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Relation extraction (RE) involves identifying the relations between entities from underlying content. RE

serves as the foundation for many natural language processing (NLP) and information retrieval applications,

such as knowledge graph completion and question answering. In recent years, deep neural networks have

dominated the field of RE and made noticeable progress. Subsequently, the large pre-trained language models

(PLMs) have taken the state-of-the-art RE to a new level. This survey provides a comprehensive review of

existing deep learning techniques for RE. First, we introduce RE resources, including datasets and evalua-

tion metrics. Second, we propose a new taxonomy to categorize existing works from three perspectives, i.e.,

text representation, context encoding, and triplet prediction. Third, we discuss several important challenges

faced by RE and summarize potential techniques to tackle these challenges. Finally, we outline some promis-

ing future directions and prospects in this field. This survey is expected to facilitate researchers’ collaborative

efforts to address the challenges of real-world RE systems.
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1 Introduction

Relation extraction (RE) is an essential task in natural language processing (NLP), which
involves extracting entities and relations between them from underlying content. In this article,
we primarily focus on binary relations as the main unit of analysis for RE tasks. Each relation is
represented as a triplet 〈head_entity, relationship, tail_entity〉, consisting of two entities and the
relation between them. RE facilitates the extraction of structured information from vast troves of
unstructured texts, thereby unlocking the value hidden within such data. It can be used for many
downstream applications [111, 186], such as knowledge graph (KG) completion [23] and align-
ment [229], question answering (QA) [100], and information retrieval [202]. In the era of Large

Language Models (LLMs), RE methods continue to demonstrate significant advantages. LLMs
struggle to accurately retain all the knowledge implied within the text, especially in handling
long-tail texts where errors in judging relationships between entities are prone to occur. Thus,
RE techniques serve as a potent technical complement in enhancing the accuracy of LLMs. Fur-
thermore, in rapidly evolving domains where new entities, relationships, and concepts frequently
emerge, RE methods offer the flexibility to effectively adapt to and incorporate new information,
offering scalable solutions to the daunting task of mining structured insights from the vast expanse
of unstructured data. Therefore, designing automatic approaches to extract the relations between
entities contained in unstructured texts becomes increasingly necessary, leading to the booming
development of RE.

In recent years, advances in deep neural networks (DNNs) and PLMs have significantly im-
proved the performance of RE. These approaches can be categorized into two main types: the

pipeline-based RE approaches [108] and joint RE approaches [112, 219, 238]. Pipeline-based
approaches extract entities and relations from unstructured text through two separate stages,
which first identify entities from the text and then detect the relation between any pairs of en-
tities. For example, as illustrated in Figure 1, given the sentence “ChatGPT is a chatbot launched

by OpenAI”, pipeline-based approaches first identify the entities “ChatGPT” and “OpenAI”, and
then predict the relation “product” between the two entities. In the early stage, pipeline-based
RE approaches [68, 108, 114] primarily use Named Entity Recognition (NER) tools to extract
entities, and then classify the relations of entity pairs using supervised learning algorithms with
feature engineering. Pipeline-based RE methods [12, 24, 179] often assume that the target entities
are already identified, and the RE models merely need to predict the relations between any pair of
entities. However, because the entity and RE processes are separated, pipeline-based approaches
tend to suffer from error propagation, where relation classification can be affected by errors intro-
duced during entity recognition.

Joint (non-pipeline) approaches, on the other hand, aim at addressing this challenge by jointly
modeling entity recognition and relation classification tasks within a unified framework. Taking
the second example in Figure 1 as an example, the sentence “Sam Altman is the co-founder and

CEO of OpenAI” contains two relationships (i.e., “co-founder” and “CEO”) with overlapping entities.
RE systems must be able to accurately identify and distinguish between overlapping entities and

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.
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Fig. 1. Examples of RE.

relationships. Joint RE approaches tend to be less susceptible to error propagation due to several
key reasons. First, this holistic training approach allows the model to learn optimal representations
for both tasks concurrently, minimizing the impact of errors in one aspect on the other. Second,
joint models can optimize objectives directly related to the overall task, such as maximizing the
likelihood of correct entity pairs and relations. Third, by jointly learning entity recognition and RE
tasks, joint models can adapt to errors in one task by leveraging information from the other, thus
compensating for potential mistakes made at earlier stages. So far, many joint RE approaches have
been proposed to extract entity and relation simultaneously. We generally divide them into four
categories: span-based approaches [198, 241], sequence-to-sequence (Seq2Seq) approaches [223],
MRC-based approaches [90, 238], and sequence labeling approaches [65, 219].

Despite the advances of deep learning (DL) for RE, several challenging problems still need to
be solved in real-world scenarios. For example, many relations are “long-tail”, where only a few
frequent relations receive sufficient training examples. In contrast, the remaining infrequent rela-
tions usually suffer from a lack of labeled training data. However, DL requires massive amounts of
training corpus, which is difficult to obtain in many real-life applications, especially in low-resource

settings. Distant supervision relation extraction (DSRE) [217] is particularly appealing as it
leverages existing structured information, such as KGs and databases, to generate labeled train-
ing data automatically. Nevertheless, distant supervision techniques may suffer from the wrong
labeling problem and fail to handle long-tail relations with limited labeled instances. Therefore,
few-shot relation extraction (FSRE) with limited labeled training samples has become a hot
research topic [24, 121].

In addition, most existing studies focus on extracting relational facts from individual sentences.
However, many real-life applications require the RE systems to identify entities and relations from
a long document with multiple sentences. Following this direction, some recent studies [32, 82]
have been proposed to solve cross-sentence RE, which attempt to identify relations that are men-
tioned across multiple sentences. Generally, there are two main research lines on cross-sentence
RE. The first line of research is document-level RE (DocRE) [74], which has the potential to over-
come the inherent limitations of sentence-level approaches and better capture the full range of re-
lational information present in a document. The second line of research is dialogue RE [24, 144],
which aims at discovering relation triplets appearing in multi-turn dialogues. Furthermore, the
prosperity of RE in the general field motivates some works to focus on domain-specific RE from
specialized articles. To the best of our knowledge, domain-specific RE approaches are still under-
explored in previous surveys. In this article, we summarize the advanced RE approaches in specific
domains (e.g., scientific, finance, medical, and biochemical).

Recently, some studies have also focused on other promising yet challenging RE problems,
including multi-modal relation extraction [242], cross-lingual relation extraction [135],
temporal relation extraction [151], and evolutionary relation extraction [237]. To facilitate
building a comprehensive understanding of RE, we also review recent advances that address these
challenging RE problems.

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.
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Overall, RE studies [36, 188] have been thriving in recent years. Although there have been
several surveys on RE, they do not provide sufficient reviews of the above recent DL-based ad-
vances, current challenges, and future directions. In particular, the early surveys [9, 114, 220]
emphasized traditional RE approaches (i.e., rule-based and machine learning-based approaches)
in sentence-level settings. Detroja et al. [36] focused on both traditional RE approaches and DL-
based approaches, but did not fully explore and omit the recent DL approaches. Moreover, Han
et al. [59] reviewed existing RE approaches from four specific directions (i.e., utilizing more data,
performing more efficient learning, handling more complicated context, and orienting more open
domains). Xu et al. [188] focused on the low-resource RE problem. Bassignana and Plank [10] dis-
cussed RE datasets and scientific relation classification approaches. The most related survey to
ours was proposed by Nayak et al. [111], which collectively introduced the general DL-based RE
model architectures. However, several challenging issues and new frontiers in recent RE studies
have not been discussed. Specifically, we argue that existing surveys mainly focused on limited as-
pects of RE and lack an in-depth sorting of the logical relationships among the classic approaches.
Moreover, many emerging developments in this field have not yet been adequately explored. For
example, PLMs and LLMs (e.g., BERT [38], GPT-3 [16], and ChatGPT 1), which have been widely ap-
plied to enhance the outcomes of downstream RE in various scenarios, remain largely unexplored
in previous RE surveys. In this survey, we first organize the general frameworks in the represen-
tative RE approaches and fully comb the recent studies into categories, illustrating the differences
and connections between RE subtasks. In addition, we discuss the performance of RE on current
solutions in diverse challenging settings (i.e., low-resource settings and cross-sentence settings)
and specific domains (i.e., biomedical, finance, legal, and scientific fields), respectively. Further-
more, we present in-depth analyses that reveal the primary issues of RE with PLMs and discuss
four main challenges (multi-modal RE, cross-lingual RE, temporal RE, and evolutionary RE) that
need to be addressed. The holistic and multi-faceted views of RE methods discussed in our survey
would allow readers to obtain a comprehensive landscape of available RE solutions and a good
understanding of potential future directions. It is worth noting that to provide a comprehensive
overview of RE, we selected bibliographical references based on criteria such as the significance
of contributions (novel methods, datasets, metrics) and diversity of approaches. This approach en-
sures the inclusion of influential and representative works, reflecting the latest advancements and
trends in the field across various techniques, datasets, and applications.

Contributions of this survey. This survey aims at providing a comprehensive overview of DL
techniques in RE, which can provide researchers and practitioners with a comprehensive landscape
of this area. First, we introduce representative RE datasets for verifying the RE methods. Second, we
present a taxonomy classifying the representative RE approaches into several categories. Moreover,
we explore and summarize the recent challenges and solutions faced by RE. Lastly, we present
potential future directions in this field. This survey serves to facilitate collaborative efforts among
researchers in tackling the challenges of RE.

