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ABSTRACT 

Expected Equity Option Returns 
Zhang Xue 

 

Substantial progress has been made in investigating ‘Overpriced Puts Puzzle’ which 

exists in index futures options. However, scarce studies focus on whether single-stock 

options also have similar problems. This thesis analyzes the returns of individual 

stocks’ calls, puts, and their portfolios, both theoretically and empirically. Adopting 

the methodology of Broadie, Chernov, and Johannes (2008), I find that (1) calls have 

positive expected returns while puts have negative expected returns. The expected 

returns of both calls and puts are increasing in the strike price. (2) CAPM alphas and 

Sharpe ratios are reasonable for calls options, but they are too negative for OTM puts. 

(3) The finite sample distributions simulated by SV and SVJ models do not provide 

much information on the mispricing of sole calls or sole puts, while the examination 

of option portfolios show that only the most actively traded options exhibit similar 

volatility risk premiums in their straddle prices. 
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Chapter One: Introduction 

1.1   Introduction 

The rationality of option pricing has become the focus of much attention in academia, 

especially for index futures options.  It is a common perception that index options are 

mispriced. One piece of evidence is that since the 1987 stock market crash, the 

Black-Scholes (BS) formula has been producing systematic biases across moneyness 

and maturity of index options. In particular, the BS formula has been significantly 

underpricing short maturity, deep out-of-the-money (OTM) puts. This property has been 

referred to as a ‘volatility smile’ (see Rubinstein (1994), Jackwerth and Rubinstein 

(1996), and Bates (1996)). Given the empirical failures of the BS model, much research 

has gone into identifying models that relax some of the restrictive BS assumptions (e.g. 

stochastic volatility models and jump diffusion models). These extended models have 

been tested empirically. However, Bakshi, Cao and Chen (1997) find that the ‘smile’ 

still exist, although the stochastic volatility and jump features can providea significant 

improvement. Another piece of evidence is from the investigation on option returns. The 

first paper to focus on the theoretical and empirical nature of option returns is Coval and 

Shumway (2001). Using zero-beta (BS betas) straddles, they find both call and put 

contracts earn exceedingly low returns, and argue that systematic stochastic volatility 

may be an important factor for pricing. Bondarenko (2003) also reports that the 

historical S&P 500 put options excess returns are significantly negative, as well as the 
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CAPM alphas. Moreover, other popular measures, such as the Sharpe ratios, also 

indicate that index put prices have been very high. Noting that option returns are highly 

non-normal and those metrics all assume normality, Broadie, Chernov, and Johannes 

(2008) claim that simply using CAPM alphas or Sharpe ratios is not appropriate, and 

provide an alternative method that let returns anchor null hypothesis values when 

testing whether they are significantly different from those generated by a given null 

model. Unfortunately, because of the statistical difficulties present when analyzing 

options returns, they do not find that index put returns are inconsistent with BS and SV 

models. Similar tests using option portfolio strategies, such as straddles, show that 

options are not mispriced when incorporated with certain volatility and estimation risks. 

However, these research results are based on index options, and there is scarce literature 

that studies whether single-stock options also have the ‘mispriced’ problems like index 

options. Bakshi, Kapadia, and Madan (2003) claim that individual risk-neutral 

distributions differ from that of the market index by being far less negatively skewed. 

Garleanu, Pedersen, and Poteshman (2005) find that single-stock options appear 

cheaper than index options, and their ‘smile’s are flatter. Since few researches have tried 

to explore this by testing option returns, I explore this topic in my thesis using the 

methodology of Broadie, Chernov, and Johannes (2008). 

This thesis focuses on the returns of individual stocks’ calls, puts, and their portfolios 

both theoretically and empirically. Consistently, I find that calls have positive expected 

returns and puts have negative expected returns. Moreover, the expected returns of both 
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calls and puts are increasing in the strike price. CAPM alphas and Sharpe ratios seem 

reasonable for call options, but they are too negative for OTM put options. Nevertheless, 

considering the shortcomings of these metrics to measure non-normal option returns, it 

is not sufficient evidence to prove that OTM puts for individual stocks are overpriced. 

Moreover, the finite sample distributions simulated by SV and SVJ models do not 

provide much information on the mispricing of sole calls or sole puts, while the 

examinations of option portfolios show that only the most actively traded options 

exhibit similar volatility risk premiums in their straddle prices.  

1.2   Organization of the study 

The rest of the thesis will be organized in this way: 

Chapter Two provides a review of the existing literature analyzing the mispricing 

problems of index options. 

Chapter Three describes the theoretical characters of expected option returns, CAPM 

alphas, and Sharpe ratios. 

Chapter Four describes the data used.  The methodology of how to estimate parameters 

under -measure and how to construct finite sample distribution is discussed in this 

chapter. 

Chapter Five reports the findings of the empirical tests, and where possible, discussion 

and explanations are given to provide insights on the results. 
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Chapter Six summarizes the key results, points out some limitations of the study and 

also directions for future research. 
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Chapter Two: Literature Review 

2.1   Introduction 

It is well known that the Black-Scholes implied volatility smile indicates that OTM put 

index options are expensive relative to the ATM index puts, and the issue is to then 

determine if these put options are in fact mispriced. (see Jackwerth (2000), Coval and 

Shumway (2001), Bondarenko (2003), and etc.) Generally speaking, put options, which 

deliver payoffs in bad states of the world, indeed will earn lower returns than call 

options, which deliver their payoffs in good states. As mentioned in Coval and 

Shumway (2001), option returns can be thought of as pricing two kinds of risks. The 

first one is a leverage effect. Because an option allows investors to assume much of the 

risk of the option’s underlying asset with a relatively small investment, options have 

characteristics similar to levered positions in the underlying asset. Therefore, call 

options written on securities with expected returns above the risk-free rate should earn 

expected returns that exceed those of the underlying security, while put options should 

earn expected returns below that of the underlying security. Coval and Shumway (2001) 

show that the Black-Scholes model has priced this implicit leverage. Secondly, another 

risk of options comes from the curvature of option payoffs, which results in the 

skewness of option returns’ distribution (i.e. long call returns can be as high as infinity, 

but no lower the -100%) and the sensitivity of option returns to the higher moments of 

the underlying asset’s returns. Under the assumption of Black-Scholes model, that the 
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market is dynamically complete and perfect, options should earn no such risk premium, 

since they are redundant assets. However, much evidence (see Coval and Shumway 

(2001)) seems to show that the financial market does price certain risk into option prices. 

It is known as “overpriced puts” puzzle. Researches dedicated to this problem mainly 

focus on three explanations (see Bondarenko (2003) and Isaenko (2007)): 

 Risk premium. As mentioned above, because of the high risks of asymmetric payoff 

and the leverage effect, high prices of puts may be expected and reflect normal risk 

premiums under some equilibrium model. It is possible that the standard models fail to 

explain the data, but another “true” model can. In this “true” model, investors strongly 

dislike negative returns of the underlying securities and are willing to pay considerable 

premiums for portfolio insurance offered by puts. It is noted that researchers who are 

concerned with this explanation often focus on two aspects. One is to look for new 

factors that should be priced in option prices. The other is to discuss investors’ particular 

preference to risks. 

 The Peso problem. If this problem exists, it is to say that the puts are not mispriced, 

and the “overpriced puts” phenomenon is due to the small sample under investigation, 

which is affected by the Peso problem. This refers to a situation when an  influential 

event could have reasonably happened but did not happen in the sample yet. According 

to this explanation, the mispricing would have disappeared if data for a much longer 

period were available. 

 Biased belief. This explanation assumes that investors’ subjective beliefs are 
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mistaken, that is the underlying securities realized returns have not been anticipated by 

investors. The biased beliefs of investors can result in the mispricing problem of options, 

since they may overstate empirical as well as risk-neutral probabilities of negative 

returns. 

2.2   Overpriced Puts 

The market for index options developed in the mid to late 1980s. The first evidence of 

overpriced puts comes from the well known Black-Scholes implied volatility smile (see 

Jackwerth and Rubinstein (1996)), with much steeper slope in the OTM puts. Later, 

Jackwerth (2000) uses prices to characterize the shape of the risk-neutral density, and 

found that this risk-neutral distribution computed from S&P 500 index put options 

exhibits a pronounced negative skew after the crash of 1987. Based on a single factor 

model, he shows that utility over wealth has convex portions, interpreted as evidence of 

option mispricing. Jackwerth (2000) has also simulated special trading strategies to 

exploit this mispricing, and shows that put writing strategies gain excess returns, even 

after accounting for the possibility of further crashes, transaction costs, and hedges 

against the downside risk, which is another evidence of mispricing. 

Aït-Sahalia, Wang, and Yared (2001) compare the risk-neutral density estimated in 

complete markets from a cross-section of S&P 500 option prices to the risk-neutral 

density inferred from the time series density of the S&P 500 index, and find that the 

market prices options with an overly skewed and leptokurtic risk-neutral density. 
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Aït-Sahalia, Wang, and Yared (2001) reject the joint hypothesis that the S&P 500 

options are efficiently priced and that the S&P 500 index follows one-factor diffusion. 

Moreover, Sharpe ratios achieved by special trading strategies are much larger than 

those of the market, which further support the mispricing of options. 

Coval and Shumway (2001) is the first paper to focus on the theoretical and empirical 

nature of option returns. By analyzing weekly S&P100 option returns with 

Black-Scholes betas of calls and puts from 1986 to 1995, they find that both calls and 

puts earn returns that are too low to be consistent with the Black-Scholes/CAPM model. 

Bondarenko (2003) estimates the monthly hold-to-maturity returns of S&P 500 index 

options from August 1987 through December 2000. He also finds that the average put 

option returns monotonically increase with strike price. Moreover, the put returns are 

highly negative and statistically significant, with average excess return -39% per month 

for ATM puts and -95% per month for deep OTM puts. Other evidence provided by 

Bondarenko (2003) includes the highly negative Jensen’s alpha for ATM puts which is 

-23% per month. And it is estimated that the cumulative wealth transfer from buyers to 

sellers of the S&P 500 futures options is as much as $18 billion over the studied period. 

A more recent paper, Broadie, Chernov, and Johannes (2008), studies the monthly 

hold-to-maturity returns of S&P 500 index options using a longer period from August 

1987 to June 2005, and finds similar result that the put options are mispriced. The 

average monthly returns are -57% for OTM puts and -30% for ATM puts, and are 
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statistically different from zero using t-statistics, as p-value are close to zero. Broadie, 

Chernov, and Johannes (2008) compare their statistics in sub-sample from 1987 to 2000 

to the ones in the Bondarenko (2003), and finds that the returns are very close, in spite 

that results of Broadie, Chernov, and Johannes (2008) studies are slightly more negative 

for every moneyness category except the deepest OTM category. Besides, average put 

returns are unstable over time. Put returns were extremely negative in the late 1990s 

during the dot-com “bubble”, but were positive and large from late 2000 to early 2003. 

This may demonstrate a problem with tests using short sample periods. 

2.3   Investigating the Explanation of “Overpriced Puts Puzzle” 

2.3.1   Risk premium 

Most of the existing papers believe that it is the failure of standard models that brings 

on the overpriced puts puzzle. They are trying to find a “true” model to better fit this 

fact of extremely negative put returns. Some of them make attempts to investigate 

newly priced factors such as volatility risk premium, jump risk premium, etc. (e.g. Jones 

(2006) and Cao and Huang (2007)), and others focus on the changing preferences of 

investors (e.g. Benzoni, Collin-Dufresne, and Goldstein (2005)). 

Coval and Shumway (2001) look at the average returns of zero-beta straddles formed 

with futures options on the U.S. Treasury bond, Eurodollar, Nikkei 225 Index, and 

Deutsche Mark. The assumption is that if the only systematic volatility in the economy 

is market volatility, then only assets with volatilities that are positively correlated with 
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that of the market should earn a risk premium. They find that straddles on assets with 

volatilities that are positively correlated with market volatility tend to earn negative 

returns, which is interpreted as very tentative evidence that market volatility risk is 

priced. Furthermore, Coval and Shumway (2001) regress time series excess returns of 

CRSP’s size-decile portfolios on excess returns of the market and the excess returns of 

their zero-beta straddles, assuming that if straddle returns are highly sensitive to 

innovations in volatility, the excess returns of straddle should capture any ability of 

volatility risk to account for cross-sectional variation in excess returns. Again, they find 

a distinct pattern in the sensitivities of the size portfolios to the straddle factor. Coval 

and Shumway (2001) regard all of these results as the evidence that volatility risk is 

priced in the options market. 

Bondarenko (2003) uses a novel test based on equilibrium models in his study. He 

claims that under fairly general conditions, securities prices must satisfy a new 

martingale restriction, ܧ௧௩ ቂ
ೞ

ೞሺ௩ሻ
ቃ ൌ 

ሺ௩ሻ
,  t൏s൏T, where ݒ௧ is the asset’s price, ݄௧ሺ்ݒሻ 

is the conditional risk-neutral density of the asset’s final price, ܧ௧௩ሾ·ሿ ؔ ்ݒ௧ሾܧ ൌ  ሿ isݒ

the expectation conditional on the final price being v, and ܼ௧ is the value of a general 

derivative security with a single payoff ்ܼ at time T. Bondarenko (2003) estimate the 

conditional risk-neutral density ݄௧ሺ்ݒሻ from prices of traded options, and find that no 

equilibrium model for which the pricing kernel ்݉ ൌ ݉ሺ்ݒሻ  is a flexible and 

unspecified function of ்ݒ  can possibly explain the put anomaly (including the 

Black-Scholes model, jump-diffusion model and stochastic volatility model), even when 
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allowing for the possibility of incorrect beliefs and a biased sample. Bondarenko (2003) 

asserts that a candidate equilibrium model must produce a projected kernel which is 

strongly path-dependent with respect to the market portfolio. 

Jones (2006) estimates a flexible class of nonlinear models using all S&P 500 Index 

futures options traded between 1986 and 2000. He finds that two- or three-factor models 

are most successful in explaining both expected and realized option returns, and 

volatility risk and possibly jump risk are priced in the cross section of index options. 

However, these additional risk premiums are insufficient to explain average option 

returns, and deep OTM puts still exhibit overpricing. To explain the failures of all the 

specifications, Jones (2006) proposes that it is possible that the addition of some 

unknown state variable may resolve these puzzles, although it is difficult to speculate on 

what those  state variables might be. 

Cao and Huang (2007) analyze common factors that affect returns on S&P 500 index 

options, using daily returns of S&P index options from 1988 to 1994. They find that 93% 

of the variation in option returns can be explained by three factors, which respectively 

account for 87%, 4%, and 2% of the variation in option returns. The first factor is 

interpreted as the underlying asset, denoted by the underlying S&P 500 index returns. 

The last two factors are both regarded as volatility factors: one is the equally weighted 

option index, and the other is the option-implied volatility. Since the former offers 

significant incremental explanatory power for option returns, especially for the OTM 

options (4% VS 2%), Cao and Huang (2007) believe that the equally weighted option 
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index is a better proxy for the volatility factor. Furthermore, Cao and Huang (2007) 

perform mean-variance spanning tests, using the underlying and an equally weighted 

option index as benchmark assets to span OTM, ATM, or ITM option returns, both 

individually and jointly. Although their results fail to reject that the underlying asset and 

an ATM option can span OTM options, they reject the notion that they can span ITM 

options. It indicates that one or more other factors also play a role in determining S&P 

500 index option returns. 

Garleanu, Pedersen and Poteshman (2005) suggest a new factor to explain the 

option-pricing puzzle. Empirically, they find that end users, defined as proprietary 

traders and customers of brokers, have a net long position in S&P 500 index options 

with large net positions in OTM puts, while dealers, such as market makers are shorting 

index options. Further, the steepness of the smirk, measured by the difference between 

the implied volatility of low-moneyness options and ATM options, is positively related 

to the skew of option demand, measured by the demand for low-moneyness options 

minus the demand for high-moneyness options. Theoretically, they model the 

demand-pressure effect on prices, assuming preference of constant absolute risk 

aversion. To test their demand-pressure model, Garleanu, Pedersen and Poteshman 

(2005) compute net end-user demand for an option by the sum of the end users long 

open interest minus the sum of the end users short open interest, and find that options 

are overall more expensive when there is more end-user demand for options and that the 

expensiveness skew across moneyness is positively related to skew in end-user demand 
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across moneyness. 

Han (2008) studies whether investor sentiment affects S&P 500 option prices. Investor 

sentiment is the aggregate error in investor beliefs. He uses three investor sentiment 

proxies in the empirical test. The first proxy is a popular sentiment index based on 

Investors Intelligence’s weekly surveys of approximately 150 investment newsletter 

writers. The second sentiment proxy is the net position of large speculators in S&P 500 

futures, which is calculated as the number of long noncommercial contracts minus the 

number of short noncommercial contracts, scaled by the total open interest in S&P 500 

futures. The last proxy is the residuals of the log price-earnings ratio of the S&P 500 

index regressed on earnings growth expectations, log dividend payout, and several other 

variables such as expected inflation and real 30-year treasury-bond yield. The empirical 

tests focus on the time-series relation between sentiment proxies and the skewness of 

the risk-neutral density of monthly S&P 500 index returns. Han (2008) finds that when 

investors are more bearish, they would have a stronger demand and be willing to pay 

more for state contingent claims that pay off when the index level is low. This leads to a 

more negatively sloped pricing kernel, and thus a more negative index risk-neutral 

skewness. Moreover, these results still hold after controlling for a set of rational factors 

that may be related to the sentiment proxies, and after controlling for variables related to 

index risk-neutral skewness. Han (2008) concludes that investor sentiment is an 

important determinant of index option prices. 

Benzoni, Collin-Dufresne and Goldstein (2005) explore whether the standard 
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preferences can explain the prices of OTM S&P 500 put options. While many 

researchers have argued that overpriced put puzzle cannot be justified in a general 

equilibrium setting if the representative agent has standard preferences, Benzoni, 

Collin-Dufresne and Goldstein (2005) demonstrate that the volatility smirk can be 

rationalized if the agent is endowed with Epstein-Zin preferences and if the aggregate 

dividend and consumption processes are driven by a persistent stochastic growth 

variable that can exhibit jump. In their framework, the risky asset performs poorly in a 

bad state and investors are willing to pay a high price for a security that provides 

insurance against this state. Benzoni, Collin-Dufresne and Goldstein (2005) further 

extend the model to a Bayesian setting in which the agent formulates a prior on the 

average value of the jump size, and then updates her prior when she observes an 

extreme event such as the 1987 crash. They find that their model can capture the 

implied volatility pattern of option prices both before and after the 1987 crash. However, 

for the case with Bayesian updating, the model consistent with pre- and post-crash data 

seems to predict a crash on the day of the event larger than what was observed in 1987. 

