Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

7-2024

MicroKarta: Visualising microservice architectures

Oscar Manglaras
Alex Farkas
Peter Fule

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Markus Wagner

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

Cf Part of the Software Engineering Commons, and the Systems Architecture Commons

Citation

Manglaras, Oscar; Farkas, Alex; Fule, Peter; TREUDE, Christoph; and Wagner, Markus. MicroKarta:
Visualising microservice architectures. (2024). FSE '24: Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, July 15-19, Porto de Galinhas,
Brazil. 607-611.

Available at: https://ink.library.smu.edu.sg/sis_research/9157

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Check for
Updates

MicroKarta: Visualising Microservice Architectures

Oscar Manglaras
University of Adelaide
Adelaide, Australia
oscar.manglaras@adelaide.edu.au

Christoph Treude

Singapore Management University
Singapore, Singapore
ctreude@smu.edu.sg

ABSTRACT

Conceptualising and debugging a microservice architecture can be
a challenge for developers due to the complex topology of inter-
service communication, which may only apparent when viewing
the architecture as a whole. In this paper, we present MicroKarta,
a dashboard containing three types of network diagram that visu-
alise complex microservice architectures, and that are designed to
address problems faced by developers of these architectures. Initial
feedback from industry developers has been positive. This dash-
board can be used by developers to explore and debug microservice
architectures, and can be used to compare the effectiveness of dif-
ferent types of network visualisation for assisting with various
development tasks.

CCS CONCEPTS

+ Human-centered computing — Interface design prototyp-
ing; Information visualization; Software and its engineering —
Publish-subscribe / event-based architectures.

KEYWORDS

Microservices, Microservice Architectures, Network Visualization

ACM Reference Format:

Oscar Manglaras, Alex Farkas, Peter Fule, Christoph Treude, and Markus
Wagner. 2024. MicroKarta: Visualising Microservice Architectures. In Com-
panion Proceedings of the 32nd ACM International Conference on the Founda-
tions of Software Engineering (FSE Companion °24), July 15-19, 2024, Porto
de Galinhas, Brazil. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3663529.3663808

1 INTRODUCTION

Microservice architectures are a form of software architecture that
has seen a growth in popularity over the past decade. Ideologi-
cally, microservices follow the paradigm of “do one thing and do
it well”, making each service small and simple [4]. However, in
doing so, much of the complexity of the architecture instead shifts
to how those microservice communicate and collaborate with each

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

FSE Companion °24, July 15-19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663808

Alex Farkas
University of Adelaide
Adelaide, Australia
alex.m farkas@gmail.com

607

Peter Fule
Swordfish Computing
Adelaide, Australia
peter.fule@swordfish.com.au

Markus Wagner

Monash University

Clayton, Australia
markus.wagner@monash.edu

Table 1: Top six problems ranked by impact and fre-
quency [10].

Impact Frequency
I1 cause of faults F1 data structures of channels
12 data structures of F2 channels connected to mi-
channels croservices
I3 services affected by F3 microservices sending data to
faults a microservice

I4 services affected by F4
message broker faults
I5 datastructuresusedby F5

microservices receiving data
from a microservice
microservices connected to a
channel

microservices
I6 purpose of the mi- F6 microservices data structures
croservice

other [1]. Developers can hence benefit from visualising these high
level connections.

In this paper we present MicroKarta, a software tool that visu-
alises microservice communication topologies using three comple-
mentary network diagrams; a node-link diagram, an adjacency
matrix, and an arc diagram, as well as a number of associated in-
teractive features. MicroKarta is designed to be used as reference
documentation, as well as to help with exploratory analysis and de-
bugging. The most distinguishing feature of MicroKarta is the focus
on supporting channel information in publish/subscribe communi-
cation architectures, which Aksakalli et al. [2] found was the second
most common microservice communication paradigm. This is in
contrast to the more common RESTful communication paradigm,
which Microkarta also supports.

