge and extreme rainfall 
events throughout Southeast Asia.  

In this report, we look at the above challenges and show how downscaling can inform our 
understanding of physical risks for climate sensitive valuations and stress testing exercises . We 
study the evolution of the following climate variables along representative concentration pathway6 
(RCP) 8.5 until 2050 (henceforth referred to as RCP8.5-2050 climate scenario): 

1. Maximum daily temperature, expressed in Celsius degrees. 
2. Cumulative daily precipitation, expressed in millimeters of rain per day. 
3. Daily average wind speed, expressed in meters per second. 
4. Daily average coastal surge height, expressed in meters, which represents sea level surge in 

excess of both astronomical tides and projected sea level rise7. The "Technical Appendix" 

 
4 Ivancic, T. J., & Shaw, S. B. (2016). A US‐based analysis of the ability of the Clausius‐Clapeyron relationship to explain 

changes in extreme rainfall with changing temperature. Journal of Geophysical Research: Atmospheres, 121(7), 3066-3078. 
5 See Wang S, Toumi, R. 2021, Recent migration of tropical cyclones toward coasts, Science, Vol: 371, Pages: 514-517. 
6 See IPCC (2019). 
7 An increase of between 0.23 and 0.24 meters is projected for the locations of interest in this study under RCP8.5 -2050. See 

https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. 

http://dx.doi.org/10.1126/science.abb9038
http://dx.doi.org/10.1126/science.abb9038
https://sedac.ciesin.columbia.edu/ddc/ar5_scenario_process/RCPs.html
https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool


document accompanying this report outlines a simple model of coastal surge driven by the 
evolution of wind speed. 

Figure 1 depicts the geographical area of interest. We will focus on four countries: Indonesia, 
Malaysia, Philippines, and Thailand.  

 

Figure 1. Geographical areas of focus. 

Importantly, we will study changes in the distribution of the variables of interest across the different 
locations and not just changes in average levels. Figure 2 provides a stylized representation of what 
the downscaling will allow us to achieve: identifying locations likely to experience a change in the 
mean level, the tail risk or both, the latter representing the worst situation. By tail risk we mean the 
increase in frequency and severity of events deemed to be rare and extreme under the current 
climate environment. 

 

 

Figure 2. Changes in mean vs. tail level of a target variable. Panel (a) shows the case in which the 
distribution experiences a thickening of the tails in the projected climate scenario. Panel (b) shows 
the case of a distribution experiencing a shift in its mean level, but no changes in its tails. Panel (c) 
depicts a situation in which the distribution experiences both a shift in the mean level and a 
thickening of the tails in the projected climate scenario.   

The report is organized as follows. In the next section, we provide an overview of the methodology. 
In section 3, we discuss downscaling results for the average level of climate variables of interest. In 
section 4, we will focus on tail risk and consider the 90th, 95th, 97.5th and 99th percentiles of the 
distribution. In section 5, we look at urban clusters to illustrate the ability of the downscaling 
approach to unveil considerable heterogeneity in exposures at location. Section 6 discusses some 
results related to typhoons, combining our understanding of the Nino/Nina effect with the footprint 
of typhoons in Southeast Asia. Finally, section 7 offers concluding remarks and discusses next steps. 
Two accompanying documents contain appendices including further results and technical 
information.  

 

 



2. Methodology 

There are two prevailing downscaling methods available in the literature:  

• Statistical approach. It uses statistical relationships to downscale predictions at high 
temporal and spatial resolution. Being a reduced form approach, it is considerably efficient 
from a computational point of view. 

• Dynamical approach. Its predictions rely on a structural representation of physical processes 
driving the phenomena of interest. As such, it can capture complex, non-linear relationships 
at the expense of computational tractability.  

We adopt a machine learning approach allowing us to overcome the computational burden of the 
dynamical approach while at the same time uncovering interesting patterns in the spatio-temporal 
characteristics of relevant variables. We test four different approaches8: 

1. Quantile Mapping (QM) method. The QM bias correction algorithm is commonly used to 
correct systematic distributional biases in climate model outputs. The QM model is trained 
by matching the cumulative distribution functions of the observed and simulated variables, 
and it has been widely used in climate downscaling.9  

2. Pure Analog (best and sample analog) method. The analog approach is arguably the simplest 
downscaling scheme. It trains the downscaling model by associating the simulated values of 
a variable with the historical observations showing the greatest similarity. Because of its 
ease of application, the analog method has been widely applied in climate projections.10  

3. Random Forest (RF) approach. The RF method uses advanced binary tree application based 
on the bagging method to add an additional layer of randomness. A decision tree is a 
hierarchical analysis diagram composed of a collection of nodes and edges organized in a 
tree structure. Use of the RF method is relatively new; see Pang et al. (2017) for an example 
of application to climate downscaling11.  