Benzoni, Collin-Dufresne and Goldstein (2005) assert that allowing for Bayesian 

updating not only on the size of the jump, but also on its intensity, or modeling volatility 

as stochastic with jump may improve the fit on the real data. 

2.3.2   The peso problem & biased belief 

In empirical tests, the effect caused by peso problem and biased belief are hard to isolate. 

When a rare event that one believes will happen do not actually happen, people cannot 
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ascribe all to the person’s biased belief. It is possible that over a considerably long 

period, evidence will show the correctness of his belief. For this reason, the peso 

problem and biased belief can only be tested jointly in studies. 

Coval and Shumway (2001) test the returns to the “crash-neutral” straddle, a straddle 

position achieved by purchasing a straddle position and selling a deeply OTM put 

option. This crash-neutral straddle’s return during a market crash is limited to some 

level that is specified when the position is created. So the measures of the position’s 

expected returns are not downward-biased by infrequent crash observations or 

high-priced crash risk. However, Coval and Shumway (2001) find that this strategy still 

generates average losses of nearly 3 percent per week. The authors regard these results 

as rejection of the peso problem and claim that options are earning low returns for 

reasons that extend beyond their ability to provide insurance against crashes. 

As mentioned above, Bondarenko (2003) uses a new restriction to test the overpriced 

put puzzle. It is said that this restriction will not be affected by the selection bias and 

also the belief bias, because it involves conditioning on the final price. Likewise, the 

restriction is not affected by the peso problem. After ruling out peso problem’s influence, 

since the put anomaly still cannot be well explained, Bondarenko (2003) claims that the 

peso problem and bias belief are not the necessary explanations for overpriced put 

puzzle. 

Broadie, Chernov, and Johannes (2008) adopt a different approach. Firstly, they estimate 
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the stochastic-volatility random-jump model using daily S&P 500 index returns 

spanning the same time period as their options data, from 1987 to 2005. Then they use 

MCMC methods to simulate the posterior distribution of the parameter and state 

variables. Assuming these parameters are -parameters, generating the observed S&P 

500 index returns, they claim that investors priced options taking into account 

estimation risk by increasing/decreasing the -measure parameters by one standard 

deviation from the -parameters. Broadie, Chernov, and Johannes (2008) compute the 

difference between expected variance under - and -measures, and find that 

estimation risk appears to be priced in the option market. Nonetheless, estimation risk is 

not totally equal to the peso problem while biased belief can also be a cause of 

estimation risk. 

2.4   Conclusion 

It is recognized that the put index options, especially OTM puts, have been overpriced. 

Many studies have made attempts to explain this puzzle. Most researchers believe that it 

is the failure of standard models that brings on the overpriced puts puzzle. Other factors 

are being tested. Stochastic volatility and jump risk are two important factors that first 

been used to explain the option returns, and they do have significant effect on 

improving the models. However, it has been shown that they are still insufficient to 

provide a full explanation. Other new factors, such as demand pressure and investor 

sentiment, also shed certain light on the discussion. Peso problem and investors’ biased 

beliefs may also cause the overpriced put puzzle. Nevertheless, studies that reject these 
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explanations and those that support them both exist. 
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Chapter Three: Theoretical Foundations 

3.1 Expected Option Returns 

In this thesis, I focus on one-month hold-to-expiration option returns (see Broadie, 

Chernov and Johannes (2008)), which are defined as 

:ݏ݊ݎݑݐܴ݁ ݈݈ܽܥ ௧,்ݎ ൌ
ሺܵ௧ା் െ ሻାܭ

,ܭ௧,்ሺܥ ܵ௧ሻ
െ 1 

(3.1)

:ݏ݊ݎݑݐܴ݁ ݐݑܲ ்,௧ݎ
 ൌ

ሺܭ െ ܵ௧ା்ሻା

௧ܲ,்ሺܭ, ܵ௧ሻ
െ 1 

where ݔା ؠ maxሺݔ, 0ሻ, ܥ௧,்ሺܭ, ܵ௧ሻ and ௧ܲ,்ሺܭ, ܵ௧ሻ are the time-t price of a call and a 

put written on ܵ௧, struck at K, and expiring at time t+T. Hold-to-expiration returns are 

typically analyzed in both academic studies and in practice for two reasons. First, option 

trading involves significant costs while strategies that hold until expiration incur these 

costs only at initiation. Secondly, higher frequency option returns (for example, weekly 

returns) generate a number of theoretical and statistical issues which can be avoided 

using monthly returns. Specifically, many studies compute weekly returns by holding a 

longer-dated option for one week, but it presents an important theoretical complication 

since weekly return characteristics vary by maturity: a one-week return on a five-week 

option is theoretically different from a one-week return on a one-week option. Besides, 

OTM options are usually less traded, especially for individual stock options. This 

implies that weekly option returns will be generated by allowing for moneyness and 

maturity windows.  
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Given the hold-to-maturity option returns, expected option returns are as below 

௧,்ݎ௧൫ܧ :݈݈ܽܥ ൯ ൌ ௧ܧ ቆ
ሺܵ௧ା் െ ሻାܭ

,ܭ௧,்ሺܥ ܵ௧ሻ
ቇ െ 1 ൌ

௧ሺሺܵ௧ା்ܧ െ ሻାሻܭ
,ܭ௧,்ሺܥ ܵ௧ሻ

െ 1 

ൌ
௧ሺሺܵ௧ା்ܧ െ ሻାሻܭ

௧ܧ
ொሺ݁ି்ሺܵ௧ା் െ ሻାሻܭ

െ 1 

(3.2)

்,௧ݎ௧൫ܧ :ݐݑܲ
 ൯ ൌ ௧ܧ ቆ

ሺܭ െ ܵ௧ା்ሻା

௧ܲ,்ሺܭ, ܵ௧ሻ
ቇ െ 1 ൌ

ܭ௧ሺሺܧ െ ܵ௧ା்ሻାሻ
௧ܲ,்ሺܭ, ܵ௧ሻ

െ 1 

ൌ
ܭ௧ሺሺܧ െ ܵ௧ା்ሻାሻ

௧ܧ
ொሺ݁ି்ሺܭ െ ܵ௧ା்ሻାሻ

െ 1 

Equation (3.2) implies that the gap between the  and  probability measures 

determines expected option returns, and the magnitude of the returns is determined by 

the relative shape and location of the two probability measures. 

Coval and Shumway (2001) have shown that since no existing asset-pricing theory 

permits a stochastic discount factor that is positively correlated with the market level 

and most individual security prices and all call options written on that security will have 

positive expected returns and increasing in their strike price, while all put options 

should have expected returns below the risk-free rate that is increasing in the strike 

price. 

PROPOSITION 1 (from Coval and Shumway (2001)): If the stochastic discount factor 

is negatively correlated with the price of a given security over all ranges of the security 

price, any call option on that security will have a positive expected return that is 

increasing in the strike price. 

Proof: As Equation (3.2), 
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௧,்ݎ௧൫ܧ ൯ ൌ
௧ሺሺܵ௧ା்ܧ െ ሻାሻܭ

௧ܧ
ொሺ݁ି்ሺܵ௧ା் െ ሻାሻܭ

െ 1 

Thus, the derivative of expected call returns with respect to strike price can be 

expressed as (assuming t=0) 

ܿܶݎሺܲܧ߲ ሻ
ܭ߲ ൌ ݁ି்

߲
ܭ߲ ܧ

ሾሺ்ܵ െ ሻାሿܭ · ொሾሺ்ܵܧ െ ሻାሿܭ െ ሾሺ்ܵܧ െ ሻାሿܭ · ܭ߲߲ ܧ
ொሾሺ்ܵ െ ሻାሿܭ

ொሾ݁ି்ሺ்ܵܧൣ െ ሻାሿ൧ଶܭ
 

The numerator of last equation is 

     
߲
ܭ߲ ܧ

ሾሺ்ܵ െ ሻାሿܭ · ொሾሺ்ܵܧ െ ሻାሿܭ െ ሾሺ்ܵܧ െ ሻାሿܭ ·
߲
ܭ߲ ܧ

ொሾሺ்ܵ െ ሻାሿܭ   

ൌ
߲
නܭ߲

ሺ்ܵ െ ሻ݀ܲܭ
ஶ


· න ሺ்ܵ െ ሻ݀ܳܭ

ஶ


െන ሺ்ܵ െ ሻ݀ܲܭ

ஶ


·
߲
නܭ߲

ሺ்ܵ െ ሻ݀ܳܭ
ஶ



ൌ െ൫1 െ ܲሺܭሻ൯ · න ሺ்ܵ െ ሻܭ
݀ܳ
݀ܲ ݀ܲ

ஶ


 න ሺ்ܵ െ ሻ݀ܲܭ

ஶ


· න

݀ܳ
݀ܲ ݀ܲ

ஶ



ൌ െ൫1 െ ܲሺܭሻ൯ଶ ቈන ሺ்ܵ െ ሻܭ
݀ܳ
݀ܲ

݀ܲ
1 െ ܲሺܭሻ 

ஶ


െ න ሺ்ܵ െ ሻܭ

݀ܲ
1 െ ܲሺܭሻ 

ஶ


න

݀ܳ
݀ܲ

݀ܲ
1 െ ܲሺܭሻ

ஶ




ൌ െ൫1 െ ܲሺܭሻ൯ଶ ܧ ሺ்ܵ െ ሻܭ ·
݀ܳ
݀ܲ  |்ܵ  ൨ ܭ – ሾሺ்ܵܧ െ ்ܵ|ሻܭ  .ሿܭ ܧ 

݀ܳ
݀ܲ |்ܵ   ൨൩ܭ

Note that the second part of the last equality is rightly the covariance of ሺ்ܵ െ  ሻ andܭ

ௗொ
ௗ

, conditional on the option being in the money (்ܵ   :(ܭ

     cov ሺ்ܵ െ ,ሻܭ
݀ܳ
݀ܲ  |்ܵ  ൨ܭ

ൌ ܧ ሺ்ܵ െ ሻܭ ·
݀ܳ
݀ܲ  |்ܵ  ൨ ܭ – ሾሺ்ܵܧ െ ்ܵ|ሻܭ  .ሿܭ ܧ 

݀ܳ
݀ܲ |்ܵ  ൨ܭ ൏ 0 

where ௗொ
ௗ

 is the stochastic discount factor. Then, we have 

௧,்ݎ௧൫ܧ߲ ൯
ܭ߲  0. 

This implies that expected call returns is increasing in the strike price. Because a call 

option with a zero strike price has the same positive expected return as the underlying 

asset, all the calls should also have positive expected returns above that of the 

underlying.  Q.E.D. 
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PROPOSITION 2 (from Coval and Shumway (2001)): If the stochastic discount factor 

is negatively correlated with the price of a given security over all ranges of the security 

price, any put option on that security will have an expected return below the risk-free 

rate that is increasing in the strike price. 

Proof: As Equation (3.2), 

்,௧ݎ௧൫ܧ
 ൯ ൌ

ܭ௧ሺሺܧ െ ܵ௧ା்ሻାሻ
௧ܧ
ொሺ݁ି்ሺܭ െ ܵ௧ା்ሻାሻ

െ 1 

Thus, the derivative of expected call returns with respect to strike price can be 

expressed as (assuming t=0) 

൯ݎ൫்ܧ߲
ܭ߲ ൌ ݁ି்

߲
ܭ߲ ܧ

ሾሺܭ െ ்ܵሻାሿ · ܭொሾሺܧ െ ்ܵሻାሿ െ ܭሾሺܧ െ ்ܵሻାሿ ·
߲
ܭ߲ ܧ

ொሾሺܭ െ ்ܵሻାሿ

ܭொሾ݁ି்ሺܧൣ െ ்ܵሻାሿ൧
ଶ  

The numerator of last equation is 

     
߲
ܧܭ߲

ሾሺܭ െ ்ܵሻାሿ · ܭொሾሺܧ െ ்ܵሻାሿ െ ܭሾሺܧ െ ்ܵሻାሿ ·
߲
ܭ߲ ܧ

ொሾሺܭ െ ்ܵሻାሿ

ൌ
߲
නܭ߲

ሺܭ െ ்ܵሻ݀ܲ



· න ሺܭ െ ்ܵሻ݀ܳ




െ න ሺܭ െ ்ܵሻ݀ܲ




·
߲
නܭ߲

ሺܭ െ ்ܵሻ݀ܳ




ൌ ܲሺܭሻ · න ሺܭ െ ்ܵሻ
݀ܳ
݀ܲ ݀ܲ




 න ሺܭ െ ்ܵሻ݀ܲ




· න

݀ܳ
݀ܲ ݀ܲ





ൌ ܲሺܭሻଶ ܧ ሺܭ െ ்ܵሻ ·
݀ܳ
݀ܲ  |்ܵ ൏ ൨ ܭ – ܭሾሺܧ െ ்ܵሻ|்ܵ ൏ .ሿܭ ܧ 

݀ܳ
݀ܲ |்ܵ ൏ ൨൩ܭ

ൌ cov ሺܭ െ ்ܵሻ,
݀ܳ
݀ܲ  |்ܵ ൏ ൨ܭ  0 

Thus, we have 

൯ݎ൫்ܧ߲
ܭ߲  0. 

With the fact that put returns are increasing in the option strike price and that a put 

option with infinite strike price has an expected return equal to the risk-free rate, we 

know that all put options will have expected returns below the risk-free rate.  Q.E.D. 
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Propositions 1 and 2 actually describe the so-called leverage effect in options returns, 

and this implicit leverage should be priced no matter which model is used. 

3.2 CAPM Alpha and Sharpe Ratio 

It is common that the literature uses CAPM alphas to test if an asset is mispriced. For 

example, CAPM model is written as 

ሿݎ௧ሾܧ െ ݎ ൌ ߚ · ݎ௧ൣܧ െ ൧ݎ   ୧ߝ

Thus a non-zero ߙ in ܧሾݎሿ െ ݎ ൌ ߙ  ߚ · ݎൣܧ െ ൧ݎ   ୧ is interpreted as evidenceߝ

of either mispricing or a risk premium not captured by CAPM. 

Thus, we can also write expected excess option returns into this CAPM form. Take the 

Black-Scholes model as an example. The link between instantaneous derivative returns 

and excess underlying security returns is 

݂݀ሺܵ௧ሻ
݂ሺܵ௧ሻ

ൌ ݐ݀ݎ 
ܵ௧

݂ሺܵ௧ሻ
߲݂ሺܵ௧ሻ
߲ܵ௧

൬
݀ܵ௧
ܵ௧

െ ൰ݐ݀ݎ . (3.3)

proof: In Black-Scholes, the underlying security satisfies geometric Brownian motion: 

݀ܵ௧ୀݎܵ௧݀ݐ   ௧ܤ௧݀ܵߪ

where ܵ௧ is the price of underlying security at time t, ݎ is the risk-free rate, and ܤ௧ 

is standard Brownian motion. According to Ito-lemma, the dynamics of derivative’s 

price is given by 

݂݀ሺܵ௧ሻ ൌ
߲݂ሺܵ௧ሻ
ݐ߲ ݐ݀ 

߲݂ሺܵ௧ሻ
߲ܵ௧

݀ܵ௧ 
1
2
߲ଶ݂
߲ܵ௧ଶ

(3.4) ݐଶܵ௧ଶ݀ߪ

On the other hand, the Black–Scholes PDE shows that 
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߲݂ሺܵ௧ሻ
ݐ߲ 

1
2
߲ଶ݂
߲ܵ௧ଶ

ଶܵ௧ଶߪ  ௧ܵݎ
߲݂ሺܵ௧ሻ
߲ܵ௧

െ ݂ሺܵ௧ሻݎ ൌ 0 (3.5)

Substituting PDE (3.4) into Equation (3.3), we see that 

      ݂݀ሺܵ௧ሻ

ൌ ൭െ
1
2
߲ଶ݂
߲ܵ௧ଶ

ଶܵ௧ଶߪ െ ܵ௧ݎ
߲݂ሺܵ௧ሻ
߲ܵ௧

 ݂ሺܵ௧ሻ൱ݎ ݐ݀ 
߲݂ሺܵ௧ሻ
߲ܵ௧

݀ܵ௧ 
1
2
߲ଶ݂
߲ܵ௧ଶ

ݐଶܵ௧ଶ݀ߪ

ൌ ݐ݂ሺܵ௧ሻ݀ݎ  ܵ௧
߲݂ሺܵ௧ሻ
߲ܵ௧

൬
݀ܵ௧
ܵ௧

െ  ൰ݐ݀ݎ

(3.6)

Q.E.D. 

If we consider Equation (3.3) as the instantaneous Black-Scholes CAPM for derivatives, 

an approximate CAPM model for finite holding period returns is 

௧ܧ      ቈ
݂ሺܵ௧ା்ሻ െ ݂ሺܵ௧ሻ

݂ሺܵ௧ሻ
െ ܶ ݎ ൎ

ܵ௧
݂ሺܵ௧ሻ

߲݂ሺܵ௧ሻ
߲ܵ௧

· ௧ܧ 
ܵ௧ା் െ ܵ௧

ܵ௧
െ ܶ ൨ݎ

ൌ ௧ߚ · ௧ܧ 
ܵ௧ା் െ ܵ௧

ܵ௧
െ  .ܶ ൨ݎ

Thus, by testing whether ்ߙ ൌ 0 via regression 

݂ሺܵ௧ା்ሻ െ ݂ሺܵ௧ሻ
݂ሺܵ௧ሻ

െ ܶݎ ൌ ்ߙ  ௧ߚ ൬
ܵ௧ା் െ ܵ௧

ܵ௧
െ ܶ൰ݎ   ,்,௧ߝ

we can tell whether options are mispriced or there is risk premium.  

