
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2024

Closest pairs search over data stream Closest pairs search over data stream

Rui Zhu ZHU

Bin WANG

Xiaochun YANG

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
ZHU, Rui Zhu; WANG, Bin; YANG, Xiaochun; and ZHENG, Baihua. Closest pairs search over data stream.
(2024). Proceedings of the ACM on Management of Data, Santiago, Chile, June 9-15. 1, 1-26.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9097

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9097&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

205

Closest Pairs Search Over Data Stream
RUI ZHU, Shenyang Aerospace University, China

BIN WANG, Northeastern University, China

XIAOCHUN YANG, Northeastern University, China

BAIHUA ZHENG, Singapore Management University, Singapore

𝑘-closest pair (KCP for short) search is a fundamental problem in database research. Given a set of𝑑-dimensional

streaming data S, KCP search aims to retrieve 𝑘 pairs with the shortest distances between them. While existing

works have studied continuous 1-closest pair query (i.e., 𝑘 = 1) over dynamic data environments, which allow

for object insertions/deletions, they require high computational costs and cannot easily support KCP search

with 𝑘 > 1. This paper investigates the problem of KCP search over data stream, aiming to incrementally

maintain as few pairs as possible to support KCP search with arbitrarily 𝑘 . To achieve this, we introduce the

concept of NNS (short for Nearest Neighbour pair-Set), which consists of all the nearest neighbour pairs and

allows us to support KCP search via only accessing O(𝑘) objects. We further observe that in most cases, we

only need to use a small portion of NNS to answer KCP search as typically 𝑘 ≪ 𝑛. Based on this observation,

we propose TNNS (short for Threshold-based NN pair Set), which contains a small number of high-quality NN

pairs, and a partition named 𝜏-DLBP (short for 𝜏-Distance Lower-Bound based Partition) to organize objects,

with 𝜏 being an integer significantly smaller than 𝑛. 𝜏-DLBP organizes objects using up to O(log 𝑛
𝜏) partitions

and is able to support the construction and update of TNNS efficiently.

CCS Concepts: • Information systems→Multidimensional range search.

Additional Key Words and Phrases: Streaming Data, 𝑘-Closest Pair Search, Partition, Cube

ACM Reference Format:

Rui Zhu, Bin Wang, Xiaochun Yang, and Baihua Zheng. 2023. Closest Pairs Search Over Data Stream. Proc.
ACM Manag. Data 1, 3 (SIGMOD), Article 205 (September 2023), 26 pages. https://doi.org/10.1145/3617326

1 INTRODUCTION
The focus of this paper is the problem of finding 𝑘-closest pair (KCP search) [1][2][3][4] over data

stream. Specifically, we consider a dynamic setup where objects are from a 𝑑-dimensional streaming

dataset. When 𝑘 = 1, the goal is to find a pair of objects with the smallest distance among the given

𝑛 objects. However, we extend this problem to the more general case where 𝑘 > 1.

In a 𝑑-dimensional streaming dataset S, every two objects 𝑜𝑖 and 𝑜 𝑗 construct a pair (𝑜𝑖 , 𝑜 𝑗). The
goal of KCP search is to retrieve the 𝑘 pairs with the smallest scores among all pairs constructed by

objects in S. In this paper, we use the Euclidean distance as the scoring function for explanation

purposes. However, the techniques proposed in this paper are applicable to many common distance

functions over 𝑑-dimensional space, including Manhattan, Chebyshev, and Minkowski distances.

Authors’ addresses: Rui Zhu, Shenyang Aerospace University, No.37 Daoyi South Avenue, Daoyi District, Shen Yang,

China, zhurui@sau.edu.cn; Bin Wang, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shen Yang,

China, binwang@neu.edu.cn; Xiaochun Yang, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shen

Yang, China, yangxc@mail.neu.edu.cn; Baihua Zheng, Singapore Management University, 80 Stamford Road, Singapore,

bhzheng@smu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/9-ART205 $15.00

https://doi.org/10.1145/3617326

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

CVoR Issued. April 15, 2024. DOI: https://doi.org/10.1145/3617326

https://doi.org/10.1145/3617326
https://doi.org/10.1145/3617326

205:2 Rui Zhu et al.

<u1, r1,13:30>

<u2, r2,13:20>

<u5, r5,13:30>

<u4, r4,13:35>

<u3, r3,11:35>

 r1

 r2

 r3

 r5

 r4

User

Restaurant

bookings tuples

b1

b2

b3

b4

b5

u4 u5

 u1

u2

u3

13:30

13:20

11:35

13:30
13:35

Fig. 1. Supporting Food Delivery Services via KCP(𝑘=2)

To investigate this problem, we consider a general case, where objects in S can be inserted and

deleted and their arrival order may differ from their expiry order.

KCP search is a fundamental problem that has been studied for over thirty years [5–7]. It presents a

challenge due to the potentially large number of pairs that need to be considered. For example, given

a dataset S of 𝑛 objects, there are O(𝑛2) pairs in total. The dynamic nature of data streams further

complicates KCP search. A single update can affect all objects in S, triggering the construction of

O(𝑛) pairs in the case of an insertion or the expiry of O(𝑛) pairs in the case of a deletion.

KCP search is a building block for awide range of datamining tasks [8], including clustering [9, 10],

outlier detection, and more. For instance, clustering algorithms like C2P [11] uses KCP search as a

primitive operation, and the algorithm ClusTree [12] maintains clusters incrementally by finding

closest pairs under data stream.

KCP search also has many practical applications, such as supporting food delivery services by

finding similar bookings for assignments. In this scenario, each booking request can be represented

as 𝑏⟨𝑑, 𝑟, 𝑡⟩, where 𝑑 and 𝑟 denote the delivery address and restaurant location, respectively, and 𝑡

is the requested delivery time. KCP search can efficiently identify highly similar bookings that have

nearby restaurants and delivery addresses and a small time difference between their requested

delivery times, which shall be assigned to the same delivery person.

Consider an example illustrated in Fig 1, where the system receives 5 booking requests (𝑏1, 𝑏2,

𝑏3, 𝑏4, and 𝑏5). Among these bookings, 𝑏1 and 𝑏2 have nearby delivery addresses and restaurant

positions, with a small difference in their requested delivery times. Similarly, 𝑏4 and 𝑏5 also share

these characteristics. To optimize resource allocation, the system employs a KCP search (𝑘 = 2) to

identify booking pairs with similar properties. As a result, it identifies pairs (𝑏1, 𝑏2) and (𝑏4, 𝑏5) due
to their proximity in delivery locations and restaurants, as well as the small time difference between

their requested delivery times. By assigning a single delivery person to handle both bookings

in each pair, the system significantly improves efficiency and cost-effectiveness of the delivery

process.

Compared to traditional route-based and range-based methods, KCP search can provide ideal

similar bookings. The former assesses the suitability of a booking pair by determining the length of

the common sub-route, which is far more complicated than KCP search. The latter uses range queries

to form suitable booking pairs, where bookings located in the same query region are considered

similar. However, it can be challenging to capture the real-time distribution of the restaurants and

delivery addresses, which makes it difficult to find a suitable query radius for each range query.

In a product assembly line, identical small parts are used to build complete products, but produc-

tion errors can result in variations in the sizes of different parts. Small parts continuously arrive

in the product line and expire when they are selected for completing products. KCP search can

efficiently select small parts with similar sizes, such as four wheels for a car, two eyes for a toy

doll, two or three single-connector sockets for a multi-connector socket. In event-based social

networks [13], KCP search provides a simple way to find “event-partner” by considering a small

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:3

number of users’ attributes, while in stock recommendation systems, it can find stocks that share

similar prices and volumes in the last five minutes. Overall, KCP search is a powerful tool that can

provide simple and effective solutions to many practical problems in various domains.

To the best of our knowledge, none of the existing approaches can handle KCP search over

data stream. The closest work is the study of continuous 1CP (𝑘 = 1) queries over a dynamic

data environment, where object insertion and deletion are allowed. Based on the ways objects are

organized, the main efforts in continuous 1CP query over dynamic data can be categorized into

two groups, tree-based and partition-based approaches. The former [5][7] uses a tree-based index

to maintain objects and monitors the nearest neighbour (NN) of every object. When objects are

inserted into or deleted from the dataset, both the index and the NN of related objects are updated.

However, the cost of maintaining the NN of every object is very high. The latter [6] uses random

algorithms to partition objects into subsets based on distances (or distance lower-bound) between

objects and their NNs. Compared to tree-based approaches, they avoid maintaining the NN of every

object. However, the cost of processing an insertion or a deletion is O(𝑛) in the worst case.

Moreover, the computational complexity of both types of algorithms is very high, making it

challenging to extend them for 𝑘 > 1 in a data streaming setting. Firstly, the algorithms need to

find result pairs from a massive set of pairs rather than just the NN pairs constructed by objects

and their NNs. Secondly, the frequency of object insertions and deletions under data stream is

much higher than that under dynamic data environments, making it difficult to process the influx

of newly arrived/expired objects in real-time. Thus, it is crucial to develop an approach that can

quickly process KCP search and meanwhile support efficient update under data stream.

Solution Overview. Our solution is based on the following observations. Given an object 𝑜 ∈ S,
if its NN pair is not part of the answer set to a KCP, then none of the pairs containing 𝑜 will be in

the answer set either. Furthermore, for a given KCP search, we can find the result pairs via only

considering distances between objects that form 𝑘 NN pairs with the shortest distances. Using this

insight, we construct the set NNS (short for Nearest Neighbour pair Set), which consists of all NN

pairs. Our KCP search algorithm developed based on NNS is able to support KCP search at a cost of

𝑂 (𝑘2). We also introduce a new index called QC-Tree to facilitate the construction and update of

NNS. QC-Tree, similar to quad-tree, has a bounded height of O(log𝑛) regardless of the distribution
of objects. In addition, the leaf nodes in QC-Tree reflect the upper-bounds of distances between

objects and their NNs, which enables efficient NN search based on prior known search ranges.

However, maintaining NNS incurs a high computational cost, as the incremental cost of updating

every object’s NN is 𝑂 (𝑛) per insertion/deletion in the worst cases, which is too expensive under

data stream. We have observed that in most cases, a small set of NNS suffices to answer KCP search

as typically 𝑘 ≪ 𝑛. This observation has led us to consider maintaining a subset of “high quality”

NN pairs, i.e., pairs with the shortest distances, to answer KCP search. Therefore, we propose TNNS

(short for Threshold-based NN pair Set), which contains only a small number of NN pairs, guided

by a controlling parameter 𝜏 .

To incrementally maintain TNNS under data stream, we propose a novel partition named 𝜏-DLBP

(short for 𝜏-Distance Lower-Bound based Partition). This approach organizes objects using up to

O(log 𝑛
𝜏
) partitions. 𝜏-DLBP uses one partition to maintain objects that contribute to TNNS, and uses

other partitions to organize the rest of objects based on the lower bounds of their distances to their

NNs. As compared withQC-Tree, 𝜏-DLBP significantly reduces the update cost to O((𝑑+3𝑑) log 𝑛
𝜏
+𝜏)

per update. Additionally, 𝜏-DLBP organizes objects based on their likelihood of contributing to KCP

search with smaller partitions containing objects that have shorter distances to their NNs and

tighter distance lower bounds. The size of partitions increases exponentially with the increase of

their distance lower bounds. When a KCP search is submitted, if 𝑘 is small, we only need to access

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:4 Rui Zhu et al.

Table 1. Frequent Notations

Notation Definition

S a 𝑑-dimensional streaming dataset with 𝑛 objects

𝑁𝑁 (𝑜) the nearest neighbor of an object 𝑜

𝑅𝑁𝑁 (𝑜) the reverse nearest neighbor(s) of an object 𝑜

D(𝑜) the distance between 𝑜 and its nearest neighbor, also termed as the score of object 𝑜
𝑞(𝑜, 𝑟, 𝑆 ′) a range search to locate objects in 𝑆 ′ that are within 𝑟 distance to 𝑜

(𝑜, 𝑜 ′) a pair formed by two objects 𝑜 and 𝑜 ′

the partition containing TNNS to perform the search directly. Even if 𝑘 is large, we can retrieve

query result pairs via accessing objects located in only a few partitions. This way, 𝜏-DLBP reduces

the computational cost of incrementally maintaining TNNS under data stream while still being

able to support KCP search.

2 RELATEDWORKS
This section mainly reviews algorithms about KCP search [1, 7, 14] and threshold-based continuous

spatial queries[15].

2.1 KCP Search
KCP search is a well-known problem that has been extensively studied in previous research across

various data dimensions and environments [16–20], such as high-dimensional data spaces [21, 22],

event-based social networks [13], and moving-object databases [14]. In this study, we will focus on

relevant existing research, including three main types of algorithms: tree-based, partition-based,

and other types. To facilitate understanding, we provide a list of symbols used throughout this

paper in Table 1.