4. Temperature bias correction. This method was explicitly developed for temperature 
downscaling and usually works well in that context. We apply the same methodology to 
precipitation and wind speed in addition to temperature. 

We use state-of-the-art global climate reanalysis data—the ERA5 data set generated by the 
European Centre for Medium-Range Weather Forecasts12 —as the “observations”. The future 
“projections” are taken from the Coupled Model Intercomparison Project (the 6th generation, CMIP-
6)13. To train the machine learning models, we use the “simulated observations” from the CMIP6 
data set. The models are trained by mapping the quantiles of each climate quantity in the “simulated 
observations” onto that in the “observations”. The trained models are then used to bias -correct the 
“projections”, which generate the downscaled climate scenarios for the Southeast Asian region.  

 
8 See https://www.gfdl.noaa.gov/esd_eval/.  
9 See, for example: Maraun, D. (2013), Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, 

Journal of Climate, 26(6):2137–2143; Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B. (2012), Bias correcting climate 

model simulated daily temperature extremes with quantile mapping, Hydrology and Earth System Sciences, 16(9):3309–
3314. 
10 See, for example: Lorenz, E. N. (1969). Atmospheric predictability as revealed by naturally occurring analogues , Journal of 

Atmospheric Sciences, 26(4):636–646; Van den Dool, H. (1994), Searching for analogues, how long must we wait? Tellus A, 

46(3):314–324. 
11  Pang, B., Yue, J., Zhao, G., and Xu, Z. (2017). Statistical downscaling of temperature with the  random forest model. 

Advances in Meteorology. 
12 See Hersbach, Hans, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz‐Sabater, Julien Nicolas et al. 

"The ERA5 global reanalysis." Quarterly Journal of the Royal Meteorological Society  146, no. 730 (2020): 1999-2049. 
13 See https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6. We use the HadGEM2 model, which has a successful track 

record in applications to the Asian region and beyond; see Dong and Dong (2021), Evaluation of extreme precipitation over 

Asia in CMIP6 models, Climate Dynamics, 57:1751-1769. 

 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.wcrp-climate.org/wgcm-cmip
https://www.gfdl.noaa.gov/esd_eval/
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6


In this report we consider a climate scenario following the RCP8.5 pathway until 2050. Other RCPs 
and longer time horizons could be considered on a demand basis, together with finer resolutions for 
sub-areas of interest.  The four target variables of interest (temperature, precipitation, wind speed, 
coastal surge) are downscaled at a resolution of 1km x 1km. Precipitation, temperature and wind 
speed are downscaled on land, whereas coastal surge is downscaled over oceans along the coastal 
line, where applicable. 

We choose the QM approach for our analysis based on its out-of-sample performance14. We find the 
temperature bias correction method to be the worst performer for precipitation and wind speed at 
our locations of interest. The analog method performs quite poorly out-of-sample for temperature 
and precipitation. The RF and QM methods are the two best performer, with the QM approach 
demonstrating considerably superior out-of-sample performance for precipitation and temperature 
across all quantiles. Quantile-quantile (Q-Q) plots for in-sample and out-of-sample results are 
reported in the companion document "Technical Appendix".   

 

3. Results: average impact 

In this section we focus on the average impact of global warming on the climate variables of interest. 
We consider changes in target variable (e.g, in daily maximum temperature) along RCP8.5-2050 
relative to current climatic conditions. A positive (negative) change therefore represents an increase 
(decrease) in the target variable relative to current climate. 

Figure 3 reports changes in the average value of each variable of interest along RCP8.5-2050. It is 
apparent that Thailand experiences rather large increases in average temperature and wind speed 
but is relatively shielded by increases in average precipitation and coastal surge. The latter is quite 
material for the southernmost coastal areas, the Andaman Sea being a notable exception, as 
average surge height decreases there.  

 

Figure 3. Global warming impact (CMIP6-implied results for the RCP 8.5 pathway until 2050) on 
the average level of different variables: temperature (top left), precipitation (top right), wind 

 
14 For a discussion of the QM method and its main features, see Gudmunsson et al. (2012) Downscaling RCM precipitation 

to the station scale using quantile mapping – a comparison of methods, Technical note, Hydrology and Earth System Sciences, 

9, 6185–6201. 

https://hess.copernicus.org/articles/16/3383/2012/hess-16-3383-2012.pdf
https://hess.copernicus.org/articles/16/3383/2012/hess-16-3383-2012.pdf


speed (bottom left), coastal surge (bottom right). Results are reported in terms of differences 
relative to current climate.  Differences are in Celsius degrees for temperature, millimeters per 
day for precipitation, meters per second for wind speed, and meters for coastal surge.   