In summary, we offer a comprehensive survey of RE techniques, analyzing the performance
of RE models across various task settings and summarizing the limitations of existing models
along with future directions for development. We begin with an overview of the research area,
emphasizing the existing gaps in the literature concerning RE. Moving forward, Section 2 delves
into datasets and evaluation metrics, establishing a foundational understanding for subsequent
discussions. In Section 3, we explore DL techniques tailored for RE, with a taxonomy of text rep-
resentation, context encoding, and triplet prediction. Section 4 discusses current challenging RE
problems and solutions, including handling low-resource scenarios, cross-sentence extraction, and

1https://chat.openai.com/

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.

https://chat.openai.com/


A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers 293:5

Table 1. Statistics on RE Datasets

Corpus Name General Specific Multi-lingual Relation Train/Test Leaderboard

NYT [125] ✔ 24 5.6 k/5 k ✔ 3

WebNLG [51] ✔ 171 5019/703 ✔
WikiReading∗ [64] ✔ 884 14.85 M/3.73 M ✔
WIKI-TIME [197] ✔ 57 97.6 k/40 k
SciERC [97] Scientific 7 2,136/551 ✔
FOBIE [81] Scientific 3 1,238/300 ✔
DialogRE [211] ✔ 37 6 k/1.9 k ✔
FewRel 2.0 [50] Medical 100+25 56 k/14 k ✔ 4

ChemProt [115] Biochemical 14 19.5 k/16.9 k ✔
DDI [63] Biochemical 5 25.3 k/5.7 k ✔
DocRED∗ [204] ✔ 96 4 k/1 k ✔
CUAD [62] Legal 25 10.48 k/2.62 k ✔
FinRED [138] Finance 29 5,699/1,068 ✔
SMiLER [135] ✔ ✔ 36 733 k/15 k
mLAMA [80] ✔ ✔ 5 −

ACE 2023 [41] ✔ ✔ 24 100 k/50 k ✔
ACE 2024 [41] ✔ ✔ 24 300 k/50 k ✔

Document-level datasets are marked with∗, while others are sentence-level datasets. The domains of the datasets are

divided into general, specific, and multi-lingual categories. The ✔ mark in the leaderboard column indicates that the

dataset has a leaderboard on the Articles with Code website2.

adapting to domain-specific RE. Subsequently, in Section 5, we critically examine the integration
of pre-trained language models and propose future directions, encompassing multi-modal, cross-
lingual, temporal, evolutionary, and explainable RE approaches. Finally, in Section 6, we conclude
the article by summarizing key findings and outlining promising directions for further research.

2 Preliminary

In this section, we first provide a formal problem definition of RE. Then, we introduce the recent
benchmark corpora proposed for training deep RE models.2 Finally, we present the evaluation
metrics for evaluating the RE models.

2.1 Problem Definition

RE aims at automatically identifying the relations between entities in unstructured texts. Formally,
given a natural language text x , the goal of the RE task is to predict a set of triplets, each consisting
of a head entity e1, a relation type r , and a tail entity e2. The entities e1 and e2 can be words, phrases,
or other syntactic units in the text, while the relation type r is a predefined type r ∈ R that describes
the relation between e1 and e2.

2.2 Datasets

Annotated datasets are crucial for the development of RE methods. We summarize the recently
released and widely used benchmark datasets for RE in Table 1,3, 4, 5 noting that the datasets
listed are some representative examples and that many others also exist. Generally, these RE

2There are several online platforms for RE, including Google Cloud Natural Language https://cloud.google.com/natural-

language, IBM Watson Natural Language Understanding https://www.ibm.com/products/natural-language-understanding

and TextRazor https://www.textrazor.com/
3https://paperswithcode.com/datasets
4https://nlpprogress.com/english/relationship_extraction.html
5https://thunlp.github.io/2/fewrel2_da.html
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Table 2. F1-scores (%) of Recent Representative Models on the NYT, WebNLG, and SciERC
Datasets

Model F1 (%) Text Representation Context Encoding Triplet Prediction

NYT

UniRel [152] 93.7 Word-level, Position-enhanced PLMs-based Span-based

REBEL [17] 93.4 Word-level PLMs-based Seq2Seq

SPN [147] 92.5 Word-level, Position-enhanced PLMs-based, Attention Span-based

TDEER [89] 92.5 Word-level, Character-level CNN&RNN, Attention Sequence labeling

PFN [199] 92.4 Word-level, Position-enhanced PLMs-based Span-based

RIFRE [236] 92.0 Word-level, Position-enhanced CNN&RNN, Attention Sequence labeling

TPLinker [170] 91.9 Word-level, Position-enhanced PLMs-based Sequence labeling

RIN [148] 87.8 Word-level RNN Pipeline

WebNLG

UniRel [152] 94.7 Word-level, Position-enhanced PLMs-based Span-based

PFN [199] 93.6 Word-level, Position-enhanced PLMs-based Span-based

SPN [147] 93.4 Word-level, Position-enhanced PLMs-based, Attention Span-based

TDEER [89] 93.1 Word-level, Character-level CNN&RNN, Attention Sequence labeling

RIFRE [236] 92.6 Word-level, Position-enhanced CNN&RNN, Attention Sequence labeling

TPLinker [170] 91.9 Word-level, Position-enhanced PLMs-based Sequence labeling

RIN [148] 90.1 Word-level RNN Pipeline

CGT [207] 83.4 Word-level, Position-enhanced PLMs-based Sequence labeling

SciERC

PL-Marker [206] 53.2 Word-level, Position-enhanced PLMs-based Span-based

TriMF [140] 52.44 Word-level, Position-enhanced PLMs-based Span-based

SpERT.PL [131] 51.25 Word-level, Position-enhanced PLMs-based, Attention Span-based

SpERT [46] 50.84 Word-level, Position-enhanced PLMs-based Span-based

PURE [246] 50.1 Word-level PLMs-based, Attention Pipeline

DyGIE++ [165] 48.4 Word-level, Syntactic-enhanced GNN, PLMs-based Span-based

DyGIE [99] 41.6 Word-level, Syntactic-enhanced GNN, PLMs-based Span-based

SciIE [97] 39.3 Word-level, Syntactic-enhanced GNN Span-based

The models are categorized by their underlying architectures, including Transformer-based models, and

LSTMs marked with †.

datasets can be roughly classified into four categories based on their data sources: (1) general
corpora collected from news articles; (2) encyclopedic corpora collected from Wikipedia and Wiki-
data; (3) domain-specific corpora that contain scientific, finance, medical, and biochemical articles;
(4) multi-lingual corpora that include input texts in multiple languages; and (5) multi-modal cor-
pora that contain textual relations with visual information. Note that all datasets are manually
annotated, except the NYT dataset [125], which is created by a distant supervision approach us-
ing the knowledge base (KB) Freebase. Some follow-up works calibrated subsets of the NYT
dataset to obtain more accurate annotation, like WIKI-TIME [197]. Most existing datasets focus on
sentence-level RE in the general domain. Recently, some works have started to focus on the annota-
tion and evaluation setups in more complex scenarios, including document-level [64, 70, 204], low-
resource [50], multi-modal [242], and multi-lingual [135] settings. To provide quantitative results,
we include the corresponding leaderboard links in Table 1. Additionally, Table 2 lists representa-
tive methods for the popular benchmark datasets, offering a clear benchmark for future research
in this domain. Table 2 highlights the effectiveness of Transformer-based models, which dominate
the top performance across all datasets, reflecting their superior capability in handling complex
language tasks.

2.3 Evaluation Metrics

The performance of supervised learning RE systems is typically measured by comparing the
predicted labels to the corresponding ground-truth annotations. There are three main metrics
[150]: precision (P), recall (R), and F1 score. Specifically, P measures the proportion of correctly

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.
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RE Models

Text Representation

Word-level BLSTM-RE (2017) [248], TempMEM (2019) [197], MEGA (2021) [242], KPI-BERT (2022) [65]

Character-level Knwl-RE (2005) [247], CPT (2006) [228], PCNNs (2015) [221], WDec (2020) [112], Grantrel (2021) [13]

Position-enhanced MVRNN (2012) [143], RC-DNN (2014) [222], TempMEM (2019) [197], Grantrel (2021) [13]

Syntatic-enhanced SDP-LSTM (2015) [190], BRCNN (2016) [19], CoTYPE (2017) [123], RSAN (2021) [219]

Context Encoding

CNN&RNN LegalRE (2020) [26], WDec (2020) [112], GDPNet (2021) [193], TUCORE-GCN (2021) [82], MEGA (2021) [242]

Attention SA-LSTM (2019) [209], LegalRE (2020) [26], PNDec (2020) [112], MEGA (2021) [242], RSAN (2021) [219]

GNN REGRAB (2020) [121], C-GCN-MG (2020) [103], TUCORE-GCN (2021) [82], GDPNet (2021) [193]

PLMs-based SelfORE (2020) [67], ClinicalBERT (2021) [126], GRASP (2022) [144], Knowprompt (2022) [24]

Triplet Prediction

Pipeline SelfORE (2020) [67], REGRAB (2020) [121], StructueRE (2011) [21], GRASP (2022) [144]

Span-based DYGIE (2019) [99], C-GCN-MG (2020) [103], SPAN (2020) [73], NerRe (2022) [198], STER (2022) [241]

Seq2Seq CopyRE (2018) [227], OrderRL (2019) [226], SPN (2020) [147], Seq2UMTree (2020) [230]

MRC-based QuestionRE (2017) [86], Multi-turnQA (2019) [90], UHop (2019) [30], MRC4ERE (2021) [238]

Sequence labeling NovelTagging (2017) [245], TPLinker (2020) [171], RSAN (2021) [219], PRGC (2021) [244]

Fig. 2. The taxonomy of RE models and the corresponding representative methods in each category are
listed.

recognized results, while R assesses the proportion of all correctly recognized entities. The F1
score, being the harmonic mean of precision and recall, offers a balanced reflection of the system’s
performance. For distant supervised RE tasks, labels are generated automatically from external
KBs and may not be entirely accurate. As a result, metrics in supervised RE may not fully reflect
the model’s performance in real-world scenarios. Therefore, Precision@K , the Precision-Recall

Curve (PRC), and its Area Under Curve (AUC) [250] are adopted as evaluation metrics for
evaluating distantly supervised RE. Precision@K measures the proportion of correctly identified
relations among the top-K predictions made by the system. For each instance, the RE model
generates a ranked list of K predictions, prioritizing them based on certain relevance criteria. The
top K predictions represent the subset of relations that the model deems most likely or relevant.
However, evaluating Precision@K requires manual effort, as researchers must annotate the top-K
output results of systems. The PRC and AUC enable us to understand the precision-recall tradeoff
across various thresholds, comprehensively assessing the performance of distant-supervised RE
models. While the metrics presented are valuable and commonly used for evaluating RE systems,
it is important to note that they are not exhaustive. Other metrics may also be relevant, depending
on the specific characteristics of the task and the goals of the evaluation.

3 DL Techniques for RE

Recent advances in RE have largely been driven by DL techniques. In this section, we propose a
new taxonomy to summarize DL-based RE approaches from three perspectives: text representation,
context encoding, and triplet prediction. For each part, we present a comprehensive review of
approaches in the literature. The subset of representative models illustrated in Figure 2 serves as
examples to illustrate this taxonomy.

