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ABSTRACT
With the rise of online e-commerce platforms, more and more cus-
tomers prefer to shop online. To sell more products, online platforms
introduce various modules to recommend items with different prop-
erties such as huge discounts. A web page often consists of different
independent modules. The ranking policies of these modules are
decided by different teams and optimized individually without co-
operation, which might result in competition between modules.
Thus, the global policy of the whole page could be sub-optimal. In
this paper, we propose a novel multi-agent cooperative reinforce-
ment learning approach with the restriction that different modules
cannot communicate. Our contributions are three-fold. Firstly, in-
spired by a solution concept in game theory named correlated
equilibrium, we design a signal network to promote cooperation of
all modules by generating signals (vectors) for different modules.
Secondly, an entropy-regularized version of the signal network is
proposed to coordinate agents’ exploration of the optimal global
policy. Furthermore, experiments based on real-world e-commerce
data demonstrate that our algorithm obtains superior performance
over baselines.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies →Multi-agent systems.

KEYWORDS
Reinforcement learning
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1 INTRODUCTION
The web pages of many online e-commerce platforms consist of
different modules. Each of the modules shows items with different
properties. As an example, consider the web pages depicted in Fig.
1. The page on the left includes three modules: the daily hot deals,
the flash sales, and the top products. There are two modules in the
page on the right: the 0% installment and the special deals. The
candidate items of each module are selected according to prede-
fined conditions. For instance, the top products module includes
the best selling items in the period of the past few days. The items
in the flash sales module and the special deals module offer spe-
cial discounts provided by qualified shops, either daily or hourly.
Because several modules are shown to users at the same time, the
interaction between modules affects the users’ experience.

However, different teams are usually in charge of ranking strate-
gies of different modules. Due to the lack of cooperation between
the teams, the whole page suffers from competition between dif-
ferent modules. As a consequence, the users might find the same
product or category in multiple modules, which wastes the limited
space on the page. For example, the phones appear in all modules
in Fig. 1(a) and the apple pencil is recommended by two modules
in Fig. 1(b).

To find the optimal global strategy, it is crucial to design a proper
cooperation mechanism. Multi-agent reinforcement learning (RL)
algorithms are proposed to solve the recommendation problems
that involve sequential modules [3, 28]. However, their approaches
rely on an underlying communication mechanism. Each agent is
hence required to send and receive messages during the execution.
This might be a problem as ranking strategies of different modules
are usually deployed by different teams in real-time and themodules
cannot communicate with each other. There are many examples
of multi-agent RL algorithms in the literature which do not need
communication. However, their performance suffers a lot from
their inability to coordinate, as we illustrate in the experiments.
In this paper, we propose a novel approach for the multi-module
recommendation problem. The first key contribution of this paper
is a novel multi-agent cooperative reinforcement learning structure.
The structure is inspired by a solution concept in game theory
called correlated equilibrium [1] in which the predefined signals
received by the agents guide their actions. In our algorithm, we
propose to use a signal network to maximize the global utility by
taking the information of a user as input and sending signals to
different modules. The signal network can act as a high-level leader
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(a) Example 1 (b) Example 2

Figure 1: Two examples of the multi-module recommenda-
tion scenarios. The black boxes represent modules. Boxes in
different colors mark similar items in different modules. In
sub-figure 1(a), phones andmonitors appearmore than once.
Meanwhile, apple pencils are recommended by twomodules
in sub-figure 1(b).

coordinating the individual agents. All agents act solely on the basis
of their signals, without any communication.

The second key contribution is an entropy-regularized version
of the signal network to coordinate agents’ exploration. Since the
state and action spaces are huge, exploration remains essential in
finding the optimal policy. We add the entropy terms to the loss
function of the signal network to encourage exploration in view
of the global performance. In contrast, the agents in the existing
work [9] explore individually. To maximize the entropy term, the
distributions of signals should be flat. In that case, the diverse
signals encourage agents to explore more when the global policy
converges to a sub-optimal solution.

Third, we conduct extensive experiments on a real-world dataset
from Taobao, one of the largest e-commerce companies in the world.
Our proposed method outperforms other state-of-the-art coopera-
tive multi-agent reinforcement learning algorithms. Moreover, we
show the improvement caused by the entropy term in the ablation
study.

2 RELATEDWORK
We briefly review works that apply RL methods in recommender
systems and introduce the concept of correlated equilibrium in this
section.