The Philippines experience relatively high temperature increases in the northernmost and 
southernmost regions, whereas the impact on coastal surge is overall moderate, but quite relevant 
for the central and southwestern part of the country.  

Malaysia is exposed to sizeable changes in the average level of all variables of interest. The 
southwestern part of the country experiences the largest increase in average precipitation. 

Indonesia is also considerably affected. The most dramatic increase in temperature and wind speed 
is experienced in the Lampung, South and Central Kalimantan, and Papua areas. Papua is also 
exposed to sizeable increase in average precipitation. Average coastal surge is markedly increased 
throughout, except for West Sumatra and parts of West Papua. 

The results depicted here provide clear evidence of a marked shift in the average exposure to 
physical hazards, with important geographical differences within and across countries. Figure 4 
reports results for the differences between downscaled and CIMP-6-implied changes in average 
levels relative to current climate. The results demonstrate that the outputs of the global climate 
model provide too coarse a representation of climate risk exposures and therefore cannot enable 
the formulation of the predictions above. 

 

Figure 4. Global warming impact on the average level of different variables according to the 
CIMP-6 model (no downscaling): temperature (top left), precipitation (top right), wind speed 
(bottom left), coastal surge (bottom right). Results are reported in terms of difference s relative to 
current climate.  Differences are in Celsius degrees for temperature, millimeter per day for 
precipitation, meters per second for wind speed, and meters for coastal surge.   

To compare our results across countries, we then introduce a simple rating system labelling changes 
in average target variables as being low (green), medium (yellow), high (orange) or severe (red), 
depending on the aerial surface of the country experiencing a large enough change in target 
variable. The latter is defined by specifying suitable thresholds for the change in each variable. We 
use the following triggers: 



• Temperature: a change in daily average maximum temperature above 5% of current levels.  
• Precipitation: a change in daily average cumulative rainfall above 10% of current levels. 

• Wind speed: a change in daily average wind speed above 10% of current levels. 

• Coastal surge: a change in daily average coastal surge height above 10% of current levels.  

Choice of the first threshold is justified as follows. If the average daily maximum temperature is 
above 30 degrees Celsius, then a change of more than 5% relative to current levels represents an 
increase in temperature of more than 1.5 degrees, which is consistent with a violation of the Paris 
Agreement's pledge. The thresholds chosen for precipitation and wind speed are possible examples 
of material changes in the average risk profile. The coastal surge linear model introduced in the 
"Technical Appendix" document inherits the threshold chosen for wind speed.  

Threshold violations are assessed for every location in the downscaled grid and aggregated across 
locations within each country. If less than a third of the country (by aerial surface) experiences a 
large enough increase in target variable, then that physical risk dimension is classified as low 
(green).   If more than a third, but less than half of the country, experiences a large enough increase 
in target variable, then that physical risk dimension is classified as medium (yellow). If more than a 
half, but less than two thirds of the country, experiences a large enough increase in target variable, 
then that physical risk dimension is classified as high (orange). If more than two thirds of the 
country experience a large enough increase in target variable, then that physical risk dimension is 
classified as severe (red). Again, choice of the aerial surface thresholds is for illustrative purposes 
only. Clearly different thresholds could be chosen by market participants depending on their risk 
tolerance and the geographical footprint of their exposures.  

Results of the risk scoring exercise are presented in Figure 5. They confirm severe changes in the 
average level of temperature, wind speed and coastal surge for Indonesia and Malaysia. Thailand is 
less exposed to surge height, whereas the Philippines present a high-risk score only for the 
temperature variable. As the analysis of the next section will reveal, the low-risk scores attracted by 
average precipitation mask a severe exposure to extreme rainfall events.  

 

Figure 5. Risk scoring results for the impact of global warming on the average level of different 
variables: temperature (top left), precipitation (top right), wind speed (bottom left), coastal surge 
(bottom right). Results are reported in terms of difference relative to current climate. Differences 
are in Celsius degrees for temperature, millimeters per day for precipitation, meters per second 
for wind speed, and meters for coastal surge.   

 

4. Downscaling: tail risk 

In this section we focus on the results of the downscaling exercise for tail risk. We look at changes in 
four percentiles of the distribution of our target climate variables along RCP8.5-2050: the 90th, 95-
th, 97.5-th and 99th percentiles. These are often referred to by insurers, catastrophe modelers and 
other data vendors as capturing 1-in-10, 1-in-20, 1-in-40 and 1-in-100 year events, respectively.  