Tree-based Algorithms. Many tree-based approaches, such as those proposed in [5, 23, 24],

support 1CP search by maintaining a tree-based structure that stores the nearest neighbour (NN) of

each object. These structures update both the index and NNs of relevant objects when objects are

inserted or deleted from the dataset. For example, the structure proposed in [23] uses O(𝑛 log𝑑 𝑛)
space and runs in O(log log𝑛 log𝑑 𝑛) amortized time per update to support 1CP search. In contrast,

C-Box, the first deterministic data structure presented in [5], maintains 1CP in O(log𝑛) time per

update by only maintaining mutual nearest neighbour (MNN) pairs. Note, an object pair (𝑜, 𝑜 ′) is
considered as MNN, if they are the nearest neighbor to each other, i.e., 𝑜 = 𝑁𝑁 (𝑜 ′) ∧ 𝑜 ′ = 𝑁𝑁 (𝑜).
However, it has a large hidden constant in its computational complexity. The cost of processing

one insertion or deletion is O(𝑑𝑁𝑑 log𝑑 log𝑛) and O(𝑑𝑁𝑑𝑀𝑑 log𝑑 log𝑛) respectively, where 𝑁𝑑 =

(2(𝑠 + 2) (𝑠 + 1)𝑑 + 1)𝑑 ,𝑀𝑑 = (𝑠 (𝑠 + 1)2 (𝑑 + 0.5) + 1)𝑑 , and 𝑠 is a parameter used for fairly splitting

the space (e.g., 𝑁𝑑 ≥ 2401 and𝑀𝑑 ≥ 8281 when 𝑑 = 2).

Other works, such as those presented in [4] and [25] study how to find the 𝑘-closest pairs between

two spatial data sets. [25] also investigates the KCP search over one spatial database. It uses R-Tree

to maintain spatial objects. The corresponding algorithms do not consider how to process newly

arrived/expired objects. [8] examines the problem of KCP search under a metric space and uses

M-Tree-based index [26, 27] to maintain all NN pairs. They obverse that given any query result

pair (𝑜𝑖 , 𝑜 𝑗), scores of pairs (𝑜𝑖 , 𝑜𝑖 .𝑁𝑁) and (𝑜 𝑗 , 𝑜 𝑗 .𝑁𝑁) are not larger than the score of the top-2𝑘

NN pair.

Partition-based Algorithms. Golin et al [6] propose a partition-based algorithm named Random

to support continuous 1CP search, based on a randomized data structure. The algorithm initializes

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:5

with 𝑆1 = S, where S is the set of objects. It then randomly selects an object 𝑜 ∈ 𝑆1 as the pivot and
forms the set 𝑆 ′

1
based on D(𝑜), following a group of partition rules. Next, it sets 𝑆2 to (𝑆1 − 𝑆 ′1) and

partitions 𝑆2 using the same logic used previously to partition 𝑆1. This process is repeated𝑚 times

until the subset 𝑆𝑚 has only two objects. When an object is inserted into S, the algorithm evaluates

whether it contributes to 1CP by accessing these𝑚 partitions, with a cost bounded by O(3𝑑𝑚).
In ideal cases,𝑚 is excepted to be O(log𝑛), and the cost of processing an object is O(3𝑑 log𝑛).
However, the performance of the algorithm is heavily dependent on the pivot objects selected. In
the worst-case scenario,𝑚 might approach 𝑛, and the running time for one insertion/deletion is

O(𝑛). Furthermore, a parallel batch-dynamic data structure for 1CP search is proposed in [28],

which supports batches of insertions and deletions in parallel using the data structure proposed

in [6].

Other Algorithms. Instead of maintaining NN/MNN of objects, a buffer-based algorithm [1] tracks

only a small subset of 𝑛′ (where 𝑛′ < 𝑛) pairs with the lowest scores. In [29], the domination

relationships among pairs, which only exist in the sliding window model, are used to support

KCP search over sliding windows. However, this property is not available in the non-sliding

window model. [30] proposes a unified framework for answering KCP search. It utilizes inverted-

list-based index for maintaining streaming data, applies a TA-based algorithm for NN search, and

finally supports KCP search via maintaining all NN pairs. However, the cost of NN searches over

inverted-lists is high, and this approach is not efficient for data streams. Another algorithm, based

on “reference points”, is proposed in [3, 31]. It selects a collection 𝐶 of random reference points,

calculates distances between object points and these reference points, and uses triangular inequality

to reduce search scale. However, in many cases, the algorithm cannot find suitable reference points,

especially under data stream where the distribution of streaming data changes timely. Thus, the

running cost of processing a newly arrived object in the worst cases is O(𝑛).
Discussion. Tree-based algorithms must maintain all NN/MNN pairs, resulting in high computa-

tional costs. Partition-based algorithms can be unstable as their performance relies heavily on the

quality of the pivots. In the worst cases, the cost of processing one object can be linear to the size of

the dataset. Other methods discussed above are also not efficient for supporting KCP search under

data streams. Thus, a more efficient algorithm is needed to provide stable and effective performance

for KCP search over data streams.

2.2 Threshold-based Continuous SpatialQuery
Continuous spatial query is a type of search that continuously monitors spatial data points around

a specific query point [32]. The query runs continuously and updates in real time as both the query

point and data points change their positions over time. It has been undergone extensive research in

various environments, such as spatial database [33], on-air broadcasting [34–36], data streaming

environments [37], and scenarios involving obstacles [38–41].

Threshold-based continuous spatial query is a specific type of continuous spatial query that

determines relevant data points using a threshold [42]. The threshold defines a safe region around

the query point, and data points that fall outside this safe region are disregarded. This approach is

motivated by the spatio-temporal correlation between query and data objects, as the differences in

positions between two adjacent timestamps for a point are typically not significant. It is efficient as

it minimizes the number of data points that must be processed.

Several threshold-based continuous spatial query algorithms have been developed, such as the

RIS-kNN algorithm [43] that maintains safe regions by considering the moving directions of the

query object, the V*-diagram algorithm [44] that exploits the current knowledge of the query point

for increasing computational efficiency, and the SRB algorithm [45] that computes rectangular safe

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:6 Rui Zhu et al.

o2 o3 o4 o5 o6 o7 o8o1

0.04 0.07 0.09

0.2 0.23
D(o2,o3)=0.08

NN3.obj={o1,o2,o3,o4}

0.19 0.24

Fig. 2. 3-Closest Pair Search under NNS

regions incrementally for multiple queries. Li et al. have also developed an algorithm in [46] that

implicitly computes safe regions by identifying a set of safeguarding objects that can provide tight

safe regions and are efficient to compute.

It is worth noting that these queries differ from KCP search, which focuses on finding data pairs

with small distances instead of data points near a query point. Additionally, in our paper, the position

of streaming data remains unchanged until it expires from S, and there is no spatio-temporal

correlation between inserted and expired objects. As a result, techniques used in threshold-based

continuous spatial query algorithms cannot be applied to support KCP search.

3 SUPPORTING KCP VIA NN PAIR SET
As mentioned in Section 1, NN pairs are essential in KCP search. In this section, we formally

introduce the concept of NNS (short for Nearest Neighbour pair Set), explain how NNS can support

KCP search, and present an index structure that can construct NNS for a given dataset and maintain

NNS in a dynamic environment.

3.1 Supporting KCP Search Via NNS
Definition 1. NNS. Given a streaming data set S, NNS N (⊂ S × S) consists of all the NN pairs,

i.e., N = ∪𝑜∈S (𝑜 , 𝑁𝑁 (𝑜)).

Lemma 1. Given a streaming dataset S, let 𝑁𝑁𝑘 be the set of top-𝑘 NN pairs having the shortest
distances, 𝑁𝑁𝑘 .𝑜𝑏 𝑗 denote the set of objects that form the pair(s) in 𝑁𝑁𝑘 , and 𝑅𝑘 refer to the result set
of a KCP search. It is guaranteed that ∀(𝑜, 𝑜 ′) ∈ 𝑅𝑘 , 𝑜 ∈ 𝑁𝑁𝑘 .𝑜𝑏 𝑗 ∧ 𝑜 ′ ∈ 𝑁𝑁𝑘 .𝑜𝑏 𝑗 .

Lemma 1’s intuition is that, for any object 𝑜 in S, if its NN pair (𝑜, 𝑁𝑁 (𝑜))∉ 𝑁𝑁𝑘 , any pair

formed by 𝑜 will not contribute to 𝑅𝑘 . Thus, for any pair (𝑜, 𝑜 ′) in 𝑅𝑘 , we can guarantee that

{𝑜, 𝑜 ′} ⊆ 𝑁𝑁𝑘 .𝑜𝑏 𝑗 . We can answer KCP search based on pairs formed by objects in 𝑁𝑁𝑘 , in total

𝑂 (𝑘2) pairs. Figure 2 illustrates this idea via the following example. We present the NN relationships

between objects using a direct graph. For example, 𝑜3’s NN is 𝑜1, so we construct an in-edge from

𝑜3 to 𝑜1 with a weight set to D(𝑜3)=D(𝑜3, 𝑜1)= 0.07. Here, D(𝑜3) refers to the score of 𝑜3, and D(𝑜1, 𝑜3)

refers to the distance between 𝑜3 and 𝑜1. Given 𝑘 = 3, we have 𝑁𝑁3 = {(𝑜1, 𝑜2), (𝑜1, 𝑜3), (𝑜3, 𝑜4)}.
There are four objects in 𝑁𝑁3 .𝑜𝑏 𝑗 , and they can form in total of six pairs: {(𝑜1, 𝑜2), (𝑜1, 𝑜3), (𝑜3, 𝑜4),
(𝑜1, 𝑜4), (𝑜2, 𝑜3), (𝑜2, 𝑜4)}. The top-3 pairs with the shortest distances form the result set 𝑅3 =

{(𝑜1, 𝑜2), (𝑜1, 𝑜3), (𝑜2, 𝑜3)}.
Accordingly, we propose a KCP Search Algorithm with its pseudo-code listed in Algorithm 1.

Initially, the result set 𝑅 is empty, and the set of candidate pairs𝐶𝑎𝑛 is set to 𝑁𝑁𝑘 , i.e., the top-𝑘 NN

pairs inN with the shortest distances (Line 1). The algorithm updates the result set 𝑅 incrementally

by locating the next result pair and updating 𝐶𝑎𝑛 until 𝑅 contains 𝑘 result pairs. In each iteration,

the pair (𝑜, 𝑜 ′) in 𝐶𝑎𝑛 with the shortest distance is moved to 𝑅 as the next result pair (Lines 3-4).

For instance, when 𝑅 is empty, the pair in 𝐶𝑎𝑛 (which is actually 𝑁𝑁𝑘 when 𝑅 is empty) with

the minimum distance is inserted into 𝑅 as the result pair for the 1CP query. Then, the algorithm

updates𝐶𝑎𝑛 based on the candidate pairs newly introduced by the result pair (𝑜, 𝑜 ′) (Lines 5-9). For

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:7

Algorithm 1: The KCP Search Algorithm

Input: dataset S, NNS N , 𝑘

Output: Query Result Set 𝑅

1 𝑅 ← ∅, 𝐶𝑎𝑛 ← construct(N , 𝑘);

2 while |𝑅 | < 𝑘 do

3 let (𝑜, 𝑜 ′) ∈ 𝐶𝑎𝑛 be the pair with the minimum distance;

4 𝐶𝑎𝑛 ← 𝐶𝑎𝑛 − {(𝑜, 𝑜 ′)}, 𝑅 ← 𝑅 ∪ {(𝑜, 𝑜 ′)};
5 for each object 𝑜 𝑗 ∈ 𝐶𝑎𝑛.𝑜𝑏 𝑗 do
6 let (𝑎, 𝑏) ∈ 𝐶𝑎𝑛 be the pair with the max distance;

7 if D(𝑜 𝑗 , 𝑜) < D(𝑎, 𝑏) ∧ (𝑜 𝑗 , 𝑜) ∉ (𝐶𝑎𝑛 ∪ 𝑅) then
8 𝐶𝑎𝑛 ← (𝐶𝑎𝑛 − {(𝑎, 𝑏)}) ∪ {(𝑜 𝑗 , 𝑜)};

9 repeat Lines 6-8 to process 𝑜 ′;

10 return 𝑅;

example, if (𝑎, 𝑏) is the pair in 𝐶𝑎𝑛 with the maximal distance, and (𝑜, 𝑜 𝑗) is a new pair formed by

𝑜 and another object 𝑜 𝑗 in 𝐶𝑎𝑛.𝑜𝑏 𝑗 , we replace (𝑎, 𝑏) in 𝐶𝑎𝑛 with (𝑜, 𝑜 𝑗) if D(𝑜, 𝑜 𝑗) <D(𝑎, 𝑏). Here,
𝐶𝑎𝑛.𝑜𝑏 𝑗 refers to the set of objects that form pairs in 𝐶𝑎𝑛. The algorithm is terminated when |𝑅 |
reaches 𝑘 with total running cost bounded by O(𝑘2).

3.2 The Construction of NNS
As mentioned earlier, NNS can significantly improve the processing of KCP search. In the following,

we will explain how to constructNNS. Intuitively, objects in the streaming data set can be partitioned

into different groups according to their coordinates in different dimensions, and two objects in

adjacent partitions tend to be closer than objects in non-adjacent partitions. Therefore, we can

reduce the cost of NN search by fully utilizing the partition result.

Equal Space Partition. One straightforward way to organize objects in a 𝑑-dimensional space

[0, 1]𝑑 is by recursively partitioning the space into 2
𝑑
equal-sized hypercubes, and then using

a quad-tree 𝑇 to arrange the objects based on these partitions. In this paper, we use the term

hypercube (in short cube) to refer to a 𝑑-dimensional cube that can be formed by partitioning the

unit hypercube [0, 1]𝑑 into (2𝑑)𝑖 equal-sized subspaces. Each power of 2 hypercube has a side

length of 2
−𝑖
, and its bottom-left coordinate 𝑐 [𝑗] in the 𝑗-th dimension should be an integer multiple

of 2
−𝑖
. We will use the term hypercube (or cube) throughout the rest of this paper, provided that

the context is clear.