Many deep reinforcement learning methods are used in the rec-
ommender system domain. The works focusing on the single-agent
setting mainly consider three aspects: 1) the different kinds of
rewards, 2) the structures of web pages and 3) the large space of
actions. DRN updates periodically after obtaining long term-reward
such as return time [29]. An algorithm is proposed to use two in-
dividual LSTM modules for items with short-term and long-term
rewards respectively [30]. The diversity of recommended sets is
added to the reward function [15]. Transition probabilities from
users’ actions (such as click) to purchase are used as rewards [19].

Modified MDPs for recommendation are proposed by redefining
the structure of reward function and the transition function respec-
tively [7, 8]. A method is proposed to improve profit by detecting
fraud transactions [25]. Second, page structures including different
types of content and positions of items are taken into consideration.
A CNN-based approach is proposed to recommend items according
to their positions on the web page [27]. A hierarchical algorithm
is proposed to aggregate topics, blog posts, and products on one
web page [22]. Similarly, the Double-Rank Model is proposed to
learn how to rank the display positions and with which documents
to fill those positions [18]. The problem ‘when and where should
advertising be added?’ is addressed for web pages that contain ad-
vertising [26]. Third, other works focusing on the large space of
actions and states usually adopt clustering techniques to reduce
the space [2, 21]. To decide which items to recommend, the policy
network outputs the feature of an ideal item and clustering methods
are adopted to find neighbors of the ideal item in the candidate set
of items. However, these works do not consider recommendation
problems that involve more than one agent and thus cannot be used
to solve our problem.

The most similar works use multi-agent frameworks to promote
cooperation between different pages. Inspired by RL methods in-
volving communication like [23], a multi-agent RL framework is
proposed where agents can communicate by messages [3]. A model-
based RL algorithm is proposed by using neural networks to predict
transition probability and shape reward [28]. Differing from our
setting, the agents in their works recommend items for different
pages (e.g., the entrance page and the item detail page), and exe-
cute sequentially rather than simultaneously. It means that agents
can send messages to others when users leave one page and enter
another page. Moreover, the immediate reward is only related to
one page (module). However, our problem considers cooperation
between different modules on one page in which agents cannot
communicate during execution, and the immediate rewards are
determined by more than one module.

Correlated equilibrium is a solution concept in game theory,
which is first discussed by Aumann [1]. The idea is that each player
or agent chooses strategy according to their observation and a
signal. The signal usually is a recommended strategy that assigns
actions to all agents. If the expected payoff from playing the recom-
mended strategy is no worse than playing any other strategy, it is
called correlated equilibrium. An example is the traffic light, which
suggests to each player whether to go or stop. Following its advice
is the best response for everyone involved. A simple RL algorithm
is proposed to find the correlated equilibrium in an existing work
[5]. In our work, we use a neural network to learn how to send
signals inspired by this concept.

3 PROBLEM STATEMENT AND
FORMULATION

We firstly introduce the details of the multi-module recommen-
dation problem. Fig. 2 shows three stages in a recommendation
session. First, when a user enters the recommendation scenario, he
firstly browses the entrance page, which contains more than one
module. The ranking strategy of each module recommends items
from its candidate set depending on users’ information. A list of
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Figure 2: The flow of a multi-module recommendation system. Pages shown in this figure are the entrance page, the module
page, and the item detail page. The entrance page contains two modules.

items is ranked and the top-3 will be shown on the entrance page.
The user can 1) go to the module page if he clicks any module, or
2) refresh the web page to access new items shown in modules, in
which ranking strategies are called again to rank items. Second, the
module page shows a list of recommended items for this module
and the first three items are consistent with the items showing on
the entrance page. The user can 1) slide the screen to browse more
items, 2) go to the item detail page by clicking an item, or 3) return
to the entrance page. The agent will recommended more items if
the whole list is browsed. Third, the item detail page demonstrates
the details of an item. The user can 1) purchase the item, or 2) return
to the module page. The recommended items do not change when
the user returns to the module page and he can continue to explore
more preferred items by sliding the screen.

Since different modules aim to collectively maximize the global
performance, we can model our problem as a multi-agent extension
of Markov Decision Processes (MDPs) [13]. Formally, the MDP for
multiple agents is a tuple consisting of five elements ⟨N , S,A,R, P⟩:

Agent N is the number of agents. We treat modules as different
agents rather than pages in existing works [3, 28].

State S includes information that each agent has received about
users. In our problem, s is the information of users which contains:
1) static features such as age, gender, and address. 2) sequential
features [h1, . . . ,hK ] including features of K items that a user pur-
chased or clicked recently.