However, this strategy has a serious problem: in discrete time, this CAPM model for 

options can only be derived approximately, although it holds in continuous time. The 

degree of bias depends on the length of the holding period. Moreover, since option 

returns are highly skewed, the errors ߝ௧,் are also highly skewed, which does not agree 

with standard tests of parameter significance assuming normal distributions. 

When it comes to more complicated models, such as SVJ model, ்ߙs are theoretically 
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notzero (see Broadie, Chernov, Johannes (2008)), because of the volatility risk and jump 

risk premiums: 

1
ݐ݀ ௧ܧ

 ቈ
݂݀ሺܵ௧ሻ
݂ሺܵ௧ሻ

െ ݐ݀ݎ  

            ൌ ௧௦ൣ݀ܵ௧ߚ ܵ௧⁄ െ ൫ݎ െ ൧  (3.7)ݐҧொ൯݀ߤொߣ

             ߚ௧௩ߢ௩൫ߠ௩ െ ௩ߠ
ொ൯ (3.8)

 ቂߣܧ௧ሾ݂ሺܵ௧݁ሻ െ ݂ሺܵ௧ሻሿ െ ௧ܧொߣ
ொሾ݂ሺܵ௧݁ሻ െ ݂ሺܵ௧ሻሿቃ /݂ሺܵ௧ሻ (3.9)

where, ߚ௧௦ ൌ ,ሾ݂ሺܵ௧݈߲݃ ௧ܸሻሿ/߲݈ܵ݃௧  and ߚ௧௩ ൌ ,ሾ݂ሺܵ௧݈߲݃ ௧ܸሻሿ/߲ ௧ܸ . Note that (3.8) 

and (3.9) represent volatility risk and jump risk premiums respectively. Generally 

speaking, for OTM puts, pricing volatility and jump risks implies that ߠ௩ ൏ ௩ߠ
ொ and 

௧ሾ݂ሺܵ௧݁ሻሿܧ ൏ ௧ܧ
ொሾ݂ሺܵ௧݁ሻሿ. Thus, negative alphas are fully consistent with volatility 

and jump risk premium, and are not indicative of mispricing. 

The Sharpe ratio is another measure of the excess return per unit of risk in an 

investment asset or a trading strategy. It is defined as 

ܴܵ ൌ
ݎൣܧ െ ൧ݎ

ටܸܽݎൣݎ െ ൧ݎ
. (3.10)

It is said that the asset with the higher Sharpe ratio gives more return for the same risk. 

In fact, Sharpe ratio does provide an appropriate metric when returns are normally 

distributed, but it is problematic to measure the mispricing of options, whose returns are 

highly skewed. 
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3.3 Option Pricing Models 

Since the classical Black-Scholes model proposed by Black and Scholes (1973), option 

pricing has witnessed an explosion of new models that relax some of the restrictive 

Black-Scholes assumptions. Examples include (a) the jump-diffusion model with 

constant volatility of Merton (1976); (b) the stochastic-volatility model of Heston 

(1993); and (c) the stochastic-volatility jump-diffusion models of Bates (1996) and 

Scott (1997). These models can be nested to a general model with mean-reverting 

stochastic volatility and lognormal distributed Poisson driven jumps in prices: 

݀ܵ௧ ൌ ൫ݎ  ݐ൯ܵ௧݀ߤ  ܵ௧ඥ ௧ܸ݀ ௧ܹ
௦ሺܲሻ  ݀ ቆ ܵఛೕష ቀ݁

ೕ
ೞሺሻ െ 1ቁ

ேሺሻ

ୀଵ
ቇ െ (3.11) ݐҧܵ௧݀ߤߣ

݀ ௧ܸ ൌ ௩ߠ௩ሺߢ െ ௧ܸሻ݀ݐ  ௩ඥߪ ௧ܸ݀ ௧ܹ
௩ሺܲሻ (3.12)

where ݎ  is the risk-free rate, ߤ  is the equity premium, ௧ܹ
௦  and ௧ܹ

௩  are two 

correlated standard Brownian motions ( ሾܧ ௧ܹ
௦

௧ܹ
௩ሿ ൌ ݐߩ ), ௧ܰሺܲሻ~Poissonሺߣݐሻ , 

ܼ
௦ሺܲሻ~ࣨሺߤ௭, ሺߪ௭ሻଶሻ, and ߤҧ ൌ expሺߤ௭  ሺߪ௭ሻଶ/2ሻ െ 1. 

This general form is actually the SVJ model under the real-world measure . For 

Black-Scholes model, there is no jump (ߣ ൌ 0 ) and the volatility is constant 

( ܸ ൌ ௩ߠ ൌ ,ଶߪ ௩ߪ ൌ 0); Merton’s model is a special case with jumps but constant 

volatility (ߣ ് 0, ܸ ൌ ௩ߠ ൌ ,ଶߪ ௩ߪ ൌ 0); and Heston’s SV model is another special 

case with no jump but stochastic volatility (ߣ ൌ 0). When volatility is constant, we use 

the notation ඥ ௧ܸ ൌ  .ߪ

The pricing of options need to use the dynamics under the risk-neutral measure :
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݀ܵ௧ ൌ ݐܵ௧݀ݎ  ܵ௧ඥ ௧ܸ݀ ௧ܹ
௦ሺܳሻ  ݀ ቆ ܵఛೕష ቀ݁

ೕ
ೞሺொሻ െ 1ቁ

ேሺொሻ

ୀଵ
ቇ െ (3.13) ݐҧொܵ௧݀ߤொߣ

݀ ௧ܸ ൌ ௩ߢ
ொ൫ߠ௩

ொ െ ௧ܸ൯݀ݐ  ௩ඥߪ ௧ܸ݀ ௧ܹ
௩ሺܳሻ (3.14)

where ௧ܰሺܳሻ~Poissonሺߣொݐሻ, ܼ
௦ሺܳሻ~ࣨ ቀߤ௭

ொ, ൫ߪ௭
ொ൯

ଶ
ቁ, andߤҧொ ൌ exp ቀߤ௭

ொ  ൫ߪ௭
ொ൯

ଶ
/2ቁ െ

1. Thus, the diffusive equity premium is represented by ߤᇱ ൌ ߤ െ ҧߤߣ   ҧொ, whileߤொߣ

differences between the risk-neutral and real-world jump and stochastic volatility 

parameters are referred to as jump or stochastic volatility risk premium. The difference 

between expected variance under - and -measures in the model is 

ൣܧ ௧ܸ,்
ொ ൧ െ ൣܧ ௧ܸ,்

 ൧

ൌ ൫ߠ௩
ொ െ ௩൯ߠ ൭1 

݁ିೡು் െ 1
௩ܶߢ

൱  ொߣ ቀ൫ߤ௭
ொ൯

ଶ
 ൫ߪ௭

ொ൯
ଶ
ቁ െ ௭ሻଶߤሺሺߣ  ሺߪ௭ሻଶሻ. 

(3.15) 

Parameters ߠ௩  and ߢ௩  can both characterize the stochastic volatility risk, and 

potentially change under the risk-neutral measure (Cheredito, Filipovic, and Kimmel 

(2003)). However, since Broadie, Chernov, and Johannes (2008) show that average 

option returns are not sensitive to empirically plausible changes in ߢ௩, one can make 

changes in ߠ௩
ொ from ߠ௩ but constrain ߢ௩

ொ ൌ ௩ߢ  to explore the stochastic volatility 

risk premium for SV models. Because volatility is highly persistent (i.e. ߢ௩ is small), 

when T is short (i.e. one-month options in my data sample), ߠ௩
ொ  needs to be 

comparatively larger than ߠ௩ to generate the gap between  and . On the other hand, 

changes of measure for jump processes are more flexible than those for diffusion 

processes: parameters ߣ ௭ߤ ,  ,and ߪ௭ଶ  have impact on expected variance for all 

maturities and do not depend on slow rates of mean-reversion.
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Chapter Four: Data and Methodology 

4.1 Data 

Unlike existing literature, which usually focus on understanding index options, this 

study is examines individual equity options. The primary data used in this thesis are a 

triple panel (in the three dimensions of strike price, maturity, and underlying ticker) of 

bid-ask option quotes written on 5 stocks, obtained from the OptionMetrics Database, 

and the corresponding underlying stock returns, obtained from the CRSP Database. The 

sample contains options on the 5 most actively traded (measured by the total trading 

volume in the test period) and familiar stock options: Microsoft, CISCO Systems, IBM, 

General Motors, and General Electric. I collected data on these options from January 

1996 to April 2006, a total of 124 months. Knowing contracts expire on the third Friday 

of each month, which implies there are 28 or 35 calendar days to maturity depending on 

whether it was a four- or five-week month, one month options are thus selected. 

However, given that these stock options are all American, it complicated the estimation 

procedure of hold-to-expiration option returns because of the considerable probability of 

early exercise. One method to circumvent this problem is transforming American option 

prices to European option prices (see Broadie, Chernov, and Johannes (2008), Broadie, 

Chernov, and Johannes (2007), and Bondarenko (2003)); details of this procedure are 

given in Appendix A. 
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Since options exist only for specific strike prices, prices for standard moneyness 

(ranging from 0.75 to 1.15 with 0.05 increments) cannot be directly observed. However, 

theoretical distributions and no-arbitrage conditions imply that options prices are 

continuous, monotone, and convex functions of the strike price. Following Bates (1991), 

I adopt the strategy of interpolating options prices for desired strike prices from a 

constrained cubic spline fitted through the options prices as a function of the moneyness 

(strike price/underlying price). 

4.2 Methodology 

This thesis follows mainly the methodology of Broadie, Chernov, and Johannes (2008). 

That is to compare the observed values of the common statistics (average returns, 

CAPM alphas, and Sharpe ratios) in the data to those generated by option pricing 

models (3.7) and (3.8). Here, formal models provide appropriate null values for 

anchoring hypothesis tests, and a mechanism for dealing with the severe statistical 

problems associated with option returns. 

4.2.1   Parameter Estimation 

To obtain the statistics generated by option pricing models, I need to know all the 

parameters of these models under the real-world -measure. Following Broadie, 

Chernov, and Johannes (2008), I also calibrate the models to fit the realized historical 

behavior of the underlying stock returns over my observed sample. Markov Chain 

Monte Carlo (MCMC) methods are utilized here to achieve this goal (see Erake, 
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Johannes, and Polson (2003), Jacquier, Polson, Rossi (2004), and Johannes and Polson 

(2003)). Erake, Johannes, and Polson (2003) show that this approach has four 

advantages: (a) MCMC provides estimates of the latent volatility, jump times, and jump 

sizes; (b) MCMC accounts for estimation risk; (c) MCMC methods have been shown in 

related settings to have superior sampling properties to competing methods (i.e. GMM 

and EMM); and (d) MCMC methods are computationally efficient for researchers to 

check its accuracy using simulations. 

Take SVJ model as an example. The basis of the MCMC estimation is a 

time-discretization of (3.7) and (3.8) 

௧ܻ ൌ ߤ  ௧ܼ௧௦ܬ  ඥ ௧ܸିଵߝ௧௦ (4.1)

௧ܸ ൌ ௩ߠ௩ߢ  ሺ1 െ ௩ሻߢ ௧ܸିଵ  ඥ ௧ܸିଵߪ௩ߝ௧௩ (4.2)

where ௧ܻ ൌ ܵ௧ ܵ௧ିଵ⁄ െ 1  is the stock return, ߤ ൌ ݎ  ߤ ௧ܬ , ൌ 1  indicates a jump 

arrival, and ߝ௧௦ and ߝ௧௩ are standard normal random variables with correlation ߩ. 

The estimate of parameter ߤ can be directly substituted by the mean of historical stock 

returns. For other parameters, according to Bayesian Rule, the posterior distribution 

summarizes the sample information regarding the parameters, Θ , and the latent 

volatility, jump times, and jump sizes: 

,߆ሺ ,ܬ ܼ௦, ܸ|ܻሻ ן ,߆|ሺܻ ,ܬ ܼ௦, ܸሻሺ߆, ,ܬ ܼ௦, ܸሻ 

where ܬ, ܼ௦, ܸ, and ܻ are vectors containing the time series of the relevant variables. 

The posterior combines the likelihood, ሺܻ|߆, ,ܬ ܼ௦, ܸሻ, and the prior, ሺ߆, ,ܬ ܼ௦, ܸሻ. 

As the posterior distribution is not known in closed form, the MCMC algorithm 
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generates samples by iteratively drawing from the following conditional posteriors 

(supported by Gibbs Sampler and Metropolis-Hastings): 

Parameters: ሺ߆|ି߆, ,ܬ ܼ௦, ܸ, ܻሻ, ݅ ൌ 1,… , ݇ 

Jump times: ሺܬ௧ ൌ ,߆|1 ܼ௦, ܸ, ܻሻ, ݐ ൌ 1,… , ܶ 

Jump sizes: ሺܼ௦|߆, ௧ܬ ൌ 1, ܸ, ܻሻ, ݐ ൌ 1,… , ܶ 

Volatility: ሺ ௧ܸ|߆, ௧ܬ ൌ 1, ௧ܸିଵ, ௧ܸାଵ, ܼ௦, ܻሻ, ݐ ൌ 1,… , ܶ 

where ି߆ denotes the elements of the parameter vector except ߆. The details of this 

MCMC algorithm are explained in Appendix B. 

The parameter estimates (posterior means) and posterior standard deviations are 

reported in Table I. Compared to those parameter estimates of S&P 500 index futures, 

we can see there are some difference between individual stocks and index. For example, 

the average estimate λ for individual stocks is about 0.02, implying that jumps arrive at 

a rate of about 5.6 per year, much more frequently than the rate of index jumps 

estimated by Broadie, Chernov, and Johannes (2008), 0.9 per year. Secondly, the ߠ௩s of 

individual stocks, which measures the volatility level of their returns, are also much 

larger than that of index, viz. about 4 versus 0.9. Both of these two evidences show that 

returns of individual stocks are much noisier than index. Besides, unlike index, which 

has average negative jumps in the returns series, individual stocks (except GE) mainly 

have jumps with positive means, but the jumps in individual stock returns are not 

significantly different from zero. It implies that individual stocks have approximately 

equal upward and downward jump risks. 
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4.2.2    Finite Sample Distribution via Monte Carlo Simulation 

As that discussed in Section 3.1, expected call (put) option returns can be written in 

Equation (3.2). Note that expected call (put) returns are actually independent of ܵ௧:  

௧,்ݎ௧൫ܧ :݈݈ܽܥ ൯ ൌ
௧ܧ ቀ൫ܴ௧,் െ ݇൯ାቁ

௧ܧ
ொ ቀ݁ି்൫ܴ௧,் െ ݇൯ାቁ

െ 1 

(4.3)

்,௧ݎ௧൫ܧ :ݐݑܲ
 ൯ ൌ

௧ܧ ቀ൫݇ െ ܴ௧,்൯
ାቁ

௧ܧ
ொ ቀ݁ି்൫݇ െ ܴ௧,்൯

ାቁ
െ 1 

where ݇ ൌ ்,௧ is the initial moneyness of the option, and ܴ௧ܵ/ܭ ൌ ܵ௧ା்/ܵ௧ is the 

stock returns. It implies that expected option returns depend only on the moneyness, 

maturity, interest rate, and the distribution of stock returns. This fact makes possible the 

analysis of option returns via Monte Carlo simulation. 

 The estimation of ܧ௧
ொ ቀ݁ି்൫ܴ௧,் െ ݇൯ାቁ and ܧ௧

ொ ቀ݁ି்൫݇ െ ܴ௧,்൯
ାቁ: 

Given risk-neutral parameters, ߠ௩
ொ, ௩ߢ

ொ, ,ொߣ ௭ߤ
ொ, and ߪ௭

ொ, for each k and time t, one can 

simulate G (i.e. G=25,000) stock returns ܴ௧,௧ାଵ
ொ,ሺሻ. The prices of options of moneyness k 

under -measure at time t are then: 

௧ܧ :݈݈ܽܥ
ொ ቀ݁ି்൫ܴ௧,௧ାଵ െ ݇൯ାቁ ൌ

1
ܩ ݁ି்ቀܴ௧,௧ାଵ

ொ,ሺሻ െ ݇ቁ
ାீ

ୀଵ
; 

(4.4)
௧ܧ :ݐݑܲ

ொ ቀ݁ି்൫݇ െ ܴ௧,௧ାଵ൯
ାቁ ൌ

1
ܩ ݁ି்ቀ݇ െ ܴ௧,௧ାଵ

ொ,ሺሻቁ
ାீ

ୀଵ
. 

The choice of risk-neutral parameters will be discussed later. 

 Average option returns: Following Broadie, Chernov, and Johannes (2008), to 

compute the finite sample distribution of various option return statistics, I simulate 

N=124 months (the sample length in the data) of index levels G=25,000 times using SV 
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and SVJ models separately by standard simulation techniques. For each simulation path 

g and each month t, call (put) returns for a fixed moneyness are 

௧,௧ାଵݎ :݈݈ܽܥ
,ሺሻ ൌ

ቀܴ௧,௧ାଵ
,ሺሻ െ ݇ቁ

ା

௧ܧ
ொ ቀ݁ି൫ܴ௧,௧ାଵ െ ݇൯

ା
ቁ
െ 1 

(4.5)

௧,௧ାଵݎ :ݐݑܲ
,ሺሻ ൌ

ቀ݇ െ ܴ௧,௧ାଵ
,ሺሻቁ

ା

௧ܧ
ொ ቀ݁ି൫݇ െ ܴ௧,௧ାଵ൯

ା
ቁ
െ 1 

where ݐ ൌ ڮ,1 ,ܰ and ݃ ൌ ڮ,1 ,  Average option returns for each simulation g .ܩ

using N months of simulation data are 

ҧ,ሺሻݎ :݈݈ܽܥ ൌ
1
ܰ ௧,௧ାଵݎ

,ሺሻ
ே

௧ୀଵ
 

(4.6)
ҧ,ሺሻݎ :ݐݑܲ ൌ

1
ܰ ௧,௧ାଵݎ

,ሺሻ
ே

௧ୀଵ
 

Now we have got a set of G average returns, which forms the finite sample distribution. 

This is a parameter bootstrapping approach, providing exact finite sample inference 

under the null hypothesis that a given model holds. 

Similarly, finite sample distributions for other statistics, such as CAPM alphas and 

Sharpe ratios can be constructed.  