MicroKarta builds on our previous study [10] where we asked
20 developers of an industry microservice-based project to rate
the impact and frequency of various development problems. The
most impactful and frequent of these problems (Table 1) were the
focus of the visualisation and interactive features developed for
the tool. MicroKarta is not intended to address all the problems
identified in [10], but we are taking the study into account for all
of our decisions.

The most frequent problems were largely related to the topology
of connections between microservices and channels, problems for
which network diagrams are especially well suited. We hypothesise
that MicroKarta’s different visualisations will each be better suited

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3667-626X
https://orcid.org/0009-0005-2453-5602
https://orcid.org/0009-0006-3904-562X
https://orcid.org/0000-0002-6919-2149
https://orcid.org/0000-0002-3124-0061
https://doi.org/10.1145/3663529.3663808
https://doi.org/10.1145/3663529.3663808
https://doi.org/10.1145/3663529.3663808
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663529.3663808&domain=pdf&date_stamp=2024-07-10

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

(a) With both microservice and channel nodes (b) With channel
visible. nodes hidden.

Figure 1: Node-Link diagram. The gold nodes are microser-
vices and the grey are channels.

to addressing different problems and tasks. This tool could ideally
be used in future research to investigate that question.

This work is being co-funded by Swordfish Computing, and
as such MicroKarta is closed source and under a proprietary li-
cense. Swordfish’s 100 microservices are split and re-used between
multiple architectures and were created by around 25 developers.
Swordfish has a team of around 25 developers who support ap-
prox. 100 microservices. These microservices are reused between
multiple architectures, which primarily use publish/subscribe com-
munication and contain, on average, 20 running services. All of the
networks visualised in this paper are real (obfuscated) microservice
architectures in use at Swordfish.

2 VISUALISATION DESIGN

We chose network diagrams as the basis for our visualisations
because most of the highest frequency problems identified by [10]
were related to identifying the connections between microservices
(F2, F3, F4, and F5), which can be presented with network diagrams.

2.1 Node-Link Diagram

[Addresses F2, F3, F4, F5]

The node-link diagram is shown in Figure 1. There are two
views, one showing channels, and one where the channel nodes are
hidden. To provide information about the channels being published
and subscribed to (F2 & F5), we are using two different types of
node. The gold nodes are the microservices, and the gray nodes
are the channels. The channel nodes were made the same colour as
the links in an attempt to make the microservice nodes stand out.
The view with the channels hidden is equivalent to the node-link
diagram of a synchronous or RESTful communication architecture,
and may be better suited to addressing problems F3 & F4.

For the links we used tapered lines, with the broad end repre-
senting the source of the link, and the narrow end representing the

608

Oscar Manglaras, Alex Farkas, Peter Fule, Christoph Treude, and Markus Wagner

Archipelago precinct stiffen ALMOST st.. J

Clearly Allotment 1 »

ClearPOLLING Poster-bingo BENNND) » 1
CommuneSCARILY VOLUNTARILY Pneu

i
>R

1
) 11
PEDIDE N D

»

ense Hello Regrow bl

Nobilty Embodiment Coding conversati
Reputation Helplessly
Scramble Righteousness 1 1 D]
SELL Gueerly] » 1 » 2

SMOOTHLYglide Upwardly Rattle
SpecimenCONFLICT Babbling bl
SYSTEM Abundance Sweeten

Figure 2: Adjacency Matrix. The rows are microservices and
the columns are channels. The green wedges represent pub-
lish relationships, and the purple sockets represent subscribe
relationships.

target. This follows the recommendation [8] that tapered edges pro-
vide better comprehensive performance than conventional arrows.
We employed this design after experiencing difficulties reading
large networks in early prototypes. At the time of writing, the SVG
spec does not supported lines with varying widths (though there is
a proposal'). However, the effect can be replicated with a simple
isosceles triangle that has a base perpendicular to the slope of the
line between the nodes.

The implementation uses force-based algorithm to automatically
place the nodes. The user can then use the mouse to drag and pin
nodes in place on the canvas to improve upon the default layout.