The partition process continues until every leaf node contains only one object. Each object in

𝑇 corresponds to a hypercube 𝑐 (𝑣1,...,𝑣𝑑) , where (𝑣1, . . . , 𝑣𝑑) indicates the bottom-left coordinates

of the standard hypercube. The side length of the hypercube is denoted by |𝑐 (𝑣1,...,𝑣𝑑) |. For ease of
presentation, we assume 𝑑 = 2 in the following examples. However, our proposed algorithm can

construct quad-trees in higher-dimensional spaces with arbitrary 𝑑 . The quad-tree 𝑇 constructed

using equal space partition has the following property that can help find NNS efficiently.

Property 3.1. Given a leaf node 𝑒 in the quad-tree 𝑇 that contains an object 𝑜 , let 𝑐 (𝑣1,...,𝑣𝑑)
be its associated hypercube. The distance from 𝑜 to its NN in S is bounded by 2

√
𝑑 |𝑐 (𝑣1,...,𝑣𝑑) |, i.e.,

D(𝑜) ≤ 2

√
𝑑 |𝑐 (𝑣1,...,𝑣𝑑) |1.

1
Property 3.1 has different forms under different distance functions, e.g., under Chebyshev Distance, the distance from 𝑜 to

its NN is bounded by 2 |𝑐 (𝑣1,...,𝑣𝑑) |.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:8 Rui Zhu et al.

root

o1

o1

o2

(0,0)

c(32,32)
c(48,48)

o2

c(56,56)

o3
c(60,60)

o4 c(62,62)

o5 o6

root

o3

o4

o5 o6

(a) The Partition (b) Quad Tree (c) QC Tree

o3

o6

o4

o5

c(32,48)

o1 o2c(40,48)

c(40,48) c(60,60)

c(62,62)(32,32)

(48,48)

(64,64)

Fig. 3. Quad-Tree and QC-Tree

Property 3.1 enables us to efficiently find objects’ NN based on prior known search ranges

centered at each object. This approach reduces the number of internal nodes that need to be

accessed [47]. For ease of presentation, we adjust the coordinates from [0,1] to [0,64] for the

running example in Section 3. Consider the set of six objects shown in Figure 3(a), located in the

[0, 64]2 space, where 𝑜1 = (42, 50), 𝑜2 = (46, 55), 𝑜3 = (56.1, 56.1), 𝑜4 = (60.1, 60.1), 𝑜5 = (62.1, 62.1),
and 𝑜6 = (63.1, 63.1). Figure 3(b) shows the corresponding quad-tree formed by equal space partition.

Let us use object 𝑜6 as an example. The leaf node associated with 𝑐 (63,63) contains 𝑜6. According
to the construction of quad-tree, we know that there is at least one object in the search range of

2

√
𝑑 |𝑐 (63,63) | (i.e. 2

√
2 · 1 = 2

√
2) centered at 𝑜6. Accordingly, we can submit a range query with a

radius 2

√
2 on the quad-tree, prune the internal node 𝑐 (40,48) whose minimal distance to 𝑜6 is larger

than 2

√
2, and find NN of 𝑜6 (= 𝑜5) after accessing 7 internal nodes and 3 objects (bounded by blue

dotted line in Figure 3(b)).

Cube-Based Partition - Improving Equal Space Partition. In Figure 3(a), the objects in S
are skew-distributed, with many densely packed in a small subspace while many subspaces are

empty, leading to an imbalanced quad-tree shown in Figure 3(b). For example, the first partition,

corresponding to node 𝑐 (32,32) in Figure 3(b), fails to seperate the objects into different cubes.

Subsequent partitions can only separate a small number of objects (e.g., 1 or 2 in our example) from

the others, resulting in a deep and imbalanced tree. The height of this quad-tree is 6. Generally, an

imbalanced tree like this one typicall requires more partitions and longer search time to construct

NNS because the dense hypercube, which contains numerous objects but occupies a small space,

can only be located through multiple steps of equal space partitions.

To address the issue of imbalanced quad-trees caused by skew-distributed objects, we propose an

efficient method that uses median search to locate dense hypercubes and construct a more balanced

tree. Specially, given a set of objects𝑂 = {𝑜1, 𝑜2, · · · , 𝑜𝑙 }, we compute the median value 𝜂 1

2

[𝑗] of the
objects’ coordinates along the 𝑗𝑡ℎ dimension and define the virtual object 𝜂 1

2

= (𝜂 1

2

[1], . . . , 𝜂 1

2

[𝑑]).
We then create a set of hypercubes C = {𝑐1, 𝑐2, · · · , 𝑐𝑙 } for𝑂 , where each 𝑐𝑖 is the minimal hypercube

that contains both 𝜂 1

2

and 𝑜𝑖 .

Lemma 2. Given a hypercube 𝑐 ′ ∈ C and let C′ = {𝑐 |𝑐 ∈ C ∧ |𝑐 | ≤ |𝑐 ′ |}, all cubes in C′ are
contained in 𝑐 ′.

Proof Sketch. Given any two hypercubes 𝑐, 𝑐 ′ ∈ C with |𝑐 ′ | ≥ |𝑐 |, they both contain point 𝜂 1

2

and hence 𝑐 ′ must contain 𝑐 . Since C′ contains all the cubes in C having their side-length bounded

by |𝑐 ′ |, the cubes in C′ must be covered by the hypercube 𝑐 ′.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:9

Algorithm 2: Build-QC-Tree

Input: Object Set 𝑂

Output: QC-tree I
1 Hypercube 𝑐𝑚𝑖𝑛 ← minHyperCube(𝑂);

2 Hypercube Set C ← ∅, Object Set List 𝑆𝐿 ← ∅, 𝑓𝑑𝑒𝑛 ← 0;

3 Node 𝑒 ←createNode(𝑂, |𝑂 |, 𝑐𝑚𝑖𝑛);

4 Construct a virtual object 𝜂 1

2

← (𝜂 1

2

[1], . . . , 𝜂 1

2

[𝑑]);
5 for each object 𝑜𝑖 in 𝑂 do

6 𝑐𝑖 ← minHyperCube(𝑜𝑖 , 𝜂 1

2

), C ← C ∪ {𝑐𝑖 };
7 𝑙 1

2

← medianSideLen(C);
8 if 𝑙 1

2

<
|𝑐𝑚𝑖𝑛 |

2
then

9 Object Set 𝑆𝑑𝑒𝑛 ←getObject(𝑙 1
2

,𝑂), 𝑆𝐿 ← 𝑆𝐿 ∪ 𝑆𝑑𝑒𝑛 , 𝑂 ← 𝑂 − 𝑆𝑑𝑒𝑛 , 𝑓𝑑𝑒𝑛 ← 1;

10 𝑆𝐿 ← 𝑆𝐿∪ eqalPartition(𝑂);

11 for 𝑖 from 1 to |𝑆𝐿 | do
12 if |𝑆𝐿𝑖 .𝑂 | = 1 then

13 Node 𝑒 ′←CreateLeafNode(𝑆𝐿𝑖 .𝑂 , 𝑓𝑑𝑒𝑛);

14 𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑒𝑡 ← 𝑒 ′ ∪ 𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑒𝑡 ;
15 else if |𝑆𝐿𝑖 .𝑂 | > 1 then

16 Node 𝑒 ′′←Build-QC-Tree(𝑆𝐿𝑖 .𝑂);

17 𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑒𝑡 ← 𝑒 ′′ ∪ 𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑒𝑡 ;

18 return 𝑒;

The key idea behind Lemma 2 is that, given two cubes 𝑐 and 𝑐 ′ in the hybercube set C, if the size
of 𝑐 is greater than that of 𝑐 ′ (i.e., |𝑐 | > |𝑐 ′ |), 𝑐 must contain 𝑐 ′. Therefore, once the hybercube set C
is constructed for a given set of 𝑙 objects 𝑂 , we can locate the hypercube in C with the

𝑙
2
-th largest

side-length, denoted as 𝑐𝑚𝑒𝑑 . Since each hypercube in C contains at least one object, 𝑐𝑚𝑒𝑑 must

cover at least
𝑙
2
out of 𝑙 objects. Let𝑂.𝑐 be the minimal hypercube that contains all the objects in𝑂 .

We can regard 𝑐𝑚𝑒𝑑 as a dense hypercube if its side length is less than half of the side length of𝑂.𝑐 ,

i.e., |𝑐𝑚𝑒𝑑 | < |𝑂.𝑐 |
2

. This is because 𝑐𝑚𝑒𝑑 occupies less than
1

2
𝑑 space of𝑂.𝑐 , but contains at least half

of the objects in 𝑂 . Otherwise, we consider that the object distribution of 𝑂 is not skewed, and we

partition the space into 2
𝑑
sub-space with equal size. Note that, as we will show in Theorem 1, this

allows us to control the height of the index tree, regardless of the object distribution.

Returning to the dataset shown in Figure 3, we construct a virtual object 𝜂 1

2

= (60.1, 60.1) and
form a group of six cubes, C{𝑐1, 𝑐2, · · · , 𝑐6}, where |𝑐1 | = |𝑐2 | = 32, |𝑐3 | = 8 and |𝑐4 | = |𝑐5 | = |𝑐6 | = 4.

For example, 𝑐3 is cube 𝑐 (56,56) with a side-length of 8, which is the minimal cube that bounds 𝑜3
and 𝜂 1

2

. The cube 𝑂.𝑐 that bounds all six objects is a cube 𝑐 (32,32) with a side-length of 32. We find

the hypercube in C with the
𝑙
2
-th largest side-length, denoted as 𝑐𝑚𝑒𝑑 . As |𝑐𝑚𝑒𝑑 | = 4 (<

|𝑂.𝑐 |
2

), 𝑐𝑚𝑒𝑑

(a cube of side-length 4) bounds {𝑐4, 𝑐5, 𝑐6}, and is a dense cube. Note that 𝑜4 and 𝜂 1

2

have the same

coordinates, and we cannot find a minimal hypercube that bounds both. In our implementation,

for an object 𝑜𝑖 that shares the same coordinates as 𝜂 1

2

, its hypercube 𝑐𝑖 ∈ C is set to the one

that bounds 𝑜𝑖 and meanwhile shares the same side-length as the minimum cube in C − {𝑐𝑖 }. For
example, |𝑐4 | is set to 4 in our example.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:10 Rui Zhu et al.

The Index QC-Tree. Based on cube-based partition, we propose a novel index named Quad Cube-
Tree (in short QC-Tree). Regardless of the distribution of streaming data in [0, 1]𝑑 space, QC-Tree

has a bounded height of O(log𝑛). Given a set S of streaming data to be organized by a QC-Tree

I, each node 𝑒 ∈ I is represented as ⟨𝑐, 𝑛,𝑂,𝑚𝑎𝑥⟩, where 𝑒.𝑐 is a hypercube, 𝑒.𝑂 is a set of 𝑒.𝑛

objects that fall within 𝑒.𝑐 (i.e., 𝑒.𝑛 = |𝑒.𝑂 |), and 𝑒.𝑚𝑎𝑥 is the maximal score of the objects in 𝑒 (i.e.,

𝑒.𝑚𝑎𝑥 =𝑚𝑎𝑥𝑜∈𝑒.𝑂D(𝑜)). We maintain 𝑒.𝑚𝑎𝑥 to support some operations that will be explained in

Section 3.3.

Algorithm 2 explains the construction of QC-Tree, which is similar to the quad-tree. However,

there are a few differences. Firstly, instead of partitioning objects step-by-step via equal space

partition, it finds a minimal hypercube to cover objects in 𝑂 (Line 1). Secondly, to prevent a deep

path in the constructed tree, before constructing child nodes for an internal node 𝑒 ∈ I under

equal space partition, it checks whether 𝑐𝑚𝑒𝑑 could be regarded as the dense hypercube (Lines

4-7). If so, QC-Tree introduces an extra child node 𝑒𝑑𝑒𝑛 to maintain objects 𝑆𝑑𝑒𝑛 located inside the

dense hypercube (Lines 8-9). For the remaining objects, the algorithm uses equal space partition to

construct corresponding nodes as quad-tree does (Line 10). Finally, when constructing a leaf node

𝑒 ′ corresponding to an object 𝑜 (Lines 12-14), if it has a sibling node 𝑒𝑑𝑒𝑛 (i.e., 𝑓𝑑𝑒𝑛 = 1), 𝑒 ′.𝑐 is set to

a cube that bounds 𝑜 with |𝑒 ′.𝑐 | = |𝑐′ |
2
, where 𝑐 ′ is the minimum cube that bounds 𝑒𝑑𝑒𝑛 .𝑐 and 𝑜 .

Back to the example shown in Figure 3. We first initialize the root node 𝑒 with 𝑒.𝑂 = S, 𝑒.𝑛 = 6

and 𝑒0.𝑐 being a cube with a side-length of 32. We next locate the dense cube, which is a cube with

a side-length of 4 that contains {𝑜4, 𝑜5, 𝑜6}. We then create a new node 𝑒𝑑𝑒𝑛 based on these three

objects. For the remaining objects, we partition them into two cubes 𝑐 (32,48) and 𝑐 (48,48) , which
contain {𝑜1, 𝑜2} and {𝑜3}, respectively. When forming the leaf node 𝑒𝑓 for 𝑜3, we set 𝑒𝑓 .𝑐 to a cube

with a side-length of 4, which is half the side-length of cube 𝑐 (56,56) that bounds 𝑜3 and 𝑒𝑑𝑒𝑛 . As a
result, we obtain a more balanced tree with a height of 3, as shown in Figures 3(c).