 CAPM alphas: Take call options as an example. For each simulation trial g, do the 

time series OLS regression: 

௧,௧ାଵݎ :݈݈ܽܥ
,ሺሻ െ ݎ ൌ ሺሻߙ  ሺሻሺܴ௧,௧ାଵߚ

ሺሻ െ  ሻ               (4.7)ݎ

where ݐ ൌ ڮ,1 ,ܰ  and ݃ ൌ ڮ,1 , ܩ ሺሻߙ . s compose a set of G CAPM alphas, 

forming the finite sample distribution. 
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 Sharpe ratios: Also take call options as an example. For each simulation trial g, 

there are time series of N month simulation call returns ݎ௧,௧ାଵ
,ሺሻ. Sharpe rations for 

simulation g using N month of data are 

ܴܵሺሻ ൌ
௧,௧ାଵݎቂܧ

,ሺሻ െ ቃݎ

ටܸܽݎቂݎ௧,௧ାଵ
,ሺሻ െ ቃݎ

, 
(4.8)

The set of N ܴܵሺሻ forms the finite sample distribution of Sharpe ratios.



    Chapter 5: Results Analysis 

34 
 

Chapter Five: Results Analysis 

5.1 Observed Average Option Returns 

Table II and III record a variety of statistics for monthly call and put returns of five 

individual stocks, i.e. Microsoft (MSFT), CISCO Systems (CSCO), IBM, General 

Motors (GM), and General Electric (GE) over a 124-month period from January 1996 to 

April 2006. I record the mean, median, minimum, and maximum monthly 

hold-to-maturity returns for each of the nine groups of moneyness. The groups range 

from options with moneyness 0.75 to 1.15. The t-statistics and p-values associate with a 

null hypothesis of zero mean return is recorded in the second and third rows. I also 

report the skewness and kurtosis for each of the stock options and moneyness. 

Looking at mean returns of call options in Table II, we see that most of them do earn 

positive average returns, except two OTM calls of CSCO, two ITM calls of GM, and 

two ITM calls of GE. Moreover, average returns are strictly increasing with the 

moneyness for calls of MSFT and IBM, while average call returns of CSCO, GM, and 

GE are almost monotonically increasing in moneyness. The ATM calls earn average 

returns of about 9 percent for MSFT, 10 percent for CSCO, 12 percent for IBM, 4 

percent for GM, and 20 percent for GE. Call options that are 10% out of the money earn 

11 percent more per month than those equivalently in the money for MSFT, 10% OTM 

calls of IBM earn 58 percent more per month than those 10% ITM;  and 10% OTM 

calls of GM earn 41 percent more per month than those 10% ITM;. CSCO and GE show 
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exceptions. They report  negative differences between their 10% OTM and 10% ITM 

calls respectively. Positive average call returns are not significantly different from zero 

for all five stocks, according to the t-statistics and p-values, while negative average call 

returns are almost yet significant. Nevertheless, we still acknowledge that call option 

returns are, as a whole, appear to be qualitatively consistent with Proposition 1. Not 

surprisingly, the median, minimum, maximum, skewness statistics demonstrate a 

substantial degree of positive skewness in the call returns, which is increasing in their 

moneyness. 

Turning to put option returns in Table III, we see the results (except for GM) that are 

consistent with Proposition 2. Put options have returns that are almost statistically 

negative, and monotonically increasing in moneyness for MSFT, CSCO, IBM, and GE. 

Since the highest returns should be obtained by the deepest in-the-money puts, GE has a 

positive average put return at moneyness equal to 1.15, but it is not significantly 

different from zero. The exception occurs in the results of GM. All the average put 

returns are positive, and they do not show an increasing pattern with respect to 

moneyness. This phenomenon may be due to both mispricing and extreme shocks in the 

test period may account for this. Looking at the results of other four stocks, the ATM 

puts earn average return of about -26 percent for MSFT, -29 percent for CSCO, -10 

percent for IBM, and -19 percent for GE. Put options that are 10% out of the money 

lose 57 percent more per month than those in the money for MSFT; 10% OTM puts of 

CSCO lose 46 percent more per month than those 10% ITM; 10% OTM puts of IBM 
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lose 24 percent more per month than those 10% ITM; and 10% OTM puts of GE lose 59 

percent more per month than those 10% ITM. Again, as expected, the median, minimum, 

maximum, and skewness statistics indicate that put returns exhibit substantial positive 

skewness. 

In order to have a clearer perspective, Figure I and II shows the time series for 10% 

OTM, ATM, and 10% ITM call and put returns of MSFT, highlighting some of the 

issues present when evaluating the statistics generated by option returns in Table II and 

III. OTM call returns have infrequent but very large values and many repeated values 

which are -100%, exhibiting a highly positive skewness pattern. Along with increases in 

moneyness, positive returns in time series become more frequent and the magnitudes 

are much smaller. Compared to OTM calls, OTM puts are even more extreme, with 

much less positive values. Besides, the magnitudes of positive returns of OTM puts are 

half the size of OTM calls. As moneyness is increasing, put returns also experience 

more positive values. However, like OTM options, puts are always more positively 

skewed than calls at the same level of moneyness. This is not a surprising fact, because 

Proposition 1 and 2 guarantee that calls should have positive expected returns, while 

puts should have negative ones. 

The CAPM alphas for calls and puts are also reported in Table II and III. Beginning 

with Table II, only the 25% ITM calls of IBM and GM have significant positive CAPM 

alphas. Except for this, the results for calls are all insignificantly from zero. It seems to 

be consistent with the assumption of CAPM model, indicating that volatility and jump 
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risks may be not priced in individual stock calls. On the other hand, puts exhibit a 

different picture (see Table III). MSFT, CSCO, IBM, and GE all have significant 

negative CAPM alphas in their OTM puts (GM is still an exception). Considering that 

OTM puts are the options that most likely to be priced with volatility and jump risks, 

this result is not inconsistent. Puzzling CAPM alphas are those for ITM puts, which are 

significantly positive for the 10% and 15% ITM puts of IBM and GE. Explanation may 

be that they carry positive volatility or jump risk premium. 

Sharpe ratios for calls are positive but small, about 0.04 ~ 0.10. Puts, on the contrary, 

have negative Sharpe ratios, and the magnitude is very large, about -1.5 ~ -0.15. The 

literature mainly concludes that put returns are puzzling and likely to be mispriced. 

However, since put option returns are highly skewed, I argue that Sharpe ratio may not 

be an appropriate metric for mispricing. 

5.2 Finite Sample Distribution of Individual Options 

Broadie, Chernov, and Johannes (2008) perform the finite sample distribution analysis 

using the simplest option pricing models, the Black-Scholes and stochastic-volatility 

models. However, since it is well known that Black-Scholes model is too simplistic  

characterize the dynamics of option prices, I omit the analysis by Black-Scholes model, 

but focus on SV and SVJ models. 
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5.2.1 Stochasticvolatility Model 

Following the steps described in 4.2.2, I assume there is only equity premium priced in 

options. That is ߠ௩
ொ ൌ  .௩, implying that there is not a diffusive volatility premiumߠ

Table IV and V provides population average returns, CAPM alphas, and Sharpe ratios 

for SV model, as well as p-values. Here, the p-values are different from those in Table II 

and III. They do not support the null hypothesis that option returns equal zero, but the 

null hypothesis at values generated by the option pricing models. 

Firstly, look at the finite sample distribution of call option returns in Table IV. The 

means of the simulation returns can be thought as the theoretical returns by SV model. 

Note that these returns increase with moneyness and are all positive values, consistent 

with Proposition 1. Another phenomenon is that for four out of the five stocks, the 

observed returns of calls whose moneynesses are close to being at-the-money, are 

significantly smaller than the average simulated returns (i.e. 5% OTM, ATM, and 5% 

ITM calls of MSFT and CSCO, 5% OTM and ATM calls of IBM and GE). Other 

significant results occur in deep ITM calls (i.e. 25% ITM calls of MSFT, CSCO and 

IBM, 25% and 20% ITM calls of GE). This result seems to be puzzling, because the 

common perception is that OTM options, either calls or puts, are most easily to be 

mispriced. However, Broadie, Chernov, and Johannes (2008) shows that it does not 

necessary to claim that OTM options are not mispriced. They provide simulation results 

to explain that option returns, especially OTM options, are very sensitive to equity 

premium ߤ and volatilities. With regard to this fact, the insignificance of OTM calls 
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may result from the large sampling uncertainty in the distribution of average option 

returns. Nevertheless, through my results, there is no evidence that OTM call returns are 

inconsistent with SV model. 

Next, consider CAPM alphas and Sharpe ratios for call options of each stock, which are 

also reported in Table IV. Nonetheless, they do not shine much light on the analysis, 

still showing insignificant results for ATM calls. Except for that, we do not see much 

orderlyness of CAPM alphas of the finite sample distributions along with moneynesses: 

CAPM alphas are positive or negative at random moneyness levels. As shown in 

Broadie, Chernov, and Johannes (2008), when applying linear factor models (CAPM 

model) to nonlinear option returns, even one single extreme observation will impact the 

estimation of CAPM alphas a lot1, resulting in problems when regarding CAPM alphas 

as metrics.  On a whole, the magnitudes of Sharpe ratios of the finite sample 

distributions are larger than that observed. And also, the magnitudes of Sharpe ratios for 

SVJ models are larger than those for SV models. 

Turn to put options in Table V. Consistent with Proposition 2, the mean returns 

simulated by SV model are all negative and tend to increase with moneyness. The 

significant results only happen to 10%, 5% OTM and ATM puts of CSCO, and 25% 

OTM puts of GE (25%, 20%, 15% OTM puts of GM are significant because the 

observed returns are all positive, as discussed in section 5.1). It may imply that put 

returns for individual stocks are consistent with SV model, or that the sampling 
                                                              
1  It means that even one single large observation can substantially shifts the intercept from negative to positive, vice 
versa. 
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uncertainty generated by changing volatility significantly increases p-value, resulting in 

the indiscernible mispricing puzzle. When looking at CAPM alphas and Sharpe ratios, 

we see that the conclusions are similar, providing no more information over average 

returns. However, one thing should be noticed is that the magnitude of Sharpe ratios is 

extremely high for the deepest OTM (25% OTM) puts, at around 600. This happens 

because the returns of deep OTM puts are highly skewed: almost all the values are 

-100%. Hence, the variance of returns is usually very small, resulting in such a large 

Sharpe ratio. Nonetheless, the very small variance is also so sensitive to even one large 

positive shock that once it occurs, the magnitude of Sharpe ratio will accordingly 

experience a considerable drop. For this reason, Sharpe ratio is not a good metric for 

deep OTM puts. 

5.2.2 Stochasticvolatility Jumpdiffusion Model 

Next, consider the SVJ model. I assume that there is neither a diffusive volatility 

premium nor a jump risk premium: ߠ௩
ொ ൌ ௩ߠ ௭ߣ ,

ொ ൌ ௭ߣ ௭ߤ ,
ொ ൌ ௭ߤ , and ߪ௭

ொ ൌ ௭ߪ . 

Population average returns, CAPM alphas, and Sharpe ratios for SVJ model, as well as 

p-values are shown in Table IV and V. 

Begin with call options. Expected call returns are lower (almost) in the SVJ model than 

in the SV model, especially for OTM options. This is due to the fact that expected 

returns are a concave function of volatility, which implies that the more the volatility 

fluctuates, the lower the expected returns. Considering that jumps can cause fluctuations 
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in stochastic volatilities, the expected returns of SVJ model are, theoretically, lower than 

that of SV model. Nonetheless, we can see from Table IV that this difference is not very 

significant. It may be because returns of individual stocks are much noisier, compared 

with index futures. As we see in Table I, the jump frequencies ߣs are considerably high, 

and the means of jumps sizes are not significantly from zero, indicating that SVJ model 

doesn’t improve SV model very much in characterizing the dynamics of individual 

stocks. The p-values in SVJ model show that significant results happen in 5% OTM, 

ATM, and 25% ITM calls of MSFT, nearly all calls of CSCO, 5% OTM, 25%, 20%, and 

15% ITM calls of IBM, 15% and 10% ITM calls of GM, and 25%, 20% ITM calls of 

GE. This is a similar result with that of SV model. 

We turn to put options, next. More obviously than calls, expected put returns for SVJ 

model are more negative than for SV model at all moneyness levels. p-values shows 

that 25% OTM puts of MSFT, 25% and 20% OTM, ATM, and 5% and 10% ITM puts of 

IBM, and 25% OTM puts of GE (ignoring results of GM, because the observed 

abnormal returns, as discussed in section 5.1) have significant results. Among these 

results, IBM’s tell us that the expected put returns of SVJ model may be so negative that 

observed average returns are actually significantly larger than the expected ones by 

SVJ. 

As discussed in section 5.2.1, CAPM alphas and Sharpe ratios for both calls and puts do 

not provide more information about option mispricing. 



    Chapter 5: Results Analysis 

42 
 

In summary, the analysis in section 5.2 presents three results. Firstly, CAPM alphas and 

Sharpe ratios are generally noisier than mean returns, indicating that they are not more 

informative statistics than mean returns. Secondly, SVJ model does not improve SV 

model a lot for individual stocks, although it introduces more flexible volatilities in 

dynamics. Third, sampling uncertainty is substantial for both call and put returns, since 

the returns for many of the strikes are statistically insignificant. While it is well known 

that SV and SVJ models are not perfect specifications for stocks, it makes us think that 

average raw option returns are so noisy that little can be said about option mispricing. 

Broadie, Chernov, and Johannes (2008) and Coval and Shumway (2003) suggest that 

tests using option portfolio may be much more informative. 

5.3 Finite Sample Distribution of Option Portfolios 

This section explores the performance of option portfolios in finite sample distribution. 

I consider a variety of portfolios including covered puts, which consist of a long put 

position combined with a long position in the underlying index; ATM straddles, which 

consist of a long position in an ATM put and an ATM call; crash-neutral straddles, 

which consist of a long position in ATM straddle combined with a short position in one 

unit of 10% OTM put; and put spreads (also known as a crash-neutral puts), which 

consist of a long position in an ATM put and a short position in a 10% OTM put.2 Since 

a large part of the variation in average option returns is driven by the underlying assets, 

                                                              
2 In the discussion in Broadie, Chernov, and Johannes (2008), they also include delta-hedged puts, which consist of a 
long put position combined with a position in Black-Scholes delta unites of the underlying asset. However, they also 
point out the shortcomings of analyzing delta-hedged returns, so I omit this analysis in my thesis. 
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the above mentioned portfolios mitigate the impact of the level of the stocks or the tail 

behavior of the stocks. Table VI reports the population average returns as well as 

p-values for both SV model and SVJ model. For each option portfolio, I only focus on 

the returns to the long side, in order to consistent with earlier results. As shown in 

section 5.3, CAPM alphas and Sharpe ratios do not add new information, so they are not 

reported. 

Table VI shows that the average returns on the covered put positions and put spread 

positions are not significant for all the stocks and moneyness levels. Note that the 

p-values of the ATM straddle returns for MSFT and CSCO is quite small. Thus MSFT 

and CSCO both have significantly different ATM straddle returns from those simulated 

by SV and SVJ models. The observed average ATM straddle return of MSFT is -6.05% 

per month, while finite sample distributions report returns around 11% per month. For 

CSCO, the observed average ATM straddle return is -7.79% per month, while finite 

sample distributions report returns around 33% per month (SV) or 18% per month 

(SVJ). Although SVJ model estimates show expected ATM straddle returns to be much 

lower than SV model, the difference between 18% and -7.79% still indicates a 

significant result (p-value is 0.27%). Unlike MSFT and CSCO, the ATM straddle of GM 

has its observed average returns significantly higher than those in finite sample 

distributions. Again, we say the GM case has shown abnormal in the test data sample 

that it is difficult to interpret the GM results. The observed average ATM straddle 

returns for IBM and GE are not significantly different from those in finite sample 
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distributions, and comparatively much closer to those of SVJ model than SV model. 

The crash-neutral straddles are considered in the analysis because their return during a 

market crash is limited to some level (10% loss in my thesis) that is specified when the 

position is created. In this way, measures of the position’s expected returns are not 

downward-biased by infrequent crash observations or high-priced crash risk. Looking at 

the results in Table VI, MSFT still earns a negative return -1.26%, CSCO earns 0.91%, 

IBM earns 7.88%, and GE earns 10.31%. Like ATM straddles, the significant results 

also happen to MSFT and CSCO, which implies that volatility risks are priced in the 

options of these two stocks. 

Recalling the analysis of S&P 500 index options by Broadie, Chernov, and Johannes 

(2008), we see both ATM straddles and crash-neutral straddles lost on average 

significantly compared with the positive mean returns of finite sample distributions. 

Therefore, it seems that only the options of MSFT and CSCO have similar 

characteristics with the index’s. Noting that MSFT and CSCO are two individual stocks, 

whose options are trading the most actively, we may explain this phenomenon by 

Garleanu, Pedersen, and Poteshman (2007). They argue that in the real world options 

cannot be perfectly hedged. Consequently, if intermediaries such as market makers and 

proprietary traders who take the other side of end-user option demand3 are risk-averse, 

end-user demand for options will impact option prices. In particular, options are overall 

                                                              
3 They compute net end-user demand for an option in this way. They assume that firm proprietary traders are end 
users and compute the net demand for an option as the sum of the public customer and firm proprietary trader short 
open interest. Net demand computed in this way is referred to as non-market-maker net demand. 
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more expensive when there are more end-user demands for options and that the 

expensiveness skew across moneyness is positively related to skewness in end-user 

demand across moneyness. Empirical evidence is that on average index options are 

quite expensive by the measure of implied volatilities, and that they have high positive 

end-user demand. On the contrary, equity options are on average slightly inexpensive 

and have a small negative end-user demand. As MSFT and CSCO’s options are traded 

most actively in the market compared with other equity options, it makes us think 

whether they have possessed similar characters with index options, such as positive 

end-user demand. Further research should analyze more equity stocks, and to test 

whether this guess is true. 
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Chapter Six: Conclusions 

6.1 Summary of the Results 

In this thesis, I mainly use the methodology of Broadie, Chernov, and Johannes (2008) 

to explore whether ‘mispricing’ problems exist in individual stock options. Recognizing 

that simply looking at average option returns, CAPM alphas, or Sharpe ratios is 

problematic for the analysis of highly skewed option returns, I rely on standard 

option-pricing models (i.e. SV and SVJ models) to compute analytical expected option 

returns and to construct finite sample distributions of average option returns using 

Monte Carlo simulation. By investigating whether historical statistics are significant in 

the finite sample distributions, I can find out if these models are too simple to provide 

accurate descriptions of option prices. 