3.1 Text Representation

For DL-based RE approaches, it is vital to learn powerful representations of the input data. Text rep-
resentations encode each input token with a real-valued vector. Words that are similar in meaning
are expected to be closer in vector space. The ability of such distributed representations to cap-
ture syntactic and semantic properties of words affects the language modeling performance of
DL-based RE approaches. We review and discuss the various types of text representation learning
approaches used in previous RE works, including word-level, character-level, position-level, and
syntactic-level representations.
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3.1.1 Word-Level Embeddings. Recent studies have demonstrated the importance of pre-trained
word embeddings, which encode the meaning of input units into a real-valued continuous space.
These word embeddings can be either fine-tuned or fixed during training.

Non-contextualized word embeddings, such as Word2Vec [105] and GloVe [116], are obtained
by unsupervised algorithms, including continuous bag-of-word (CBOW) and continuous skip-
gram models. These studies [158, 222] use high-dimensional distributed representations of words
as input features for RE tasks, which encode the semantic information about entity words and
help identify the relations among entities. For example, Zheng et al. [245] proposed an end-to-end
model to jointly extract entities and relations in a single model, constructing the word embeddings
trained on the NYT corpus through the Word2Vec toolkit. Zhou et al. [248] used the pre-trained
300-dimensional word vectors from Google in their proposed neural model for extracting relations.

Contextualized word embeddings of PLMs, such as BERT [38] and ELMo [117], have demon-
strated the importance of pre-trained word embeddings. These PLMs can be further fine-tuned
during RE model training. A significant advantage is that the embeddings are contextualized by
their surrounding text, meaning the same word can have different embedding depending on its
contextual use.

3.1.2 Character-Level Embeddings. To capture the sub-word level information, character-level

embeddings [112] are introduced to encode fine-grained information such as n-gram, prefix, and
suffix features. Previous methods [221, 228, 247] explore the utilization of both internal and exter-
nal contexts. In these studies, the sentence is partitioned into three segments based on the two
entities of interest: the internal context encompassing characters within these entities, and the
external context encompassing characters surrounding them. Additionally, PLMs like BERT [38]
inherently take subwords into account, further enriching the character-level representation and
enabling the model to infer representations for unseen words. This characteristic is advantageous
for handling out-of-vocabulary scenarios.

3.1.3 Position-Level Embeddings. In addition, Yan et al. [197] proposed using position-

enhanced embeddings for text representations in RE, and experimental results demonstrated
that adding position information could sufficiently exploit the relative distance of the target entity
pairs. Yuan et al. [217] encoded the position information in sentences, which can be formulated
as follows: first, for a sentence, transform the word at position i into a pre-trained word vector
vi [104]. Then, they calculate the relative distances to the target entities (i.e., d1 and d2) in the
sentence and look up the position embedding table [222] to find their position embeddings pd1

and pd2
. Here, the position embedding table is randomly initialized and further updated during

the processing of training. The word representation wi is represented by concatenating vi with
pd1

and pd2
. After repeating these steps, each sentence is transformed into a fixed-sized matrix

C = [wi ,w2, . . . ,wm]T , where m is the maximum length of the sentence in whole input data, and
wi is a fixed-length vector. Sentences shorter than m are padded with zero vectors. Zeng et al.
[221, 222] proposed using position embeddings for feature extraction in RE, and their results show
that adding position information is superior to only using word information. Zeng et al. [222] ex-
ploited the position information to encode the relative distances to the target entity pairs. Zhang
et al. [232] augmented the word representations with extra distributed representations of word
position by combining the LSTM model with entity position-aware attention.

3.1.4 Syntactic-Level Embeddings. Moreover, another line of studies explored syntactic-

enhanced embeddings to incorporate rich syntactic-related features into word embeddings, such
as the shortest dependency path (SDP), Part-of-Speech (POS) tagging, WordNet hypernyms,
and grammatical relations [26, 219]. For example, Zeng et al. [222] incorporated prior knowledge in

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.



A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers 293:9

texts, such as syntactic parsing and POS tagging, where the performance outperforms the baseline
only using word-level representations. Xu et al. [190] employed rich features in addition to word
embeddings, including the SDP, POS tags, WordNet hypernyms, and grammatical relations, jointly
integrating syntax and semantics. Xu et al. [184] constructed a comprehensive word representa-
tion by concatenating the word representation and the syntactical representation, which contains
dependency labels and dependency edge directions. Cai et al. [19] and Nayak and Ng [112] focused
on the syntactic structures in the input sentences, which were obtained by a dependency parser
and provided complementary evidence for relationships. Their boosted performances demonstrate
that adding additional information may lead to improvements in RE performance. Ren et al. [123]
proposed a domain-independent framework CoTYPE, which jointly embeds text features, type la-
bels, entity and relation mentions. The entity and relation mentions with relevant candidate types
are integrated into the model.

3.1.5 Summary. Word-level embeddings are commonly used as standalone representations,
whereas other embeddings, such as character-level, position-level, and syntactic-level embeddings,
are less frequently utilized on their own. While each type can represent specific aspects of textual
information independently, hybrid embeddings combine multiple types of embeddings to capture
a wider range of linguistic features, thereby enhancing the overall representation quality for RE
tasks. However, blending features in hybrid embeddings can introduce complexity, potentially im-
pacting the generality of neural RE models. The selection of external features depends on the
specific application requirements.

3.2 Context Encoding

The word-level embeddings aim at extracting lexical-level features from the given input data. Con-
text encoding is designed to learn sentence-level features by capturing contextualized information
and filtering out irrelevant information in the text representation. Context encoding can be imple-
mented with any popular neural network architecture, such as CNNs, RNNs, attention-based neu-
ral networks, PLMs, and prompt tuning. These methods aim at retaining almost all the information
required to successfully predict the outputs.

3.2.1 Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs
[139, 217, 221, 222] effectively learn local and position-invariant contextual representations. For
example, Zeng et al. [222] were among the first to use a convolutional deep neural network (CNN)
for RE. It encodes the meaning of sentences not explicitly represented in the input representation.
Zeng et al. [221] utilized a piecewise CNN model to scale hidden vectors for each word. The ob-
tained feature vectors are then used to determine the relations through a feed-forward layer with
a softmax function. Shen and Huang [139] incorporated a combination of the CNN model and an
attention network, which extracts the global features and attentive features in the sentence. Yuan
et al. [217] adopted a piecewise-CNN (P-CNN) to consider the specific situation in RE, consist-
ing of a convolutional layer and a Piecewise Max-pooling layer [118]. Overall, CNNs are good at
capturing local features within a sentence. However, CNNs may not capture long-distance depen-
dencies efficiently, which is crucial in understanding complex sentence structures in RE tasks.

RNNs [68, 71, 71, 112, 232], including long-short term memory (LSTM) and gated recurrent

unit (GRU), have shown remarkable achievements in modeling sequential data. This property
provides an excellent way to compose long context-dependent representations of sequence [101].
Jat et al. [71] proposed a bidirectional gated recurrent unit (Bi-GRU) to extract the long-term
dependency among the words in the input sequence. The text representations encoded by bidirec-

tional long-short term memory (Bi-LSTM) [112] can efficiently incorporate the past and future
text information [68, 71]. Zhang et al. [232] introduced a position-aware attention mechanism over
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Bi-LSTM for the RE task, efficiently utilizing semantic similarity-based and position-based infor-
mation. Overall, RNNs are designed to handle sequential data, making them more suitable than
CNNs for capturing long-range dependencies in text. They sequentially process words and can
theoretically remember all previous information. However, in practice, RNNs often struggle with
long sequences due to vanishing or exploding gradient problems, making it hard to capture very
long-distance dependencies.

3.2.2 Attention-Based Neural Networks. Attention-based neural networks [139, 209] enhance
the correlations between relation representations and text representations, highlighting impor-
tant information for RE. Earlier studies [71, 139] incorporated word-level attention with sentence-
level RE. Recent works [92, 112, 209] combined attention networks with various models to capture
multiple-grained entity and relation features. For example, Nayak and Ng [112] proposed a multi-
focused attention model for RE, where dependency distance is incorporated to help identify the
triplets in the input. The multi-factor attention helps focus on various pieces of evidence to de-
termine the relationship. Yu et al. [209] introduced segment-level attention to select and model
distributed representations of relational expressions. Li et al. [92] proposed a self-attention [161]
enhanced model with entity-aware embeddings. Overall, attention mechanisms allow models to fo-
cus on relevant parts of the text when predicting relations, effectively overcoming the limitations
of CNNs and RNNs in handling long-range dependencies. They can capture complex sentence
structures and relationships between entities regardless of their position in the text. However,
these models can be computationally expensive and require a significant amount of data to train
effectively.

3.2.3 Graph Neural Networks (GNNs). GNNs [103, 129, 163, 177] attempt to capture the non-
linear structure of the input sequence by constructing semantic graphs, empowering the RE mod-
els with relational reasoning ability on graphs. GNN-based methods offer several key advantages,
such as the ability to capture the global structure of the graph, and the ability to learn the represen-
tations of nodes and edges simultaneously. Such graph-based models [56, 163, 177, 231] construct
the non-linear structure of the input sequence via graphs, which provides a better way to represent
the relationships between entities. In particular, Zhang et al. [231] utilized GCN and the syntactic
dependency tree to construct the graph structure among the nodes. Then they built the adjacency
matrix of the graph and included the edges from the SDP. Guo et al. [56] used a multi-head self-
attention-based soft pruning strategy, which can identify the importance of edges in the graph.
And some works [32, 103, 109, 129] used the shortest dependency tree path to create the connec-
tions among nodes. Overall, GNNs can capture the interconnectedness of entities and relations in
a way that is difficult for purely sequential models. However, constructing such graph structures
requires additional preprocessing, and requires that relationships are easy to accurately represent
in a graph.