Figures 6 to 9 report results across the Southeast Asian region. Parameter values are available across 
locations at a resolution of 1km x 1km. Finer resolution parameters can be delivered on a demand 



basis. The results show a remarkable heterogeneity of global-warming-driven tail risk for different 
climate variables and locations.   

 

Figure 6. Impact of global warming on different temperature quantiles: 90th (top left), 95th (top 
right), 97.5th (bottom left), and 99th (bottom right) percentiles. Results are reported in terms of 
difference relative to current climate levels. Differences are in Celsius degrees.   

 

Figure 7. Impact of global warming on different precipitation quantiles: 90th (top left), 95th (top 
right), 97.5th (bottom left), and 99th (bottom right) percentiles. Results are reported in terms of 
difference relative to current climate levels. Differences are in millimeters per day.   



 

Figure 8. Impact of global warming on different wind speed quantiles: 90th (top left), 95th (top 
right), 97.5th (bottom left), and 99th (bottom right) percentiles. Results are reported in terms of 
difference relative to current climate levels. Differences are in meters per second.   

 

Figure 9. Impact of global warming on different costal surge quantiles: 90th (top left), 95th (top 
right), 97.5th (bottom left), and 99th (bottom right) percentiles. Results are reported in terms of 
difference relative to current climate levels. Differences are in meters.   

To better visualize the overall relevance of tail risk for different countries, we adopt the risk scoring 
mechanism discussed in the previous section. We use the same thresholds to classify changes in tail 
risk as being "sizeable" and then aggregate results across locations. Again, we assign scores (low, 
medium, high, severe) depending on the aerial fraction of each country exposed to sizeable risk.  

Figure 10 reports the results obtained for different percentiles, together with those discussed in the 
previous section for changes in the average level of the variables of interest. One of the most visible 



results is that the mild impact of global warming on average precipitation levels is far outweighed 
by sizeable tail risk across countries, Malaysia presenting the most severe exposure to extreme 
rainfall events. Extreme coastal surge events are particularly important for Indonesia and to a 
lesser extent for Malaysia. Similar findings are obtained for wind speed. Wind speed is material for 
Thailand both at the average and tail level. The Philippines are relatively shielded from extreme 
weather events except for precipitation, which instead features a high-scoring tail risk.     

 

Figure 10. Impact on different costal surge quantiles: 90th (top left), 95th (top right), 97.5th 
(bottom left), and 99th (bottom right) percentiles. Results are reported in terms of difference 
relative to the CMIP6-implied results for the RCP 8.5 pathway until 2050. Differences are in 
meters.   

 

5. Results: Urban clusters 

In this section we look at higher resolution (500m x 500m) results for the following urban clusters15: 

• Philippines: Manila (14.60N, 120.99E). 

• Malaysia: Kuala Lumpur (3.08N, 101.67E). 

We discuss some relevant examples focusing on impact on tail distribution cut-offs at the 90% and 
95% percent level (90-th and 95-th percentiles).  

Figures 11 and 12 provide precipitation results for Manila and Kuala Lumpur, respectively. They 
show remarkable variation in tail risk across locations and considerable divergence relative to the 
outputs of the global model (indicated by a red marker in the legend). We see that the latter would 
provide an overly optimistic depiction of extreme rainfall exposure through vast urban areas in the 
case of Manila, at both the 95th and 99th percentile levels, as well as Kuala Lumpur, at the 95th 
percentile level. It would instead provide an overly pessimistic depiction of extreme precipitation 
risk for Kuala Lumpur at the 99th percentile level. These examples offer clear evidence of the 
advantages of downscaling to understand the full distribution of physical risk exposures  at location.    

 
15 A "Further Results Appendix" document complementing this report provides result for the following additional urban 

clusters: Bangkok, Thailand (13.76N, 100.49E); Jakarta, Indonesia (-6.21N, 106.81E). 

 



 

Figure 11. Precipitation impact in Manila: 95th (left) and 99th (right) percentiles. Results are 
reported in terms of difference between the RCP8.5-2050 scenario relative to current climate. 
CMIP6-implied results, which are uniform across pixels, are indicated by the red marker. 
Differences are in millimeters per day.  

 

Figure 12. Precipitation impact in Kuala Lumpur: 95th (left) and 99th (right) percentiles. Results 
are reported in terms of differences between the RCP8.5-2050 scenario relative to current 
climate. CMIP6-implied results, which are uniform across pixels, are indicated by the red marker. 
Differences are in mm per day.  

Figure 13 provides an example of downscaling results for coastal surge in Manila. We notice that 
appropriate, granular downscaling of the climate model suggests coastal surge is going to decrease 
substantially both at the 95-th and 99-th percentile levels. Importantly, the global climate model 
would suggest more pessimistic projections for a sizeable portion of the coastline. 