2.2 Adjacency Matrix

[Addresses F2, F3, F4, F5]

The adjacency matrix visualises the microservices in a tabular
view as shown in Figure 2. We assigned each microservice a row
and each column a channel. We can visualise all communications
this way because microservices are only communicating with each
other through channels; if we needed to visualise non-channel
communication as well, such as REST requests, then we add ex-
tra columns to represent the synchronous microservices. There is
another view that abstracts out the channels.

To differentiate between publish and subscribe behaviour, we
used different coloured shapes in each cell. A green wedge rep-
resents a publish relationship, and a purple socket represents a
subscribe relationship. The shapes were chosen to provide a con-
textual hint about the type of relationship they represent, with the
wedge inserting (publishing) data into the socket. The colours were
chosen to add to the visual distinctiveness of the two shapes, and
to aid in preattentive searching [14, Ch. 5].

It has been confirmed by our industry partner that services can
both publish and subscribe on the same channel. We need to use
different symbols for publish and subscribe that can fit in the same
cell to handle this case.

The matrix presents all the same information as the node-link
diagram, and hence addresses the same problems, but it is more

Uhttps://www.w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke

https://www.w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke

MicroKarta: Visualising Microservice Architectures

ca) (csve) ('sa) (cppb) (sca) (tpr) (71) (e) ((sr) freem ((ev) (sas) fcrsH (Nece) (squr) (apsa) (HpHR) (TR) (Ho) (FTos) (Dsks

Figure 3: The arc diagram. Full names available on hover.

Disablo Nodes RegEFier

i

SortSelected SortBarycenter Reset Sort

Edit Visuaisations Save Lajout Clear Layout

Anomymise Sidbar

Figure 4: Sidebar showing info for a selected microservice.

compact and can be sorted. The downside is that it is harder to
follow links and identify clusters in the data [12].

2.3 Arc Diagram

[Addresses F3, F4]

The arc diagram (Figure 3) is a node-link diagram arranged
across a single dimension. It strikes a balance between the node-link
diagram and the adjacency matrix; it shows direct links between
nodes, but has an inherent, sortable order, like the matrix. The
direction of the links is denoted with tapered lines, as with the
node-link diagram, as well as denoted by the placement of the arc
above or below the horizontal axis.

Unlike the previous two visualisations there is no channel infor-
mation, meaning it only addresses problems F3 and F4. However,
we hypothesise that the arc diagram is superior at presenting a
directional path through the topology due to the ability to lay the
nodes out in a one-dimensional ordered list.

2.4 Sidebar

[Addresses 15, 16, F1, F2, F3, F4, F5, F6]

The sidebar (Figure 4) provides a way to present detailed infor-
mation about a specific microservice. The only information we are
currently displaying in the sidebar is the name of the service and
the channels being published and subscribed to (F2). However, it
could also be used to address impactful problems that are difficult to
address with network diagrams, for example I1 and I5 (data format
schemas); I1, I3, and 14 (service fault details), and I6 (a description
of the purpose of the microservice).

2.5 Reachability Highlighting

[Addresses 11, 13]

Reachability highlighting displays the data flow paths to and
from a selected node (Figure 5). The highlighted paths represent
the possible data flows through the topology. It can be used to find

609

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Sy o o (ot ket oo o = -
— a
—7"
T / et —
AN L -

"’“@"f“"i’“‘f‘w::’ |

Figure 5: Reachability highlighting for the selected node
(green). The blue nodes are ‘downstream’, reachable from
the selected node. The red nodes are ‘upstream’, the selected
node can be reached from them. Nodes that are not reachable
are blurred and faded (and hidden in the arc diagram).

SOOOCEREREO

Figure 6: Sorting the matrix and arc diagram based on reach-
ability to and from the selected node (compare to Figure 5).

the possible upstream cause of a microservice fault and identify
which other down stream services might be affected by faults in
the selected microservice

2.5.1 Reachability Sorting. To make the reachability highlighting
more useful when applied to the matrix and the arc diagram, we
have implemented a sorting option based on the distance of nodes
from the selected node. Figure 6 shows the same architecture and
selected microservice as Figure 5, but with the sorting applied. The
arc diagram seems especially well suited to visualising reachability
as a flow of data through the selected node, and for detecting cycles
in the graph (the inverted arcs in Figure 6 indicate potential cycles).
This could be something to investigate in a future study.