3.2.4 Pre-Trained Language Models (PLMs). Recently, PLMs [121, 142, 238] have shown remark-
able achievements in modeling RE problems by eliciting rich knowledge from large pre-trained
models. PLMs usually trained on large-scale corpora, such as BERT [38], ELMo [117], RoBERTa
[95], and SpanBERT [78], intrinsically incorporate auxiliary embeddings (e.g., position and seg-
ment embeddings). PLMs [121, 238] provide rich semantic knowledge to the RE task, where the
fine-tuning process is performed on annotated task-specific data to adapt semantic information for
RE. As PLMs are pre-trained on large amounts of text data, fine-tuning for RE tasks [44, 142, 180]
allows them better to understand the meaning and context of words and sentences. Particularly
in scenarios with limited data availability, fine-tuning PLMs on the target task has proven to be
an effective practice. Utilizing the information embedded in PLMs as the primary representation
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offers significant advantages in such cases. One of the challenges is that downstream RE tasks
fine-tuned on PLMs usually have different objective forms, leading to performance degradation.
Prompt tuning [24, 144] provides a new paradigm to stimulate the relation information of PLMs
by bridging the format gap between the pre-training tasks and the downstream RE tasks. Recent
works [60, 133] show that prompt learning can effectively leverage the knowledge encoded in the
PLMs, especially for few-shot RE tasks in Section 4.1.2. Overall, PLMs offer substantial pre-trained
knowledge that can capture intricate language patterns and dependencies. The main drawbacks
of PLMs are their resource-intensive nature, requiring significant computational power for both
training and inference and their tendency to overfit on smaller or domain-specific datasets.

3.2.5 Summary. Comparing the above encoders, there’s a significant overlap in the application
of these models, with many advanced systems combining their strengths. For example, earlier
approaches combined RNNs or CNNs with attention mechanisms [139, 232] to capture both lo-
cal features and global dependencies. Integrating GNNs with attention mechanisms [56] allows
for dynamic focus on different parts of the graph, enhancing the model’s ability to capture com-
plex relationships. PLMs [38] inherently incorporate attention mechanisms like Transformers. The
choice of model often depends on the specific requirements of the task, including the nature of the
data, the computational resources available, and the desired level of accuracy.

3.3 Triplet Prediction

The triplet prediction involves detecting the entity boundaries and classifying the relation types in
the input sentence. Various modeling paradigms have been proposed for decoding triplets in recent
RE models. As illustrated in Figure 3, we group the existing triplet prediction paradigms into five
categories, depending on the specific formulation of the RE task. The corresponding types of target
triplets for RE models are listed, respectively.

3.3.1 The Pipeline-Based (Classification) Approaches. The pipeline-based (classification) ap-
proaches separate the extraction of entities and relations [108, 144]. As illustrated in Figure 3(a), the
pipeline approaches carry out entity recognition and relation classification sequentially [108, 159].
In the first stage, all candidate entities in the sentence are annotated manually or identified via NER
models. Then, a classifier is used to determine the relation between every possible pair of identified
entities. The ultimate goal is to accurately and consistently identify and extract all relevant rela-
tionships from the input text. The pipeline approach assumes that entities are already identified,
and models aim at identifying the relationship (relations R or None) between pairs of entities.

Different from the pipeline methods, joint-extraction approaches aim at finding both entities and
relations in a sentence by extracting valid relation triplets. These models face a challenge when
extracting triplets from sentences with overlapping entities, which can be divided into three cate-
gories: (i) No Entity Overlap (NEO), where triplets do not share any entities; (ii) Single Entity

Overlap (SEO), where at least two triplets share exactly one entity; and (iii) Entity Pair Overlap

(EPO), where at least two triplets share some entities in the same or reverse order. A sentence can
belong to both the SEO and EPO categories. As shown in Table 3 [218], the overlapping entities
are marked in bold. The triplets in the second example (SEO class) share one single entity, Donald
Trump. The triplets in the third example (EPO class) have overlapping entity pairs (Japan, Tokyo).
Joint RE aims at extracting all relevant relation triplets present in a given sentence.

3.3.2 The Span-Based Approaches. The span-based approaches [40, 103] process each sentence
into spans and perform span classification to obtain predicted entities. Simultaneously, the detected
entity pairs are regarded as candidate triplets for relation classification, as illustrated in Figure 3(b).
Span-based approaches are shown with superior to previous pipeline-based methods [198]. These
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Fig. 3. Different RE modeling paradigms: (a) is the pipeline-based approach; (b)–(e) are the joint approaches.
The target triplet types in different RE models are shown. Each paradigm uses the input sentence “Sam
Altman is the co-founder and CEO of OpenAI.” The target output triplets are <Sam Altman, founded, OpenAI>

and <Sam Altman, work_in, OpenAI>.

Table 3. Examples of NEO, SEO, and EPO Cases

Text Triplets

NEO The [United States] president [Donald

Trump] will visit [Beijing], [China].

(Donald Trump, President_of, United States)

(China, Contains, Beijing)

SEO The [United States] president [Donald

Trump] was born in [New York City].

(Donald Trump, President_of, United States)

(Donald Trump, Born_in, New York City)

EPO Martin went to [Tokyo] last week,

which is the capital of [Japan].

(Japan, Contains, Tokyo) (Japan, Capital,

Tokyo)

methods [45, 72, 73] utilize pre-trained Transformer blocks to map word embeddings into BERT
embeddings, calculate span and relation representations, perform classification and filtration tasks,
and generate contextual semantic representations using multiple attention variants. Zhao et al.
[241] further define the privileged features in the RE task and propose a contrastive student-teacher
learning framework to utilize the expert knowledge during training to enhance the performance of
the model. Some works [97, 99, 165] utilize dynamically constructed span graphs to achieve high
performance on various tasks such as entity recognition and RE. The most confident entity spans
are selected and linked with confidence-weighted relation types and coreferences to construct the
graphs, which iteratively optimize span representations.

3.3.3 The Seq2Seq-Based Approaches. The Seq2Seq-based approaches [112, 223, 226, 227, 230]
receive unstructured text as input and directly generate 〈head_entity, relationship, tail_entity〉
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triplets as a sequential output. Formally, a source sentence S = {x1,x2, . . . ,xn} is represented
as a sequence of words, where xi is the ith word in S and n is the length of S . Based on the text
representation (in Section 3.1), the tag classifier predicts the relation types. The target sentence T
is represented as a sequence of wordsT = {t1, t2, . . . , tm}, where tj is the jth word inT . Figure 3(c)
shows the target triplet types in Seq2Seq-based models, which are able to tackle the overlapping
relations and reduce the excessive computations. However, when dealing with tasks involving
multiple triplets within a single sentence, the inherent linearization process of Seq2Seq models
may pose challenges in processing extracts from multiple triplets with overlapping entities. To ad-
dress these challenges, recent studies [147, 230] have focused on strategies to avoid the limitations
imposed by the sequential nature of Seq2Seq models. For example, to deal with the overlapping
problem, recent works [171, 218, 244] design labeling strategies and perform the tagging process
for multiple turns. These methods create specific sentence representations for each relation and
then perform sequence labeling to extract the corresponding head and tail entities.

3.3.4 The MRC-Based Approaches. MRC-based approaches [90, 238] treat the entity RE task as
a multi-turn QA task. For example, as shown in Figure 3(d), the relation type “work_in” between
“Sam Altman” and “Open AI” can be formulated as “Question: Who is mentioned in the text? An-
swer: Sam Altman” and “Question: Which company did Sam Altman work for? Answer: Open AI”.
Therefore, the extraction of entities and relations in a sentence can be transformed into the QA task
of identifying answer spans from the context. This transformation allows the RE task to exploit
well-developed machine reading comprehension (MRC) models [90], which extract text spans
in passages given queries. For example, Levy et al. [86] first formulated the RE task as a QA task,
where the relations are defined by natural-language question templates. Li et al. [90] and Zhao
et al. [238] further transformed the RE task into a multi-turn QA task, providing a natural way to
identify the entities and relations in a sentence. The RE process is thus converted into extracting
information from textual passages by answering questions posed about the text. Additionally, ap-
proaches [30, 76] treat the task as a series of questions and answers, where each turn corresponds
to a step in the extraction process. Overall, the key idea of MRC-based approaches is to formulate
questions that prompt the model to identify relevant entities and relations within the text.

3.3.5 The Sequence Labeling Approaches. Sequence labeling approaches solve RE task through
shared parameters in an end-to-end manner, as illustrated in Figure 3(e). They perform joint RE by
treating entity and relation types as well-designed tags [245] and predict a single tag for each token.
Yu et al. [210] tackled the joint RE extraction using an end-to-end sequence labeling framework
based on functional decomposition. By breaking down the original task into smaller components,
the learning process is simplified, resulting in improved overall performance, as presented by the
empirical analysis in [210]. To tackle the overlapping cases, some works [65, 171, 210, 219, 244] per-
form sequence labeling in multi-turn by generating a specific tag sequence for each given relation.

3.3.6 Summary. Previous RE surveys often overlook diverse decoding mechanisms. To bridge
this gap, we provide a systematic survey of DL-based RE approaches focused on classifying the
relations. Overall, both pipeline-based and joint RE approaches exhibit their pros and cons. The
advantage of pipeline-based methods is that they are staged to detect named entities and classify
relations, explicitly modeling the entity and relation information. However, the pipeline-based
approaches assume that the entities are independent of relations, making them prone to accumu-
lating errors and failing to capture the dependencies between entities and relations. In contrast,
joint RE approaches are motivated by the fact that the entities and relations are closely related in
real-world applications, thus avoiding error accumulation. Additionally, multiple relation triplets
within an input text may share overlapping entities or relations.
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Table 4. Overview of Input and Output for Each RE Task with Examples

Task Input Example Input* Output Example Output
Low-
resource
RE

Distant Su-
pervision
RE

A bag of
sentences Sb

consisting of b
sentences and
an entity pair
(e1, e2)

presenting in
all sentences.

Sentence-bag: #1: Barack Obama was
born in the United States. #2: Barack
Obama was the first African
American to be elected to the
president of the United States. #3:
Barack Obama served as the 44th
president of the United States from
2009 to 2017. ([136])

Bag
relation r
of the
sentence-
bag
Sb

president_of

Few-shot
RE

(Train on small
support set S)
Predict the
relation r for
any given
query instance
x .

In 2001, he also published the “Khaki
Shadows” that recounted the military
history of Pakistan during the cold
war. ([49])

Relation
r

Facet_of

Cross-
sentence
RE

Document-
level
RE

Each sentence
di in a
document d

Lutsenko is a former minister of
internal affairs. He occupied this post
in the cabinets of Yulia Tymoshenko.
The ministry of internal affairs is the
Ukrainian police authority. ([109])

The
relation r
for each
entity
pair
(e1, e2)

(Lutsenko, manage,
internal affairs) (Lutsenko,
work_with, Yulia
Tymoshenko) (Yulia
Tymoshenko,
country_of_citizenship,
Ukrainian)

Dialogue
RE

A dialogue
d = s1 : t1, s2 :
t2, . . . , sm : tm
and entity piar
(e1, e2)

S1: Hey Pheebs. | S2: Hey! | S1: Any
sign of your brother? | S2: No, but
he’s always late. | S1: I thought you
only met him once? | S2: Yeah, I did. I
think it sounds y’know big sistery,
y’know, ‘Frank’s always late.’ | S1:
Well relax, he’ll be here.([211])

The
relation r
of (e1, e2)
based on
d

(Frank, per:siblings, S2)
(S2, per:siblings, Frank)
(S2, per:alternate_names,
Pheebs)

Domain-
specific
RE

RE in
Biomedical
Field

A sentence s is
inserted with
four makers.