Action A = [A1, . . . ,AN ] is a set including the action sets of
each agent. Specifically, a = [a1, . . . ,aN ], where ai ∈ Ai is the
action of the agent i . The action of each agent is defined as a weight
vector that determines the rank of candidate items. Formally, the
j-th element of the i-th agent’s action ai = [ai1, . . . ,a

i
j , . . . ] is the

weight of the j-th element of the item’s feature. The weighted sum
of the action and an item’s feature determines the rank of the item,
that is scoreitem = aT eitem , where eitem is the embedding of an
item’s features.

Reward R = [R1, . . . ,RN ], where Ri : S ×A → R is the reward
function for agent i . After agents take action a at the state s , the
user would provide feedback like clicking an item or skipping the
module, which can be converted to reward. The global reward r

Figure 3: The architecture of our approach. During the train-
ing, critics leverage other agents’ actions to output the esti-
mate of Q value. For the execution, each agent does not com-
municate with each other.

will be obtained according to the reward function r = R(s,a), where
r = [r1, . . . , rN ] including rewards for N agents.

Transition probability P defines the probability p(st+1 |st ,at )
that the state transits from st to st+1 given the action at of all
the agents in round t . In our setting, the transition probability is
equivalent to user behavior probability, which is unknown and
associated with at . The details are described in the experiment
part.

The objective of our problem is to maximize the discounted
total reward of the platform

N∑
i=1

T∑
t=0

γ t r it

rather than the independent reward of each agent r it , where T is
the time horizon, and γ t is t-th power of the discounted parameter
γ to decide the weights of future rewards.

4 MULTI-AGENT RL WITH A SOFT SIGNAL
NETWORK

In this section, we propose a novel multi-agent reinforcement
learning algorithm to address the multi-module recommendation
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problem. The main idea is to use a signal network to coordinate all
the agents to maximize the global reward. Signals can be considered
as the information of a general cooperative structure for all the
agents. Then, agents act based on signals to cooperate.

Fig. 3 illustrates the structure of our algorithm, which is based
on MADDPG [16]. Three components are involved in our structure.
A shared signal network takes the state s as input and sends signals
ϕ to all the agents to maximize the overall performance. An actor
maintained by each agent maps state and signal to action. The i-th
actor-network only depends on the state and the signal for the
i-th agent, without the knowledge of other agents. To estimate the
expected future cumulative reward Qi (s,a) for given actions and
states, each agent has a critic. In the centralized training, critics
can evaluate the value of actions with information of all agents.
We describe the details of our model and training method in the
following respectively.

4.1 Actor-Critic with a Signal Network
Embedding of state We leverage the embedding layer and at-
tention mechanism to extract useful information. The structure
is shown in Fig. 4(a). As mentioned in Section 3, the state is the
information of users that can be divided into two types, static and
sequential features. For the static features like gender, each feature
is processed by an independent embedding layer. While for the
sequential features, ssequential includes different types’ features
of K historical clicked items of a user such as item IDs and cate-
gories. Features belonging to one type share an embedding layer.
For example, the item IDs of the 1st and theK-th items use the same
layer. After embedding, sequential features are transformed to a
set of vectors h = [h1,h2, . . . ,hK ], where hk is a vector containing
the k-th item’s features. We build an attention network to estimate
the importancewk of hk . The attention network takes the embed-
ding of static information estatic and h as input. The outputs are
mapped by the softmax function to obtain the regularized weights
w = [w1,w2, . . . ,wK ], where 0 ≤ wk ≤ 1 and

∑
k wk = 1. The

embedding of sequential features esequential is generated by the
weighted sum

∑
k wkhk . And it is concatenated with estatic to get

the embedding of the state es . This embedding structure is included
in actors, critics and the signal network to process the state. The
parameters of embedding structures are not shared among different
agents and components.

Signal The signal networkΦ is shared by all agents during execu-
tion to maximize the overall reward. It maps state to a set of vectors
[ϕ1,ϕ2, . . . ,ϕN ], where ϕi is the signal vector for the i-th agent.
The state is processed by the embedding layer mentioned above
and fully-connected layers output the signals depending on the
embedding of state. Differing from the communication mechanism
that needs information sent by all agents, the signal network only
depends on states. We adopt stochastic signal policies in which ϕi

is sampled from a Gaussian distribution N(µϕi ,diaд(σϕi )) where
[µϕi ,σϕi ] is the output of the signal network

[µϕ1 ,σϕ1 , µϕ2 ,σϕ2 , . . . , µϕN ,σϕN ] = Φ(s).