Theorem 1. Given a non-leaf node 𝑒 of QC-Tree, let Child(𝑒) represent all its child nodes. If there is
one child node 𝑒𝑖 ∈ 𝐶ℎ𝑖𝑙𝑑 (𝑒) having more than 𝑒.𝑛

2
objects, it is guaranteed that all the child nodes of

𝑒𝑖 have no more than 𝑒.𝑛
2

objects.

Proof Sketch. Let 𝑒 be an interval node of I and 𝜂 1

2

be the median point corresponding to 𝑒.𝑂 . If

we can form a dense hypercube based on 𝑒.𝑂 , we only need to prove that all the child nodes of 𝑒𝑑𝑒𝑛
have no more than

𝑒.𝑛
2

objects. When 𝑒𝑑𝑒𝑛 is partitioned into 2
𝑑
quadrants (𝑒 ′

1
to 𝑒 ′

4
, and 𝑒 ′

1
contains

𝜂 1

2

), 𝑒 ′
1
must contain no more than

𝑒.𝑛
2

objects based on the construction of 𝑒𝑑𝑒𝑛 . Each of the other

quadrants must be located at one-side of 𝜂 1

2

under at least one dimension, and hence the number

of objects covered is no more than
𝑒.𝑛
2
. Otherwise (we cannot form the dense hypercube), we can

obtain the same result following the logic discussed above.

According to Theorem 1, each object 𝑜 can be partitioned into a leaf node at most O(log𝑛) times,

meaning the height of a QC-Tree is bounded by O(log𝑛). Since we use median search to form both

𝜂 1

2

and the dense cube, partitioning objects in a node into its children has a cost that is linear to the

dataset scale with a hidden constant 𝑑 . As a result, the overall construction cost is O(𝑑𝑛 log𝑛).
Constructing NNS Using QC-Tree. The QC-Tree construction algorithm guarantees that each leaf

node 𝑒 has at least one sibling node 𝑒 ′. Both 𝑒.𝑐 and 𝑒 ′.𝑐 are covered by a hypercube with side-length
2|𝑒.𝑐 (𝑣1,...,𝑣𝑑) |, which means Property 3.1 still applies to a QC-Tree. Specifically, the distance between

𝑜 and its NN is bounded by 2

√
𝑑 |𝑒.𝑐 (𝑣1,...,𝑣𝑑) |. To find the NN of each object 𝑜 ∈ S, we submit a

range query with query radius of 2

√
𝑑 |𝑐 (𝑣1,...,𝑣𝑑) |. As the search process on I is similar to that on

quad-tree, we skip the details.

Once the NN of every object is found, we construct NNS N . In the event that 𝑜 and 𝑜 ′ are MNN,

they only form one pair in NNS N . Finally, we update 𝑒.𝑚𝑎𝑥s of different nodes, propagating from

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:11

0

 o8

 o7

 o6

 o4

 o5

 o2
o1

 o3 0.04
0.04
0.07
0.09
0.19

obj o.d

 o8
o7

 o6

 o4
 o5

 o1
 o2
 o3

o.NN
 o2
 o1
 o1
 o3
 o4

0.5 1

0.5

1

 P1

 P2

 P3

 mb1=2-2
 mb2=2-3
 mb3=2-3.5 0.25

0.25
0.25

(a) L cube-based Partition & Score lower-bound Estimation.

0

 o8

 o7 o4

 o2
o1 o3

0.5 1

1

1 c11
 o6

 o5
 P1

 P2

 P3

0.5
mb3=0.04
mb2=2-4
mb1=2-3

 c2

(b) Partition Refinement.

 o9

0

 o8

 o7

 o6

 o4
 o5

 o2 o3

0.5 1

0.5

1

 q1

 P1

 P2

 P3

mb3=0.04
mb2=2-4
mb1=2-3

 o1

(c) Incremental Maintenance.

Fig. 4. Example TNNS and 𝜏-DLBP with 𝜏 = 1.

leaf nodes to their parent nodes until the root node. To illustrate, consider the example shown in

Figure 3(c). We can find the NN of 𝑜6 by checking fewer nodes and objects than in a quad-tree

search, specifically, four nodes and three objects bounded by red dotted line.

3.3 The Maintenance Algorithm
Object Insertion.When an object 𝑜𝑖𝑛 flows into S, we traverse the QC-Tree I to find nodes whose

corresponding hypercubes cover 𝑜𝑖𝑛 . If we encounter a leaf node 𝑒𝑓 , we split 𝑒𝑓 following the logic

of QC-Tree construction. If we reach an internal node 𝑒 such that none of 𝑒’s children contains 𝑜𝑖𝑛 ,

we construct a leaf node 𝑒 ′⟨{𝑜𝑖𝑛}, 𝑐, 1, +∞⟩ for 𝑜𝑖𝑛 . The hypercube 𝑒 ′.𝑐 covers 𝑜𝑖𝑛 and has a side

length of
|𝑒.𝑐 |
2
. If 𝑜𝑖𝑛 falls within two child nodes (i.e., 𝑒𝑑𝑒𝑛 and 𝑒𝑖 that covers 𝑒𝑑𝑒𝑛), we insert 𝑜𝑖𝑛

into 𝑒𝑑𝑒𝑛 . After the insertion, we search for both NN of 𝑜𝑖𝑛 and RNN (short for reverse nearest

neighbour) of 𝑜𝑖𝑛 , and update NNS based on the search result.

To be more specific, we only access each node 𝑒 ∈ I from the root down to the leaf level with

their minimum distances to 𝑜𝑖𝑛 no larger than 𝑟𝑑 =max(𝑒.𝑚𝑎𝑥 , 2
√
𝑑 |𝑐𝑙 (𝑜𝑖𝑛) |). Here, 𝑐𝑙 (𝑜) refers to

the hypercube of a leaf node in I that contains object 𝑜 , which is called the L cube (short for leaf
node hypercube). Recall that the value of 𝑒.𝑚𝑎𝑥 represents the maximum score of 𝑒’s underlying

objects. If 𝑜𝑖𝑛 becomes a new NN for an object 𝑜 ∈ 𝑒.𝑂 , then the distance D(𝑜𝑖𝑛 , 𝑜) must be smaller

than 𝑒.𝑚𝑎𝑥 . We introduce 𝑒.𝑚𝑎𝑥 to each node of I to facilitate the RNN search. On the other hand,

2

√
𝑑 |𝑐𝑙 (𝑜𝑖𝑛) | bounds the distance from 𝑜𝑖𝑛 to its NN. Lastly, for each node 𝑒 we have accessed, we

update 𝑒.𝑚𝑎𝑥 if necessary.

Object Deletion. When an object 𝑜𝑒𝑥𝑝 expires from S, we search the QC-Tree I for nodes whose

corresponding hypercubes cover 𝑜𝑒𝑥𝑝 until we reach the leaf node 𝑒𝑓 . Along the traversal, we

update the value of 𝑒.𝑛 for each node 𝑒 by subtracting 1 (i.e., 𝑒.𝑛 ← 𝑒.𝑛 − 1). When we reach 𝑒𝑓 ,

we delete it from the tree. Additionally, for each RNN 𝑜 of 𝑜𝑒𝑥𝑝 , we need to find its new NN and

update NNS.

QC-Tree Local Re-construction.As new objects arrive and existing objects expire, the distribution

of streaming data may change, causing the distribution of objects among nodes to change as well.

This change can trigger the reconstruction of certain nodes in QC-Tree I. Let 𝑒 be a node of I, 𝑒 ′
be one of its child nodes, and 𝑒 ′′ be a child node of 𝑒 ′. As stated in Theorem 1, 𝑒 ′′.𝑛 ≤ 𝑒.𝑛

2
when

I is constructed. If 𝑒 ′′.𝑛 ≥ 3

4
𝑒.𝑛, we need to invoke the construction algorithm to re-organize the

objects maintained by 𝑒 . We have chosen
3

4
𝑒.𝑛 as the threshold to reduce the frequency of node

re-construction under the condition that the height of I is not high.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:12 Rui Zhu et al.

4 SUPPORTING KCP VIA PARTIAL NN PAIRS
In fact, it is not always necessary to use all NN pairs to answer KCP, as typically 𝑘 ≪ 𝑛. In this

section, we present a method for maintaining a small number of NN pairs that can be used to

efficiently answer KCP search.

4.1 The Threshold-based NN Pair Set
Definition 2. TNNS. Let S be a streaming data set. TNNS T (⊂ S × S) consists of all objects 𝑜 in
S with their scores D(𝑜) no larger than 𝑔(𝜏), in the form of NN pairs (𝑜, 𝑁𝑁 (𝑜)). Here, 𝑔(𝜏) is the 𝜏𝑡ℎ
smallest score of objects in S given an integer 𝜏 (≪ 𝑛), and each qualified MNN pair is only captured
once in TNNS.

When a KCP search is submitted, if we can find 𝑘 NN pairs in T with scores bounded by 𝑔(𝜏) (i.e.,
|T | ≥ 𝑘), we can use these 𝑘 NN pairs to find the query result following the idea of Algorithm 1. To

enable TNNS T to support KCP search even when |T | < 𝑘 , we propose a novel partition strategy

𝜏-DLBP that divides objects into disjoint partitions {𝑃1, . . . , 𝑃𝑚}. Each partition 𝑃𝑖 maintains a score

lower bound for the objects in 𝑃𝑖 , and we can find the query results by searching a small number of

partitions.

Definition 3. 𝜏-DLBP. A threshold Distance Lower-Bound based Partition 𝜏-DLBP groups the
streaming data setS into a set of𝑚 disjoint partitionsP = {𝑃1, 𝑃2, . . . , 𝑃𝑚}. Let LB(𝑃𝑖) refer to the lower
bound of scores for objects in partition 𝑃𝑖 , i.e., ∀𝑜 𝑗 ∈ 𝑃𝑖 , D(𝑜 𝑗) ≥ LB(𝑃𝑖), and |𝑃𝑖 | refer to the number
of objects in partition 𝑃𝑖 . Then P satisfies: (1) LB(𝑃𝑚−1) > 𝑔(𝜏); (2) ∀𝑖 ∈ (1,𝑚), LB(𝑃𝑖−1) ≥ 2LB(𝑃𝑖);
and (3) ∀𝑖 ∈ [1,𝑚), |𝑃𝑖 | ≥

∑𝑚
𝑗=𝑖+1 |𝑃 𝑗 |.

The 𝜏-DLBP uses Constraint (1) to ensure that all the objects in TNNS are maintained in 𝑃𝑚 ,

although 𝑃𝑚 may contain other objects as well. Constraint (2) allows 𝜏-DLBP to use other partitions

to maintain objects based on the lower-bound of their scores, which facilitates the process of KCP

search with a large 𝑘 while reducing the construction/maintenance cost of 𝜏-DLBP since finding the

lower bounds of objects’ scores is easier and cheaper than finding objects’ exact scores. We set this

parameter to 2 so that the distance lower bounds of objects in adjacent partitions are exponentially

decreased (LB(𝑃𝑖−1) ≥ 2LB(𝑃𝑖)). As we will review in Section 4.3.3 and Section 4.4, this enables us

to support KCP search and local re-partitioning in many cases by accessing only a small number of

objects located in the last few partitions. Constraint (3) further limits the total number of partitions

(i.e.,𝑚) to O(log |S |
𝜏
). In addition, the size of partitions drops exponentially, and objects with lower

scores are contained in smaller partitions with finer granularity, as they have a higher chance of

contributing to KCP search.

Figure 4(b) shows an example of 𝜏-DLBP that groups objects in S into three partitions, based on

𝜏 = 1. The color of the objects indicates the partition they belong to, and each𝑚𝑏𝑖 value listed inside

the box refers to the corresponding LB(𝑃𝑖) of partition 𝑃𝑖 . We have 𝑃1 = {𝑜5, 𝑜6, 𝑜7, 𝑜8}, 𝑃2 = {𝑜3, 𝑜4},
and 𝑃3 = {𝑜1, 𝑜2} with LB(𝑃1) = 2

−3
, LB(𝑃2) = 2

−4
and 𝑔(𝜏) = 0.04.

4.2 The Partition Construction
Overview of 𝜏-DLBP Partition. The construction algorithm of 𝜏-DLBP partition starts by using a

QC-Tree to obtain the L cube 𝑐𝑙 (𝑜) for each object or leaf node. Recall that L cube 𝑐𝑙 (𝑜), previously
introduced in Section 3.3, represents the hypercube of a leaf node in QC-Tree that contains object

𝑜 . Since a smaller |𝑐𝑙 (𝑜) | typically implies a potentially lower score D(𝑜), we propose an initial

partition of objects based on the side length of their L cubes. This initial partition is cost-effective

and allows quick organization of objects into reasonable partitions, making it easy to find their

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:13

scores or lower bounds of their scores. The 𝜏-DLBP partition consists of four steps, which we detail

below.