Patient was given e11 ibuprofen e12
for high e21 fever e22. ([126]) (Note:
e11, e12, e21, and e22 at the
beginning and end of the target
entities (e1, e2).)

Relation
r

may_treat

RE in
Finance
Field

A sentence s MEXICO CITY — State-owned oil
company Pemex is reporting second
quarter losses of $US5.2 billion
($A7.16 billion) due mainly lower
petroleum prices. ([138])

(e1, r , e2)

triplet set
(Pemex, prod-
uct_or_material_produced,
petroleum) (Pemex,
headquarters_location,
Mexico City)

RE in Legal
Field

A sentence s On August 19, 2014, Mr. Su sold
methamphetamine to Mr. Wang in
Community A. ([145])

(e1, r , e2)

triplet set
(Mr. Su, traffic_in,
methamphetamine) (Mr.
Su, sell_drug_to, Mr.
Wang)

RE in
Scientific
Field

A sentence s MORPA is a fully implemented
parser method developed for a
text-to-speech system. ([97])

(e1, r , e2)

triplet set
(MORPA, Used_for,
text-to-speech system)
(MORPA, Hyponym_of,
parser)

4 Challenging RE Problems and Solutions

Section 3 summarizes the common practice for general RE problems. In this section, we review
recent challenging RE problems and corresponding solutions. Table 4 shows the input and output
for each challenging problem with examples.

4.1 Low-Resource RE

Supervised learning with DNNs requires a large-scale annotated training corpus which is difficult
to obtain in real-world applications, especially in low-resource settings. Recently, many efforts
have been made to address low-resource RE.
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4.1.1 DSRE. DSRE aims at automatically leveraging the facts in large-scale KBs to generate
the annotated triplets as weak supervision. This technique can be traced back to the early work
of [107], which proposed obtaining relationships for entity pairs aligned in KBs, such as Wikidata
[164], DBpedia [14], and Freebase [15]. Despite the large amount of training data obtained through
distant supervision, DSRE suffers from noisy label problems because individual sentences may give
incorrect cues. The noise present in this data mainly comes in two forms: (1) the obtained relations
do not match the original meaning of the sentences, and (2) the relations and entities are missing
due to incomplete KBs.

Existing DSRE studies mainly tackle the task at different granularities: (1) Sentence-level.
These works [12, 44, 197] focus on finding accurate relational labels from the semantics of the
input sentences. This approach is based on the strict assumption that if a pair of entities are found
to share a relation in the KB, then any sentence containing that pair of entities is considered a
positive instance of that relation. (2) Bag-level. This kind of approach is based on a slack assump-
tion that at least one sentence in a “bag” of sentences should express the relation. There may
exist several relations that can be chosen between specific entity pairs. To mitigate the effects of
noisy samples and make them more robust, Zeng et al. [221] proposed a Piecewise Convolu-

tional Neural Networks (PCNNs) model, which treats the distant supervised RE task as a multi-
instance problem. The model avoids feature engineering and takes the uncertainty of instance
labels into consideration. Yaghoobzadeh et al. [196] proposed to address two types of noise from
DS and pipeline input features, respectively. They introduced multi-instance multi-label learning
algorithms to learn fine-grained entity typing and integrated entity typing into RE to tackle the
noise. To convert noisy labeling sentences into meaningful training data, Shang et al. [136] pro-
posed an unsupervised deep clustering to produce new high-confidence relation labels for noisy
sentences. Yu et al. [212] formulated the DSRE as a hierarchical classification task and constructed
the hierarchical bag representation to extract relations in a top-down manner.

Additionally, some works [179, 217] that consider both sentence-level and bag-level informa-
tion simultaneously, explore explicit cross-level interactions to further improve the performance
of DSRE. For example, Yuan et al. [215] first used a linear attenuation simulation to reflect words’
importance, then proposed a non-IID relevance embedding to capture the mutual information of
instances in the bag. Ye and Ling [208] proposed intra-bag and inter-bag attention models to ad-
dress the noisy bag problem in a multi-instance distant supervision setting. Yuan et al. [217] first
employed sentence-level selective attention to reduce the effect of noise, then adopted cross-bag
selective attention to capture the entity pairs with higher quality. Gou et al. [52] applied a dy-
namic parameter-enhanced network to DSRE, dynamically determining the sentence information
to alleviate the style shift problem for predicting the long-tail relations. Zhao et al. [234] proposed
context-aware based on frame semantics to combine the semantic knowledge within a hierarchical
neural network to alleviate the noisy labels in DSRE. Dai et al.[34] employed a cross-stitch mech-
anism to capture the interaction between the text encoder and KG encoder, allowing the model to
share the information thoroughly. Shang et al. [137] constructed a force-directed graph and intro-
duced the attractive force to learn the correlation and mutual exclusion between different relations.

Summary. The development of DSRE has been characterized by continuous efforts to improve
the accuracy and robustness of RE models in the face of noisy and incomplete data. Researchers
have explored various methodologies and advanced models to enhance DSRE’s performance in
extracting relational information from large-scale KBs.

4.1.2 FSRE. FSRE aims at predicting the relationship between two entities in a sentence by
training with a few labeled instances for each relation. In realistic scenarios, only common rela-
tionships can obtain enough labeled examples, while most other relationships have very limited
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relational facts. FSRE has the potential to handle “long-tail” relations that have limited relational
facts. In this section, we systematically present advanced FSRE approaches by categorizing them
into two groups: (1) Metric Learning and (2) Knowledge-enhanced Learning. Additionally, we will
discuss the most recent prompt-based methods with PLMs for few-shot RE tasks in Section 5.

(1) Metric Learning. One popular approach for FSRE is metric learning [94, 121], where the
term “metric” refers to the distance function used to measure the similarity or dissimilarity be-
tween samples in the embedding space. The model is optimized by minimizing the distances be-
tween query samples and their corresponding class prototypes, thereby improving its ability to
assign new instances to the nearest relation class prototype. A relevant approach is learning pro-
totypes of relations from the contextual information for capturing the semantics of relations, which
significantly improves accuracy [39]. Some approaches [49, 213, 214, 240] also introduce external
information to compensate for the limited information in FSRE. For example, Qu et al. [121] pro-
posed a global relation graph with text descriptions of entities and relations collected from Wiki-
data. Gao et al. [49] proposed a hybrid attention-based prototypical network to tackle the noisy
problem in FSRE. They designed instance-level and feature-level attention to highlight important
instances and features. Yu et al. [213] proposed a multi-prototype embedding network to jointly ex-
tract relation triples. The prototype representations learned by specifical prototype-aware regular-
ization can inject the implicit correlations between entities and relations. MapRE [42] considered
both label-agnostic and label-aware semantic mapping information for FSRE. HCRP [58] learned
relation label information by contrastive learning and allowed the model to adaptively learn to
focus on hard work. To endow a new model with the ability to optimize rapidly, REGRAB [121]
proposes a Bayesian meta-learning method by incorporating an external global relation graph.
Overall, these approaches leverage metric learning strategies to learn a distance metric or similar-
ity function, which can not only effectively distinguish between different types of relations but
also facilitate better generalization from a limited number of labeled data for certain relations.

(2) Knowledge-enhanced Learning. Many FSRE works also employ external knowledge to
enrich the auxiliary semantic information. According to the data structure, external knowledge can
be divided into (1) unstructured text spans, including the descriptions of entity and relation, and
(2) a structured KG. For unstructured text span, TD-proto [200] proposes a collaborative attention
module to enhance the prototypical network with entity and relation descriptions. ConceptFERE
[201] model introduces the inherent concepts of entities to provide appropriate clues for relation
classification, bridging the gap between the representations of relation types and text. Wang et al.
[166] proposed a discriminative rule-based knowledge method where a logic-aware inference mod-
ule is adopted to avoid the adverse effect of text features. In comparison, some approaches explore
the abundant KG information. Liu et al. [93] proposed to inject triples in KG into texts, which trans-
forms the sentences into knowledge-enhanced sentence trees. Roy and Pan [127] incorporated
entity-level KG into pre-trained BERT for clinical RE, integrating the medical knowledge by sev-
eral techniques. Sainz et al. [130] reformulated the RE task as an entailment task with hand-made
verbalizations of relation labels, which helps generalize to the unseen label. Knowledge-enhanced
RE methods leverage external knowledge sources to deepen the understanding of entity relations.
However, this integration presents challenges, including managing noise and ensuring effective in-
corporation. Errors may arise from mapping concepts from external sources to the RE task, mainly
due to semantic mismatches. Additionally, the complexity of filtering relevant information while
discarding noise impacts efficiency and adds to the difficulty of the algorithm design.

Summary. The development of FSRE has been driven by the need to extract relational infor-
mation from text when only a limited number of labeled instances are available for training. FSRE
approaches leverage metric learning and knowledge-enhanced learning strategies to address
the challenge of limited labeled data for RE. These methods advance the field by effectively
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generalizing from a small number of labeled instances and enriching semantic understanding
with external knowledge sources.

4.2 Cross-Sentence RE

While most existing works have focused on extracting relational facts from individual sentences,
many relational facts are expressed across multiple sentences within a long context. As a re-
sult, many studies have shifted research attention from sentence-level to cross-sentence. Cross-
sentence RE aims to overcome the inherent limitations of sentence-level approaches and identify
all relations mentioned across multiple sentences. Generally, there are two main research lines in
cross-sentence RE: DocRE and dialogue RE.