 

Figure 13. Coastal surge impact in Manila: 95th (left) and 99th (right) percentiles. Results are 
reported in terms of difference between the RCP8.5-2050 scenario relative to current climate. 
CMIP6-implied results, which are uniform across pixels, are indicated by the red marker. 
Differences are in meters.  

 

6. Typhoon risk 

We now discuss how downscaling can help understand typhoon risk in Southeast Asia, which will be 
addressed in future work. Here, we limit ourselves to considering the following: i) how typhoon risk 
has evolved in the past and ii) how the evolving variability of climate will impact typhoon activity 
along RCP8.5-2050. 

i) It has been widely discussed in the extant literature that typhoon activity in the West Pacific area 
is moving polewards, suggesting a reduction in typhoon risk for relatively low latitude tropical 
countries16. Following the research community's approach to illustrating  a reduced typhoon activity 
at low latitudes, in Figure 14 (left) we present typhoon data gridded into 4 x 4-degree 
latitude/longitude boxes. However, if typhoon data are gridded at a finer resolution, such as 1 x 1-
degree as in Figure 14 (right), we do not see a clear reduction in typhoon activity, particularly along 
the Southeast Asian coastline. We therefore suggest to be cautious about claims that typhoon 
activity in the tropical West Pacific area has been reducing. Downscaling suggests that this is not 
necessarily the case for the region of interest here; recent research indeed suggests that typhoon 
activity there has been characterized by landward migration over the past decades17. 
 

 

Figure 14. Historical change of typhoon activity in the SEA. The shading shows the difference 
between 2000-2020 and 1980-1999, with a unit of typhoon frequency per year. The left panel has 

 
16 Wang, S., and R. Toumi (2021). "Recent migration of tropical cyclones toward coasts." Science 371, no. 6528: 514-517. 
17 See Wang and Toumi (2021) and  



a grid resolution of 4 degree latitude/longitude, whereas a 1 degree resolution is applied in the 
right panel. 

ii) To study the evolution of Southeast Asian typhoon activity in future climate scenarios, we mainly 
focus on a climate variable recognized as being a major driver of typhoon activity: the El Niño-
Southern Oscillation (ENSO) index. Changes in the index's sign characterize a regime switching 
behavior in typhoon activity, which shifts to the western part of the West Pacific (i.e., close to 
Southeast Asian countries) when the ENSO index is negative ("La Niña" regime) and toward the 
eastern part of the basin (i.e., away from Southeast Asian countries) when the ENSO index is positive 
("El Niño" regime). 

Figure 15 shows CMIP-6 based projections of the ENSO index, demonstrating that the regime 
switching behavior is not only likely to extend in the future, but with a more pronounced "La Niña" 
regimes (greater amplitude of the switch to negative index values), meaning that the shift in zonal 
activity may become more dramatic, with greater typhoon activity taking place in proximity of 
Southeast Asian countries. In summary, our results suggest an increase in frequency and severity of 
typhoon activity along the climate scenario considered. Typhoon risk will be studied extensively in 
later work as part of the activities of the Singapore Green Finance Centre.  

 

Figure 15. The El Niño-Southern Oscilation (ENSO) index for the period 2020-2050 as projected in 
the CMIP-6 simulations. 

 

7. Conclusion and next steps 

In this study we have demonstrated the ability of suitably chosen downscaling methods to obtain a 
more granular understanding of physical risk exposures at location for a group of Southeastern Asian 
countries of interest. We have focused on four main climate variables (temperature, precipitation, 
wind speed, coastal surge) and demonstrated how downscaling can reveal considerable divergence 
relative to the outputs of a global model both in the average level and tail distribution of target 
variables. We have illustrated some of our findings in relation to four urban clusters of interest 
(Manila and Kuala Lumpur; see the "Results Appendix" for Jakarta and Bangkok). Relevant 
downscaled parameters can be provided for any location of interest to market participants 
operating in this area. Although we have focused on spatial resolutions of 1km x 1km and 500m x 
500m, our machine learning approach can deliver results at finer resolution grids at the price of 
greater computational effort.  

There are at least three directions in which the results of this report will be further developed as 
part of the Climate Risk Scenario Workstream:  

• Climate sensitive valuation and stress testing of various exposures/asset classes of interest 
(e.g., real estate, energy, sovereign risk). This will require the overlay of impact models onto 
the physical hazard parameters identified here.  



• A deeper study of typhoon risk along different climate scenarios will be developed by Prof 
Ralf Toumi with the help of the Imperial College Stochastic Weather Simulator.   

• Consideration of additional hazards as part of the downscaling exercise, including floods, 
drought and wildfires.    