Step 1: L cube-based Partition. Our partition algorithm starts by dividing the objects based on

|𝑐𝑙 (𝑜) |, the side length of their L cubes, using a median search algorithm. To be more specific, let 𝑆

be the set of objects in the original stream dataset S. We compute𝑚𝑏1, the median side length of

|𝑐𝑙 (𝑜) | corresponding to all the objects 𝑜 in 𝑆 . We then form the first partition 𝑃1 by including all

the objects 𝑜 ∈ 𝑆 with |𝑐𝑙 (𝑜) | ≥ 𝑚𝑏1 and update 𝑆 to (𝑆 − 𝑃1). Next, we compute𝑚𝑏2, the median

of |𝑐𝑙 (𝑜) | for all the objects 𝑜 in the updated 𝑆 , and form the second partition 𝑃2 by including all the

objects 𝑜 ∈ 𝑆 with |𝑐𝑙 (𝑜) | ≥ 𝑚𝑏2 and update 𝑆 to (𝑆 − 𝑃2). We repeat this process until the median

side length |𝑐𝑙 (𝑜) | for all the remaining objects 𝑜 in 𝑆 is no larger than 2

√
𝑑 |𝑐2𝜏 |. We then form

the last partition 𝑃𝑚 by including all the remaining objects in 𝑆 and set𝑚𝑏𝑚 = 2

√
𝑑 |𝑐2𝜏 |. Here, 𝑐2𝜏

refers to the L cube having the (2𝜏)𝑡ℎ shortest side-length among all the L cubes of the objects in

the original stream dataset S. The partitions generated in this step satisfy the following properties:

(1) ∀𝑖 ∈ (1,𝑚),𝑚𝑏𝑖−1 ≥ 2𝑚𝑏𝑖 ; (2) ∀𝑖 ∈ [1,𝑚), |𝑃𝑖 | ≥
∑𝑚

𝑗=𝑖+1 |𝑃 𝑗 |; and (3) ∀𝑜 ∈ 𝑃𝑖 with 𝑖 ∈ [1,𝑚),
|𝑐𝑙 (𝑜) | ≥ 𝑚𝑏𝑖 > 𝑚𝑏𝑚 .

In Figure 4(a), dashed-line cubes refer to the L cubes of different objects. We have 𝜏 = 1 and

|𝑐2𝜏 | = 2
−5
. Initially,𝑚𝑏1 = 2

−2
and 𝑃1 = {𝑜5, 𝑜6, 𝑜7, 𝑜8}. Next, as𝑚𝑏2 = 2

−3
, which is still larger than

2

√
𝑑 |𝑐2𝜏 |, we further form the partition 𝑃2 = {𝑜3, 𝑜4}. Finally, as the remaining two objects have

their |𝑐𝑙 (𝑜) | no smaller than 2

√
𝑑 |𝑐2𝜏 |, they form the last partition 𝑃3 with𝑚𝑏3 = 2

√
𝑑 |𝑐2𝜏 | = 2

−3.5
.

Step 2: Score lower-bound Estimation. In this step, we aim to derive score lower bounds for

each object based on a key property of the partitions formed in Step 1. Specifically, we know that

for any object 𝑜 in partition 𝑃𝑖 , where 𝑖 ∈ [1,𝑚), the side-length of its L cube is between𝑚𝑏𝑖 and

𝑚𝑏𝑖−1, i.e., |𝑐𝑙 (𝑜) | ∈ [𝑚𝑏𝑖 ,𝑚𝑏𝑖−1).
To score each object, we utilize the distribution of cube side-lengths to set reasonable ranges for

NN searches. Specially, we scan the objects partition by partition. For a given partition 𝑃𝑖 and an

object 𝑜 ∈ 𝑃𝑖 , we submit in total 𝑖 range queries, denoted as ∪𝑗 ∈[1,𝑖]𝑞 𝑗 (𝑜,𝑚𝑏 𝑗 , 𝑃 𝑗), to look for its NN
in the first 𝑖 partitions. Each of these 𝑖 queries focuses on one specific partition 𝑃 𝑗 with 𝑗 ≤ 𝑖 and

looks for objects 𝑜 ′ ∈ 𝑃 𝑗 that have their distances to 𝑜 bounded by𝑚𝑏 𝑗 . For example, each object

𝑜 ∈ 𝑃1 submits one range query to find objects in 𝑃1 that have distances to 𝑜 bounded by𝑚𝑏1, each

object 𝑜 ′ ∈ 𝑃2 submits two range queries, one for each of 𝑃1 and 𝑃2, to find objects in 𝑃1 and 𝑃2 that

have distances to 𝑜 bounded by𝑚𝑏1 and𝑚𝑏2 respectively, and so on. We maintain the current NN

and corresponding distance for each object 𝑜 using 𝑜.𝑁𝑁 and 𝑜.𝑑 , respectively. We update these

values based on the search results of range queries. Initially, 𝑜.𝑁𝑁 and 𝑜.𝑑 are set to 𝑁𝑈𝐿𝐿 and

𝑚𝑏𝑖 , respectively.

After processing all the range queries that correspond to objects in S, for each object 𝑜 ∈ 𝑃𝑖 , we
can find ALL objects with distances to 𝑜 bounded by𝑚𝑏𝑖 . This is because the value of 𝑜.𝑁𝑁 , which

represents the NN of an object 𝑜 in partition 𝑃𝑖 , is not solely determined by the objects retrieved

by the 𝑖 range queries ∪𝑞 𝑗 issued by 𝑜 . Instead, it may be updated when 𝑜 falls within a range

query 𝑞𝑖 (𝑜 ′,𝑚𝑏𝑖 , 𝑃𝑖) issued by object 𝑜 ′ in a partition 𝑃𝑙 (𝑙 > 𝑖) located behind 𝑃𝑖 . For example, if 𝑜

is retrieved by 𝑞𝑖 (𝑜 ′,𝑚𝑏𝑖 , 𝑃𝑖) and D(𝑜, 𝑜 ′) < 𝑜.𝑑 or D(𝑜, 𝑜 ′) = 𝑜.𝑑 ∧ 𝑜.𝑁𝑁 = 𝑁𝑈𝐿𝐿, then 𝑜.𝑁𝑁 is

set to 𝑜 ′ and 𝑜.𝑑 is set to D(𝑜, 𝑜 ′). In other words, if 𝐷 (𝑜, 𝑜.𝑁𝑁) < 𝑚𝑏𝑖 , then 𝑜.𝑁𝑁 is the actual

𝑁𝑁 of 𝑜 . Otherwise, we use𝑚𝑏𝑖 as the bound. Consequently, we can find either its actual nearest

neighbor 𝑁𝑁 (𝑜) or the lower bound of its score for each object 𝑜 ∈ S, as stated in Theorem 2.

Furthermore, the NNs located by aforementioned range queries allow us to construct TNNS. This

is because the search radius of all the range queries is no smaller than 𝑚𝑏𝑚 (𝑚𝑏𝑚 = 2

√
𝑑 |𝑐2𝜏 |),

and there are at least 2𝜏 objects whose L Cubes’ side-length is no larger than |𝑐2𝜏 |. According to

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:14 Rui Zhu et al.

Property 3.1, those objects will have their scores bounded by 2

√
𝑑 |𝑐2𝜏 |. Therefore, we are able to

find all the NN pairs with scores bounded by 2

√
𝑑 |𝑐2𝜏 | and the number of these pairs is at least 𝜏 .

As a result, we can compute 𝑔(𝜏).
Consider the initial partitions shown in Figure 4(a). Object 𝑜5 in 𝑃1 submits a total of one range

query 𝑞1 (𝑜5, 2−2, 𝑃1), which returns ∅. Thus, 𝑜5.𝑁𝑁 remains NULL. Object 𝑜4 in 𝑃2 submits in

total two range queries 𝑞2 (𝑜4, 2−2, 𝑃1) (= {𝑜5}) and 𝑞3 (𝑜4, 2−3, 𝑃2) (= {𝑜3}). After these queries,

𝑜4.𝑑 = 0.09 and 𝑜4.𝑁𝑁 = 𝑜3. In addition, the query 𝑞2 issued by 𝑜4 will update 𝑜5.𝑁𝑁 to 𝑜4, and

𝑜5.𝑑 to 0.19. After processing all the range queries submitted by all 8 objects, we can find the

nearest neighbours for {𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5} and derive score lower-bound for the remaining 3 objects,

as shown in Figure 4(a). Consequently, we compute 𝑔(1), which equals 𝑜1.𝑑 = 0.04.

Theorem 2. After all the range queries (in total
∑𝑚

𝑖=1 𝑖 |𝑃𝑖 |) corresponding to objects in S are
processed, ∀𝑜 ∈ 𝑃𝑖 , if 𝑜.𝑑 = D(𝑜, 𝑜.𝑁𝑁) < 𝑚𝑏𝑖 or 𝑜.𝑑 = 𝑚𝑏𝑖 ∧ 𝑜.𝑁𝑁 ≠ 𝑁𝑈𝐿𝐿, we have 𝑜.𝑁𝑁 =

𝑁𝑁 (𝑜); otherwise, 𝑜.𝑑 (which is initialized to𝑚𝑏𝑖) serves as the lower bound of D(𝑜).

Proof Sketch: ∀𝑜 ∈ 𝑃𝑖 , the range queries (e.g., the queries ∪𝑖𝑗=1𝑞 𝑗 (𝑜,𝑚𝑏 𝑗 , 𝑃 𝑗) issued by 𝑜 and

those ∪𝑜′∈𝑃𝑙 (𝑙>𝑖)𝑞𝑖 (𝑜 ′,𝑚𝑏𝑖 , 𝑃𝑖) issued by 𝑜 ′ in partitions 𝑃𝑙 with 𝑙 > 𝑖) have already accessed all

the objects in S that are within at most 𝑚𝑏𝑖 distance to 𝑜 . Thus, if 𝑜.𝑑 = D(𝑜, 𝑜.𝑁𝑁) < 𝑚𝑏𝑖 or

𝑜.𝑑 =𝑚𝑏𝑖 ∧ 𝑜.𝑁𝑁 ≠ 𝑁𝑈𝐿𝐿, 𝑜.𝑑 = D(𝑜). Otherwise, 𝑜.𝑑 can serve as the lower bound of D(𝑜).
Step 3: Partition Refinement. In this step, we refine the initial partition based on scores/scores

lower-bounds derived in previous step. First, we calculate the median of the 𝑜.𝑑 values for all objects

𝑜 in S and denote it as𝑚𝑏 ′
1
. Accordingly, we create partition 𝑃1 to contain objects 𝑜 with 𝑜.𝑑 ≥ 𝑚𝑏1

(= 2
⌊log𝑚𝑏′

1
⌋
). Next, we find the median of 𝑜.𝑑 values for the objects 𝑜 in S − 𝑃1, and denote it as

𝑚𝑏 ′
2
. We form partition 𝑃2 to contain objects 𝑜 ′ with𝑚𝑏1 > 𝑜 ′.𝑑 ≥ 𝑚𝑏2 (= 2

⌊log𝑚𝑏′
2
⌋
), and so on. In

this step, we use 2
⌊log𝑚𝑏′𝑖 ⌋ as the distance threshold instead of𝑚𝑏 ′𝑖 to ensure that LB(𝑃𝑖) (i.e.,𝑚𝑏𝑖) is

in the form of 2
𝑢
. We repeat the above process until the median of 𝑜.𝑑 for all the remaining objects

in S − ∪𝑗

𝑖=1
𝑃𝑖 is bounded by 𝑔(𝜏), where 𝑔(𝜏) is derived from the score lower-bound estimation

step. We then create the last partition 𝑃𝑚 (i.e.,𝑚 = 𝑗 + 1) by including all the remaining objects,

set𝑚𝑏𝑚 to 𝑔(𝜏), and construct TNNS T . Note, partitions 𝑃𝑖s with 𝑖 < 𝑚 have𝑚𝑏𝑖 set to the score

lower bounds of the objects within the partitions, while 𝑃𝑚 has𝑚𝑏𝑚 set to 𝑔(𝜏).
Back to the example depicted in Figure 4. Based on 𝑜.𝑑 values listed in the table, we first calculate

the median of 𝑜.𝑑 values, which is 𝑜5 .𝑑 = 0.19. Accordingly, we create partition 𝑃1 with𝑚𝑏1 =

2
⌊log 0.19⌋ = 2

−3
to include objects {𝑜5, 𝑜6, 𝑜7, 𝑜8}. We then find the median of 𝑜.𝑑 for the remaining

4 objects, which is 𝑜3.𝑑 = 0.07. Accordingly, we create partition 𝑃2 with𝑚𝑏2 = 2
⌊log 0.07⌋ = 2

−4

to include objects 𝑜3 and 𝑜4. As the median of 𝑜.𝑑 for the remaining two objects is 0.04, which is

bounded by 𝑔(1) = 0.04, we create the last partition 𝑃3 with𝑚𝑏3 = 𝑔(1) = 0.04 to include 𝑜1 and 𝑜2.

The final partitions and their score lower bounds are shown in Figure 4(b), where objects of the

same color are located in the same partition. We then construct TNNS T = {(𝑜1, 𝑜2)} accordingly.
Step 4: Cube-based Structure Construction. After constructing 𝜏-DLBP, we build another data

structure𝐶𝑖 for each partition 𝑃𝑖 to support incremental maintenance. The data structure𝐶𝑖 is a set

of hypercubes with side-length𝑚𝑏𝑖 that bounds at least one object 𝑜 in ∪𝑚
𝑙=𝑖
𝑃𝑙 . Essentially, for each

object 𝑜 in the subsequent partitions ∪𝑚
𝑙=𝑖
𝑃𝑙 , there must exist a hypercube 𝑐 ∈ 𝐶𝑖 with side length

|𝑐 | = 𝑚𝑏𝑖 that bounds 𝑜 . Each hypercube 𝑐𝑖𝑗 ∈ 𝐶𝑖 is in the form of ⟨𝑛𝑖𝑗 ,𝑂𝑖
𝑗 ⟩, where 𝑛𝑖𝑗 records the

total number of objects in the subsequent partitions ∪𝑚
𝑙=𝑖+1𝑃𝑙 that fall within the hypercube 𝑐𝑖𝑗 , and

𝑂𝑖
𝑗 refers to the set of objects in the current partition 𝑃𝑖 that are within 𝑐𝑖𝑗 . For the last partition

𝑃𝑚 , its corresponding𝐶𝑚 contains hypercubes with side-length𝑚𝑏𝑚 to maintain objects contained

within 𝑃𝑚 .