3 IMPLEMENTATION DETAILS

MicroKarta is implemented as a web app. All the visualisations
and interactive features are run locally in the browser. A (NodeJS%)
backend is used purely to store architectures between sessions. The
architectures are represented by JSON objects that can be stored as
files.

The visualisations are all developed using the D3> JavaScript
library. D3 provides a powerful, low-level, API for creating and

Zhttps://nodejs.org/
3https://d3js.org/

https://nodejs.org/
https://d3js.org/

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

manipulating SVG graphics [3]. D3 was one of the main reasons we
chose to use web technologies for this dashboard, the other reason
being the platform-agnostic nature of web apps.

The layout of the three visualisations uses the CSS grid layout?.
The visualisations are not directly placed onto the grid; instead we
specify the number of vertical and horizontal cells each visualisa-
tion spans using the span keyword with the grid-row-end and
grid-column-end properties. The browser automatically places the
visualisations without overlaps and automatically updates place-
ments if the span values change, which we can do on mouse events
with some simple JavaScript. This is a simple way to automatically
place visualisations in a way that looks (in our opinion) decent,
produces predictable output, and allows dynamic resizing.

4 INDUSTRY FEEDBACK

To get feedback on our visualisations, we distributed the dashboard
to three microservice developers at Swordfish. They use AsyncAPI®
to define the publish/subscribe information for their microservices,
so we wrote an algorithm that takes uploaded AsyncAPI files and
outputs the architectural information in the JSON format the dash-
board expects. Similar algorithms could be written to support other
filetypes, but that is beyond the scope of this paper. The developers
were asked to use the dashboard to explore their architectures and
given a set of feedback questions to answer afterwards®.

On the whole, developers found the dashboard useful, stating
that: “the dashboard/tooling fulfils its purpose in my view, visu-
alising complex AsyncAPI projects”, and: “the diagram is useful
for understanding complex systems, I see it being used as a way
to discover bugs before they are pushed into production”. Another
clarified that, “our [architectures] are now getting to a size where
its not possibly to hold in your head all the flows between the ser-
vices... I can also see it being useful for investigation issues and
tracking some bugs, and also in design phases where it’s difficult
to get a feel for the complexity”.

When asked which of the visualisations they found most useful,
participants were split between the node-link diagram and the
adjacency matrix. One found the node-link diagram the most useful
and the matrix the second, stating that, “the force diagram was
helpful to get an overall view of the system and the matrix was
useful for getting a more in-depth view of each service and topic”.
The other two found the matrix more useful; one paired the matrix
with the sidebar stating that, “it was the easiest way to see all of
the detail I wanted to see in a single view”, while the third stated
that they “found the matrix diagram useful, the force and arc not
so much”. However, they went on to clarify that that was “down
more to [their] use case at the moment, which is identifying if there
are any oddities in the async apis”, they thought the force and arc
diagrams would be more useful for “trying to diagnose issues”.

All of the participants found the arc diagram to be the least
useful. However, the developers were using the tool primarily to
explore their existing architectures, they were not using it to help
with debugging tasks, which the arc diagram is intended to address.

“https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
Shttps://www.asyncapi.com/
Shttps://doi.org/10.5281/zenodo.11044837

610

Oscar Manglaras, Alex Farkas, Peter Fule, Christoph Treude, and Markus Wagner

However, the feedback was not all positive, the developers crit-
icised the difficulty and “friction” in finding and collecting all of
the AsyncAPI files from the various microservice repositories, with
one developer suggesting we, “look to supplement that workflow
with automated collection of these files”.

5 LIMITATIONS AND THREATS TO VALIDITY

At present, our feedback comes from only three developers at a
single company; a wider range of feedback would be more repre-
sentative of the industry as a whole. Additionally, the developers
only had access to the tool for a short period of time; extended use
may uncover further strengths and weaknesses in the tool design.
The closed-source nature of the tool makes it difficult for others to
test our designs.