Two additional documents complement this report: 

• A "Results Appendix" providing further outputs for urban clusters of interest.  
• A "Technical Appendix" providing additional information on the downscaling methodology 

and its performance both in-sample and out-of-sample relative to competing methods. This 
document also contains details on the coastal surge model used in this report.  

 

 

http://www.sp.ph.ic.ac.uk/~rtoumi/IMAGE.html


DOWNSCALING OF PHYSICAL RISKS FOR CLIMATE SCENARIO DESIGN 

Results Appendix 

Enrico Biffis1 and Shuai Wang2 

 

We provide further results for the urban clusters of interest partially discussed in section 5 of the 
main report:  

• Philippines: Manila. 
• Malaysia: Kuala Lumpur. 
• Jakarta, Indonesia. 
• Bangkok, Thailand. 

We consider the 90-th, 95-th, 97.5-th and 99th percentiles of projected temperature, precipitation, 
wind speed and coastal surge at a resolution of 500m x 500m. 

 

8.1 Manila3 (Philippines) 

 
Figure 8.2.1. Maximum daily temperature impact in Manila: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP8.5-2050 scenario relative to current climate. CMIP6-implied results, which 
are uniform across pixels, are indicated by the red marker. Differences are in Celsius degrees.  

 
1 Department of Finance and Brevan Howard Centre for Financial Analysis, Imperial College Business School; Sustainable 
Tech Lab at I-X, Imperial College London. 
2 Department of Civil and Environmental Engineering, Princeton University. 
3 Coordinates of the centre of the urban cluster: 14.60N, 120.99E. 

https://www.imperial.ac.uk/people/e.biffis
https://cee.princeton.edu/people/shuai-wang
https://ix.imperial.ac.uk/


 
Figure 8.2.2. Cumulative daily precipitation impact in Manila: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in millimeters 
per day.  

 
Figure 8.2.3. Daily average wind speed impact in Manila: 90th (top left), 95th (top right), 97.5th 
(bottom left), and 99th (bottom right) percentile. Results are reported in terms of difference for 
the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, which are 
uniform across pixels, are indicated by the red marker. Differences are in meters per second.  



 
Figure 8.2.4. Daily average coastal surge impact in Manila: 90th (top left), 95th (top right), 97.5th 
(bottom left), and 99th (bottom right) percentile. Results are reported in terms of difference for 
the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, which are 
uniform across pixels, are indicated by the red marker. Differences are in meters.  

 

8.2 Kuala Lumpur4 (Malaysia) 

 
Figure 8.3.1. Maximum daily temperature impact in Kuala Lumpur: 90th (top left), 95th (top 
right), 97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in Celsius 
degrees.  

 
4 Coordinates of the centre of the urban cluster: 3.08N, 101.67E. 



 
Figure 8.3.2. Cumulative daily precipitation impact in Kuala Lumpur: 90th (top left), 95th (top 
right), 97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in millimeters 
per day.  

 
Figure 8.3.3. Daily average wind speed impact in Kuala Lumpur: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in meters per 
second.  

 



8.3 Bangkok5 (Thailand) 

 
Figure 8.4.1. Maximum daily temperature impact in Bangkok: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in Celsius 
degrees.  

 
Figure 8.4.2. Cumulative daily precipitation impact in Bangkok: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 

 
 
5 Coordinates of the centre of the urban cluster: 13.76N, 100.49E. 



which are uniform across pixels, are indicated by the red marker. Differences are in millimeters 
per day.  

 
Figure 8.4.3. Daily average wind speed impact in Bangkok: 90th (top left), 95th (top right), 97.5th 
(bottom left), and 99th (bottom right) percentile. Results are reported in terms of difference for 
the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, which are 
uniform across pixels, are indicated by the red marker. Differences are in meters per second.  

 

Figure 8.4.4. Daily average coastal surge impact in Bangkok: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in meters.  

 



8.5 Jakarta6 (Indonesia) 

 
Figure 8.5.1. Maximum daily temperature impact in Jakarta: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 
difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in Celsius 
degrees.  

 
Figure 8.5.2. Cumulative daily precipitation impact in Jakarta: 90th (top left), 95th (top right), 
97.5th (bottom left), and 99th (bottom right) percentile. Results are reported in terms of 

 
6 Coordinates of the centre of the urban cluster: -6.21N, 106.81E. 



difference for the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, 
which are uniform across pixels, are indicated by the red marker. Differences are in millimeters 
per day.  

 
Figure 8.5.3. Daily average wind speed impact in Jakarta: 90th (top left), 95th (top right), 97.5th 
(bottom left), and 99th (bottom right) percentile. Results are reported in terms of difference for 
the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, which are 
uniform across pixels, are indicated by the red marker. Differences are in meters per second.  

