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ABSTRACT
Conversational systems are designed to offer human users social
support or functional services through natural language interac-
tions. Typical conversation researchesmainly focus on the response-
ability of the system, such as dialogue context understanding and
response generation. In the era of large language models (LLMs),
LLM-augmented conversational systems showcase exceptional ca-
pabilities of responding to user queries for different language tasks.
However, as LLMs are trained to follow users’ instructions, LLM-
augmented conversational systems typically overlook the design of
an essential property in intelligent conversations, i.e., goal aware-
ness. In this tutorial, we will introduce the recent advances on
the design of agent’s awareness of goals in a wide range of con-
versational systems, including proactive, non-collaborative, and
multi-goal conversational systems. In addition, we will discuss the
main open challenges in developing agent’s goal awareness in LLM-
augmented conversational systems and several potential research
directions for future studies.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; • Information systems → Users and interactive retrieval.

KEYWORDS
Open-domain Dialogue, Task-oriented Dialogue, Conversational
Information Seeking, Proactivity
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1 MOTIVATION AND OVERVIEW
Conversational systems are envisioned to provide social support
or functional service to human users via natural language interac-
tions. Conversation researches typically center around a system’s
response capabilities, such as understanding the context of dialogue
and generating appropriate responses to user requests. The popu-
larity of conversational systems has grown unprecedentedly with
the advent of ChatGPT [39], which showcases exceptional profi-
ciency in the capabilities of context understanding and response
generation with large language models (LLMs). Meanwhile, its pow-
erfulness also raises questions about the potential for advancement
to take the conversational system to the next level.

However, existing conversational systems often neglect to em-
phasize an integral property in intelligent conversations: goal aware-
ness. The goal awareness means the state of not only being respon-
sive to the users but also aware of the target conversational goal
and capable of leading the conversation towards the goal, which is
a significant step towards strong artificial intelligence. It can not
only largely improve user engagement and service efficiency in the
conversation, but also empower the system to handle more com-
plicated conversation tasks that involve strategic and motivational
interactions. The main content of this tutorial includes:

1.1 Proactive Conversational Systems
As opposed to responding to users, proactivity is the most promi-
nent feature of goal awareness in conversational systems, which
can improve the collaboration between the users and system to-
wards the ultimate conversation goal. Derived from the definition
of proactivity in organizational behaviors [23] and its dictionary
definitions, conversational agents’ proactivity can be defined as the
capability to create or control the conversation by taking the ini-
tiative and anticipating impacts on themselves or human users. In
this part, we will provide a comprehensive introduction about such
efforts on the design of agent’s proactivity that span various task
formulations and application scenarios. In specific, we categorize
them in three directions according to the application scenario, and
plan to discuss their research problems and methods as follows:

• Topic Shifting and Planning in Open-domain Dialogues.
The goal of ODD systems is to maintain engaging social con-
versations with users. Proactive ODD systems can consciously
change topics [49] and lead directions [45, 48] for improving
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user engagement in the conversation. We will present the ex-
isting methods for topic shifting and planning in open-domain
dialogues, including keyword-based discourse-level topic plan-
ning [45], graph-based topic planning [38, 52], and learning from
interactions with users [28].

• Additional Information Delivery in Task-oriented Dia-
logues. The goal of TOD systems is to provide functional service
for users, such as making reservations or managing schedule.
The proactivity in TOD systems is firstly defined as the capabil-
ity of consciously providing additional information that is not
requested by but useful to the users [3], which can improve the
quality and effectiveness of conveying functional service in the
conversation. We will introduce the recent studies of proactive
TOD systems with various designs, including adding topical chit-
chats into the responses for more engaging interactions [44] and
enriching TOD with relevant entity knowledge [8].

• Uncertainty Elimination in Information-seekingDialogues.
The goal of CIS systems [58] is to fulfill the user’s information
needs and its typical applications include conversational search,
conversational recommendation, and conversational question
answering. Conventional CIS systems assume that users always
convey clear information requests, while the user queries, in
reality, are often brief and succinct. Recent years have witnessed
several advances on developing proactive CIS systems that can
consciously eliminate the uncertainty for more efficient and pre-
cise information seeks by initiating a subdialogue. Such a subdia-
logue can either clarify the ambiguity of the query or question
in conversational search [1, 57] and conversation question an-
swering [15, 24], or elicit the user preference in conversational
recommendation [27, 62].