4.2.1 DocRE. DocRE aims at extracting the triplets mentioned in a document. Although
sentence-level RE approaches have achieved impressive results [90, 109], they still fail to handle the
DocRE, as the documents contain richer information and more complex structures than sentences.
Unlike sentence-level RE, which aims at classifying the relations of one or several entity pairs,
DocRE requires the RE model to identify and focus on the relevant context within the document
for a specific entity pair. Additionally, one entity pair can appear multiple times within a document,
with each appearance having a distinct relation, making DocRE more challenging than sentence-
level RE. For instance, as shown in Figure 1, the relation “worked_on” between “Sam Altman” and
“ChatGPT” can only be found in the long context of the document instead of a single sentence.
Other sentences between these two sentences may contain irrelevant information. This requires
the RE models to be capable of capturing long-distance dependency in relational information.

Recent RE methods [59, 219] effectively capture complex interactions requiring reasoning over
long-distance entities across multiple sentences. There are mainly two methods to infer relations
from multiple sentences:

(1) The Graph-based Approaches. These works [32, 109] construct document graphs with
attention or dependency structures, bridging the entities spreading far apart in the document.
Relational inference information is gathered from the GNNs. These methods perform multi-hop
reasoning in the overall graph structure to obtain meaningful entity representations. For exam-
ple, Nan et al. [110] automatically constructed a document-level graph to empower relational rea-
soning across sentences. To enable the model with multi-hop reasoning, they proposed a refine-
ment strategy to incrementally aggregate relevant information. Christopoulou et al. [33] proposed
an edge-oriented graph neural model to construct a document-level graph using multiple nodes
and edges. Tran et al. [157] extended the edge-oriented model by incorporating explicit relation
classification-related node representations. Li et al. [87] proposed a graph-enhanced dual attention
network to characterize the complex interactions among potential relation instances. Zeng et al.
[225] designed a graph aggregation-and-inference network featuring a double graph. There is a
heterogeneous mention-level graph to capture the interactions among different mentions and an
entity-level graph to infer relations between entities. To cover more logical reasoning chains, Zeng
et al. [224] developed a logical reasoning module to represent intra- and inter-sentential relations.

(2) The Path-based (non-graph) Approaches. These works [26, 70] attempt to enrich the
local contextual information surrounding the target entity pair. They extract paths connected to
the given entities to retain semantic information for predicting the relations. For example, Yao
et al. [205] utilized context-aware LSTM to encode sentences and infer relations in the document.
Xu et al. [181] formulated the distinctive dependencies by incorporating the structural dependen-
cies based on the self-attention mechanism. Moreover, some works explore synthesizing implicit
long-distance information modeled by transformer-based methods and multi-scale neural architec-
tures [74]. Xu et al. [185] proposed an encoder-classifier-reconstructor model for DocRE, where the

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.



293:18 X. Zhao et al.

reconstructor is used to reconstruct the path dependencies from the graph representation. To tackle
the multi-label and multi-entity problem in DocRE, Zhou et al. [249] deployed adaptive threshold-
ing and localized context pooling to transfer attention from PLMs to decide the context relevant to
the relation. Wang et al. [168] constructed a unified positive-unlabeled learning method to tackle
the incomplete labeling problem in DocRE. Chen et al. [25] introduced an iterative extraction for
DocRE and proposed an imitation learning to cast the extraction problem as a Markov decision
process. Guo et al. [55] discovered that the inadequate training paradigm leads to underwhelming
performance instead of the model capacities. Therefore, they propose a generative framework for
DocRE which generates a symbolic sequence from a relation matrix to help model learning.

Summary. Graph-based RE approaches construct document-level graphs and utilize graph
structures to model the complicated relationships among entities. Such graph representations
efficiently capture local and global contextual information, thereby facilitating the discovery of
implicit relations. However, the construction and maintenance of graph structures can be compu-
tationally demanding, and the quality of the underlying graph representation plays a crucial role in
determining the effectiveness of graph-based models. Conversely, path-based (non-graph-based)
approaches concentrate on the sequential context and semantic patterns within candidate entity
pairs, employing syntactic dependency structures or pre-trained models to connect target entities
directly or through contextual tokens. These approaches generally exhibit greater computational
efficiency and adaptability for various RE tasks. However, path-based approaches may be less pro-
ficient than graph-based approaches at capturing global relational information. This limitation
arises due to the sequential nature of path-based approaches, which may struggle to comprehen-
sively capture relationships spanning distant parts of the document. Overall, both graph-based
and path-based approaches have shown effectiveness in DocRE tasks, with the potential for fur-
ther enhancement through document understanding and the integration of multi-hop reasoning
capabilities for inferring complex relationships.

4.2.2 Dialogue RE. In addition to extracting semantic relations from sentences and documents,
recent RE research also explores dialogue scenarios. The relation triplets in dialogue usually have
low information density and do not appear simultaneously. This suggests that dialogue RE should
be aware of the multiple speakers and arguments within a conversation. The represented dialogue
RE approaches can be divided into two categories: (1) Fine-tuning PLMs with specific dialogue RE
objectives. To capture the diverse relational information between arguments in the dialogue, some
strategies are applied to build an RE model that obtains the contextualized turn representations
[82], such as constructing the latent multi-view graph and heterogeneous dialogue graph. Cai and
Lam [18] proposed a graph transformer to explicitly encode relations and enable direct communi-
cation between distant node pairs. Yao et al. [203] proposed a heterogeneous graph transformer to
model the different relations among individual subgraphs, including direct, indirect, and possible
relations between nodes. (2) Prompt-based approaches. These utilize prompting exemplars con-
structed with trainable words to incorporate potential relational knowledge. For example, Chen
et al. [24] injected knowledge among the relation labels into prompting. Son et al. [144] proposed
an argument-aware prompting strategy to capture the relational clues.

Furthermore, due to the properties of low information density and high personal pronoun fre-
quency [82] in dialogue, more research efforts are needed to capture such sparse semantics among
multiple speakers. Albalak et al. [4] proposed a model-agnostic framework D-REX that focuses on
dialogue RE and the explainability of methods. D-REX frames RE as a reranking task and incor-
porates relation- and entity-specific explanations in the intermediate steps. Yu et al. [211] defined
the trigger words in dialogue RE which indicates the existence of a given relation. They showed
such manually annotated text spans play a critical role in cross-sentence RE. Xue et al. [191] took
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a novel input format and utilized a BERT-based model to capture the interrelations among entity
pairs. Additionally, some studies utilize token-graph models to track the speaker-related informa-
tion for cross-sentence RE in dialogues. Chen et al. [22] deployed a token graph attention network.
Xue et al. [192] proposed capturing relationships by generating a latent multi-view graph and se-
lecting critical words for RE. Qiu et al. [120] proposed an α −β −γ strategy, an incremental parsing
strategy for dynamic inference upon any incoming sentence, to infer social relations in dialogues.
This strategy models the social network as a graph to ensure the consistency of relations.

Summary. Dialogues typically encompass complex discourse structures, implicit relations be-
hind conversations, and dynamic interactions between speakers. Existing studies predominantly
focus on extracting relations among various speakers or individuals mentioned in conversations,
leveraging contextualized representations to capture intricate relationships within dialogues. How-
ever, due to the properties of low information density and high personal pronoun frequency in di-
alogue, more research efforts are necessary to effectively capture relational clues within dialogues,
particularly in capturing sparse semantics among multiple speakers.

4.3 Domain-Specific RE

In real-world scenarios, RE approaches are typically applied to different specific domains. However,
general-purpose RE models, when directly applied to domain-specific data, can yield unsatisfac-
tory results due to the shift in word distribution from general domain data to domain-specific data.
Therefore, it is necessary to explore how to endow RE models with the ability to adapt to domain-
specific corpora. Although RE studies have been thriving for a few decades, few researchers have
reviewed domain-specific fields so far. In this section, we discuss recent RE methods tailored to
different specific domains, including biomedical [31, 53, 88], financial [162], legal [5], and scientific
domains.

4.3.1 RE in the Biomedical Field. In the biomedical field, the RE models aim at automatically ex-
tracting relations between biomedical entities (proteins, genes, diseases, etc.) from a rich source of
biomedical texts [126, 169]. BioBERT [83] is a representative model of PLMs that inject biomedical
information. Most works on biomedical RE focus on one type of relation, which can be categorized
into several types according to biomedical relation types. These types include drug-drug interac-
tion RE [7], disease-protein RE [183], chemical-protein RE [173], and protein-protein interaction
RE [3]. For example, Asada [7] utilized heterogeneous domain information for drug-drug inter-
action RE, combining drug description and molecular structure information. Weber et al. [173]
defined the Humboldt contribution task as an RE problem, where the chemical-protein relations
are modeled with PLMs by incorporating entity descriptions. Ahmed et al. [3] designed a tree
LSTM model with structured attention architecture for identifying protein-protein interaction re-
lationships. Zhao et al. [233] explored modeling the global dependency relation of sentences by
self-attention mechanism and graph convolutional networks. Haq et al. [61] introduced accuracy-
optimized and a speed-optimized architecture. The systems understand different aspects of clinical
documents, thereby enhancing the accuracy of extracting entity pairs and clinical relations, includ-
ing extracting and correlating dates to generate a timeline of a patient’s data, as well as parsing
and comprehending trial results for analysis.

Recently, with the success of PLMs, several Transformer-based approaches have been widely ex-
plored for biomedical RE. Wei et al. [174] first explored implementing the BERT model for clinical
RE tasks, where the unstructured clinical data is typically documented by specific professionals.
Thillaisundaram and Togia [153] proposed extracting biomedical triplets with an extended BERT
model, which encoded gene-disease pairs and their textual context to predict the “function change”
relation. Yadav et al. [195] proposed a multi-task learning framework for RE in biomedical and

ACM Comput. Surv., Vol. 56, No. 11, Article 293. Publication date: July 2024.



293:20 X. Zhao et al.

clinical domains, modeling the RE task with three subtasks to better utilize the shared representa-
tion. Kanjirangat and Rinaldi [79] proposed a distantly supervised biomedical RE method using the
SDP for selecting representative samples. Moreover, Sarrouti et al. [132] did an empirical study on
encoder-only and encoder-decoder transformers over ten biomedical RE datasets. These compar-
isons also included the four major biomedical subtasks, i.e., chemical-protein RE, disease-protein
RE, drug-drug RE, and protein-protein RE. They further explored multi-task fine-tuning to exam-
ine correlations among these subtasks.