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:15

As an example, Figure 4(b) displays two cubes, 𝑐1
1
and 𝑐2

1
, with side length of |𝑐1

1
| = 𝑚𝑏1 = 2

−3

and |𝑐2
1
| =𝑚𝑏2 = 2

−4
, respectively. 𝑐1

1
contains only 𝑜4, which is an object in 𝑃2. Therefore, 𝑛

1

1
= 1

and 𝑂1

1
= ∅. 𝑐2

1
also only contains 𝑜4, and thus 𝑛2

1
= 0 and 𝑂2

1
= {𝑜4}.

Discussion and Cost Analysis. Our main idea is to minimize the running cost required to form

a rough partition based on side-length of objects’ L cubes. We achieve this by using an L cube

formation algorithm that has a running cost of O(𝑑𝑛 log𝑛), and L cube-based partition (also the

partition refinement) via median search that has a running cost of O(𝑛). This allows us to (i) set a

group of reasonable ranges for NN searches; and (ii) adopt a suitable search strategy for objects

located at different partitions. Specifically, if an object 𝑜 has a larger side-length of its L cube, it will

be located at a partition with a smaller partition ID, and it will require fewer range queries. For the

running cost of score lower-bound estimation, each object 𝑜 ∈ 𝑃𝑖 submits 𝑖 range queries. When

searching in 𝑃 𝑗 (𝑗 ∈ [1, 𝑖]), the search region overlaps with 3
𝑑
hypercubes. If 𝑖 < 𝑚, each hypercube

contains at most one object, and the running cost spent on each object is bounded by O(3𝑑𝑖).
Otherwise (i.e., 𝑖 =𝑚), the range query cost is bounded by O(𝑚3

𝑑 + 𝜏). Since |𝑃𝑖 | ≤ |𝑃𝑖−1 |
2

, the total

cost spent on range queries is bounded by O
(∑𝑚

𝑖=1 3
𝑑𝑖 |𝑃𝑖 | + |𝑃𝑚 |𝜏

)
, which is O(∑𝑚

𝑖=1 𝑖
𝑛
2
𝑖 + |𝑃𝑚 |𝜏

)
,

i.e., bounded by O(3𝑑𝑛 + 𝜏2
)
. Therefore, the 𝜏-DLBP construction cost is O(𝑛3𝑑 + 𝜏2 + 𝑑𝑛 log𝑛).

4.3 The Partition Incremental Maintenance
After 𝜏-DLBP and TNNS are constructed, the objects in S may change as new objects arrive and/or

existing objects expire. Consequently, it is important to maintain 𝜏-DLBP and TNNS in a dynamic

manner. In the following, we first explain how to update 𝜏-DLBP and TNNS when an existing object

expires or a new object arrives; we then present the local re-partition.

4.3.1 Expiry of an existing object 𝑜𝑒𝑥𝑝 . To handle object expiration, we make use of a property of

𝜏-DLBP which organizes objects based on their score lower-bounds. The expiration of an object

does not reduce the score (or score lower-bound) of any object, i.e., ∀𝑜 ∈ 𝑃𝑖 (𝑖 ∈ [1,𝑚)),𝑚𝑏𝑖 is still

a valid score lower bound even after 𝑜𝑒𝑥𝑝 expires. This means that when an object expires, we only

need to (i) update the cube-based data structure and (ii) update TNNS if 𝑜𝑒𝑥𝑝 ∈ T .𝑜𝑏 𝑗 .
To update the cube-based structure, we remove 𝑜𝑒𝑥𝑝 from 𝑃𝑖 and update hypercube 𝑐 ∈ 𝐶𝑖

that covers 𝑜𝑒𝑥𝑝 by excluding 𝑜𝑒𝑥𝑝 from 𝑐.𝑂 . In addition, ∀𝑐 ∈ 𝐶 𝑗 corresponding to each partition

𝑃 𝑗 (𝑗 < 𝑖) (in front of 𝑃𝑖) whose space covers 𝑜𝑒𝑥𝑝 , we reduce 𝑐.𝑛 by one. If 𝑐 (in either 𝐶𝑖 or 𝐶 𝑗)

becomes 𝑐 ⟨0, ∅⟩, we delete 𝑐 from 𝐶𝑖 or 𝐶 𝑗 .

If 𝑜𝑒𝑥𝑝 ∈ T .𝑜𝑏 𝑗 , we remove all the NN pairs in T that contain 𝑜𝑒𝑥𝑝 . In addition, for each of 𝑜𝑒𝑥𝑝 ’s

RNN 𝑜 ′ in T .𝑜𝑏 𝑗 , i.e., 𝑜 ′ ∈ (𝑅𝑁𝑁 (𝑜𝑒𝑥𝑝) ∩ T .𝑜𝑏 𝑗), we submit a range query 𝑞(𝑜 ′, 𝑔(𝜏), 𝑃𝑚) to look

for objects 𝑜 ′′ (if any) in 𝑃𝑚 that are within 𝑔(𝜏) to 𝑜 ′. This range query is to decide whether D(𝑜 ′) is
still bounded by 𝑔(𝜏). If 𝑞(𝑜 ′, 𝑔(𝜏), 𝑃𝑚) ≠ ∅, we find the object 𝑜 ′′ within the range of 𝑔(𝜏) that has
the shortest distance to 𝑜 ′. The new NN pair (𝑜 ′, 𝑜 ′′) is then included into TNNS T . If 𝑜𝑒𝑥𝑝 ∉ T .𝑜𝑏 𝑗 ,
we adopt a lazy update strategy and do not process objects in 𝑅𝑁𝑁 (𝑜𝑒𝑥𝑝).

4.3.2 Arrival of a new object 𝑜 . To handle a new object 𝑜 , we first need to determine its score

(or its score lower bound) and assign 𝑜 to a proper partition 𝑃𝑖 , using the similar logic as the

score lower-bound estimation step in constructing 𝜏-DLBP. As 𝑜 could become the new nearest

neighbor to an existing object and decreases its score, we also need to process the affected objects.

Fortunately, 𝜏-DLBP has a useful property that allows us to efficiently handle such cases. Specially,

for a partition 𝑃𝑖 , if the range query 𝑞𝑖 (𝑜,𝑚𝑏𝑖 , 𝑃𝑖) issued by 𝑜 does not return any object, then𝑚𝑏𝑖
is still a valid score lower bound for all objects in 𝑃𝑖 . Otherwise, if the query results are impacted

by 𝑜 , we need to further process the objects returned by the query. Finally, if 𝑜’s score is no larger

than 𝑔(𝜏), we update TNNS.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:16 Rui Zhu et al.

Scanning Partitions to Derive D(𝑜). To calculate D(𝑜) (or its lower bound) for a new object 𝑜 ,

we again use range queries to scan objects partition by partition. Specifically, we conduct a range

query 𝑞 𝑗 (𝑜,𝑚𝑏 𝑗 , 𝑃 𝑗) per partition to identify objects in 𝑃 𝑗 that are within𝑚𝑏 𝑗 distance to 𝑜 . We

start with 𝑗 = 1, 𝑜.𝑑 = +∞, and 𝑜.𝑁𝑁 = 𝑁𝑈𝐿𝐿. We gradually increase the value of 𝑗 and update

𝑜.𝑁𝑁 and 𝑜.𝑑 based on the objects returned by 𝑞 𝑗 . Let𝐶
𝑞 𝑗

𝑗
represent the overlap between the search

range of 𝑞 𝑗 and all the hypercubes in 𝐶 𝑗 , i.e., 𝐶
𝑞 𝑗

𝑗
= {𝑐 ∈ 𝐶 𝑗 |𝑐 ∩ 𝑟𝑎𝑛𝑔𝑒 (𝑜,𝑚𝑏 𝑗) ≠ ∅}. As the index 𝑗

of a partition 𝑃 𝑗 currently evaluated increases its value from 1 gradually and the side-length𝑚𝑏 𝑗

of the hypercubes in 𝐶 𝑗 (that is also the radius𝑚𝑏 𝑗 of the range query 𝑞 𝑗) keeps decreasing, their

overlap 𝐶
𝑞 𝑗

𝑗
becomes smaller. We terminate the scanning when we encounter a partition 𝑃𝑖 (𝑖 < 𝑚)

where the overlap is reduced to zero (i.e., 𝐶
𝑞𝑖
𝑖

= ∅) or none of the objects in subsequent partitions

falls within the overlaps (i.e.,

∑
𝑐∈𝐶𝑞𝑖

𝑖
𝑐.𝑛 = 0).

This is because, as stated in Property 4.1, the distance from 𝑜 to any object in the subsequent

partitions is longer than𝑚𝑏𝑖 , and hence we can safely terminate the evaluation of partitions. If

𝑜.𝑑 = D(𝑜, 𝑜.𝑁𝑁) ≤ 𝑚𝑏𝑖 , where 𝑃𝑖 is the last partition we scan, then 𝑜.𝑑 is the score of 𝑜 . Otherwise,

we use𝑚𝑏𝑖 as score lower-bound of 𝑜 .

Property 4.1. Recall that𝐶𝑖 (𝑖 < 𝑚) is the set of hypercubes with side length𝑚𝑏𝑖 associated with
partition 𝑃𝑖 . If 𝐶

𝑞𝑖
𝑖

= ∅ or ∑𝑐∈𝐶𝑞𝑖
𝑖
𝑐.𝑛 = 0, ∀𝑜 ′ ∈ ∪𝑚𝑗=𝑖+1𝑃 𝑗 , D(𝑜, 𝑜 ′) > LB(𝑃𝑖) =𝑚𝑏𝑖 .

Inserting 𝑜 to a Proper Partition. To insert an object 𝑜 into the correct partition, we compare

its distance 𝑜.𝑑 with𝑚𝑏𝑖 values of the partitions. If 𝑜.𝑑 < 𝑚𝑏𝑚−1, we insert 𝑜 into 𝑃𝑚 . If𝑚𝑏𝑚−1 ≤
𝑜.𝑑 < 𝑚𝑏1, we insert 𝑜 into a partition 𝑃 𝑗 where𝑚𝑏 𝑗 ≤ 𝑜.𝑑 < 𝑚𝑏 𝑗−1. Otherwise (𝑜.𝑑 ≥ 𝑚𝑏1), we

insert 𝑜 into 𝑃1. This process guarantees that 𝑜 will be inserted into the partition 𝑃𝑖 such that D(𝑜)

is within the range of [(1 +
√
𝑑)𝑚𝑏𝑖−1,𝑚𝑏𝑖], as stated in Theorem 3. Note, even if object 𝑜.𝑁𝑁 is

not the real nearest neighbor of 𝑜 (i.e., 𝑜.𝑑 ≥D(𝑜)), we ensure that 𝑜 is inserted into the correct

partition. Additionally, the hypercube set 𝐶𝑙 of the affected partitions is updated.

Theorem 3. Given an object 𝑜 to be inserted to a partition 𝑃𝑖 , if 𝑜 ∉ T .𝑜𝑏 𝑗 , it is guaranteed
D(𝑜)∈ [(1 +

√
𝑑)𝑚𝑏𝑖−1,𝑚𝑏𝑖].

Proof Sketch: Let 𝑃 𝑗 be the last partition we have accessed, 𝑃𝑖 be the partition 𝑜 is inserted into,

and 𝑜 ′ be the object in the first 𝑗 partitions∪𝑗

𝑙=1
𝑃𝑙 having the shortest distance to 𝑜 . If D(𝑜, 𝑜 ′) ≤ 𝑚𝑏𝑖 ,

𝑜 ′ must be 𝑁𝑁 (𝑜) following the logic discussed in Theorem 2. Otherwise, there is at least one

hypercube 𝑐 (𝑐.𝑛 > 0) of 𝐶 𝑗−1 associated with partition 𝑃 𝑗−1 that overlaps with the search range

of 𝑞 𝑗−1. This implies that at least one object 𝑜 ′′ in ∪𝑚
𝑙=𝑗

𝑃𝑙 fallen inside 𝑐 . As the maximal distance

between 𝑜 and 𝑐 is no larger than (1 +
√
𝑑)𝑚𝑏 𝑗−1, we have D(𝑜) ≤ D(𝑜, 𝑜 ′′) ≤ (1 +

√
𝑑)𝑚𝑏 𝑗−1(𝑖 = 𝑗

under this case, and D(𝑜)∈ [(1 +
√
𝑑)𝑚𝑏𝑖−1,𝑚𝑏𝑖] is also held).

Take an example in Figure 4(c). When object 𝑜9 arrives, we scan partitions to find its score. We

first submit a range query 𝑞1 (𝑜9,𝑚𝑏1 = 2
−3, 𝑃1) on partition 𝑃1, which returns ∅. Meanwhile, we

have

∑
𝑐∈𝐶𝑞

1

1

𝑐.𝑛 = 0, which means that there are no objects in 𝑃1 that fall within the range of 𝑞1.

Consequently, we terminate the evaluation, and use𝑚𝑏1 as the lower bound of D(𝑜9). We then

insert 𝑜9 into partition 𝑃1 and update 𝐶1 by including a new hypercube.