Theoretically, I cite and verify the propositions in Coval and Shumway (2001): calls 

earn positive returns while puts’ returns are mainly negative. Meanwhile, the returns of 

both calls and puts tend to increase with moneyness levels. As to non-zero CAPM 

alphas, they can only hold in instantaneous Black-Scholes model, but may be 

inconsistent for discrete-time BS models, as well as in complicated models such as SV 

and SVJ. In particular, OTM puts, which are usually priced with volatility risk premium, 

will consequently see negative CAPM alphas. Moreover, general standard of Sharpe 

ratios is also inapplicable for option returns, for the option returns show a highly 

non-normal pattern. 
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Empirically, I present a number of interesting findings. First, I find that calls do have 

positive expected returns and puts have negative expected returns. Moreover, the 

expected returns of both calls and puts are increasing as the strike price increases. These 

results are consistent with proposition 1 and 2. Second, although CAPM alphas and 

Sharpe ratios seem reasonable for call options, they are too negative for OTM put 

options. Nevertheless, as the analysis in the theory shows there is no convincing 

evidence to prove OTM puts for individual stocks are overpriced. The third finding is 

that the finite sample distributions simulated by SV and SVJ models do not likely 

provide much information on mispricing of sole calls and sole puts. Specifically, 

average returns, CAPM alphas, and Sharpe ratios for options are statistically 

insignificant when compared to the SV and SVJ models. However, Broadie, Chernov, 

and Johannes (2008) claim that these finding should not be interpret as evidence that SV 

or SVJ models are correct, but as highlighting the statistical difficulties present when 

analyzing option returns. With regard to this, fourthly, I use the similar method to test 

option portfolios. I find that only the most actively traded options (MSFT and CSCO) 

exhibit similar volatility risk premiums in their straddle prices. One explanation may be 

that actively traded equity options are more demanded by end users while other equity 

options face negative end user demands. According to the findings of Garleanu, 

Pedersen, and Poteshman (2007), positive demands cause the option prices to look 

expensive. 
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6.2 Limitation of the Study 

Limitations of the thesis are listed below: 

1. Because of the limitation of time and computer speed, this thesis only focuses on 

five stocks’ options. As this thesis is discussing individual stock options, the results of 

five options are apparently just exploratory. 

2. In the thesis, the time series is from January 1996 to April 2006, total 124 months. 

Large crashes, such as that in October 1987, are not included in the sample. Moreover, 

considering missing values, sometimes less than 124 data are analyzed. Therefore, the 

investigation may be affected by the Peso problem. 

6.3 Direction for Future Research 

The future study can be extended in the following areas: 

1. Do similar tests on more individual stock options, to see whether the results are 

consistent with those found in this thesis. 

2. In this thesis, I assume the evolution of volatility under the real-world  and the 

risk-neutral  measures are the same, which means there is no diffusive stochastic 

volatility risk premium. Thus, to further explore the risk premiums, one can correct 

parameters of  measures to make the finite sample distributions fit the observed 

statistics, and investigate the gap between and . 

3. As long as the trading volume data of options are available, the empirical study of 

the relation between option demands and option prices should be conducted.
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Table I 
-measure Parameters of Stocks 

This table reports parameter values that I will use in constructing the finite sample distributions. 
All the parameters are estimated by MCMC method. Standard errors for the estimation are also 
reported. 

 μ λ μz σz θv κv σv ρ 

Panel A: MICROSOFT COR. (MSFT) 
SV 0.0879 . . . 4.1218 0.0124 0.2695 -0.0418

(std) . . . . (28.866) (0.0042) (0.0381) (0.0697)

SVJ 0.0879 0.0209 0.2956 6.0819 3.8493 0.0032 0.1325 -0.2263
(std) . (0.0063) (1.0155) (0.9797) (51.4495) (0.0019) (0.0145) (0.1101)

Panel B: CISCO SYSTEMS INC. (CSCO) 
SV 0.1119 . . . 10.773 0.0061 0.2550 -0.4751

(std) . . . . (62.180) (0.0042) (0.0267) (0.0772)

SVJ 0.1119 0.0161 1.2293 8.0194 7.2941 0.0037 0.1813 -0.4724
(std) . (0.0052) (1.6277) (1.3745) (94.411) (0.0017) (0.0188) (0.0786)

Panel C: IBM COR. (IBM) 
SV 0.0750 . . . 3.9678 0.0099 0.2379 -0.4475

(std) . . . . (4.4781) (0.0036) (0.0267) (0.0620)

SVJ 0.0750 0.0300 0.7730 5.8477 2.7144 0.0045 0.1347 -0.5140
(std) . (0.0062) (0.7774) (0.6541) (67.014) (0.0021) (0.0159) (0.0836)

Panel D: GENERAL MOTORS COR. (GM) 
SV 0.0161 . . . 3.8227 0.0215 0.2839 -0.2892

(std) . . . . (0.5469) (0.0055) (0.0304) (0.0752)

SVJ 0.0161 0.0318 1.1263 4.8599 3.2117 0.0125 0.1809 -0.2761
(std) . (0.0097) (0.7233) (0.6814) (0.6828) (0.0036) (0.0166) (0.0993)

Panel E: GENERAL ELECTRIC COR. (GE) 
SV 0.0654 . . . 3.2209 0.0129 0.2079 -0.5897

(std) . . . . (0.6043) (0.0034) (0.0194) (0.0525)

SVJ 0.0654 0.0123 -0.2327 4.7237 2.8930 0.0063 0.1449 -0.6058
(std) . (0.0052) (1.3815) (1.1826) (7.0523) (0.0025) (0.0196) (0.0672)
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Table II 
Call Option Returns 

This table reports summary statistics for call option returns of the five stocks discussed in this thesis. The sample period is from January 1996 to April 2006 (124 
months). Mean return denotes the average of one-month hold-to-maturity return. CAPM alpha and Sharpe ratio are statistics described in section 3.2. 
***, **, * denote significance level of 1%, 5%, and 10% respectively. 
Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel A: MICROSOFT COR. (MSFT) 
Mean Return 0.02 0.07 0.08 0.09 0.09 0.09 0.13 0.20 0.88 
t-Statistic 0.48 1.57 1.54 1.32 0.96 0.66 0.57 0.53 0.85 
p-value,% 62.92 11.92 12.58 18.83 33.71 51.33 56.71 59.45 39.66 
Median -0.00 0.03 0.03 0.02 -0.15 -0.71 -1.00 -1.00 -1.00 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 0.95 1.81 2.09 2.90 4.28 6.88 12.47 24.10 85.42 
Skew -0.26 0.27 0.44 0.73 1.13 1.83 2.99 4.49 7.08 
Kurt 0.80 0.92 0.48 0.72 1.42 3.71 9.90 21.10 54.33 
CAPM α 0.00 0.01 0.00 -0.02 -0.06 -0.12 -0.18 -0.20 0.20 
t-Statistic 0.05 0.63 0.09 -0.80 -1.55 -1.61 -1.12 -0.65 0.20 
p-value,% 95.75 52.92 93.01 42.45 12.39 11.02 26.61 51.80 84.19 
Sharpe ratio 0.04 0.14 0.14 0.11 0.08 0.06 0.05 0.05 0.09 

Panel B: CISCO SYSTEMS INC. (CSCO) 
Mean Return 0.00 0.03 0.05 0.06 0.09 0.10 0.08 -0.06 -0.19*** 

t-Statistic 0.09 0.48 0.83 0.76 0.87 0.76 0.44 -0.26 -0.67 
p-value,% 92.62 63.16 40.56 44.90 38.55 44.66 65.87 79.15 0.50 
Median -0.01 -0.02 -0.04 -0.04 -0.15 -0.79 -1.00 -1.00 -1.00 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 1.22 1.75 2.53 2.29 3.31 5.07 9.39 13.00 18.46 
Skew -0.02 0.31 0.59 0.63 0.91 1.42 2.39 3.31 4.68 
Kurt -0.11 0.16 0.38 -0.30 -0.03 1.25 5.81 11.02 23.11 
CAPM α -0.01 -0.01 -0.01 -0.03 -0.03 -0.04 -0.10 -0.24 -0.34 
t-Statistic -0.94 -1.35 -0.85 -1.04 -0.60 -0.56 -0.76 -1.27 -1.36 
p-value,% 34.90 17.89 39.60 30.02 55.00 57.89 44.70 20.53 17.67 
Sharpe ratio 0.00 0.04 0.07 0.07 0.08 0.07 0.04 -0.03 -0.06 
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Table II (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel C: IBM COR. (IBM) 
Mean Return 0.02 0.03 0.03 0.06 0.07 0.12 0.19 0.64 1.09 
t-Statistic 0.42 0.65 0.64 0.91 0.81 0.80 0.76 1.09 0.66 
p-value,% 67.48 51.99 52.59 36.25 42.09 42.63 45.11 27.98 51.35 
Median 0.04 0.05 0.03 0.04 -0.08 -0.72 -1.00 -1.00 -1.00 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 0.95 2.02 2.20 2.94 4.31 7.69 16.65 50.04 149.23 
Skew -0.44 0.30 0.33 0.69 1.09 1.98 3.42 5.71 9.36 
Kurt 0.38 1.57 0.70 0.85 1.49 4.75 13.51 37.93 88.61 
CAPM α 0.01** 0.00 -0.00 0.00 -0.01 -0.02 -0.01 0.31 0.57 
t-Statistic 1.99 0.55 -0.24 0.24 -0.34 -0.21 -0.07 0.61 0.36 
p-value,% 4.91 58.59 80.73 81.31 73.12 83.46 94.19 54.49 71.80 
Sharpe ratio 0.04 0.06 0.05 0.08 0.07 0.07 0.07 0.10 0.07 

Panel D: GENERAL MOTORS COR. (GM) 
Mean Return 0.02 0.01 -0.03*** -0.05*** 0.01 0.04 0.25 0.36 0.64 
t-Statistic 0.28 0.21 -0.51 -0.64 0.14 0.29 0.81 0.68 0.57 
p-value,% 78.37 83.11 0.61 0.53 88.85 77.59 41.69 49.96 57.05 
Median 0.09 0.05 0.03 -0.11 -0.18 -0.97 -1.00 -1.00 -1.00 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 1.01 1.17 1.38 1.94 3.23 7.36 27.16 51.11 99.34 
Skew -0.24 0.11 0.23 0.62 1.09 2.03 5.09 6.68 8.62 
Kurt 0.16 -0.19 -0.22 -0.23 0.66 4.49 34.14 51.99 78.19 
CAPM α 0.03*** 0.03* 0.01 0.00 0.04 0.07 0.28 0.41 0.58 
t-Statistic 2.71 1.92 0.40 0.15 0.77 0.74 1.12 0.84 0.53 
p-value,% 0.87 5.81 69.02 87.72 44.06 46.03 26.69 40.29 59.76 
Sharpe ratio 0.03 0.02 -0.05 -0.06 0.01 0.02 0.07 0.06 0.06 

 



    Tables and Figures 

52 
 

Table II (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel E: GENERAL ELECTRIC COR. (GE) 
Mean Return -0.01*** -0.01*** 0.03 0.05 0.06 0.20 0.70 -0.11 0.08 
t-Statistic -0.12 -0.33 0.62 0.81 0.72 1.35 1.41 -0.32 0.12 
p-value,% 0.90 0.74 53.51 42.21 47.27 18.02 16.03 74.89 90.27 
Median -0.01 -0.03 0.01 -0.01 -0.08 -0.70 -1.00 -1.00 -1.00 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 0.73 0.87 1.34 1.84 2.82 8.62 51.95 27.38 36.62 
Skew -0.62 -0.33 -0.01 0.25 0.64 1.84 7.01 5.75 5.94 
Kurt 0.55 -0.01 -0.34 -0.49 -0.21 4.80 60.50 38.47 37.78 
CAPM α 0.01 0.00 0.02 -0.00 -0.02 0.08 0.49 -0.29 -0.05 
t-Statistic 0.97 0.21 1.50 -0.02 -0.64 0.77 1.03 -0.88 -0.09 
p-value,% 33.67 83.69 13.74 98.51 52.47 44.50 30.69 37.95 93.13 
Sharpe ratio -0.02 -0.04 0.05 0.07 0.06 0.12 0.13 -0.03 0.01 
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Table III 
Put Option Returns 

This table reports summary statistics for call option returns of the five stocks discussed in this thesis. The sample period is from January 1996 to April 2006 (124 
months). Mean return denotes the average of one-month hold-to-maturity return. CAPM alpha and Sharpe ratio are statistics described in section 3.2. 
***, **, * denote significance level of 1%, 5%, and 10% respectively. 
Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel A: MICROSOFT COR. (MSFT) 
Mean Return -0.93*** -0.91*** -0.82*** -0.76*** -0.62*** -0.26** -0.19** -0.12* -0.09 
t-Statistic -14.16 -10.10 -7.60 -6.83 -5.91 -2.29 -2.37 -1.87 -1.54 
p-value,% 0.00 0.00 0.00 0.00 0.00 2.38 1.94 6.36 12.75 
Median -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -0.51 -1.17 -0.09 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 4.74 8.19 9.56 9.18 6.70 7.67 3.31 2.42 1.85 
Skew 9.33 10.10 7.75 6.10 3.94 2.90 1.33 0.69 0.43 
Kurt 81.00 102.00 64.57 41.15 17.32 11.71 1.95 0.52 0.38 
CAPM α -0.90*** -0.85*** -0.73*** -0.64*** -0.47*** -0.08 -0.03 0.01 0.02 
t-Statistic -13.83 -9.47 -7.15 -6.27 -5.56 -0.98 -0.82 0.39 1.41 
p-value,% 0.00 0.00 0.00 0.00 0.15 32.95 41.42 70.05 16.03 
Sharpe ratio -1.52 -1.00 -0.72 -0.62 -0.54 -0.21 -0.22 -0.17 -0.15 

Panel B: CISCO SYSTEMS INC. (CSCO) 
Mean Return -0.89*** -0.83*** -0.67*** -0.59*** -0.44*** -0.29*** -0.20** -0.13* -0.09 
t-Statistic -14.37 -8.98 -5.17 -4.72 -3.69 -2.82 -2.28 -1.81 -1.51 
p-value,% 0.00 0.00 0.00 0.00 0.03 0.56 2.45 7.20 13.43 
Median -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -0.47 -0.18 -0.07 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 3.66 5.83 8.89 7.83 6.25 4.24 2.73 1.96 1.61 
Skew 6.13 6.08 4.85 4.13 2.81 1.84 1.16 0.73 0.46 
Kurt 38.87 37.35 24.28 17.95 8.03 2.80 0.60 -0.20 -0.34 
CAPM α -0.88*** -0.77*** -0.57*** -0.48*** -0.31*** -0.16** -0.07 -0.02 -0.01 
t-Statistic -15.06 -8.98 -4.86 -4.46 -3.32 -2.27 -1.46 -0.72 -0.44 
p-value,% 0.00 0.00 0.00 0.00 0.12 2.52 14.69 47.00 66.11 
Sharpe ratio -1.46 -0.85 -0.47 -0.43 -0.33 -0.26 -0.21 -0.17 -0.15 
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Table III (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel C: IBM COR. (IBM) 
Mean Return -1.00*** -0.83*** -0.53*** -0.27 -0.17 -0.10 -0.08*** -0.03 -0.02 
t-Statistic . -6.31 -2.63 -1.20 -0.79 -0.68 -0.81 -0.50 -0.43 
p-value,% . 0.00 0.96 23.35 43.09 49.75 0.42 61.52 67.00 
Median -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -0.42 -0.11 -0.06 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum -1.00 11.72 12.64 13.93 15.35 5.62 3.02 2.17 1.61 
Skew . 9.00 4.91 3.82 3.70 1.90 1.24 0.78 0.41 
Kurt . 84.36 23.96 14.96 16.62 2.74 0.82 0.15 0.09 
CAPM α -1.00*** -0.78*** -0.40** -0.06 0.02 0.07 0.05 0.05** 0.05*** 

t-Statistic -6359.1 -5.95 -2.17 -0.34 0.13 0.74 1.12 2.02 2.93 
p-value,% 0.00 0.00 3.25 73.52 89.41 45.79 26.39 4.57 0.42 
Sharpe ratio -680.72 -0.63 -0.24 -0.11 -0.07 -0.06 -0.08 -0.05 -0.04 

Panel D: GENERAL MOTORS COR. (GM) 
Mean Return 0.04 0.17 0.25 0.04 0.05 0.03 0.01 0.03 0.02 
t-Statistic 0.04 0.23 0.33 0.08 0.18 0.19 0.13 0.40 0.23 
p-value,% 96.55 81.87 74.43 93.37 85.81 85.11 89.97 69.01 0.82 
Median -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -0.33 -0.09 -0.11 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum 57.47 48.17 63.34 39.67 27.72 11.80 4.97 3.05 2.13 
Skew 7.80 6.26 7.19 6.63 6.11 3.15 1.63 0.81 0.69 
Kurt 62.08 39.35 53.21 49.28 47.00 13.74 3.37 0.43 0.36 
CAPM α 0.19 0.27 0.22 -0.03 0.08 0.05 0.03 0.05* 0.04** 

t-Statistic 0.22 0.39 0.31 -0.08 0.32 0.45 0.67 1.97 2.05 
p-value,% 82.27 69.59 75.34 93.83 74.89 65.21 50.60 5.16 4.34 
Sharpe ratio 0.01 0.02 0.03 0.01 0.02 0.02 0.01 0.03 0.02 
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Table III (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel E: GENERAL ELECTRIC COR. (GE) 
Mean Return -1.00*** -0.85*** -0.83*** -0.64*** -0.37** -0.19 -0.08 -0.05 0.04 
t-Statistic . -5.91 -5.76 -4.75 -2.51 -1.60 -0.85 -0.74 0.62 
p-value,% . 0.00 0.00 0.00 1.35 11.26 39.66 46.12 53.44 
Median -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -0.30 -0.04 0.06 
Minimum -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
Maximum -1.00 11.89 14.51 10.91 7.63 4.80 3.13 2.17 1.57 
Skew . 9.43 9.82 5.59 2.75 1.62 0.95 0.50 0.11 
Kurt . 89.00 99.51 26.49 7.14 1.78 0.04 -0.28 -0.33 
CAPM α -1.00*** -0.83*** -0.78*** -0.54*** -0.22** -0.04 0.05 0.06*** 0.08*** 

t-Statistic -5168.6 -5.83 -5.59 -4.61 -1.98 -0.60 1.35 2.95 5.35 
p-value,% 0.00 0.00 0.00 0.00 4.97 55.08 17.93 0.39 0.00 
Sharpe ratio -635.39 -0.63 -0.55 -0.44 -0.23 -0.15 -0.08 -0.07 0.06 
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Table IV 
Finite Sample Distribution of Call Option Returns 