Actor The structure of actors are illustrated in Fig. 4(b). Each ac-
tor π i outputs an action given state s and signal ϕi . We concatenate
the embedding of state and the signal as the input of a three-layer

Algorithm 1:Multi-Agent Soft Signal-Actor (MASSA)
1 Initialize parameter vectors (θ ,η,τ , ξ ,δ ), η̂ = η ;
2 Initialize replay buffer D ;
3 for t = 0, 1, . . . do
4 Observe state st ;
5 For each agent i , generate signal ϕi = Φi (st ) and select

action ait = π i (st ,ϕ
i
t );

6 Execute action at = [a1t , . . . ,a
N
t ] and observe reward rt

and new state st+1;
7 Store (st ,at , rt , st+1) in the replay buffer D;
8 Sample a batch of samples from D;
9 for each agent i do
10 Calculate ∇η J iV (η) and update η;
11 Calculate ∇θ j J

i
Q (θ j ) and update θ j for j ∈ {1, 2};

12 Calculate ∇τ J iπ (τ ) and update τ ;
13 Calculate ∇ξ J iΦ(ξ ) and update ξ ;
14 Update the parameter of the target state value network

η̂t+1 = (1 − δ )η̂t + δηt ;

fully-connected network to generate action. We define that the ac-
tion of each module is a vector whose dimension is the same as the
dimension of candidate items’ features. Following soft actor-critic
[6], we adopt stochastic policy [µai ,σai ] = π i (s,ϕi ) and the action
ai is sampled fromN(µai ,diaд(σai )). To rank items, we leverage a
linear model, in which the weighted sums of items’ features and
the action are treated as the scores of items. Candidate items are
ranked and recommended according to their scores.

Critic Each agent maintains a critic networkQi (s,a) to estimate
the expected cumulative reward of a state-action pair (s,a). The
embedding of the state is concatenated with actions of all the agents
as the input of a fully-connected network whose output is Qi (s,a).
In our problem, users’ historical activities are collected and stored
after users leave the multi-module scenario. During the training
period, agents can access the actions of other agents to reduce the
uncertainty of the environment. Since we use the soft actor-critic
structure [6], the double-Q technique is adopted and a state value
network V (s) is maintained to stabilize training. The double-Q
technique reduces the variance and over-fitting of the Q value by
maintaining two Q networks and choosing the minimal Q value as
the estimate of the (s,a) pair in each time step. The value network
V (s) is used to approximate Es∼ρπ ,a∼π [minQ j (s,a)] for j ∈ {1, 2}
and update Q networks.

4.2 Policy Update with the Soft Signal Network
As discussed above, we use neural networks to approximate Q value,
V value, represent policies and generate signals. For the i-th agent,
we consider a parameterized state value function V i

η (st ), two Q-
functions Qi

θ j
(st ,at ), j ∈ {1, 2}, a stochastic policy π iτ (st ,ϕ

i
t ) and

a shared signal network Φξ (st ). The parameters of these networks
are η, θ , τ , and ξ . The update rules will be introduced in this section.
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(a) The architecture of state embedding. The features of users are divided into two types: static feature,
and sequential feature. The attention mechanism is used to decide the weights of items recorded in the
sequential feature. The embedding of state is not shared among different networks (including actors, critics
and the signal network).

(b) The architecture of actor and ranking. The action is a
vector whose dimension is the same with the item’s feature.
The weighted sum of these two vectors is considered as the
score of an item.

Figure 4: State embedding and the structure of ranking.

We adopt Soft Actor-Critic (SAC) [6] for each agent. Differing
from standard RL that maximizes the expected sum of rewards

Es∼ρπ ,a∼π

[ T∑
t=0

γ t rt

]
,

the objective of SAC augments the objective with the expected
entropy of the policy Es∼ρπ ,a∼π

[∑T
t=0 γ

t (rt +H(π i (·|st ,ϕ
i
t )))

]
,

where ρπ is the state distribution induced by π , γ t is the t-th power
of γ andH(π i (·|st ,ϕ

i
t ) = Eait∼π i

[
π iτ (a

i
t |st ,ϕ

i
t )
]
. The entropy term

aims at encouraging exploration, while giving up on clearly un-
promising avenues. We have

Qi (st ,at ) = Es∼ρπ ,ai∼π i
[
r (st ,at ) + γV

i (st+1)
]
, (1)

where

V i (st ) = Eai∼π i
[
Qi (st ,at ) − logπ i (ait |st ,ϕ

i
t )
]
.