6 RELATED WORK

We have not been able to find any published works that attempted
to to visualise the channels in a publish/subscribe communication
paradigm. However, looking more broadly, there are a number of
works that have visualised other communication paradigms.

MicroART [7] is a tool for recovering the architecture of mi-
croservice systems and visualising connections between microser-
vice endpoints. However, the visualisations are static. Engel et
al. [5] and Mayer & Weinreich [11] both present interactive dash-
boards to visualise microservice architectures. Both use node-link
diagrams to visualise the connections between services. Mayer &
Weinreich’s dashboard attempts to provide a wider range of infor-
mation through multiple views and visualisations; it covers a wider
range of information than our dashboard, including runtime data.
MICROLYZE [9] uses an adjacency matrix to show microservice de-
pendencies and instances. Microvision [15] is an attempt to adapt a
node-link topology visualisation to augmented reality. Frisell [6] de-
signed an interactive dashboard with custom visualisations, similar
to a node-link diagram, but where the microservices are clustered
based on the developer maintaining the service. Microusity [13]
is a tool that tests RESTful APIs and generates graphs of service
invocations, which received positive user feedback.

7 CONCLUSION

Developers of microservice architectures can benefit from network
visualisations of the connections between services. Existing aca-
demic work in this area have each presented just a single type of
network diagram, either node-link diagrams or adjacency matrices,
and do not attempt to visualise channel information for publish/sub-
scribe architectures. MicroKarta provides three types of network
diagram with a focus on visualising channels and is designed to
address the results of our previous study into microservice develop-
ment problems. Initial industry feedback was positive, highlighting
its use as an exploratory tool, but suggested the tool would be
improved by automating the collection of the data needed to pro-
duce the visualisations, which currently needs to be input manually.
The tool opens the door to future studies to determine which of
the three types of network diagram are best suited for addressing
different tasks.

Demo: https://universityofadelaide.box.com/v/microkarta-demo

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://www.asyncapi.com/
https://doi.org/10.5281/zenodo.11044837
https://universityofadelaide.box.com/v/microkarta-demo

MicroKarta: Visualising Microservice Architectures

REFERENCES

[1] Carlos M. Aderaldo, Nabor C. Mendonga, Claus Pahl, and Pooyan Jamshidi.

—

2017. Benchmark Requirements for Microservices Architecture Research. In
2017 IEEE/ACM 1st International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering (ECASE). 8-13. https:
//doi.org/10.1109/ECASE.2017.4

Isil Karabey Aksakalli, Turgay Celik, Ahmet Burak Can, and Bedir Tekinerdogan.
2021. Deployment and communication patterns in microservice architectures: A
systematic literature review. Journal of Systems and Software 180, 111014 (Oct.
2021). https://doi.org/10.1016/j.jss.2021.111014

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D* Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(Dec. 2011), 2301-2309. https://doi.org/10.1109/TVCG.2011.185

Thomas F. Dillmann. 2017. Performance anomaly detection in microservice ar-
chitectures under continuous change. Master’s thesis. University of Stuttgart.
https://doi.org/10.18419/0pus-9066

Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann.
2018. Evaluation of Microservice Architectures: A Metric and Tool-Based Ap-
proach. In Information Systems in the Big Data Era (Lecture Notes in Business In-
formation Processing), Jan Mendling and Haralambos Mouratidis (Eds.). Springer
International Publishing, Cham, 74-89. https://doi.org/10.1007/978-3-319-92901-
9.8

Marcus Frisell. 2018. Information visualization of microservice architecture re-
lations and system monitoring : A case study on the microservices of a digi-
tal rights management company - an observability perspective. Master’s the-
sis. Royal Institute of Technology, Stockholm, Sweden. http://www.diva-
portal.org/smash/record.jsf?pid=diva2:1240044&dswid=-8254

Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Lu-
dovico Iovino, and Amleto Di Salle. 2017. MicroART: A Software Architecture
Recovery Tool for Maintaining Microservice-Based Systems. In 2017 IEEE In-
ternational Conference on Software Architecture Workshops (ICSAW). 298-302.
https://doi.org/10.1109/ICSAW.2017.9

611

[8

—_
)

[10

[11

[12

[13

(14]

(15]

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Danny Holten and Jarke J. van Wijk. 2009. A user study on visualizing directed
edges in graphs. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI "09). Association for Computing Machinery, New York,
NY, USA, 2299-2308. https://doi.org/10.1145/1518701.1519054

Martin Kleehaus, Omer Uludag, Patrick Schifer, and Florian Matthes. 2018.
MICROLYZE: A Framework for Recovering the Software Architecture in
Microservice-Based Environments. In Information Systems in the Big Data Era, Jan
Mendling and Haralambos Mouratidis (Eds.). Springer International Publishing,
Cham, 148-162. https://doi.org/10.1007/978-3-319-92901-9_14

Oscar Manglaras, Alex Farkas, Peter Fule, Christoph Treude, and Markus Wagner.
2023. Problems in Microservice Development: Supporting Visualisation. In 2023
IEEE Working Conference on Software Visualization (VISSOFT). 62-72. https:
//doi.org/10.1109/VISSOFT60811.2023.00017 ISSN: 2832-6555.

Benjamin Mayer and Rainer Weinreich. 2017. A Dashboard for Microservice
Monitoring and Management. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). 66-69. https://doi.org/10.1109/ICSAW.2017.44
Tamara Munzner. 2014. Visualization Analysis and Design (1st edition ed.). A K
Peters/CRC Press, Boca Raton.

Pattarakrit Rattanukul, Chansida Makaranond, Pumipat Watanakulcharus, Chaiy-
ong Ragkhitwetsagul, Tanapol Nearunchorn, Vasaka Visoottiviseth, Morakot
Choetkiertikul, and Thanwadee Sunetnanta. 2023. Microusity: A testing tool
for Backends for Frontends (BFF) Microservice Systems. 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC) (2023), 74-78. https:
//doi.org/10.1109/ICPC58990.2023.00021

Colin Ware. 2013. Information visualization: perception for design, third edition
(3rd ed. ed.). Morgan Kaufmann, Waltham, Mass.

Tom Cern}'/, Amr Abdelfattah, Vincent Bushong, Abdullah Maruf, and Davide
Taibi. 2022. Microvision: Static analysis-based approach to visualizing microser-
vices in augmented reality. In 2022 IEEE International Conference on Service-
Oriented System Engineering (SOSE). 49-58. https://doi.org/10.1109/SOSE55356.
2022.00012

Received 2024-01-29; accepted 2024-04-15

https://doi.org/10.1109/ECASE.2017.4
https://doi.org/10.1109/ECASE.2017.4
https://doi.org/10.1016/j.jss.2021.111014
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.18419/opus-9066
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1240044&dswid=-8254
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1240044&dswid=-8254
https://doi.org/10.1109/ICSAW.2017.9
https://doi.org/10.1145/1518701.1519054
https://doi.org/10.1007/978-3-319-92901-9_14
https://doi.org/10.1109/VISSOFT60811.2023.00017
https://doi.org/10.1109/VISSOFT60811.2023.00017
https://doi.org/10.1109/ICSAW.2017.44
https://doi.org/10.1109/ICPC58990.2023.00021
https://doi.org/10.1109/ICPC58990.2023.00021
https://doi.org/10.1109/SOSE55356.2022.00012
https://doi.org/10.1109/SOSE55356.2022.00012

	MicroKarta: Visualising microservice architectures
	Citation

	Abstract
	1 Introduction
	2 Visualisation Design
	2.1 Node-Link Diagram
	2.2 Adjacency Matrix
	2.3 Arc Diagram
	2.4 Sidebar
	2.5 Reachability Highlighting

	3 Implementation Details
	4 Industry Feedback
	5 Limitations and Threats to Validity
	6 Related Work
	7 Conclusion
	References