This table reports population expected option returns, CAPM alphas, and Sharpe ratios, as well as finite sample distribution p-values for the stochastic volatility and 
stochastic volatility jump diffusion models. I assume that all risk premium (expect for the equity premium) are equal to zero. 
***, **, * denote significance level of 1%, 5%, and 10% respectively. 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel A: MICROSOFT COR. (MSFT) 
Mean Return 0.02 0.07 0.08 0.09 0.09 0.09 0.13 0.20 0.88 
 SV EP 0.09* 0.10 0.13 0.16 0.22** 0.41* 0.90* 1.63 1.66 
 p-value, % 8.14 49.75 45.25 36.86 2.19 8.16 6.43 16.81 70.36 
 SVJ EP 0.09* 0.11 0.13 0.17 0.23 0.42* 0.90* 1.54 1.41 
 p-value, % 5.65 40.48 37.32 29.42 17.34 6.53 5.80 16.98 77.94 
CAPM α 0.00 0.01 0.00 -0.02 -0.06 -0.12 -0.18 -0.20 0.20 
 SV EP -0.00 -0.00** -0.01 -0.02 -0.03 0.03* 0.24* 0.47 0.21 
 p-value, % 35.00 3.07 12.13 69.35 37.57 9.32 8.47 24.11 98.99 
 SVJ EP -0.00 -0.00** -0.01* -0.02 -0.03 0.02 0.21* 0.39 0.53 
 p-value, % 27.95 1.62 6.80 58.65 42.42 10.72 9.25 27.19 86.80 
Sharpe ratio 0.04 0.14 0.14 0.11 0.08 0.06 0.05 0.05 0.09 
 SV EP 0.04* 0.14 0.14 0.11 0.08 0.06** 0.05** 0.05* 0.09 
 p-value, % 7.66 45.12 49.00 40.98 22.96 6.38 2.81 9.57 65.90 
 SVJ EP 0.23* 0.23 0.21 0.20 0.19 0.20** 0.19** 0.14 0.03 
 p-value, % 5.28 34.98 38.86 32.16 17.44 4.70 2.27 10.10 66.78 

Panel B: CISCO SYSTEMS INC. (CSCO) 
Mean Return 0.00 0.03 0.05 0.06 0.09 0.10 0.08 -0.06 -0.19 
 SV EP 0.13** 0.15* 0.19* 0.27** 0.43** 0.75*** 1.27*** 2.06*** 4.82 
 p-value, % 3.90 5.98 8.37 4.19 1.50 0.42 0.24 0.71 10.47 
 SVJ EP 0.13** 0.15** 0.17* 0.22* 0.33** 0.56** 0.87** 1.29** 2.81 
 p-value, % 1.64 3.77 8.27 6.68 4.5 1.82 1.27 2.18 12.27 
CAPM α -0.01 -0.01 -0.01 -0.03 -0.03 -0.04 -0.10 -0.24 -0.34 
 SV EP -0.01 -0.01 0.00 0.03 0.11** 0.29*** 0.57*** 0.97*** 2.44 
 p-value, % 99.65 56.62 46.17 11.71 2.12 0.36 0.27 0.86 11.28 
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Table IV (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel B: CISCO SYSTEMS INC. (CSCO) (continued) 
 SVJ EP -0.01* -0.02 -0.03 -0.03 -0.01 0.07 0.17 0.27 0.84 
 p-value, % 8.96 32.10 24.31 72.62 69.96 22.83 12.06 10.49 22.34 
Sharpe ratio 0.00 0.04 0.07 0.07 0.08 0.07 0.04 -0.03 -0.06 
 SV EP 0.21** 0.21* 0.21 0.23** 0.26** 0.29*** 0.29*** 0.25*** 0.19*** 

 p-value, % 3.72 6.60 10.11 4.71 1.42 0.19 0.02 0.01 0.02 
 SVJ EP 0.24** 0.23** 0.22* 0.22* 0.23** 0.25** 0.24*** 0.20*** 0.15*** 

 p-value, % 1.63 3.70 8.25 6.64 4.17 1.02 0.27 0.16 0.53 

Panel C: IBM COR. (IBM) 
Mean Return 0.02 0.03 0.03 0.06 0.07 0.12 0.19 0.64 1.09 
 SV EP 0.09* 0.10 0.11 0.14 0.22 0.44* 1.22** 3.90 2.90 
 p-value, % 6.91 14.50 17.00 24.94 15.69 5.68 3.17 18.32 60.09 
 SVJ EP 0.10** 0.11** 0.13* 0.16 0.21 0.37 0.93* 2.69 1.45 
 p-value, % 1.02 3.08 5.01 13.46 14.67 10.94 7.49 31.08 89.85 
CAPM α 0.01 0.00 -0.00 0.00 -0.01 -0.02 -0.01 0.31 0.57 
 SV EP 10.01 0.00 -0.01 -0.01 0.01 0.12 0.58** 2.09 1.11 
 p-value, % 25.59 95.94 52.41 51.05 62.81 13.71 4.86 24.86 78.44 
 SVJ EP 0.01* 0.00 -0.02** -0.03*** -0.06 -0.05 0.14 0.72 -0.19 
 p-value, % 5.82 24.02 1.87 0.81 13.80 70.97 50.73 71.12 26.26 
Sharpe ratio 0.04 0.06 0.05 0.08 0.07 0.07 0.07 0.10 0.07 
 SV EP 0.22* 0.20 0.18 0.18 0.19 0.22** 0.22*** 0.16 -0.19 
 p-value, % 6.60 12.87 16.31 25.67 16.18 4.23 0.77 19.18 71.61 
 SVJ EP 0.30 0.28 0.24 0.22 0.20 0.20 0.19 0.13 -2.22 
 p-value, % 0.90 2.18 3.82 11.21 13.29 8.36 3.65 55.88 45.41 

Panel D: GENERAL MOTORS COR. (GM) 
Mean Return 0.02 0.01 -0.03 -0.05 0.01 0.04 0.25 0.36 0.64 
 SV EP 0.04 0.04 0.03 0.02 0.04 0.10 0.34 0.79 0.66 
 p-value, % 53.38 59.76 27.84 32.50 73.96 67.10 75.03 62.27 99.04 
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Table IV (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel D: GENERAL MOTORS COR. (GM) (continued) 
 SVJ EP 0.07 0.07 0.08* 0.07* 0.10 0.17 0.43 0.90 0.70 
 p-value, % 18.43 19.01 5.68 8.34 34.85 38.46 55.72 54.32 96.68 
CAPM α 0.03 0.03 0.01 0.00 0.04 0.07 0.28 0.41 0.58 
 SV EP 0.02** 0.01*** -0.00 -0.02 -0.01 0.02 0.21 0.55 0.35 
 p-value, % 4.14 0.38 35.49 15.17 18.74 53.86 72.04 84.21 85.67 
 SVJ EP 0.02** 0.01*** -0.01* -0.03** -0.04** -0.04 0.09 0.31 0.02 
 p-value, % 1.13 0.06 7.92 1.95 2.72 16.64 31.01 88.46 51.12 
Sharpe ratio 0.03 0.02 -0.05 -0.06 0.01 0.02 0.07 0.06 0.06 
 SV EP 0.11 0.08 0.05 0.02 0.03 0.05 0.09 0.06 -2.75 
 p-value, % 50.09 58.03 28.27 34.20 77.56 71.98 79.57 99.22 32.68 
 SVJ EP 0.20 0.16 0.13* 0.09* 0.09 0.09 0.12 0.08 -2.01 
 p-value, % 16.08 17.89 5.66 8.49 34.95 38.73 54.42 83.38 34.84 

Panel E: GENERAL ELECTRIC COR. (GE) 
Mean Return -0.01 -0.01 0.03 0.05 0.06 0.20 0.70 -0.11 0.08 
 SV EP,  0.07** 0.08** 0.11 0.13 0.20 0.57** 2.18** 28.37 2.45 
 p-value, % 3.95 2.37 10.38 21.09 13.06 4.84 9.27 13.5 52.04 
 SVJ EP,  0.07** 0.08** 0.11 0.12 0.17 0.50 1.96 25.04 1.98 
 p-value, % 4.36 2.78 13.22 30.20 22.45 10.22 12.82 14.59 58.72 
CAPM α 0.01 0.00 0.02 -0.00 -0.02 0.08 0.49 -0.29 -0.05 
 SV EP, % 0.01 0.00 0.01 0.00 0.02 0.25* 1.33 18.30 0.82 
 p-value, % 24.02 30.67 72.90 98.39 31.42 9.77 13.84 15.87 72.54 
 SVJ EP, % 0.01 0.00 0.01 -0.01 -0.00 0.20 1.17 16.04 0.57 
 p-value, % 22.54 32.43 35.10 56.88 64.72 22.02 21.90 17.56 80.04 
Sharpe ratio -0.02 -0.04 0.05 0.07 0.06 0.12 0.13 -0.03 0.01 
 SV EP, % 0.21 0.19 0.20 0.17 0.19 0.26** 0.24** 0.14** -13.81 
 p-value, % 4.60 2.66 10.66 22.84 13.89 4.70 3.30 2.18 61.94 
 SVJ EP, % 0.20** 0.18** 0.19 0.16 0.16 0.23 0.22* 0.11* -18.05 
 p-value, % 4.99 3.05 12.89 31.52 24.30 11.04 6.32 3.82 55.69 
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Table V 
Finite Sample Distribution of Put Option Returns 

This table reports population expected option returns, CAPM alphas, and Sharpe ratios, as well as finite sample distribution p-values for the stochastic volatility and 
stochastic volatility jump diffusion models. I assume that all risk premium (expect for the equity premium) are equal to zero. 
***, **, * denote significance level of 1%, 5%, and 10% respectively. 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel A: MICROSOFT COR. (MSFT) 
Mean Return -0.93 -0.91 -0.82 -0.76 -0.62 -0.26 -0.19 -0.12 -0.09 
 SV EP -0.95 -0.88 -0.67 -0.19 0.63 -0.19 -0.19 -0.14 -0.10 
 p-value, % 97.99 92.43  64.49 20.18 15.17 57.25 91.80 81.68 89.04 
 SVJ EP -0.97* -0.91 -0.71 -0.24 0.57 -0.22 -0.20 -0.15 -0.11 
 p-value, % 4.74 99.72 72.48 23.04 15.85 68.32 91.33 63.73 72.84 
CAPM α -0.90 -0.85 -0.73 -0.64 -0.47 -0.08 -0.03 0.01 0.02 
 SV EP -0.94 -0.82 -0.52 0.13 1.17 0.02 -0.01 0.01 0.02 
 p-value, % 97.86 94.79 65.21 20.24 13.80 33.64 58.64 99.40 73.58 
 SVJ EP -0.95 -0.86 -0.57 0.09 1.14 9.02 -0.02 0.01 0.02 
 p-value, % 97.00 98.10 72.27 22.67 14.12 36.70 66.96 86.00 58.71 
Sharpe ratio -1.52 -1.00 -0.72 -0.62 -0.54 -0.21 -0.22 -0.17 -0.15 
 SV EP -601.62* -329.93 23.25 -0.19* -0.08* -0.15 -0.20 -0.19 -0.18 
 p-value, % 7.19 76.05 66.15 7.49 1.39 59.14 87.37 86.19 83.58 
 SVJ EP -624.01 -372.67 -31.84 -0.25 -0.10 -0.17 -0.22 -0.21 -0.20 
 p-value, % 4.72 23.13 61.94 9.49 1.82 71.41 95.86 68.81 67.55 

Panel B: CISCO SYSTEMS INC. (CSCO) 
Mean Return -0.89 -0.83 -0.67 -0.59 -0.44 -0.29 -0.20 -0.13 -0.09 
 SV EP -0.55 -0.12 0.47 0.35** 0.14** 0.02* -0.07 -0.10 -0.13 
 p-value, % 43.44 19.17 10.85 4.33 2.14 5.28 25.82 71.44 65.88 
 SVJ EP -0.88 -0.67 -0.29 -0.20 -0.22 -0.21 -0.21 -0.18 -0.18 
 p-value, % 94.54 64.2 41.40 20.57 23.76 52.55 88.72 46.35 18.32 
CAPM α -0.88 -0.77 -0.57 -0.48 -0.31 -0.16 -0.07 -0.02 -0.01 
 SV EP -0.35 0.24 1.02* 0.81** 0.48*** 0.29*** 0.15*** 0.08*** 0.03 
 p-value, % 39.05 16.95 9.24 3.10 0.40 0.11 0.18 0.80 12.50 
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Table V (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel B: CISCO SYSTEMS INC. (CSCO) (continued) 
 SVJ EP -0.80 -0.49 0.06 0.15 0.09* 0.06* 0.02 0.01 -0.01 
 p-value, % 86.06 55.94 32.80 12.06 6.28 6.59 16.48 35.15 80.08 
Sharpe ratio -1.46 -0.85 -0.47 -0.43 -0.33 -0.26 -0.21 -0.17 -0.15 
 SV EP -53.40 -1.05 0.09** 0.04*** 0.03*** -0.00** -0.06 -0.11 -0.17 
 p-value, % 87.26 97.71 1.25 0.23 0.24 1.02 12.49 53.24 82.19 
 SVJ EP -267.33 -28.41 -0.32 -0.13* -0.13* -0.16 -0.21 -0.23 -0.27 
 p-value, % 77.63 70.75 73.42 6.14 9.39 38.91 99.88 55.44 22.83 

Panel C: IBM COR. (IBM) 
Mean Return -1.00 -0.83 -0.53 -0.27 -0.17 -0.10 -0.08 -0.03 -0.02 
 SV EP -0.90* -0.65 0.25 0.20 0.10 -0.09 -0.11 -0.11 -0.07 
 p-value, % 9.43 80.24 60.35 52.48 42.92 98.92 71.35 27.88 40.26 
 SVJ EP -0.99** -0.93* -0.60 -0.44 -0.31 -0.30* -0.23* -0.18** -0.10* 

 p-value, % 2.46 7.71 93.65 71.46 55.43 7.73 6.48 2.4 9.42 
CAPM α -1.00 -0.78 -0.40 -0.06 0.02 0.07 0.05 0.05 0.05 
 SV EP -0.86 -0.49 0.76 0.63 0.44 0.13 0.06 0.02 0.04 
 p-value, % 78.34 78.36 56.58 46.12 27.41 54.44 83.06 13.86 34.27 
 SVJ EP -0.99 -0.89 -0.35 -0.12 0.01 -0.05 0.14* 0.72*** -0.19** 

 p-value, % 79.74 86.30 97.48 93.15 95.67 24.96 9.58 0.07 3.78 
Sharpe ratio -680.72 -0.63 -0.24 -0.11 -0.07 -0.06 -0.08 -0.05 -0.04 
 SV EP -557.02 -247.93 -14.55 -0.06 -0.00 -0.07 -0.11 -0.15 -0.13 
 p-value, % 99.95 72.47 63.28 79.85 48.77 94.50 68.89 28.69 40.38 
 SVJ EP -665.28 -526.58* -132.85 -0.76 -0.19 -0.25 -0.26* -0.27** -0.21* 

 p-value, % 99.99 8.66 41.70 39.38 50.66 12.86 8.72 3.16 9.34 

Panel D: GENERAL MOTORS COR. (GM) 
Mean Return 0.04 0.17 0.25 0.04 0.05 0.03 0.01 0.03 0.02 
 SV EP -0.95** -0.85** -0.39* -0.15 -0.09 -0.03 -0.03 -0.00 -0.00 
 p-value, % 1.08 1.28 6.38 63.35 52.32 65.18 64.12 63.6 74.98 
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Table V (continued) 
 

Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

Panel D: GENERAL MOTORS COR. (GM) (continued) 
 SVJ EP -0.99*** -0.94*** -0.67** -0.44* -0.30** -0.18* -0.13 -0.07 -0.05 
 p-value, % 0.22 0.21 2.92 8.34 4.94 9.34 10.28 12.35 22.72 
CAPM α 0.19 0.27 0.22 -0.03 0.08 0.05 0.03 -0.05 0.04 
 SV EP -0.05*** -0.84*** -0.34 -0.09 -0.03 0.02 0.01 0.03 0.03 
 p-value, % 0.89 1.22 18.00 87.48 55.42 74.86 61.95 41.34 29.90 
 SVJ EP -0.98*** -0.92*** -0.58** -0.30 -0.15 -0.42 -0.01 0.02 0.02 
 p-value, % 0.28 0.50 3.93 42.43 18.90 31.21 23.93 16.33 14.10 
Sharpe ratio 0.01 0.02 0.03 0.01 0.02 0.02 0.01 0.03 0.02 
 SV EP -631.72** -286.01 -10.71* -0.11 -0.06 -0.03 -0.04 -0.01 -0.01 
 p-value, % 1.07 40.78 8.29 45.05 47.71 60.94 61.48 63.62 76.38 
 SVJ EP -701.12*** -460.59*** -49.45* -0.30 -0.18 -0.14 -0.14 -0.10 -0.10 
 p-value, % 0.20 0.16 9.85 18.98 12.89 13.76 12.71 14.39 24.85 