Then, we update the parameters of Q and V according to [6].
Critic. The centralized critic is optimized according to the Bell-

men function of soft actor-critic. For the value function V i
η (st ), we

have

J iV (η) = Est∼D

[
1
2

(
V i
η (st ) − Eat∼πτ

[
Qi
θ (st ,at ) − logπ iτ (a

i
t |st ,ϕ

i
t )
] )2]
,

(2)
where D is the distribution of samples, or a replay buffer. The
gradient of i-th V value network can be estimated by an unbiased
estimator:

∇̂η J
i
V (η) = ∇ηV

i
η (st )

(
V i
η (st ) −Qi

θ (st ,at ) + logπ
i
τ (a

i
t |st ,ϕ

i
t )
)
,

(3)
where actions and signals are sampled from current networks and
Qi
θ = minj ∈{1,2} Qi

θ j
(st ,at ). The Q value network is trained to

minimize the Bellman residual

J iQ (θ j ) = E(st ,at )∼D

[
1
2

(
Qi
θ j
(st ,at ) − Q̂i (st ,at )

)2]
, (4)

with
Q̂i (st ,at ) = r

i
t (st ,at ) + γEst+1∼P

[
V i
η̂ (st+1)

]
, (5)

whereV i
η̂ (st+1) is a target network ofV , where η̂ is an exponentially

average of η. More specifically, the update rule for η̂ is η̂t+1 =
(1 − δ )η̂t + δηt . We approximate the gradient for θ j with

∇̂θ j J
i
Q (θ j ) = ∇θ jQ

i
θ j
(st ,at )

(
Qi
θ j
(st ,at ) − Q̂i (st ,at )

)
. (6)

Actor. For each actor, the objective is to maximize the Q value
with the entropy term, since Q value introduced in Eq. (1) does not
includeH(π i (·|st ,ϕ

i
t ):

J iπ (τ ) = −Est∼D,ai∼π i
[
Qi
θ (st ,a

−i
t ,a

i
t ) − logπ iτ (a

i
t |st ,ϕ

i
t )
]
, (7)

where a−it is a vector including actions of all the agents except the
i-th agent and ait is generated by the current policy π iτ . We use
reparameterization trick [11]

ait = fτ (ϵt ; st ,ϕit ) = f
µ
τ (st ,ϕ

i
t ) + ϵ f

σ
τ (st ,ϕ

i
t ),

where ϵ ∼ N(0, I ) and I is identity matrix. fτ is a neural network
whose output is [f µτ , f στ ] and τ is the parameter of fτ . The stochas-
tic gradient is

∇̂τ J
i
π (τ ) =∇τ logπ

i
τ (a

i
t |st ,ϕ

i
t ) +

(
−∇ait

Qi
θ (st ,a

−i
t ,a

i
t )+

∇ait
logπ iτ (a

i
t |st ,ϕ

i
t )
)
∇τ fτ (ϵt ; st ,ϕit ).

(8)

These updates are extended from soft actor-critic algorithm [6].
The entropy-regularized signal network.Nowwe introduce

the update of the signal network. Since the signal network aims at

214



RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Xu He et al.

Algorithm 2: Offline testing procedure.
1 Load parameters of actors, signal network and item

embedding layer;
2 for t = 0, 1, . . . do
3 Read a record from testing dataset;
4 Observe state st ;
5 Observe candidate set of items for two modules

Li , i ∈ 1, 2;
6 For each agent, rank these items and output a list;
7 Observe rewards rt of recommended lists from the

record;
8 Generate next state st+1 (for training only);

maximizing the overall reward, the objective function is

Jϕ (ξ ) =
1
N

∑
i
−Est ,a−it ∼D

[
Qi
θ (st ,a

−i
t ,a

i
t )
]
. (9)

Inspired by the soft actor-critic, we augment an expected entropy of
the signal network (soft signal network) and obtain a new objective.
Intuitively, this term can encourage signal network to coordinate
agents’ exploration and find the optimal solution to maximize the
global reward. Since the signal network outputs a signal ϕi for each
agent i , we use the notation Φi to represent the part of the signal
network for the i-th agent. Since

H(Φi (·|st )) = Eϕi∼Φi logΦ
i (ϕi |st ),

we have

Jϕ (ξ ) =
1
N

∑
i

[
Est ,a−it ∼D,ϕi∼Φi

[
−Qi

θ (st ,a
−i
t ,π

i (st ,ϕ
i
t ))+

α logΦi (ϕit |st )
] ]
.