Impact of 𝑜 on Existing Objects. As presented above, when evaluating a partition 𝑃 𝑗 (𝑗 < 𝑚), the

corresponding range query 𝑞 𝑗 (𝑜,𝑚𝑏 𝑗 , 𝑃 𝑗) locates all the objects in 𝑃 𝑗 that are within𝑚𝑏 𝑗 distance

to 𝑜 . ∀𝑜 ′ ∈ 𝑞 𝑗 (𝑜,𝑚𝑏 𝑗 , 𝑃 𝑗), object 𝑜 becomes the new NN of 𝑜 ′ and𝑚𝑏 𝑗 is no longer a valid lower

bound of 𝑜 ′’s score. We move 𝑜 ′ to an appropriate partition using the same logic applied to process

𝑜 and update the hypercube set 𝐶𝑙 of the affected partitions accordingly.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:17

Impact of 𝑜 on TNNS. If D(𝑜)≤ 𝑚𝑏𝑚 , we form a new pair (𝑜, 𝑜.𝑁𝑁), and insert it into TNNS. If

D(𝑜) is smaller than 𝑔(𝜏), we reduce 𝑔(𝜏) accordingly as 𝑔(𝜏) refers to the 𝜏-th smallest score of

objects in S. We update TNNS so that it only contains objects whose scores are bounded by the new

𝑔(𝜏). We perform the same operations to handle objects that are impacted by 𝑜 if their scores are

reduced to no larger than 𝑔(𝜏). In particular, if 𝑔(𝜏) is reduced to
𝑚𝑏𝑚
2

, we update𝑚𝑏𝑚 to the new

𝑔(𝜏) value and update hypercubes𝐶𝑚 associated with 𝑃𝑚 accordingly based on the new side-length

𝑚𝑏𝑚 .

4.3.3 The Local Re-Partition. After 𝜏-DLBP is constructed, the partitions may need to be adjusted

due to the arrival of new objects or expiry of existing objects. This is done through local re-

partition of 𝜏-DLBP, which is triggered if any of the following conditions are met: i) |T | < 𝜏
2
; or ii)

∃𝑖 ∈ [1,𝑚 − 1] such that |𝑃𝑖 | ≤
∑𝑚

𝑗=𝑖+1 |𝑃 𝑗 |; or iii)|T .𝑜𝑏 𝑗 | < |𝑃𝑚 |
2

.

LocalRe-PartitionUnderCondition i).When some objects expire fromT .𝑜𝑏 𝑗 , local re-partitioning
under condition i) is triggered, which involves reforming TNNS using the partitions of 𝜏-DLBP.

A useful property of 𝜏-DLBP is that for each partition 𝑃𝑖 (𝑖 < 𝑚 − 1), LB(𝑃𝑖) ≥ 2LB(𝑃𝑖+1) and
|𝑃𝑖 | ≥

∑𝑚
𝑗=𝑖+1 |𝑃 𝑗 |. This allows us to efficiently access a small number of objects located at the last

few partitions to reform TNNS in most cases.

Specifically, we first consider objects in partition 𝑃𝑚 and we perform L cube-based partition and

score lower-bound estimation of 𝜏-DLBP construction based on objects in 𝑃𝑚 . If we can find at least

𝜏 NN pairs with scores smaller than LB(𝑃𝑚−1), we do not search other partitions, as the scores

of objects in other partitions are all no smaller than LB(𝑃𝑚−1). Otherwise, we consider objects in
𝑃𝑚 and the partition right before 𝑃𝑚 . We merge 𝑃𝑚−1 into 𝑃𝑚 and repeat the above operations.

Again, if we can find at least 𝜏 NN pairs with scores smaller than LB(𝑃𝑚−2), we do not search other

partitions, but instead execute the Partition Refinement of 𝜏-DLBP partition construction. Otherwise,

we should consider objects in 𝑃𝑚−2 and so on. Here, we use the notation “𝑚” to refer to the last

partition that contains objects of TNNS, even though the actual value of𝑚 may change during the

local re-partition.

Note that when objects expire, the scores of some objects may become larger. Consequently,

lower bounds associated with partitions might be very loose (e.g., the real lower bounds are much

larger than the current lower bounds). This could lead to the search not terminating even after

searching all partitions. In such cases, we re-construct 𝜏-DLBP from scratch using the 𝜏-DLBP

construction presented in Section 4.2.

The algorithm is simple, but we would like to highlight two points. Firstly, after forming the new

T , we need to remove objects in 𝑃𝑚 with scores/score lower-bounds no smaller than LB(𝑃𝑚−1)
into 𝑃𝑚−1. Secondly, we use a QC-Tree-liked index I ′ to maintain part of objects in S and use the

side-length of hypercubes in the leaf nodes of I ′ to estimate the score lower bounds of objects,

instead of using L cubes of objects. To keep the scale of I ′ small, each object 𝑜 ∈ S is maintained

in I ′ if it has participated at least once in the latest 𝑛 local re-partitions of S.
Take Figure 4(c) as an example. When 𝑜1 expires from S, TNNS becomes empty and local re-

partition is triggered under condition i). Since there is only one object in 𝑃𝑚 (𝑚 = 3), we first

merge the objects in 𝑃2 and 𝑃3, i.e., {𝑜2, 𝑜3, 𝑜4}. After performing L cube-based partition and score

lower bound estimation, we find that 𝑜2 .𝑁𝑁 = 𝑜3 and 𝑜3 .𝑁𝑁 = 𝑜2 with 𝑜2 .𝑑 = 𝑜3 .𝑑 = 0.08, and

𝑜4.𝑁𝑁 = 𝑜3 with 𝑜4.𝑑 = 0.09. Since all three scores are smaller than LB(𝑃1) = 𝑚𝑏1 = 2
−3
, we set

𝑔(𝜏) =𝑚𝑏2 = 0.08 and TNNS T = {(𝑜2, 𝑜3)}. As 0.08 is the median of 𝑜.𝑑 value of objects in 𝑃𝑚 , no

partition refinement is required. Therefore, {𝑜2, 𝑜3, 𝑜4} form the last partition 𝑃𝑚 (𝑚 = 2).
Local Re-Partition Under Other Conditions. For condition ii) |𝑃𝑖 | <

∑𝑚
𝑗=𝑖+1 |𝑃 𝑗 |, we can treat

objects in ∪𝑚𝑗=𝑖𝑃 𝑗 as a dataset and apply the partition refinement step introduced in Section 4.2 to

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:18 Rui Zhu et al.

perform local re-partition. For condition iii) |T .𝑜𝑏 𝑗 | < |𝑃𝑚 |
2

, i.e., when partition 𝑃𝑚 contains many

objects with scores (or score lower-bounds) in the range of (𝑔(𝜏),𝑚𝑏𝑚−1), we split objects in 𝑃𝑚
into 𝑃𝑚 and 𝑃𝑚+1, using the same logic as partition refinement step presented in Section 4.2.

Discussion. In some extreme cases, the local re-partition may lead to a high cost if the top-𝜏 NN

pairs with smallest scores keep changing. For example, if many objects of T expire, it triggers

the local re-partition due to condition (i), which in turn increases 𝑔(𝜏) and leads to objects from

other partitions (e.g., 𝑃𝑚−1) being merged into partition 𝑃𝑚 . This can result in 𝑃𝑚 becoming much

larger, triggering the local re-partition because of condition (iii) and causing partition 𝑃𝑚 to be split

into two partitions. If objects in the newly formed T expire again, 𝑃𝑚 again requires expansion

by including objects from other partitions. The merge and split of 𝑃𝑚 may happen frequently.

Although this scenario has a low occurrence probability, we provide a solution by maintaining

additional information related to NN pairs whose scores are within the range of [𝑚𝑏𝑚, 2𝑚𝑏𝑚] to
alleviate the high cost after 𝑃𝑚 is split into 𝑃𝑚 and 𝑃𝑚+1.

4.4 KCP Search Under TNNS and 𝜏-DLBP
When a KCP search is submitted, if there are at least 𝑘 such pairs, the top-𝑘 pairs are selected as the

result pairs to complete the search, following the logic presented in Algorithm 1. However, if there

are less than 𝑘 pairs, we need to scan objects in other partitions to find 𝑘 closest pairs, following

the same logic used to perform local re-partition under condition (i). For example, if the top-𝑘 pairs

in 𝑃𝑚 have their scores no greater than LB(𝑃𝑚−1), these 𝑘 pairs form the answer set. Similarly, if

the top-𝑘 pairs can be found in 𝑃𝑚 ∪ 𝑃𝑚−1 with scores no greater than LB(𝑃𝑚−2), these 𝑘 pairs form

the answer set, and so on. As the algorithm is almost the same as local re-partition under condition

i), we skip the details to save space.

In the following, we will briefly discuss the overall cost of supporting KCP search under 𝜏-

DLBP. As the number of partitions is bounded by O(log 𝑛
𝜏
), the running cost of processing each

update is bounded by O
(
(𝑑 + 3𝑑) log 𝑛

𝜏
+ 𝜏

)
. The local re-partition under condition i) is based on

𝜏-DLBP construction. We assume that the last 𝑢 partitions are involved in the local re-partition. As

|𝑃𝑖 | ≥ 2|𝑃𝑖+1 | is guaranteed, the overall running cost is O(3𝑑
∑𝑚

𝑖=𝑚−𝑢+1
𝑖 |𝑃𝑖 |
2
𝑖 +𝜏2 +𝑑 |𝑃𝑢 | log |𝑃𝑢 |), i.e.,

bounded by O(3𝑑𝑛 + 𝜏2 + 𝑑𝑛 log𝑛) (amortized cost of each object is O(3𝑑 + 𝜏 + log𝑛)). Moreover,

we can prove that the cost of supporting one KCP search under 𝜏-DLBP is O(3𝑑𝑛𝑘 +𝑘2 +𝑑𝑛𝑘 log𝑛𝑘),
following the logic of local re-partition. Here, 𝑛𝑘 refers to the number of objects that are evaluated

during the search, and its value is excepted to be (2𝑗 − 1)𝜏 where 𝑗 is the minimal integer satisfying∑𝑗

𝑖=0
|𝑃𝑚−𝑖 | ≥ 2𝑘 .

Based on the above analysis, we understand that parameter 𝜏 provides a trade-off between the

KCP search efficiency and the update cost of 𝜏-DLBP. Setting a larger 𝜏 increases the number of NN

pairs maintained by TNNS, which in turn enhances the chances of finding objects in TNNS directly

to support KCP search with a lower search cost. However, a larger 𝜏 also increases the maintenance

cost of 𝜏-DLBP. Thus, the selection of 𝜏 value depends on several factors such as the distribution of

𝑘 , query submission speed (the number of submitted queries per time unit), update frequency, and

object distribution. If we have prior knowledge about these factors and the relative importance

of update performance and search efficiency for the application, we can create a cost model to

determine the optimal 𝜏 value. However, if we lack prior knowledge, we recommend setting 𝜏 to a

constant. In our implementation, we set 𝜏 to 100 as we assume zero prior knowledge. Nonetheless,

its value can be adjusted easily to accommodate the needs of different applications.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:19

Table 2. Parameter Settings.

Parameter Values

𝑛 100K, 200K, 500K, 1M, 2M, 5M, 10M

mean of 𝑘 (SD= 1) 10, 20, 50, 100, 200, 500, 1000

𝑠 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%, 10% (×𝑛)
𝜏 10, 50, 100, 200, 500, 1000

5 PERFORMANCE EVALUATION
In this section, we present the results of our extensive experiments designed to demonstrate the

efficiency of our proposed techniques.

5.1 Experiment Settings
Datasets. We conduct our experiments using five datasets, including two real datasets, Stock and

Trip, and three synthetic datasets, Multi, Uniform and Normal.

(i) Stock. It consists of 1G stock transactions corresponding to 2, 300 stocks from Shang-

hai/Shenzhen Stock Exchange over a period of 24 months. Each transaction record 𝑟 is defined as

(𝑝 , 𝑣 , 𝑡), where 𝑝 and 𝑣 refer to the price and volume of the transaction, respectively, and 𝑡 records

the transaction time. Two stocks are considered similar if they share similar prices and similar

cumulative volumes over a period of time. KCP search enables us to find potential connections

between stocks. In our implementation, records are flowed into/expired from S based on their

transaction time.

(ii) Trip. It contains 1.6G trip records from NYC, collected over a period of 72 months [48]. Each

record 𝑟 in Trip is denoted as (𝑜 , 𝑑 , 𝑡), where 𝑜/𝑑 indicates its origin/destination location, and 𝑡

refers to its pick-up time. Trip records flow into S based on their pick up time and expire from S
after another |S| objects flow into S. KCP search can find highly similar bookings.

(iii) Multi. It contains 1G 4-dimensional objects divided into 1, 024 equal-sized subsets. Objects in

the same subset follow a common normal distribution with mean and standard deviation randomly

generated from the ranges of [1000,9000] and [1,10], respectively. We use this dataset to evaluate

the effect of data distribution on algorithm performance.

(iv) Uniform and (v) Normal. They contain 1G objects with 2 to 8 dimensions respectively,

where 4 is the default dimensionality. Objects in them follow uniform and normal distribution,

respectively. Object arrivals and expiration are randomly generated.

Distance functions. For Trip, (|𝑟2.𝑜 − 𝑟1 .𝑜 |2 + |𝑟2.𝑑 − 𝑟1.𝑑 |2 + 𝛼 |𝑟2.𝑡 − 𝑟1.𝑡 |2)1/2 is the distance

function, where 𝛼 is a constant related to the average speed of taxis and it is set to 40 in our

implementation. For other datasets, Euclidean distance between objects is considered.

Query workload. Each query workload consists of 100 queries. The values of 𝑘 in each query

workload follow normal distribution, with the mean values listed in Table 2 and a standard deviation

(SD) of 1.