1.2 Non-collaborative Conversational Systems
Most of existing conversational systems are built upon the assump-
tion that the users willingly collaborate with the conversational
agent to reach the mutual goal. However, this assumption may not
always hold in some real-world scenarios, where the users and
the system do not share the same goal [25, 47] or the users are
not willing to coordinate with the agent [26, 51]. In these cases,
the conversational agent requires another feature of goal aware-
ness, i.e., non-collaborativity [30, 64], which means the capability
of handling both in-goal and off-goal dialogues appropriately for
ultimately leading back to the system’s goal. In this part, we will
categorize the non-collaborative settings into two groups as follows
and cover their to-date work respectively.

• The users are not willing to coordinate with the agent.
Example scenarios include calming down the emotional users
before solving their problems [18, 34], managing the users’ com-
plaints before providing service [51], and handling problematic
content during the conversations [26]. We will introduce the
pioneering studies for the system to consciously deal with non-
collaborative users during the conversation, including emotion
cause analysis [9, 46], user satisfaction estimation [33], and proso-
cial response generation [2, 26].

• The users and the system do not share the same goal. Typi-
cal applications include persuasion dialogues [47], negotiation
dialogues [25], and anti-scam dialogues [30]. We will present

the approaches for the system to consciously mitigate and re-
solve the conflict goals with users, including dialogue strategy
learning [30, 64], user personality modeling [50], and persuasive
response generation [37].

1.3 Multi-goal Conversational Systems
All the aforementioned conversational systems assume that users
always know what they want and the system solely targets at reach-
ing a certain goal, such as chit-chat, question answering, recommen-
dation, etc. The system with a higher level of agent’s awareness
of goals should also be capable of handling conversations with
multiple and various goals. As for multi-goal conversational sys-
tems [17, 36], the agent is expected to consciously discover users’
intentions and naturally lead user-engaged dialogues with multiple
conversation goals. We will cover the newly proposed problems in
multi-goal conversational systems with their corresponding data
resources [10, 35, 55]. Then we will discuss two problem settings
of multi-goal conversational systems with corresponding state-of-
the-art approaches: (i) The goal sequence is pre-defined [59], and
(ii) The next goal needs to be predicted [17, 35].

1.4 Open Challenges and Beyond
In the last part, we will discuss the main open challenges in de-
veloping agent’s awareness in conversational systems and several
potential research directions for future studies.
• GoalAwareness in LLM-augmentedConversationalAI. Large
Language Models (LLMs) have been demonstrated to be powerful
of handling various NLP tasks in the form of conversations, such
as ChatGPT. However, these applications are typically designed
to follow the user’s instructions and conversational intents. There
are still several limitations that attribute to the lack of agent’s
awareness, such as passively providing randomly-guessed an-
swers to ambiguous user queries, failing to refuse or handle
problematic user requests that may exhibit harmful or biased
conversations, etc. In addition, they also fall short of interacting
under non-collaborative or system-oriented settings. Therefore,
we will discuss the latest studies in triggering the proactivity of
LLM-based dialogue systems [6, 14, 19, 56, 60, 63] and the plan-
ning capabilities of LLMs with some latest studies [41, 53, 54].

• Evaluation forConversationalAgent’s GoalAwareness.The
development of robust evaluation protocols has already been a
long-standing problem for different kinds of conversational sys-
tems. The evaluation for conversational agent’s awareness is a
more challenging problem, since it is involved the evaluation
not only from the perspective of natural language, but also from
the perspectives of human-computer interaction, sociology, psy-
chology, etc. We will cover the latest studies for shedding some
lights on this topic, inclusive of popular metrics such as goal
completion and user satisfaction [16, 35, 52], and model-based
methods such as user simulator [40, 61].

• Ethics forConversationalAgent’s GoalAwareness.Although
existing designs of agent’s goal awareness in conversational sys-
tems generally aim at social goodness [26, 47], it is inevitably
a double-edged sword that can be used for good or evil. For re-
sponsible researches, we will discuss several important aspects
of ethical issues in conversational systems: (i) Factuality: Factual
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incorrectness and hallucination are common in conversational
systems [4]. When enabling the conversational agent with aware-
ness, it becomes more crucial to guarantee the factuality of the
system-provided information [5]. (ii) Safety: Besides general dia-
logue safety problems, such as toxic language and social bias [43],
conscious conversational systems need to pay more attentions
to the aggressiveness issue during the non-collaborative conver-
sations [25, 34]. (iii) Privacy: The privacy issue is overlooked in
current studies on conversational systems [29], but the agent’s
awareness raises concerns about how these conversational sys-
tems handle personal information obtained from the users.