(10)

According to [10], we derive the stochastic gradient using repa-
rameterization trick again ϕit = д

i
ξ (ϵ ; st ) = д

µ
ξ (st ) + ϵд

σ
ξ (st ), where

д is a neural network and ϵ ∼ N(0, I ):

∇̂ξ JΦ(ξ ) =
1
N

∑
i

[
α∇ξ logΦiξ (ϕ

i
t |st ) +

(
α∇ϕit

logΦi (ϕit |st )−

∇ait
Qi
θ (st ,a

−i
t ,a

i
t )∇ϕit

π iτ (a
i
t |st ,ϕ

i
t )
)
∇ξд

i
ξ (ϵt ; st )

]
.

(11)

The whole algorithm is shown in Algorithm 1. The algorithm can
be divided into two stages, execution and training. In the execution
part (Lines 4-7), policies of different agents are executed in the
environment to collect data that is stored in the replay buffer. In
the training part, all the parameters are updated according to their
gradients derived in this section. In the end, the parameter of the
target network is updated.

5 EXPERIMENT
We conduct extensive experiments to evaluate the performance of
our algorithm based on Taobao. We first describe the details of the
experimental setting. Then, some baselines are introduced. Finally,
the performance of baselines and our algorithm are illustrated.

5.1 Dataset
Our dataset is collected from Taobao. The recommendation sce-
nario contains two modules. For the training data, 14-day data is
collected in March 2020 and about 1.5 million records (583076 items)
are included in the dataset. Another 3-day data (about 200 thousand
records) is used as the test dataset in offline testing. Each record
includes a user’s information, 10 recommended items for each mod-
ule, the user’s clicks, and the user’s information after clicking. As
we mentioned in the formulation section, users’ information con-
tains sequential and static features. Sequential features contain 50
items that the user clicked. The item ID, seller ID, and category
ID of these historical clicked items are stored. If the number of
historical clicked items of a user is less than 50, these features are
set to 0 by default. For recommended items, features include price,
sale, category and other information of items. After embedding,
each item is represented by a 118-dimensional vector.

5.2 Experiment Setting
In the experiment, we use both offline and online (simulator) testing
to illustrate the performance of our algorithm. In the offline training
and evaluation, algorithms re-rank browsed items in each record
and the clicked items should be ranked at the top of the list. The
candidate set is limited to the recommended items stored in each
record rather than all items collected from the dataset since we do
not know the real reward of items that the user does not browse.
The rewards of the recommended lists of our algorithm are directly
obtained from historical data and used to evaluate the performance
of algorithms. During training, since we need st+1 to update param-
eters, the users’ information st is updated by following rules. The
static part of s is fixed and not changed no matter what the user
clicks. If an item is clicked, the item is added into the sequential
feature and the 50-th historical clicked item is removed from the
sequential feature. If M item is clicked, we do M updates of the
sequential feature. We assume that items in the first module are
clicked firstly and the items with high ranks are clicked before those
with low rank within a module. Then, the new st+1 is generated
and stored to train our algorithm. The offline testing algorithm in
detail is presented in Algorithm 2.

For the online training and testing, due to the huge cost and risk
caused by deploying different algorithms to the real-world scenario,
we train a simulator to implement the online testing following [27].
The structure of the simulator is shown in Fig. 5. In order to consider
the information on the whole page, the input of the simulator is
all the recommended items of two modules (6 items). We obtain
embedding of items by a shared embedding layer. Meanwhile, the
user’s information is processed by the embedding structure shown
in Fig. 4(a). The features of items and a user are concatenated
as the input of a four-layer fully-connected network. Then, the
CTRs (Click Through Rate) of these items are predicted. The bias
of position is considered by this design since the sequence of items
in the input actually indicates the information of positions. We
test the trained simulator in the test dataset (not used to train the
simulator). The overall accuracy is over 90%, which suggests that
the simulator can accurately simulate the real online environment.

For training and testing our algorithm, we collect 2000 items
with the largest CTR for each module to expand the candidate set. In
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Figure 5: The structure of our simulator. The inputs are all the recommended items on one web page and the information of
a user. The output is a vector including the probabilities that these items are clicked.

Table 1: Results of offline testing.