In addition, similar to the idea discussed in the knowledge-enhanced methods Section 4.1.2,
in the biomedical field, KGs play a significant role in enriching manually annotated information
[35, 106]. They offer substantial potential for leveraging external knowledge sources to enhance
our understanding of entity relations and extract biomedical relationships. Besides, there is an
increasing demand to extract n-ary relations [74] from multiple documents, where n > 2. It is es-
sential to extract relations between more than a pair of entities in the biomedical field. For example,
detecting the relationship between a drug, a cancer patient, and a specific gene mutation is crucial
for determining whether a drug is relevant for treating cancer patients with a certain mutation
in a given gene. Lee et al. [84] proposed cross-sentence N-ary RE by utilizing entity linking and
discourse relations, respectively. Tiktinsky et al. [155] proposed an N-ary drug combination RE
dataset to assist professionals in identifying beneficial drug combinations. They also proposed a
baseline model to predict if a subset of drugs used together in combination therapy is effective.

4.3.2 RE in the Finance Field. In the financial domain, the RE systems focus on identifying
specific relations within financial texts, such as automatically extracting and linking key perfor-

mance indicators (KPIs) from financial documents [65]. For example, Deußer et al. [37] explored
extracting KPIs from financial documents where a word-level weighting scheme models the inher-
ently fuzzy borders of the entity pairs and the corresponding relations. Wu et al. [178] focused
on Chinese financial entity recognition and RE and proposed a mixed pattern with POS tagging
to generate the quadruples (entity1, entity2, relation, text) from the unstructured finical text. Jab-
bari et al. [69] presented a domain-specific ontology for financial entities and relations in French
news and created a corpus to build a KB of financial relations. Sharma et al. [138] released the first
financial RE dataset and demonstrated that the RE models trained on the general domain might
be ineffective in understanding financial relations in texts due to the discrepancies in the set of
relations. The research value of financial RE is to make full use of financial information and help
investors make better investment decisions.

4.3.3 RE in the Legal Field. In the legal domain, RE systems aim at extracting the legal relation-
ships between entities contained in judicial documents, such as the relationship between a person
and a company. To automatically identify entities and relations in legal documents, Andrew [6]
explored combining statistical and rule-based techniques without labeled data. Hendrycks et al.
[62] created the first legal dataset for contract reviews. Previous studies focused on modeling im-
plicit relations within legal documents, such as criminal relations in judgment documents [26]
and clause relations in contracts [186]. Thomas and Sangeetha [154] proposed a semi-supervised
pattern-based learning method to extract relational facts from the judicial text. This work combines
bootstrapping and OBIE techniques to expedite the extraction of judicial facts. Wang et al. [172]
focused on cross-domain contract element extraction and proposed a Bi-FLEET model, which in-
corporates a clause-element relation encoder with a bi-directional feedback scheme. A multi-task
framework is applied to capture interactions between contract element extraction and clause clas-
sification. Xu et al. [187] proposed a ConReader framework for a better contract understanding,
which explores the long-range context relation, term-definition relation, and similar clause rela-
tion in the contract clause extraction.
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Fig. 4. An example in [70] for the document-level N -ary relation (dataset: SQuaD, task: Machine compre-
hension, method: BiDAF (ensemble), metric: EM/F1).

4.3.4 RE in the Scientific Field. In the scientific domain, in order to minimize the time invested
in the scientific literature search, researchers have proposed methods to automatically extract the
relations of scientific articles automatically. Augenstein et al. [8] proposed the SemEval task for
extracting keyphrases and the corresponding relations between them in the scientific texts. Luan
[96] proposed a semi-supervised learning framework for scientific RE. Luan et al. [98] developed a
unified framework SciIE for extracting entities, relations, and coreferences in scientific documents.
Hou et al. [66] constructed a scientific leaderboard for extracting four items from NLP articles, in-
cluding task, dataset, metric, and score. This benefits the community in keeping track of interesting
scientific results. Eberts and Ulges [45] proposed a transformer-based joint RE model based on Sci-
ERC. Jain et al. [70] created the SciREX dataset for the document-level N-ary RE from scientific
articles. As shown in Figure 4, the key challenge is to detect the target triplets residing in multiple
modalities, including paragraphs and tables of the document. Kruiper et al. [81] introduced the
semi-open RE task to comprehend the most significant relationships governing the central con-
cepts in the document. Different from previous works solely considering the content of the article,
CitaionIE further leverages the citation graph of referential links, showing the article’s place in
the broader literature. Magnusson and Friedman [102] built a SciClaim KG with entities, relations,
and attributes. SciClaim contains both coarse-grained and fine-grained entity spans and relations
from scientific claims.

4.3.5 Prospects on Domain-Specific RE. Overall, we notice that: (1) extensive studies have fo-
cused on biomedical RE. However, there is still a great demand for publicly available data resources
and effective approaches in other specific domains. (2) Some domain-specific PLMs have been pro-
posed to address the lack of high-quality, large-scale labeled domain data. The corresponding PLMs
injecting domain-specific information include BioBERT [83], SciBERT [11], FinBERT [194], and
Legal-BERT [20]. These tasks are challenging due to the specialized vocabulary and the complexity
of the relationships involved. Therefore, the continued advancement of RE techniques specifically
tailored to these domains is essential for various domain-specific applications. For example, Roy
and Pan [127] incorporated entity-level KG into pre-trained BERT for clinical RE, which integrates
medical knowledge by several techniques.

Summary. Despite the remarkable progress made by previous works, there is still substantial
room for improving the RE performance in specific domains. (1) It is essential to further develop
benchmark datasets and methods to identify and extract more practical and specific relations in
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Table 5. Two Typical Input and Output Examples of Generation Methods for RE

Work Input Example Output Example

TANL [113] Tolkien’s epic novel The Lord of the Rings was pub-
lished in 1954-1955.

[ Tolkien | person ]’s epic novel [ The Lord
of the Rings | book | author = Tolkien ] was
published in 1954-1955

ChatIE [175] Given sentence: “Japan then laid siege to the Syrian
penalty area and had a goal disallowed for offside in
the 16th minute.” The known entity types are: [‘LOC’,
‘ISC’, ‘ORG’, ‘PER’]. Please answer: What types of en-
tities are included in this sentence?

LOC, MISC

different application domains. Current domain-specific datasets are either too narrow, containing
only a small number of semantic relations, or too broad, containing an unbounded number of
generic relations extracted from large and generic corpora [81]. (2) PLMs have made a significant
contribution to RE, and it would be a promising direction to further tailor domain-specific PLMs
by injecting domain knowledge into the general PLMs to understand specialized vocabulary and
tackle the complexity of the involved relations.

5 RE with PLMs

Recently, PLMs have proved to be powerful in improving the performance of RE [188], as demon-
strated in Section 3.2.4, where PLMs are used for context encoding. As illustrated in Table 7, the
first part [28] of Table 7 shows the results of state-of-the-art RE approaches with fine-tuned PLMs
on two benchmark datasets in the general domain (i.e., NYT and WebNLG). The second part [57]
of Table 7 compares the few-shot performance between fine-tuned PLMs on two biomedical RE
datasets, i.e., ChemProt and DDI. Specifically, three PLMs (i.e., PubMedBERT-base [54], BioBERT-
large [83], and RoBERTa-large [95]) are fine-tuned on 100 labeled training samples. From Table 7,
we can observe that PLMs with more parameters usually outperform those with fewer parameters.
Some well-designed BERT-based models produce competitive results compared to models with
larger PLMs (i.e., BART and RoBERTa).

Although PLMs have contributed significantly, supervised fine-tuning still suffers from a lack of
sufficient supervised RE data in practice. In addition, there is a significant gap between the training
objectives of the pre-training and fine-tuning processes in PLMs, which may hinder the adapta-
tion of the knowledge in PLMs, especially for FSRE. To overcome this limitation, prompt-tuning
techniques [144] have been proposed to bridge the gap between pre-training and fine-tuning pro-
cesses by converting downstream RE tasks into a language model format. This approach aims at
leveraging the capabilities of the PLM to perform a specific task by adapting it to the target task
through training on a smaller, task-specific dataset. The key idea is to reformulate the tasks by
appending an instruction phase that can be directly solved by PLMs. Therefore, prompt learning
casts the RE task as the text generation problem. This approach appends the templates to input
sentences, introducing additional information into templates to aid the generation process. The
prompts/templates appropriately define the relationship and order for the entity spans and labels.
For example, in the first example in Table 5, Paolini et al. [113] enclosed each entity and possi-
bly some relations with special tokens [ ]. The sequence of |-separated tags represents the entity
type and a list of relations in the format “X = Y”, where X is the relation type, and Y is the tail
entity of the relation. Besides, some recent developments [60, 77, 134] in the field of RE include
the use of prompt-based approaches to prompt a PLM by converting the extraction of relation to
predict the missing words. As shown in Table 6, the mined prompts [77] are constructed from
Wikipedia through both middle words and dependency paths. The manual prompts are created
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Table 6. Examples of Prompts for RE in [77]

ID Relations Manual Prompts Mined Prompts

P140 religion x is affiliated with the y religion x who converted to y
P159 headquarters location The headquarter of x is in y x is based in y
P20 place of death x died in y x died at his home in y
P264 record label x is represented by music label y x recorded for y
P279 subclass of x is a subclass of y x is a type of y
P39 position held x has the position of y x is elected y

Table 7. An Overview Performance Comparison of RE Methods with PLMs in
General and Specific Domains

NYT WebNLG

Method # PLM Param. Prec. Rec. F1 Prec. Rec. F1

RE methods with PLMs (In general domain)

CasRel [176] BERT(110M) 89.7 89.5 89.6 93.4 90.1 91.7

TPLinker [171] BERT(110M) 91.3 92.5 91.9 91.8 92.0 91.9

CGT [207] UniLM(110M) 94.7 84.2 89.1 92.9 75.6 83.4

PRGC [244] BERT(110M) 93.3 91.9 92.6 94.0 92.1 93.0

REBEL [17] BART(406M) − − 93.4 − − −

R-BPtrNet [27] RoBERTa(335M) 94.0 92.9 93.5 94.3 93.3 93.8

MTG [29] T5-large(770M) 95.6 93.1 94.3 94.8 95.1 94.9

ChemProt DDI

Method # PLM Param. Prec. Rec. F1 Prec. Rec. F1

RE methods with PLMs (In specific domain)

PubMedBERT-Base 100 M 17.9 62.0 27.7 19.9 79.1 31.8

BioBERT-Large 345 M 19.0 60.6 28.7 17.3 75.4 28.2

RoBERTa-Large 354 M 22.0 69.7 33.4 25.5 77.9 38.4

by experts according to the relation semantics, which is more complicated syntactically. However,
manually defining the appropriate mapping phrase is time-consuming and non-intuitive [77] since
it requires task-specific knowledge and manual identification words that the PLM can sufficiently
understand.