 
Figure 8.5.4. Daily average coastal surge impact in Jakarta: 90th (top left), 95th (top right), 97.5th 
(bottom left), and 99th (bottom right) percentile. Results are reported in terms of difference for 
the RCP 8.5 pathway until 2050 relative to current climate. CMIP6-implied results, which are 
uniform across pixels, are indicated by the red marker. Differences are in meters.  



Downscaling of Physical Risks for Climate Scenario
Design

Technical Appendix∗

Enrico Biffis† Shuai Wang‡

1 Introduction

This document complements the SGFC report "Downscaling of Physical Risks for Climate Sce-
nario Design". It provides further details on data sources, global climate model, downscaling
methodology and the coastal surge model used in the report.

2 Data

We use state-of-the-art global climate reanalysis data, i.e., the ERA5 data set generated by the
European Centre for Medium-Range Weather Forecasts, as the ‘observations’. The ERA5 data
is originally archived every 6 hours with a horizontal grid space of about 50 km. Future climate
‘projections’ are generated by the UK Met Office HadGEM2 model as a part of the Coupled
Model Intercomparison Project (the 6th generation, CMIP-6). The CIMP-6 models can provide
daily simulation outputs with a typical spatial resolution of more than 100 km. This is why the
downscaling technology outlined in the next section is needed.

For climate projections, we focus on the shared socio-economic pathway (SSP) 585, which
represents the high end of plausible future pathway. SSP585 is the pathway with emissions high
enough to produce the 8.5 W m−2 level of forcing in 2100, consistent with RCP8.5. SSP585
is chosen here as it may be relatively more informative regarding the adverse climate scenario.
To provide some context relative to other pathways, in figure 1 we provide the global surface
temperature change to 2100 implied by five different pathways, including SSP585.

∗This appendix is part of the accompanying material for the report Biffis and Wang (2022), Downscaling of
Physical Risks for Climate Scenario Design, Singapore Green Finance Centre.

†Imperial College Business School.
‡Princeton University.
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Figure 1: Global surface temperature changes relative to 1850-1900, degrees C, under the five core emissions sce-
narios used in AR6. Source: IPCC AR6 report Figure SPM.8a.

3 Downscaling methodologies

To train the downscaling models, we use the ‘simulated observations’ from the CMIP6 data set.1

Downscaling can be carried out in multiple ways. We considered the following approaches: Quan-
tile Mapping (QM), Pure analog (best-analog and sample-analog), Random Forest and bias cor-
rection developed for temperature simulations. The QM bias correction algorithm is commonly
used to correct systematic distributional biases in climate model outputs and has been widely
employed for climate downscaling (e.g., Panofsky and Brier, 1968; Maraun, 2013; Thrasher et al.,
2012). The QM model is trained by equating the cumulative distribution functions of the observed
and simulated variables. The analog approach is arguably the simplest downscaling scheme that
trains the downscaling model by associating the simulated values of a variable with the historical
observations showing the largest similarity. Because of its ease of application, the analog method
has also been extensively applied in climate projections (e.g., Lorenz, 1969; Van den Dool, 1994).
The random forest approach is an advanced binary tree application based on the bagging method
to add an additional layer of randomness. A decision tree is a hierarchical analysis diagram com-
posed of a collection of nodes and edges organized in a tree structure. The random forest method
is relatively new but has also been used for climate downscaling (e.g., Pang et al., 2017)). The tem-
perature bias correction method was explicitly developed for temperature downscaling achieving
outstanding performance in that task.

The models were trained by mapping the quantiles of each climate quantity in the ‘simulated
observations’ onto that in the ‘observations’. The trained models were then used to bias-correct
the ‘projections’, which generate the downscaled climate scenarios for the Southeast Asian region.
Application of the temperature bias correction method to precipitation and wind speed was found
to perform considerably more poorly than the other methods considered here. The temperature
bias correction method was therefore ruled out first. The other methods were compared based

1The python downscaling package is publicly available at: https://scikit-downscale.readthedocs.io/en/
latest/
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on both in-sample and out-of-sample performance across the entire distribution. The quantile-
quantile (Q-Q) plot results shown in Figures 2-7 demonstrate the superiority of the QM approach
relative to the others, in particular when looking at the tails of the the climate variables of interest.