Method
Metric Precision nDCG

Module 1 Module 2 Overall Module 1 Module 2 Overall
L2R 0.193 0.047 0.24 0.196 0.042 0.238

DDPG 0.211 0.046 0.257 0.214 0.042 0.256
MADDPG 0.227 0.047 0.274 0.231 0.044 0.275
COMA 0.165 0.039 0.204 0.175 0.037 0.212
QMIX 0.396 0.056 0.452 0.368 0.055 0.423
COM 0.216 0.042 0.258 0.217 0.041 0.258

MASAC 0.367 0.055 0.422 0.337 0.051 0.389
COMA+SAC 0.206 0.048 0.254 0.205 0.045 0.25
QMIX+SAC 0.305 0.048 0.353 0.294 0.042 0.336
COM+SAC 0.292 0.047 0.341 0.29 0.045 0.335
MAAC 0.301 0.046 0.347 0.289 0.043 0.332

MASSA w/o att (ours) 0.397 0.050 0.447 0.433 0.052 0.485
MASSA w/o en (ours) 0.44 0.055 0.495 0.398 0.05 0.448

MASSA (ours) 0.555 0.06 0.615 0.459 0.057 0.516

our training and testing dataset, about 90% of clicks are contributed
by these items. In each round, actors select a list of items and the
simulator outputs rewards for these items. The training and testing
procedure is similar to Algorithm 2 except the Line 7, where the
rewards come from the simulator rather than historical data.

To evaluate the performance of various algorithms, we use clicks
as rewards and introduce two metrics Precision [17] and nDCG
[24]. The formulations are shown as follows.

• Precision:

Precision =
#clicks in top-K items

K
.

• nDCG:

nDCG =
K∑
k=1

rk
log(1 + k)

,

where rk = 1 if the k-th item is clicked, otherwise, rk = 0.

For each module, the performance of a ranking policy is evaluated
by these two metrics. The overall performance is the sum of each
module’s performance.

For components of our algorithm, we leverage a 4-layer neural
network with the additional embedding structure introduced in
Fig. 4(a). The activation function is relu for all fully-connected
layers except output layers. The size of the replay buffer is 1e6.
The dimension of the items’ embedding is 118. The length of each
signal vector is 64. The discount factor is γ = 0.99. The learning
rate for actor, critic, and signal networks is 0.01 and the weight for
updating the target network is δ = 0.01. The weight of entropy
terms is α = 0.01. We select these parameters via cross-validation
and do parameter-tuning for baselines for a fair comparison.
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Figure 6: The results of the online experiment.

5.3 Baselines
Our algorithm is compared with the following baselines:

• L2R [14]: This algorithm trains a point-wise learning-to-
rank network by supervised learning. The network is the
same as the simulator except for the input and the output.
The input changes to users’ information and one item. The
network predicts the CTR of this item. We deploy an L2R
algorithm for each module, which is trained to reduce the
sigmoid cross-entropy loss for each module.

• DDPG [12]: Deep Deterministic Policy Gradient method is
a single-agent RL algorithm that consists of an actor and a
critic. The structure of actors is the same as MADDPG and
L2R.

• MADDPG [16]: Multi-Agent Deep Deterministic Policy Gra-
dient method is the multi-agent version of DDPG. Each agent
maintains an actor and a critic. During training, critics can
access other agents’ actions and observations. While in the
execution, actors select actions only depending on their own
observation.

• COMA [4]: Counterfactual multi-agent policy gradients
method is a cooperative multi-agent algorithm that leverages
counterfactual rewards to train agents. The main idea is to
change the action of an agent to a baseline action and use the
gap of Q values of these two actions as the reward. Differing
from MADDPG, all the agents share a critic to estimate the
global reward.

• QMIX [20]: QMIX assumes that the global maximum re-
ward is a weighted sum of local maximum rewards of agents
and proposes a mixing network to explicitly decompose the
global reward. The decomposed local rewards are treated as
the contribution of each agent and used to train actors.

• COM: COM is a simple extension of the methods [3] by
letting actors choose actions simultaneously. Actors send
messages to others during execution. Although this algo-
rithm violates the restriction that different modules cannot
communicate, the comparison aims to illustrate the perfor-
mance in environments that allow communication.

• MASAC: This algorithm is an extension of MADDPG by
applying soft actor-critic [6], where an entropy term is aug-
mented in the reward to encourage exploration. Different
from our method, this algorithm does not have a signal net-
work.

• MAAC [9]: Multi Actor-Attention-Critic algorithm main-
tains the structure of MASAC. The attention mechanism is
adopted to handle messages sent by critics and extract useful
information to each critic.

• MASSA w/o en: This method is proposed for the ablation
study, in which the entropy terms of signals are removed
from the loss function of the signal network (α = 0). By
comparing this method with ours, the importance of the
entropy-regularized version of the loss function is indicated.