To avoid the labor-intensive process of constructing prompts, recent works [48, 133, 141] pay
attention to automatically generating and searching prompts. For example, Shin et al. [141] de-
signed AUTOPROMPT to automatically create prompts by a gradient-guided search. It shows
that masked language models (MLMs) can be effectively used as relation extractors without
additional fine-tuning. Moreover, some studies [85, 91, 119] propose continuous prompts while
fixing all PLM parameters, and experiments show that such soft prompts work well on few-shot
RE datasets. Drawing inspiration from prompting, Li and Liang [91] proposed the prefix-tuning,
which attends the subsequence tokens to prompt the PLMs. Qin and Eisner [119] and Lester et al.
[85] proposed to model prompts as continuous vectors optimized by a mixture of prompts.

What’s more, recent advances [75, 149, 189] in LLMs, such as GPT-3 [16], ChatGPT, and
GPT-46 [1], have demonstrated their exceptional performance across various NLP tasks. While
PLMs primarily strive for high performance in predefined NLP tasks, LLMs exhibit emergent
capabilities extending beyond task-specific learning. GPT-3 represents a significant milestone in

6The corresponding model versions of GPT-3, ChatGPT, and GPT-4 are text-DaVinci-003, GPT-3.5-turbo, and GPT-4-turbo,

respectively.
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the evolution from PLMs to LLMs [239]. With the continuous growth in model parameters and
training corpus size, LLMs exhibit emergent abilities that enable them to engage in in-context

learning (ICL), where the models can reason from a small number of demonstration examples
within the input context [43]. For example, in the second example in Table 5, LLMs can effectively
perform RE given specific prompts [175]. Besides, some LLM-based methods [2, 75, 175] also
provide several example demonstrations in the input, fully taking advantage of LLMs’ larger
number of parameters and longer input context lengths. Jiang et al. [75] tested the capabilities of
the leading LLMs to perform RE in a zero-shot manner, which includes the GPT Family [16], i.e.,
text-davinci-003, gpt-3.5-turbo, gpt-3.5-turbo-instruct and gpt-4-turbo [1], and the LLaMA family
[156], i.e., LLaMA-2-7B, LLaMA-2-70B, Vicuna-1.5-7B, Vicuna-1.3-33B, and WizardLM-70B [182].
Agrawal et al. [2] showed that LLMs perform well at zero- and few-shot clinical RE despite not
being trained specifically in clinical texts. The construction of demonstrations facilitates the LLMs’
comprehension and easy answer extraction. Wei et al. ([175]) explored the helpfulness of ChatGPT
in the RE task and proposed a two-stage framework (ChatIE). This framework transforms the
zero-shot IE task into a multi-turn QA problem by prompting ChatGPT and improves the
experimental results.

Summary. RE tasks have benefited significantly from both PLMs and LLMs. PLMs have shown
remarkable performance in improving RE by leveraging pre-training on large corpora, especially
for fine-tuning PLMs for specific RE tasks. However, existing methods relying solely on PLMs of-
ten face challenges when dealing with newly emerging relations due to the need for extensive data
annotation, which can be time-consuming and labor-intensive. LLMs showcase impressive capa-
bilities in generation and have inspired exploration of alternative approaches for obtaining auto-
labeled documents with new relations. They excel in scenarios with limited annotations, where
their memorization and reasoning capabilities contribute significantly to relation extraction tasks.
However, the inference latency and financial cost associated with calling LLMs’ APIs are higher
compared to fine-tuning PLMs.

6 Future Directions

RE studies have made significant progress in recent years regarding new neural RE model designs
and subtasks. However, challenges and limitations remain that need to be addressed, including
the need for more diverse data in practical scenarios, handling complex and unevenly distributed
relations, and incorporating additional new relation types.

6.1 Multi-Modal RE

Along with text, images, and videos have become popular ways to convey information on the in-
ternet. This highlights the importance of extracting relations from multi-modal input rather than
textual data alone. Multi-modal RE takes advantage of the large visual-text corpus by focusing
on extracting relations from these media forms. Zheng et al. [243] proposed the multi-modal RE
dataset MNRE containing visual evidence collected from social media posts. Subsequently, Zheng
et al. [242] introduced the multi-modal RE model to capture the knowledge from related informa-
tion in the texts and images. However, many interesting problems remain to be explored [167]. As
shown in Figure 5(a) [216], the multi-modal RE task takes images and texts as input, then recog-
nizes the entities and corresponding relations from the multi-modal data. This task is expected to
align the entity-entity relations in the text with the object-object relations in the images. Since
multi-modal data is often closely related, the visual content can supplement missing semantics
of the textual content and improve the performance of RE methods. Thus, it is crucial to develop
well-constructed multi-modal RE methods combining visual and textual information to extract
relations more accurately.
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Fig. 5. Illustration of the future directions mentioned in Section 6.

6.2 Cross-Lingual RE

Existing state-of-the-art RE systems are primarily available for English because they heavily rely
on annotated corpora and PLMs. These methods perform RE on a sentence in a source language by
first translating it into English, then performing RE on the translated sentence, and finally project-
ing the identified phrase back to the source language. However, these methods assume that parallel
bilingual corpora can be obtained by existing machine translation systems. It is challenging to mit-
igate the noisy data problem caused by machine translation systems and align the sentences and
extracted triples between different languages. One future research direction is to explore the cross-

lingual projection methods for language-independent RE [47]. Therefore, some works have been
proposed to improve cross-lingual transfer for RE, including utilizing universal dependency struc-
ture parses [146] and mBERT [122]. Recent progress [12, 135] demonstrates that multi-lingual train-
ing can improve performance across all languages in RE since the relation information from other
languages might help encode the information in a given language. These methods learn language-
agnostic sentence representations in complex and multi-lingual common spaces. As shown in Ta-
ble 8 [135], the distribution for each language is quite different. One of the main challenges in
cross-lingual RE is dealing with language differences. Languages vary in their grammatical struc-
ture, vocabulary, and syntax, which makes it difficult to identify relationships between entities
across languages. Another challenge is the ambiguity of words and their translations across lan-
guages. To tackle these challenges, it is crucial to investigate diverse approaches for aligning rela-
tion semantics between resource-rich languages and those with more limited data availability.

6.3 Temporal RE

Temporal RE aims at identifying relations between entities subject to temporal constraints, en-
hancing the applicability of RE systems in complex reasoning. As shown in Figure 5(b) [160],
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Table 8. The Number of Sentences and Relations for Each Language Shown in the Multi-Lingual RE
Dataset [135]

EN KO IT FR DE PT NL PL ES AR RU SV FA UK Total

Sentences 748 k 20 k 76 k 62 k 53 k 45 k 40 k 17 k 12 k 9 k 7 k 5 k 3 k 1 k 1.1 M

Relations 36 28 22 22 22 22 22 22 22 9 8 22 8 7 36

a timeline illustrates the fine-grained (real-valued) temporal relations implicated in the text, map-
ping the temporal relations and event durations to real-valued scales. There are two mainstream
approaches dedicated to temporal RE: dealing with relations between events and time expressions
[151] and extracting relations between entities at a given time spot through temporal reasoning
[197]. Although previous studies have attempted to address this issue by generating patterns for
time-variant relations, many challenges remain, including (i) the complex dependencies between
entities, relations, and conditions; (ii) the difficulty of handling conditions in various forms in free
text; and (iii) the lack of well-annotated data. Therefore, a general framework is needed to formal-
ize the conditional dimensions.

6.4 Evolutionary RE

In recent years, most RE paradigms have been designed on pre-defined relation sets. However,
as our world experiences continuous expansion of new relations, it is infeasible for RE systems
to handle all emerging relation types. Therefore, there is a demand for RE systems that can gen-
eralize to new relations beyond pre-defined schemes. Several works have been proposed to han-
dle new relations, which mainly fall into two groups: ((1) open RE. As illustrated in Figure 5(c)
[235], open information extraction approaches [67] extract related phrases as representations of
relations and entities from the text. Another type is the clustering-based unsupervised relation
discovery method [235], which discovers unseen relation types using clustering optimization;
(2) lifelong RE. This group of methods [237] aims at continuously training an RE model to learn
new relations while avoiding forgetting the accurate classification of old ones. Evolutionary RE is
a promising research area, giving RE models the ability to generalize beyond the training data
and learn from new data. However, many unresolved challenges remain. For open RE, where
phrases of the same relation can have various forms, the key challenge is to canonicalize rela-
tion phrases to reduce ambiguity and redundancy. For lifelong RE, more efforts are needed to
prevent RE models from overfitting the experience memory. It is worth exploring more effective
methods leveraging LLMs (as discussed in Section 5) to tackle the challenges in evolutionary RE
effectively.

6.5 Explainable RE

Despite significant advancements in RE over the past decade, the opacity of DL-based RE models
has led to an increasing demand for explainability. The core challenge in achieving explainability
lies in the intrinsic complexity of RE models [124], which often function as black boxes. Another
obstacle is that the features extracted by RE models may not be directly interpretable by humans.
This disconnect complicates efforts to comprehend the underlying rationale behind the model’s
decisions [128], obscuring the reliability and accuracy of the extracted relations. Such opacity ham-
pers users’ ability to trust the models. To address these challenges, future research needs to focus
on developing methods that provide accurate, real-time explanations of model predictions, partic-
ularly shedding light on how these models arrive at their conclusions. By enhancing explainability,
the RE models could advance in their capabilities and become more trustworthy, enabling broader
adoption in critical domains where transparency and reliability are essential.
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7 Conclusion

This survey provided an up-to-date and comprehensive review of recent advances in RE. We first
designed a novel taxonomy to systematically summarize the model architectures used in existing
DNN-based RE approaches, fully combing recent research trends in categories, and illustrating the
differences and connections between RE subtasks. Then, we analyzed several important yet chal-
lenging RE problems and their corresponding solutions. Specifically, we discussed the performance
of RE on current solutions in diverse, challenging settings (i.e., the low-resource setting and the
cross-sentence setting) and specific domains (i.e., biomedical, finance, legal, and scientific fields).
Considering the new frontiers in RE studies, we also presented in-depth analyses that revealed
the issues of RE with PLMs and LLMs. Finally, we pointed out several promising future directions
and prospects. We hope this survey provides insightful perspectives and inspires the widespread
implementation of real-life RE systems.
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