Figure 2: Q-Q plot of in-sample temperature comparison with different downscaling methods: quantile mapping
(upper-left), random forest (upper-right), best analog (bottom-left), sample-analog (bottom-right) . Each
dot represents the daily averaged value for Malaysia.
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Figure 3: Q-Q plot of out-of-sample maximum daily temperature comparison with different downscaling meth-
ods: quantile mapping (upper-left), random forest (upper-right), best analog (bottom-left), sample-analog
(bottom-right) . Each dot represents the daily averaged value for Malaysia.
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Figure 4: As in Figure 2, but for daily average wind speed.
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Figure 5: As in Figure 3, but for daily average wind speed.
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Figure 6: As in Figure 2, but for cumulative daily precipitation.
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Figure 7: As in Figure 3, but for cumulative daily precipitation.
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4 Coastal surge model

There is evidence that the frequency of tropical cyclones has been increasing in coastal regions
during the last decades, with higher central wind intensity compared to the past (e.g., Wang and
Toumi, 2021, 2022a,b). Due to the coarse resolution of CMIP-6 models, some coastal weather
systems with high wind, such as typhoons, cannot be properly simulated. Indeed, the statistically
downscaled wind field cannot resolve clearly the wind structure of those weather events even when
the downscaled grid spacing is increased to be less than 1 km. Nevertheless, the CMIP-6 model
can still generate some coastal wind response in different climate scenarios.

To estimate the surge change due to wind speed response to different future climate pathways,
we implement a simple scaling approach relating surge change to current climate state by using
as a benchmark a category-2 typhoon making landfall. A category-2 typhoon is chosen here
mainly because its intensity level is close to the upper bound of the definition of Minor Tropical
Cyclones and its landfall frequency is still quite high. The widely used Saffir-Simpson Hurricane
Wind Scale (SSHS) suggests that the surge height may change linearly from 1.5 m to 5.5 m
when the coastal wind speed increases from 42 to 69 m/s (i.e., the equivalent maximum wind
speed when transitioning from a category-2 to a category-5 typhoon) (see Taylor et al., 2010).
The linear sensitivity of surge to wind can therefore be written as 0.15 m / m/s, where 0.15 =

(5.5 − 1.5)/(69 − 42). In our analysis, we first calculate the relative change of wind for a coastal
region, denoted by (say) x%. Second, we assume the extreme wind for this location to increase
from 42 m/s by 42 m/s × x% in the future. Finally, we estimate the surge change for a wind
speed increase of 42 m/s × x% by using the approximate linear relationship between wind speed
and surge from the SSHS scale of 0.15 m / m/s. This can be written as 6.3 × x% m, where
6.3=42×0.15, meaning that the surge change (SC) relative to the current climate can be written
as:

SC = 6.3
Wf

Wc
, (1)

where Wf and Wc denote the surface wind speed at a given location in the future and current
climate, respectively. Equation (1) shows that with the current scaling method the estimated surge
change is fully driven by the relative change in surface wind speed. This is clearly a simplification,
as storm surge is shaped by other factors, such as wind speed direction relative to the coastline and
cyclone moving speed at landfall. However, we believe the simplification offers a good compromise,
given the inability of CMIP models to properly resolve tropical cyclones and the difficulty to include
other factors within a direct statistical downscaling approach. It should be noted that the surge
downscaling reported here is on top of the sea level rise, i.e., the excess water level change. Sea
level rise projections based on the IPCC AR6 report can be accessed via the NASA sea level
projection portal. An increase of between 0.23 and 0.24 meters is projected for the locations of
interest in this study under RCP8.5-2050.
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5 Typhoon risk assessment

The CMIP6 model can simulate some cyclonic systems directly in the Southeast Asian region.
With the statistical downscaling method used in our report, the future changes in precipitation
and wind speed are related to the cyclonic weather systems in an indirect manner. Due to the
limitation of coarse resolution of the CMIP6 models, the temporal-spatial scale of actual cyclones
can be very different. This makes it hard to directly generate reliable heavy precipitation, high
wind, and therefore storm surge induced by severe storms such as typhoons. This is the reason
why we use the relative change in wind speed to project coastal surge changes along the chosen
climate scenario.

In future work, researchers from Imperial College London will start utilizing a new downscaling
tool, i.e., the Imperial College stochastic weather generator, to enhance the CMIP6 model simu-
lations so that we may have more accurate estimates of low probability weather events with high
economic impacts. The analysis will go beyond typhoon risk and include the following hazards:

1. typhoon (with priority),

2. excess precipitation (flood),

3. drought, and

4. fire risk index.

The four hazards will be examined in terms of their recent relationship with El Nino. Long
range projections will be produced by using the ocean’s subsurface temperature. Publicly available
monthly to multi-season numerical model projections in the CMIP6 models will be examined
as multi-model ensembles in combination with the stochastic model to develop risk indices for
these four hazards on time scales ranging from weeks to multiple years. Work on hazards 1-4
will contribute to research activities on nature-based solutions as part of both the Climate Risk
Scenario and Nature Based Solutions workstreams.
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