• MASSA w/o att: In this method, the attention mechanism
is replaced by simple concatenation es = [estatic ,h] for
ablation study.

Additionally, since our algorithm is based on MASAC, we combine
COMA, QMIX, and COM with MASAC to obtain the other three
baselines: COMA+SAC, QMIX+SAC, and COM+SAC. Notice that
the method in [28] is a model-based version of COM and other
baselines (including ours) are model-free methods. Thus, we only
compare to COM considering fairness.
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Figure 7: The curves of precision and nDCG during online
training. The solid curves correspond to the mean and the
shaded region to the minimum and maximum values over
the 10 runs. The difference between these two algorithms is
the entropy term of the loss function for the signal network.

5.4 Result
In this subsection, we illustrate performance of different methods
to indicate the improvement caused by the signal network and the
entropy scheme.

5.4.1 Offline Testing. The results of our offline evaluation are
shown in Table 1. All the methods are trained by 14-day training
data and tested by the 3-day testing data. There are a few interesting
conclusions drawn from the results.

Firstly, the signal network and additional entropy terms can im-
prove performance significantly. Since the only distinction between
MASAC and MASSA w/o entropy is the signal network, the gap of
the performance shows the effectiveness of the signal network. Be-
sides, by adding the entropy term to encourage exploration,MASSA
method outperforms all the other methods. Comparing to MASSA,
the MASSA w/o entropy method is prone to converge to a sub-
optimal policy in our scenarios. The entropy-regularized algorithm
can explore in view of global performance.

Secondly, the metrics of module 1 are better than that of module
2, which is caused by different properties of these two modules. As
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Figure 8: The performance with the change of α

shown in Fig. 2, module 1 is at the top of the web page. Thus, users
are more likely to be attracted by module 1 and ignore another
module, especially when the items recommended by module 1 are
good. In our dataset, the ratio of the number of clicks in these two
modules is about 6:1.

Finally, DDPG performs worse comparing withMADDPG whose
actors have a similar structure with DDPG. The main reason is that
the ranking policies of the two modules are trained individually
without any cooperation.

5.4.2 Online Testing. For the online experiment, Fig. 6 exhibits the
performance of various algorithms. The performance is the mean
of 10 runs. Our algorithms outperform others again in the online
experiment.

Firstly, the performance of the methods based on MASAC is
better than that based on MADDPG except for COMA. The reason
is that the online environment is more complex than the offline
setting in terms of the number of candidate items and the source of
clicks. The number of candidate items increases from 10 to 2000 for
each set and the clicks are from an online simulator. Exploration is
more important to obtain a better policy in a complex environment.
Thus, SAC-based approaches perform better.

Secondly, although MASSA w/o entropy is better than MASSA
for the module 2, the overall performance of MASSA w/o entropy is
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worse. It illustrates that in order to find a globally optimal solution,
MASSA makes a small sacrifice of module 2 and obtains a huge
improvement for the overall performance.

The effect of entropy The importance of the entropy term is
indicated in Fig. 7. We can observe that two algorithms perform
similar in the first 20 thousand steps and the overall performance
seems to be constant if we ignore the perturbation, which means
that the ranking policy falls into a sub-optimal solution. Due to
the entropy term, MASSA constantly explores and escapes from
the sub-optimal solution at around 30 thousand steps. Finally, a
globally optimal solution is found. However, MASSA w/o entropy
algorithm only finds a better sub-optimal solution slowly.

Another interesting fact is the change in the shaded region. For
MASSA, the region is huge before 45 thousand steps and becomes
smaller in the last 10 thousand steps. However, the region ofMASSA
w/o entropy becomes larger at the end of the training. It indicates
that MASSA explores more at the beginning and converges to the
optimal solution. However, due to the lack of exploration, MASSA
w/o entropy falls into different sub-optimal solutions in the end.

5.4.3 The influence of α . Fig. 8 shows the performance with the
change of α which is the weight of the entropy term for the loss
function of the signal network. Our algorithm performs the best
when α = 0.01. Thus, we use this value in both online and offline
experiments.

6 CONCLUSION
In this paper, we propose a novel multi-agent cooperative learn-
ing algorithm for the multi-module recommendation problem, in
which a page contains multiple modules that recommend items
processing different specific properties. To prompt cooperation and
maximize the overall reward, we firstly design a signal network that
sends additional signals to all the modules. Secondly, an entropy-
regularized version of the signal network is proposed to coordinate
agents’ exploration. Finally, we conduct both offline and online
experiments to verify that our proposed algorithm outperforms
other state-of-the-art learning algorithms.
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