2 OBJECTIVES
The main objectives of this tutorial are threefold:
• This tutorial presents a comprehensive and diverse overview
about the cutting-edge designs of agent’s awareness in various
conversational systems. The discussed approaches are problem-
driven and language-agnostic, which means that the techniques
are also not limited to a certain type of dialogues and can be
generalized to diverse conversational systems.

• This tutorial discusses open challenges for goal awareness in
conversational AI. LLMs have showcased exceptional proficiency
in enhancing the response-ability of conversational systems. We
provide a new perspective to facilitate more potential directions
for future research into conversational AI.

• This tutorial provides the opportunity to arouse discussions on
conversational AI’s awareness of goals from the view of ethical
and responsible researches. As part of this tutorial, we will pro-
vide a specific section for discussing the ethical considerations
and designs for agent’s awareness in conversational systems.

3 FORMAT AND DETAILED SCHEDULE
The following summarizes the detailed schedule of the tutorial:
(1) Introduction [10 min]
(2) Conversational System Preliminaries [20 min]

(a) Open-domain Dialogue Systems
(b) Task-oriented Dialogue Systems
(c) Conversational Information-seeking Systems

(3) Proactive Conversational Systems [60 min]
(a) Topic Shifting and Planning in Open-domain Dialogues
(b) Additional InformationDelivery in Task-orientedDialogues
(c) Uncertainty Elimination in Information-seeking Dialogues

(4) Non-collaborative Conversational Systems [40 min]
(a) The users are not willing to coordinate with the system
(b) The users and the system do not share the same goal

(5) Multi-goal Conversational Systems [20 min]
(6) Open Challenges for Conversational Agents’ Goal Awareness

and Beyond [20 min]
(a) Goal Awareness in LLM-augmented Conversational AI
(b) Evaluation for Conversational Agent’s Goal Awareness
(c) Ethics for Conversational Agent’s Goal Awareness

(7) Summary and Outlook [10 min]

4 RELEVANCE TO IR COMMUNITY
The conversational system is an trending topic in the information
retrieval community, which receives notably increasing attentions

from both academia and industry. In academia, IR conferences rec-
ognize Conversational Systems as one of its major research topics
and host regular sessions about conversational systems. In indus-
try, recent years have witnessed many successful applications that
evolve traditional interactive IR systems into conversational IR sys-
tems. For example, Microsoft recently released a new version of
Bing with its integration with ChatGPT [39] under the idea of con-
versational search. Our tutorial aims at stimulating progresses on
conversational systems to the next level by jumping out of the box
of reactive conversational systems that simply respond to the user
requests. We focus on an important feature in conversational sys-
tems towards higher-level intelligence and artificial consciousness,
which is the goal awareness.

Several tutorials about dialogue systems [7, 11, 20–22, 42] in
general have been given in various conferences. However, these
tutorials mainly introduce the advanced designs on the response-
ability of the conversational system for general dialogue problem
settings. The Conversational Information Seeking: Theory and Appli-
cation tutorial [11] includes a section about mixed-initiative inter-
actions in conversational information-seeking systems to present
the recent studies on asking clarification questions in conversa-
tional search. The Proactive Conversational Agents tutorial [31, 32]
was presented at WSDM/SIGIR 2023, which is the most relevant
tutorial to our topics. In our tutorial, we identify the proactivity as
a prominent feature of goal awareness in conversational systems
and provide more comprehensive perspectives on the emerging
problems and approaches that rely on higher level of conversational
agents’ awareness of goals, including proactive, non-collaborative,
and multi-goal conversational systems. A previous version [12] of
this tutorial was presented in ACL 2023, which is further incorpo-
rated with more content about LLM-based dialogue systems.

5 SUPPORTING MATERIALS
(1) Slides will be made publicly available; (2) The tutorial is accom-
panied with a survey [13] on this topic.
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