Panel E: GENERAL ELECTRIC COR. (GE) 
Mean Return -1.00 -0.85 -0.83 -0.64 -0.37 -0.19 -0.08 -0.05 0.04 
 SV EP -0.97* -0.85 -0.38 0.09 0.22 0.01 -0.07 -0.04 0.03 
 p-value, % 6.66 98.69 45.61 22.70 13.07 24.04 92.99 88.88 28.39 
 SVJ EP -0.99** -0.92 -0.56 -0.11 0.11 -0.02 -0.07 -0.04 -0.02 
 p-value, % 3.81 87.96 61.18 31.15 18.13 31.21 97.85 84.34 30.42 
CAPM α -1.00 -0.83 -0.78 -0.54 -0.22 -0.04 0.05 0.06 0.08 
 SV EP -0.96 -0.78 -0.12 -0.48 0.59* 0.26** 0.10 0.09 0.08 
 p-value, % 89.69 94.49 42.06 18.83 7.40 2.60 23.75 16.30 47.42 
 SVJ EP -0.99 -0.88 -0.39 0.20 0.43 0.20* 0.09 0.09 0.07 
 p-value, % 91.41 93.43 57.70 27.07 10.96 5.27 40.72 20.18 39.07 
Sharpe ratio -635.39 -0.63 -0.55 -0.44 -0.23 -0.15 -0.08 -0.07 0.06 
 SV EP -585.33 -367.77 -36.12 -0.15* 0.02** -0.01 -0.07 -0.06 -0.05 
 p-value, % 99.98 24.20 72.85 6.91 2.54 12.29 91.27 85.84 28.05 
 SVJ EP -612.24 -454.86 -69.31 -0.24 -0.01** -0.03 -0.08 -0.05 -0.05 
 p-value, % 99.99 14.70 64.60 56.82 4.27 19.86 97.96 83.00 31.10 
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Table VI 
Finite Sample Distribution of Option Portfolio Returns 

This table reports the sample average returns on option portfolios. Population expected returns and finite sample p-values are computed from the stochastic volatility 
and stochastic volatility jump diffusion models. I assume that volatility and jump risk premium are equal to zero. 
***, **, * denote significance level of 1%, 5%, and 10% respectively. 
 Covered Puts ATM 

Straddle
Crash-Neutral 

Straddle 
Put 

Spread Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

Panel A: MICROSOFT COR. (MSFT) 
Mean Return, % 1.47 1.92 1.54 1.42 1.00 0.77 0.68 0.73 0.78 -6.05 -1.26 -20.56* 

SV EP, % 2.08 1.99 1.83 1.65 1.45 1.23 0.94 0.80 0.71 11.21** 12.93* -9.62 
 p-value,% 55.99 94.32 74.55 77.33 53.60 43.46 54.20 80.26 72.41 2.84 8.92 64.40 

SVJ EP, % 2.23 2.12 1.94 1.76 1.53 1.28 0.94 0.76 0.66 11.57** 13.44* -11.18 
 p-value,% 45.74 82.87 63.74 66.84 45.03 37.26 52.06 89.03 51.08 2.40 7.42 71.76 

Panel B: CISCO SYSTEMS INC. (CSCO) 
Mean Return, % 0.49 1.17 1.27 1.06 0.82 0.67 0.59 0.55 0.44 -7.79 0.91 -12.74 
SV EP, % 3.22 3.14 3.15 3.16 3.11 2.97 2.60 2.12 1.40 33.34*** 37.85*** 19.45 

 p-value,% 17.89 16.42 14.61 18.13 13.36 11.26 10.92 11.11 14.40 0.00 0.06 13.56 
SVJ EP, % 3.19 3.00 2.83 2.62 2.36 2.07 1.68 1.29 0.74 17.97*** 25.08*** -8.25 

 p-value,% 14.04 12.89 16.23 13.49 19.98 17.48 18.27 12.54 40.70 0.27 0.86 81.26 

Panel C: IBM COR. (IBM) 
Mean Return, % 1.12 1.31 1.25 1.35 1.09 0.98 0.94 0.87 0.96 3.62 7.88 -0.10 
SV EP, % 1.88 1.78 1.71 1.63 1.55 1.41 1.16 0.79 0.82 14.95 16.18 15.92 

 p-value,% 44.71 60.71 58.69 71.68 49.48 42.14 56.67 73.98 34.11 13.95 30.14 44.61 
SVJ EP, % 2.27 2.15 2.01 1.79 1.49 1.17 0.86 0.57 0.71 8.73 10.95 -22.65 

 p-value,% 18.32 29.27 31.49 53.48 51.28 69.90 81.40 11.70 1.97 47.06 68.66 63.04 
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Table VI (continued) 

 
 Covered Puts ATM 

Straddle
Crash-Neutral 

Straddle 
Put 

Spread Moneyness 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

Panel D: GENERAL MOTORS COR. (GM) 
Mean Return, % 0.54 0.37 -0.13 -0.31 0.14 0.20 0.32 0.55 0.63 6.09 9.02 15.84 
SV EP, % 0.40 0.32 0.23 0.14 0.15 0.27 0.35 0.52 0.53 -0.24 2.34 13.63 

 p-value,% 90.50 95.44 67.42 55.24 98.63 87.84 94.12 91.76 40.16 36.24 38.86 93.84 
SVJ EP, % 1.14 1.04 0.91 0.70 0.56 0.51 0.46 0.56 0.53 0.68 4.22 -9.25 

 p-value,% 57.55 48.19 21.54 17.50 51.04 52.80 69.88 94.37 43.03 44.08 53.74 29.72 

Panel E: GENERAL ELECTRIC COR. (GE) 
Mean Return 0.79 0.36 0.63 0.88 0.80 0.77 0.79 0.96 1.13 2.37 10.31 -6.36 
SV EP, % 1.57 1.51 1.47 1.41 1.42 1.40 1.18 1.09 1.09 15.52* 16.72 49.86 

 p-value,% 44.87 19.93 27.90 44.92 30.74 18.18 21.33 44.85 75.69 17.64 41.28 30.00 
SVJ EP, % 1.47 1.41 1.35 1.25 1.23 1.22 1.05 1.03 1.07 11.65 13.17 39.37 

 p-value,% 49.36 22.15 34.35 59.21 47.37 33.33 38.71 66.16 56.86 19.98 70.91 37.52 



    Tables and Figures 

64 
 

Figure I 
Time Series of Call Returns, MSFT 
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Figure II 
Time Series of Put Returns, MSFT 
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(b) ATM Put Returns, MSFT
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Appendix 

Appendix A: Adjusting for the Early Exercise Premium 

Options in my base case are all the American type, their prices ܲሺܵ, ܶሻ  and 

,ሺܵܥ ܶሻ  are slightly higher than prices of the corresponding European options 

,ሺܵ ܶሻ  and ܿሺܵ, ܶሻ . However, since I am dealing with the one-month 

hold-to-expiration returns, American option prices will be no longer appropriate in 

this analysis. Thus, one problem for this study is to convert these American option 

prices into equivalent European option prices. Broadie, Chernov, and Johannes (2008) 

use the approach provided Broadie, Chernov, and Johannes (2007). Taking American 

Puts as an example, they use the observed price ܲሺܵ, ܶሻ to compute an American 

Black-Scholes implied volatility, that is, a value ߪௌ  such that ܲሺܵ, ܶሻ ൌ

BSሺߪௌ, ,ܭ ܶ, ܵ, ,ݎ ሻߜ , where BSA  denotes the Black-Scholes American option 

price. They then estimate that an equivalent European option would trade in the 

market at a price BSாሺߪௌ, ,ܭ ܶ, ܵ, ,ݎ ሻ, where BSாߜ  denotes the Black-Scholes 

European option price. Broadie, Chernov, and Johannes (2008) compute American 

Black-Scholes implied volatilities using a binomial tree method. Broadie, Chernov, 

and Johannes (2007) show that this produces accurate early exercise adjustments in 

models with stochastic volatility and jumps in prices. However, binomial 

approximation methods for American options are usually cumbersome and expensive 

to use. Bondarenko (2003) recommends applying Barone-Adesi and Whaley (1987) 

approximation, which is efficient and inexpensive comparatively. Barone-Adesi and 

Whaley (1987) has shown the accuracy of their method to value American call and 

put options. To construct my dataset, I will mainly adopt the approach of Bondarenko 

(2003). Considering prices of OTM and ATM options are both more reliable and less 

affected by the early exercise feature. I will firstly compute the equivalent European 

option prices using put prices for moneyness ݇  1.00 and call prices for ݇  1.00, 

where ݇ ൌ ܺ/ܵ. Then for the ITM options, I compute the prices through the put-call 
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parity relationship, 

  ܵ ൌ ܿ  ܺ݁ି்                        (A.1) 

where  (ܿ) is European put (call) price at ݐ ൌ 0, S is spot price at ݐ ൌ 0, X is 

strike price, and ݎ is risk-free rate. The correction of American option prices will be 

shown below in detail. 

a. OTM and ATM Put Options 

Like Black and Scholes (1973), Barone-Adesi and Whaley (1987) assume that the 

underlying commodity price-change movements follow the stochastic differential 

equation, 

݀ܵ ܵ⁄ ൌ ሺߤ െ ݐሻ݀ߜ   (A.2)                       ݖ݀ߪ

where ߤ is the drift rate of stock price, ߜ is the continuous dividend rate, ߪ is the 

volatility, and z is a Wiener process. If there is no arbitrage in the market, the partial 

differential equation governing the movements of the stock option (V) through time is 

ଵ
ଶ
ଶܵଶߪ ௌܸௌ  ሺݎ െ ሻܵߜ ௌܸ െ ܸݎ  ௧ܸ ൌ 0                (A.3) 

Knowing the terminal payoff for put option is max ሺ0, ்ܵ െ ܺሻ , the value of 

European put option is 

,ሺܵ ܶሻ ൌ ܺ݁ି்ܰሺെ݀ଶሻ െ ܵ݁ିఋ்ܰሺെ݀ଵሻ,              (A.4) 

where ݀ଵ ൌ ሾ݈݊ ሺܵ ോ ܺሻ  ሺݎ െ ߜ  ܶ√ߪ/ଶሻሿܶߪ0.5 , ݀ଶ ൌ ݀ଵ െ ܶ√ߪ , and ܰሺ·ሻ is 

the cumulative univariate normal distribution. 

Barone-Adesi and Whaley (1987) further assume that American options, as well as 

European options, also satisfy the partial differential Equation (A.4), then (A.4) also 

applies to the early exercise premium of the American option. Denote the early 

exercise premium as ߝሺܵ, ܶሻ, that is 

,ሺܵߝ ܶሻ ൌ ܲሺܵ, ܶሻ െ ,ሺܵ ܶሻ,                    (A.5) 
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where P(S,T) is the American option value and p(S,T) is the European option value. 

The partial differential equation will become 

ଵ
ଶ 
ௌௌߝଶܵଶߪ െ ߝݎ  ܾܵఌௌ  ௧ߝ ൌ 0                 (A.8) 

Since T denotes the period from the option’s expiration to the present, ்ߝ ൌ െߝ௧. Let 

ܯ ൌ ܰ ଶ andߪ/ݎ2 ൌ 2ሺݎ െ  ଶ, Equation (A.8) is changed toߪ/ሻߜ

ܵଶߝௌௌ െ ߝܯ  ܰܵఌௌ െ ൫ܯ ⁄ݎ ൯்ߝ ൌ 0                (A.9) 

Define the early exercise premium as ߝሺܵ, ሻܭ ൌ ,ሺܶሻ݂ሺܵܭ  ሻ, and substitute it intoܭ

Equation (A.9) to get Equation (A.10), 

ܵଶ ௌ݂ௌ  ܰܵ ௌ݂ െ 1ൣ݂ܯ  ൫்ܭ ⁄ܭݎ ൯ሺ1  ܭ ݂ ݂⁄ ሻ൧ ൌ 0.       (A.10) 

Choosing ܭሺܶሻ ൌ 1 െ ݁ି், substituting into (A.10), and simplifying give 

ܵଶ ௌ݂ௌ  ܰܵ ௌ݂ െ ሺܯ ⁄ܭ ሻ݂ െ ሺ1 െ ܯሻܭ ݂ ൌ 0           (A.11) 

The approximation will be made in Equation (A.11). For options with very short times 

to expiration, T approaches 0, ݂  approaches 0, and the term, ሺ1 െ ܯሻܭ ݂ , 

disappears. Therefore, drop the term ሺ1 െ ܯሻܭ ݂ in (A.11), and get Equation (A.12), 

ܵଶ ௌ݂ௌ  ܰܵ ௌ݂ െ ሺܯ ⁄ܭ ሻ݂ ൌ 0.                 (A.12) 

Assuming f is in the form ܽܵ, the general solution to (A.12) is 

݂ሺܵሻ ൌ ܽଵܵభ  ܽଶܵమ.                    (A.14) 

where ݍଵ ൌ ቂെሺܰ െ 1ሻ െ ඥሺܰ െ 1ሻଶ  ܯ4 ⁄ܭ ቃ 2⁄ ൏ 0  and 

ଶݍ ൌ ቂെሺܰ െ 1ሻ  ඥሺܰ െ 1ሻଶ  ܯ4 ⁄ܭ ቃ 2⁄  0. 

Since the value of put option should be no more than ܵ െ ܺ , and ܽଶܵమ  will 

approach ∞  when S approaches 0, it is required that ܽଶ ൌ 0 . Therefore, the 
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approximate value of the American put option is written as 

ܲሺܵ, ܶሻ ൌ ,ሺܵ ܶሻ   ଵܵభ                    (A.15)ܽܭ

It is known that ܲሺܵ, ܶሻ is increasing as S increasing. There must be a critical price 

 which has the relationship that ,כܵ

ܺ െ כܵ ൌ ,כሺܵ ܶሻ  כଵܵܽܭ
భ                   (A.16) 

and the slope of the exercisable value of the put, -1, is set equal to the slope of 

ܲሺܵכ, ܶሻ, that is 

െ1 ൌ െ݁ିఋ்ܰሾെ݀ଵሺܵכሻሿ  כଵܽଵܵݍܭ
మିଵ.             (A.17) 

Thus ܽଵ ൌ െ൛1 െ ݁ିఋ்ܰሾെ݀ଵሺܵכሻሿൟ/ݍܭଵܵכ
భିଵ, and ܵכ should be the numerical 

solution of the following Equation (A.18), 

ܺ െ כܵ ൌ ,כሺܵ ܶሻ െ ൛1 െ ݁ିఋ்ܰሾെ݀ଵሺܵכሻሿൟܵݍ/כଵ         (A.18) 

With ܵכ known, the approximate value of an American put option becomes 

ܲሺܵ, ܶሻ ൌ ,ሺܵ ܶሻ  ଵሺܵܣ ⁄כܵ ሻభ,  when ܵ  and ,כܵ
ܲሺܵ, ܶሻ ൌ ܺ െ ܵ                                 when ܵ  ,כܵ          (A.19) 

where ܣଵ ൌ െሺܵכ ⁄ଵݍ ሻሼ1 െ ݁ିఋ்ܰሾെ݀ଵሺܵכሻሿሽ. 

Since I am focusing on the OTM put options, their spot prices will not be below ܵכ. 

Therefore, I only need to use the first equation to compute the Black-Scholes 

Volatilities. Denote the observed American put price as ܲכሺܵ, ܶ,  ௌሻ. It is given thatߪ

,ሺܵכܲ ܶ, ௌሻߪ ൌ ܲሺܵ, ܶ, ௌሻߪ
                           ൌ ,ሺܵ ܶ, ௌሻߪ  ଵሺܵܣ ⁄כܵ ሻభ           (A.20) 

In the end, the corrected European option price is determined by ሺܵ, ܶ,  .ௌሻߪ

Note that this approach to compute equivalent European option price from American 

option price is contrived for continuous-dividend stock option ( ߜ ് 0 ) or 
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non-dividend stock option (ߜ ൌ 0). However, for individual stocks, dividends are 

often paid in discrete time. To avoid this problem, I assume that dividend is paid out at 

pre-determined times, and calculate the equivalent spot price ܵᇱ  at ݐ ൌ 0 , by 

subtracting the discounted dividends from ܵ:  

ܵᇱ ൌ ܵ െ ∑ ሻ݁ݐሺܦ
ି·  యలబ                     (A.21) 

where ݐ is the time of the ith dividend, and ܦሺݐሻ is dividend amount at ݐ. Then the 

equivalent European option prices can be estimated by ܵԢ, according to Equation 

(A.20) as if non-dividend stocks. 

b. OTM and ATM Call Options 

It is known that for non-dividend stocks, their American call options will be valued 

using the European formula, 

,ሺܵܥ ܶሻ ൌ ܿሺܵ, ܶሻ ൌ ܵܰሺ݀ଵሻ െ ܺ݁ି்ܰሺ݀ଶሻ,           (A.22) 

where ݀ଵ ൌ ሾ݈݊ ሺܵ ോ ܺሻ  ሺݎ െ ߜ  ܶ√ߪ/ଶሻሿܶߪ0.5 , ݀ଶ ൌ ݀ଵ െ ܶ√ߪ , and ܰሺ·ሻ is 

the cumulative univariate normal distribution. On the other hand, for 

discrete-dividend stocks, American calls will be execute right before the first dividend. 

For this reason, the correction of OTM American call options will follow the below 

approach: 

If the underlying stocks of American calls pay no dividend during the month when 

calls exist, keep the observed American call prices as the equivalent European call 

prices. Otherwise, if there are more than one time of dividend payments in the month, 

suppose the first payment occurs at ݐᇱ, and ܶᇱ ൌ ᇱݐ െ   denotes the period fromݐ

issue day to first dividend payment day. Therefore, the American call price can be 

expressed as 

,ሺܵܥ ܶᇱ, ௌሻߪ ൌ ܵܰ൫݀ଵሺܵ, ܶᇱ, ௌሻ൯ߪ െ ܺ݁ି்ᇲܰ൫݀ଶሺܵ, ܶᇱ,  ௌሻ൯,   (A.23)ߪ
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where ܥሺܵ, ܶᇱ,  .ௌሻ is the observed American call priceߪ

Implied volatility ߪௌ can thus be acquired through Equation (A.23). With the known 

 ௌ, I will further estimate the equivalent European call price byߪ

ܿሺܵᇱ , ܶ, ௌሻߪ ൌ ܵᇱܰ൫݀ଵሺܵᇱ , ܶ, ௌሻ൯ߪ െ ܺ݁ି்ܰ൫݀ଶሺܵᇱ , ܶ,  ௌሻ൯    (A.24)ߪ

where ܵᇱ  is the equivalent spot price at ݐ ൌ 0, the same as that in the correction of 

American put options in the above section. 

c. ITM Call and Put Options 

Since ITM calls and puts are more possible to be executed before the maturity date, 

the correction of them is following the put-call parity (A.1), using corresponding 

OTM call or put prices. 
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Appendix B: MCMC Algorithm 

a. Model 

In Appendix B, I will discuss on the stochastic-volatility jump-diffusion (SVJ) model. 

Stochastic-volatility model of Heston (1993) can be considered as a special case of 

SVJ, and the estimation process of SV model is similar. 

௧ܻ ൌ ߤ  ௧ܼ௧௦ܬ  ඥ ௧ܸିଵߝ௧௦                      (B.1) 

௧ܸ ൌ ௩ߙ  ௩ߚ ௧ܸିଵ  ඥ ௧ܸିଵߪ௩ߝ௧௩                  (B.2) 

where ߙ௩ ൌ ௩ߚ ௩, andߠ௩ߢ ൌ 1 െ ௧௩ݑ ௩. Defineߢ ؝  ௧௩. The covariance matrix ofߝ௩ߪ

࢚࢘ ؝ ሺߝ௧௦  :כߑ ௧௩ሻԢ, isݑ

כߑ ؝ ൬
1 జߪߩ
జߪߩ జଶߪ

൰                        (B.3) 

b. Priors 

For the parameters, Clifford-Hammersley theorem (Hammersley and Clifford (1970) 

and Besag (1974)) implies that ሺߪజ, ,ܬ |ߩ ܼ௦, ܸ, ܻሻ ,௩ߙሺ , ,ܬ |௩ߚ ܼ௦, ܸ, ܻሻ , 

,௭ߤሺ ,ܬ |௭ଶߪ ܼ௦ሻ , and ሺܬ |ߣሻ  characterize ሺܬ|߆, ܼ௦, ܸ, ܻሻ . Assuming standard 

conjugate prior distributions for the parameters, ሺߙ, ࣨ ~ሻ்ߚ , ሺߤ௭,   ࣣ࣡/ࣨ ~௭ଶሻTߪ

,ߙ൫ࣜ~ߣ ࣨ ൯, whereߚ  is the normal distribution, ࣨ/ࣣ࣡  is the normal-inverse 

gamma distribution, and ࣜ is the beta distribution. The major challenge here is to 

formulate a prior for ሺߪజ,  has its ሺ1,1ሻ element fixed to 1. This means כߑ ሻ, sinceߩ

that standard inverted Wishart priors cannot be used. Jacquier, Polson, Rossi (2004) 

suggest that ሺߪజ, ,ሻ can be transform to ሺ߰ߩ  :ሻ as followsߗ

כߑ ൌ ൬
1 ߰
߰ Ω  ߰ଶ൰                      (B.4) 

where ߰ ൌ ߗ ,ߩజߪ ൌ జଶሺ1ߪ െ  ଶሻ. As observed by McCulloch, Polson, and Rossiߩ

(2000), it is said that ሺ߰,  .ࣣ࣡/ࣨ ~ሻߗ

In summary, the prior distributions for the parameters are: 
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ߗ  ࣣ࣡ሺ߭, ߭ݐଶሻ 

,ሺ߰ࣨ ~ߗ|߰ ߗ ⁄ ሻ 
߭ ൌ ݐ ,2.5 ൌ 0.2, ߰ ൌ  ,0 ൌ 2 

ሺߙ, ,ሻ்~ࣨ൭ሺ0,1ሻ்ߚ ቆ
ఈଶߪ 0
0 ఉଶߪ

ቇ൱ ఈଶߪ ൌ ఉଶߪ ൌ 1 

௭ଶߪ  ࣣ࣡ሺ߭௭, ߭௭ݐ௭ଶ ሻ 

,௭ߤ௭ଶ~ ࣨሺߪ|௭ߤ  ௭ሻ/௭ଶߪ 
߭௭ ൌ ௭ݐ ,2 ൌ ௭ߤ ,5 ൌ െ3, ௭ ൌ 1 

,ߙ൫ࣜ~ߣ ߙ ൯ߚ ൌ ߚ ,2 ൌ 400 

c. Posterior Distributions 

The joint distribution of data and volatilities is 

,ࢅሺ ,ࢨ|ࢂ ,ࡶ ሻ࢙ࢆ ן ൭ෑ ௧ܸିଵ
ିଵ

்

௧ୀଶ

൱ ି|כߑ|
்ିଵ
ଶ  ݔ݁ ቆെ

1
2 ߑ൫ݎݐ

 ൯ቇܣଵିכ

     (B.5) 
Here  

ܣ ൌ࢘௧
௧

௧ᇱ࢘    

ൌ

ۉ

ۈ
ۇ 

ሺ ௧ܻ െ ߤ െ ௧ܼ௧௦ሻଶܬ

௧ܸିଵ௧


ሺ ௧ܻ െ ߤ െ ௧ܼ௧௦ሻሺܬ ௧ܸ െ ௩ߙ െ ௩ߚ ௧ܸିଵሻ
௧ܸିଵ௧


ሺ ௧ܻ െ ߤ െ ௧ܼ௧௦ሻሺܬ ௧ܸ െ ௩ߙ െ ௩ߚ ௧ܸିଵሻ

௧ܸିଵ௧


ሺ ௧ܸ െ ௩ߙ െ ௩ߚ ௧ܸିଵሻଶ

௧ܸିଵ௧ ی

ۋ
ۊ

 

(B.6) 
is the residual matrix. 

For parameters: 

,ሺ߰  ,ܬ |ߗ ܼ௦, ܸ, ܻሻ ן ,ሺܻ ,߆|ܸ ,ܬ ܼ௦ሻሺ߰,  .ሻߗ

Note that |כߑ| ൌ  ଵ asିכߑ and rewrite ,ߗ

ଵିכߑ ൌ
1
Ω൬

Ω  ߰ଶ െ߰
െ߰ 1 ൰ 

With the prior distribution in section b, we have: 

 

ߗ  ࣣ࣡ ቆ߭  ܶ െ 2, ߭ݐଶ  ܽଶଶ െ
ሺܽଵଶ  ߰ሻଶ

  ܽଵଵ
 ߰ଶቇ (B.7)
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ࣨ ~ߗ|߰ ൬
ܽଵଶ  ߰
ܽଵଵ  

,
ߗ

ܽଵଵ  
൰ 

,௩ߙሺ  ,ܬ |௩ߚ ܼ௦, ܸ, ܻሻ ן ,ሺܻ  ,߆|ܸ ,ܬ ܼ௦ሻሺߙ௩,  ௩ሻߚ

ሺߙ௩, ௩ሻߚ  ࣨ൫ߤఈఉ, Σఈఉ൯ 
(B.8)

where 

ఈఉߤ ൌ Σఈఉ

ۉ

ۈ
ۇ

1
Ω ቆ ௧ܸ

௧ܸିଵ
െ ߰ ௧ܻ െ ߤ െ ௧ܼ௧௦ܬ

௧ܸିଵ
ቇ

௧
1
Ω ൫ ௧ܸ െ ߰ሺ ௧ܻ െ ߤ െ ௧ܼ௧௦ሻ൯ܬ

௧

1
یఉଶߪ

ۋ
ۊ

 

Σఈఉ ൌ

ۉ

ۈ
ۇ
1
Ω ௧ܸିଵ

ିଵ

௧

1
ఈଶߪ

ܶ െ 1
Ω

ܶ െ 1
Ω

1
Ω ௧ܸିଵ

௧

1
یఉଶߪ

ۋ
ۊ

ିଵ

 

,௭ߤሺ  ௭ଶ| ܼ௦ሻߪ ן  ,௭ߤ|ሺܼ௦  ,௭ߤሺ௭ଶሻߪ  ௭ଶሻߪ

௭ଶߪ  ࣣ࣡ ቆ߭௭  ܶ െ 1, ߭௭ݐ௭ଶ െ
ሺ∑ ܼ௧௧  ௭ሻଶߤ௭

ܶ  ௭
 ܼ௧ଶ

௧
 ௭ଶߤ௭ ቇ 

ࣨ ~௭ଶߪ|௭ߤ ቆ
∑ ܼ௧௧  ௭ߤ௭

ܶ  ௭
,

௭ଶߪ

ܶ  ௭
ቇ 

(B.9)

ሻܬ |ߣሺ  ן   ሻߣሺሻߣ|ܬሺ 

ࣜ~ߣ ൬ ௧ܬ
௧
 ,ߙ ߚ  ܶ െ ௧ܬ

௧
൰ (B.10)

For the state variables: 

,߆|ሺܼ௧௦  ,௧ܬ ௧ܸିଵ, ௧ܸ, ௧ܻሻ ן ,ሺܻ ,߆|ܸ ,ܬ ܼ௦ሻሺܼ௧௦|ߤ௭,  ௭ଶሻߪ

ܼ௧௦  ࣨ ൬െ
ܤ
ܣ ,

1
൰ (B.11)ܣ

where 

ܣ ൌ
1
௭ଶߪ


௧ܬ
௧ܸିଵ

ቆ
߰ଶ

ߗ  1ቇ 

ܤ ൌ െ
௭ߤ
௭ଶߪ


௧ሺܬ߰ ௧ܸ െ ௩ߙ െ ௩ߚ ௧ܸିଵሻ

ߗ ௧ܸିଵ
െ ቆ

߰ଶ

ߗ  1ቇ
௧ሺܬ ௧ܻ െ ሻߤ

௧ܸିଵ
 

௧ܬሺ  ൌ ,߆|1 ௧ܸିଵ, ௧ܸ, ௧ܻ , ܼ௧௦ሻ ן ,ሺܻ ,߆|ܸ ,ܬ ܼ௦ሻሺܬ௧ ൌ  ሻߣ|1
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௧ܬሺ ൌ ,߆|0 ௧ܸିଵ, ௧ܸ, ௧ܻ , ܼ௧௦ሻ ן ,ሺܻ ,߆|ܸ ,ܬ ܼ௦ሻሺܬ௧ ൌ  ሻߣ|0
௧ܬሺ   ൌ 1ሻ 

ן  ݔ݁ߣ ൭െ
1
2ቆ1 

߰ଶ

Ω ቇቆ ௧ܻ െ ߤ െ ܼ௧௦

ඥ ௧ܸିଵ
ቇ
ଶ


߰
Ω

௧ܻ െ ߤ െ ܼ௧௦

ඥ ௧ܸିଵ
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(B.12)

According to (B.12), ܬ௧ satisfies the Bernoulli probability. 

,ࢨ|ࢂሺ  ,ࡶ ,࢙ࢆ |into T components ௧ܸ ࢂ ሻ: Breakࢅ ௧ܸିଵ, ௧ܸାଵ. 

ሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ,  ሻࢅ

ן ௧ܸ
ିଵ݁ݔ ቈቆെ

ሺ ௧ܻାଵ െ ߤ െ ௧ାଵܼ௧ାଵ௦ܬ ሻଶ

2 ቆ1 
߰ଶ

Ω ቇ


߰
Ω
ሺ ௧ܻାଵ െ ߤ െ ௧ାଵܼ௧ାଵ௦ܬ ሻሺ ௧ܸାଵ െ ௩ሻߙ െ

1
2Ω

ሺ ௧ܸାଵ െ ௩ሻଶቇߙ
1
௧ܸ
െ
ሺ ௧ܸ െ ௧ሻଶߟ

2ΩV୲ିଵ
 

(B.13) 

where 

௧ߟ ൌ ௩ߙ  ௩ߚ ௧ܸିଵ െ
1
௩ߚ2

ଶ
௧ܸିଵ  ߰ሺ ௧ܻ െ ߤ െ  ௧ܼ௧ሻܬ

Let 

γ ൌ െ
1
2
ሺ ௧ܻାଵ െ ߤ െ ௧ାଵܼ௧ାଵ௦ܬ ሻଶ െ

1
2Ω

ሺ߰ሺ ௧ܻାଵ െ ߤ െ ௧ାଵܼ௧ାଵ௦ܬ ሻ െ ௧ܸାଵ   ௩ሻଶߙ

δ ൌ െ
1

2ΩV୲ିଵ
 

then  

ሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ, ሻࢅ ן ݔ݁ ൬െ݈݃ ௧ܸ  ߛ
1
௧ܸ
 ሺߜ ௧ܸ െ ௧ሻଶ൰ (B.14)ߟ

Note that the density ሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ, ሻࢅ  has both inverse-gamma kernel and 

normal kernel, but it is not a standard distribution. Thus simple Gibbs sampler does 

not apply for the simulation of ௧ܸ. The Metropolis-Hastings algorithm had to be used 

in this case. 
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d. MetropolisHastings algorithm for  ௧ܸ 

I use an independence Metropolis algorithm here. Noting that the density has both 

inverse-gamma kernel and normal kernel in it, two methods for constructing the 

approximate standard distributions can be considered. 

 Normal distribution 

To approximate the first two terms of (B.14) by a normal kernel, firstly, we need to 

find ߸௧, at which point, ሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ,  .ሻ achieves its maximum valueࢅ

ሺ߸௧ሻ ൌ max ሺሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ,  ሻሻࢅ

Given the Taylor expansion of the first two terms of (B.14) at ߸௧: 

െ݈݃ ௧ܸ ൌ െ
2 ௧ܸ

߸௧
 ௧ܸ

ଶ

2߸௧
ଶ   ڮ

ߛ
1
௧ܸ
ൌ െߛ

3 ௧ܸ

߸௧
ଶ  ߛ ௧ܸ

ଶ

߸௧
ଷ   ڮ

approximate normal distribution q is: 
,௧~ࣨሺ߸௧ݍ 1 Ξ⁄ ሻ                       (B.15) 

where 

Ξ ൌ െ
1
ݐ߸
2 െ ߛ

2
ݐ߸
3 െ  ߜ2

 Inverse gamma distribution 

Rewrite (B.14) as 

ሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ, ሻࢅ ן
1
௧ܸ
ݔ݁ ൬െ

െ2ߛ
2 ௧ܸ

൰ ·
1

ට2ߨ · ቀെ 1
ቁ ߜ2

ݔ݁ ቌെ
1
2 
ሺ ௧ܸ െ ௧ሻଶߟ

െ 1
ߜ2

ቍ 

(B.16) 

I approximate the normal kernel by an inverse-gamma with the same mean and 

variance ࣣ࣡ሺߙே,  :ேሻߚ

ேߙ ൌ
௧ଶߟ2

െ 1
ߜ2

 4 ൌ െ4ߟ௧ଶߜ  4 

ேߚ ൌ ሺߙே െ 2ሻߟ௧ 

(B.17)

Combine the approximate new inverse gamma kernel with the original one, the 

density of ሺ ௧ܸ| ௧ܸିଵ, ௧ܸାଵ, દ, ሻࢅ  is transformed to standard inverse gamma 
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distribution: 

,ߙ௧~ࣣ࣡൫ݍ  ൯                       (B.18)ߚ

where 
ߙ ൌ ேߙ  2 

ߚ ൌ െ2ߛ  ேߚ ൌ െ2ߛ  ൫ߙ െ 4൯ߟ௧ 

 Independent Metropolis-Hastings algorithm 

Step 1: Draw ௧ܸ
ሺାଵሻ from the proposal density ݍ௧ 

Step 2: Accept probability 

ߙ ቀ ௧ܸ
ሺሻ, ௧ܸ

ሺାଵሻቁ ൌ ݉݅݊ቌ
 ቀ ௧ܸ

ሺାଵሻቁ ݍ ቀ ௧ܸ
ሺሻቁ

 ቀ ௧ܸ
ሺሻቁ ݍ ቀ ௧ܸ

ሺାଵሻቁ
, 1ቍ 

That is, if ߙ ቀ ௧ܸ
ሺሻ, ௧ܸ

ሺାଵሻቁ ൌ 1 , ௧ܸ
ሺାଵሻ ൌ ௧ܸ

ሺାଵሻ ; else if ߙ ቀ ௧ܸ
ሺሻ, ௧ܸ

ሺାଵሻቁ ൏ 1 , 

௧ܸ
ሺାଵሻ ൌ ௧ܸ

ሺାଵሻ  with probability 
ቀ

ሺశభሻቁቀ
ሺሻቁ

ቀ
ሺሻቁቀ

ሺశభሻቁ
, and ௧ܸ

ሺାଵሻ ൌ ௧ܸ
ሺሻ  with 

probability 1 െ
ቀ

ሺశభሻቁቀ
ሺሻቁ

ቀ
ሺሻቁቀ

ሺశభሻቁ
 

 The choice between normal and inverse-gamma approximations 

One key to measure the performance of distribution approximations is the ratio 

ሺ ௧ܸሻ/ݍሺ ௧ܸሻ , which drives acceptance and repeat probabilities, as shown in 

independent Metropolis algorithm. The flatter ሺ ௧ܸሻ/ݍሺ ௧ܸሻ is, the more efficient the 

blanket. Empirical tests shows that in most cases, ሺ ௧ܸሻ is much more like a normal 

distribution (see Figure B1(a)). And a normal approximation ݍሺ ௧ܸሻ does perfectly fit 

the original distribution ሺ ௧ܸሻ and better performed than does the inverse-gamma 

approximation, as shown in Figure B1(b). The result of simulation distribution is 
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Figure B1 
Choosing the Blanket Density for Stochastic Volatility 

(a) 

(b) 
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Figure B2 
Simulation by Metropolis Algorithm 

 

 
Figure B3 

Special Case for Normal Approximation 
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reported in Figure B2, which is quite desirable. 

However, empirical practices tell us, normal approximation cannot be applied in some 

special cases. For example, when ߛ in (B.14) is especially smaller than ߜ , the 

inverse-gamma kernel will quite dominate the normal kernel, making ሺ ௧ܸሻ has an 

extremely right fat-tail problem (see Figure B3). Unfortunately, an inverse-gamma 

approximation cannot be applied either, because the large difference between their 

peaks. To solve this problem, I suggest that instead of simulating ௧ܸ by Metropolis, 

one can assign the mean of the inverse-gamma approximation to ௧ܸ. That is 

௧ܸ ൌ
ߚ

ߙ െ 2. 

Since this special case does not happen frequently, this method is tested to be 

practicable.
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