Other Parameters. We evaluate the performance of different algorithms under parameters 𝑛 and

𝑠 . 𝑛 refers to the size of the streaming data set S; and 𝑠 refers to the update rate of the stream;

specifically, 𝑠% × 𝑛 new objects flow into S whenever S updates, and 𝑠% × 𝑛 existing objects expire

from S. We use parameter 𝑠 to simulate the speed of the stream. In addition, we study the impact

of 𝜏 on 𝜏-DLBP, as it only maintains top-𝜏 NN pairs in TNNS. Table 2 shows the parameter settings,

with bold indicating the default values.

Performance Metrics. We use the following five performance metrics. 1) Overall running time
measures the algorithm’s performance when handling query workloads and updates. We report the

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:20 Rui Zhu et al.

0

40

80

120

160

200

0.1M 0.5M 1M

R
u
n
n
i
n
g

T
i
m
e
(
S
)

Streaming Data Scale(M)

(a) Stock

0

40

80

120

160

200

0.1M 0.5M 1M

R
u
n
n
i
n
g

T
i
m
e
(
S
)

Streaming Data Scale(M)

(b) Trip

0

40

80

120

160

200

0.1M 0.5M 1M

R
u
n
n
i
n
g

T
i
m
e
(
S
)

Streaming Data Scale(M)

(c) Multi

0

40

80

120

160

200

0.1M 0.5M 1M

R
u
n
n
i
n
g

T
i
m
e
(
S
)

Streaming Data Scale(M)

(d) Uniform

0

40

80

120

160

200

0.1M 0.5M 1M
R
u
n
n
i
n
g

T
i
m
e
(
S
)

Streaming Data Scale(M)

(e) Normal

Fig. 5. Overall Performance Comparison under different 𝑛 (mean of 𝑘 = 100, 𝑠 = 1% × 𝑛 and 𝜏 = 100)

average time required to handle 100 query workloads and 1M updates. 2) Construction time evaluates
how fast the algorithms can construct their indexes during initialization. 3) Data throughput
measures the average number of updates per second that the algorithm can process, which indicates

how fast the algorithms respond to updates. 4) Query throughput measures the average number of

queries per second that the algorithm can process, which indicates how fast the algorithms respond

to KCP search. 5) Index size records the average size of the indexes used by different algorithms.

Competitors. This study presents the first attempt to support KCP search over data streams. We

extend several state-of-the-art algorithms to serve as competitors.

(i) C-Box [5]: It maintains all MNNs to support 1CP search. To support KCP search, we maintain

all NN pairs instead. In other words, C-Box borrows the algorithm from NNS to support KCP search

but uses a different index to maintain streaming data.

(ii) Random [6]: It can support 1CP as it has the closest pair in the last partition. To support KCP

search, we assume that it uses the last partition to maintain TNNS, following the logic discussed in

Section 4. It borrows the algorithm from TNNS to support KCP search but uses a different approach

to partition the streaming data.

(iii) LIST [29]: It supports KCP search under sliding window based on domination relationship

among pairs, which is not applicable in our setting. We modify it to maintain 𝑛′ (∈ [
√
𝑛, 2
√
𝑛]) pairs

with the smallest scores, similar to the buffer-based algorithm [1]. LIST pre-processes KCP search

and can provide immediate answer if 𝑘 ≤ 𝑛′, but it cannot support KCP search when 𝑘 > 𝑛′.
(iv) LIST-NN [30] and (v) M-Tree [8]: They use inverted-list-based and M-Tree-based structures,

respectively, to maintain streaming data and support KCP search via maintaining all NN pairs.

(vi) R-Tree [25]: It does not consider how to support KCP search under data stream. We modify it

by borrowing the algorithm from QC-Tree to incrementally maintain all NN pairs to support KCP

search.

In addition to these six competitors, we implement QC-Tree and 𝜏-DLBP, two structures proposed

in this paper to support KCP search. The former maintains all NN pairs via a tree structure and

supports KCP search via algorithm 1. The latter partitions objects based on their score lower bounds

and maintains top-𝜏 NN pairs via TNNS. All algorithms are implemented in C++, purely in memory,

and experiments are conducted on a 622R CPU with 256GB of memory, running on Win 10.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:21

5.2 Algorithm Comparisons

Overall Performance Comparison. We first conduct experiments to compare the overall per-

formance of all the algorithms across different 𝑛 values. Figure 5 reports the average running times

of the algorithms handling 1M updates and 100 query workloads. We find that 𝜏-DLBP consistently

outperforms all competitors across all datasets. For example, under Stock, it is on average 5𝑋 , 8.2𝑋 ,

4.5𝑋 , 9𝑋 , 30.3𝑋 , 50𝑋 , and 53𝑋 times faster than QC-Tree, M-Tree, Random, R-Tree, C-Box, LIST, and

LIST-NN, respectively. This result is mainly due to 𝜏-DLBP’s ability to avoid maintaining all NN pairs

while keeping the number of partitions bounded by O(log 𝑛
𝜏
). This feature allows for processing of

every newly arrived or expired object within logarithmic time. In contrast, QC-Tree, M-Tree, R-Tree,

C-Box and LIST-NN have to maintain all NN pairs, while Random may result in partitions that are

either too small or too large. When there are too many partitions, each newly arrived object has to

access many partitions, and when there are too few partitions, the cost of local re-partition or KCP

search may be high. LIST, on the other hand, incurs high overall cost because newly arrived objects

have to access multiple elements in each inverted list.

Secondly, we observe that the running time of 𝜏-DLBP is stable and not sensitive to data distribu-

tion. As 𝜏-DLBP organizes objects based on their scores or the lower score bounds, the distribution

of the streaming dataset has a limited impact on its performance. In contrast, Random is sensitive

to data distribution and may not form a suitable partition when data is skewed distributed. This

explains why Random incurs much longer running time under Stock and Normal. Similarly,M-tree,

C-Box, QC-Tree and R-tree are sensitive to the change of data distribution too, causing their running

times to increase significantly under different scenarios. For example, they all require significantly

longer running time under Multi and Normal. These algorithms need to frequently adjust the

tree structure to accommodate the changes in data distribution.

Thirdly, we observe that QC-Tree outperforms M-Tree. One possible reason is that when the data

dimension is low, the distribution of streaming data is not sparse, and the L cubes used by QC-Tree

provide objects with relatively tight boundary. Since there is no overlapping among different L

cubes, QC-Tree has a stronger pruning ability. However, when data dimension 𝑑 increases, the

searching radius of QC-Tree also increases, leading to the algorithm accessing more cubes when

searching for object’ NN. This partly offsets the advantages of QC-Tree discussed earlier. Specifically,

we find that when the data dimension 𝑑 equals to 4, the running time difference between these two

algorithms becomes small.

Lastly, we observe that LIST and LIST-NN perform significantly worse than the other algorithms

across all datasets and for various𝑛 values. While LIST can provide immediate answers to KCP search

when 𝑘 ≤ 𝑛′ by maintaining 𝑛′ pairs with the smallest scores, it is not suitable for a highly dynamic

environment where objects frequently change. The reported running time is based on handling 1M

updates and 100 query workloads, which is mainly dominated by the updates. Similarly, LIST-NN is

also unsuitable for supporting KCP search under data streams. For example, the running time of

both algorithms exceeds 200 seconds in most cases, while 𝜏-DLBP takes less than 10 seconds. Thus,

for clearer presentation, we exclude LIST and LIST-NN from the remaining experiments.

Construction Cost Comparison.We evaluate the cost of index construction for all the algorithms

across different datasets. The results, as shown in Figures 6(a), 6(e), 6(i), 6(m), and 6(q), indicate that

𝜏-DLBP has the most efficient index construction. This is because 𝜏-DLBP partitions objects based

on side-length of their L-Cubes, which reduces the number of NNs that need to be found, resulting

in a significant reduction in construction time. In contrast, Random often fails to create proper

partition, leading to repeated partitioning and higher construction costs; tree based algorithms

have to find NNs for all the objects and hence their construction cost is high.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:22 Rui Zhu et al.

0

200

400

600

0 2 4 6 8 10

C
o
n
s
t
r
u
c
t
i
o
n

T
i
m
e
(
S
)

Streaming Data Scale(M)

(a) Stock

0

100

200

300

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

Streaming Data Scale(M)

(b) Stock

0

50

100

150

200

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

The Update Ratio(% n)

(c) Stock

0

0.5

1

1.5

2

200 400 600 800 1000

Q
u
e
r
y

T
h
r
o
u
g
h
p
u
t
(
K
/
m
s
)

The Parameter k

(d) Stock

0

100

200

300

400

500

0 2 4 6 8 10

C
o
n
s
t
r
u
c
t
i
o
n

T
i
m
e
(
S
)

Streaming Data Scale(M)

(e) Trip

0

100

200

300

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

Streaming Data Scale(M)

(f) Trip

0

50

100

150

200

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

The Update Ratio(% n)

(g) Trip

0

0.5

1

1.5

2

200 400 600 800 1000

Q
u
e
r
y

T
h
r
o
u
g
h
p
u
t
(
K
/
m
s
)

The Parameter k

(h) Trip

0

200

400

600

0 2 4 6 8 10

C
o
n
s
t
r
u
c
t
i
o
n

T
i
m
e
(
S
)

Streaming Data Scale(M)

(i) Multi

0

100

200

300

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

Streaming Data Scale(M)

(j) Multi

0

50

100

150

200

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

The Update Ratio(% n)

(k) Multi

0

0.5

1

1.5

2

200 400 600 800 1000

Q
u
e
r
y

T
h
r
o
u
g
h
p
u
t
(
K
/
m
s
)

The Parameter k

(l) Multi

0

200

400

600

0 2 4 6 8 10

C
o
n
s
t
r
u
c
t
i
o
n

T
i
m
e
(
S
)

Streaming Data Scale(M)

(m) Uniform

0

100

200

300

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

Streaming Data Scale(M)

(n) Uniform

0

50

100

150

200

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

The Update Ratio(% n)

(o) Uniform

0

0.5

1

1.5

2

200 400 600 800 1000

Q
u
e
r
y

T
h
r
o
u
g
h
p
u
t
(
K
/
m
s
)

The Parameter k

(p) Uniform

0

200

400

600

0 2 4 6 8 10

C
o
n
s
t
r
u
c
t
i
o
n

T
i
m
e
(
S
)

Streaming Data Scale(M)

(q) Normal

0

100

200

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

Streaming Data Scale(M)

(r) Normal

0

50

100

150

200

0 2 4 6 8 10

D
a
t
a

T
h
r
o
u
g
h
p
u
t
(
K
/
S
)

The Update Ratio(% n)

(s) Normal

0

0.5

1

1.5

2

200 400 600 800 1000Q
u
e
r
y

T
h
r
o
u
g
h
p
u
t
(
k
/
m
s
)

The Parameter k

(t) Normal

Fig. 6. Algorithms Comparison under different datasets (𝑛 =1M, 𝑠 = 1% × 𝑛, mean of 𝑘 = 100, and 𝜏 = 100)

Data Throughput Comparison. Figures 6(b), 6(f), 6(j), 6(n), and 6(r) show the data throughput

results of various algorithms for different 𝑛 values. 𝜏-DLBP performs the best again, in part because

most objects under 𝜏-DLBP can be inserted into a proper partition by accessing a small number of

partitions. By contrast, inserting an object into a QC-Tree or C-Box incurs a running cost that is

linear to their heights. Furthermore, we find that QC-Tree always outperforms C-Box, as QC-Tree

can efficiently adjust its structure to maintain a balance. Also, QC-Tree always outperforms M-tree

and R-tree. One main reason is there is no overlapping among different L cubes and QC-Tree has

a stronger pruning ability. We also find that Random performs better than QC-Tree in most cases,

though it has a similar data throughput than QC-Tree under Stock. This well demonstrates that the

performance of Random is not stable as it cannot always find suitable “pivots points”, especially

when data distribution is skewed.

We also report the data throughput under different 𝑠 values, with 𝑛 fixed at 1M, in Figures 6(c),

6(g), 6(k), 6(o), and 6(s). We observe that as 𝑠 increases, all the algorithms have higher throughput

and 𝜏-DLBP again performs the best. The reason is that a larger 𝑠 leads to lower cost for processing

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:23

10-1

100

101

102

103

2 3 4 5 6 7 8

D
a
t
a

T
h
r
o
u
g
h
p
t
u
(
K
/
s
)

Data Dimonsion(d)

(a) Uniform

10-1

100

101

102

103

2 3 4 5 6 7 8

D
a
t
a

T
h
r
o
u
g
h
p
t
u
(
K
/
s
)

Data Dimonsion(d)

(b) Normal

Fig. 7. Update Time vs. 𝑑 using synthetic datasets

expiration objects. For example, suppose 𝑝 (𝑜, 𝑜 ′) is a NN pair. If 𝑜 and 𝑜 ′ both expire from S at the

same time, we do not need to re-search their NNs.

Query Throughput Comparison.We then evaluate the query throughput of KCP search using

different algorithms. As QC-Tree, C-BOX and R-Tree use the same KCP search algorithm, they incur

the same query throughput and we only report the results under QC-Tree. Figures 6(d), 6(h), 6(l),

6(p) and 6(t) report the results. As expected, QC-Tree outperforms others since it can quickly find

the answer to KCP search by accessing objects that form the top-𝑘 NN pairs. On the other hand,

M-Tree requires a longer query time than QC-Tree, as it considers top-2𝑘 pairs when supporting KCP

search. 𝜏-DLBP achieves comparable performance, with a query throughput about 75% of QC-Tree,

thanks to its proper partitioning of objects and the ability to support KCP search via accessing a

small number of partitions even when 𝑘 > 𝜏 . In contrast, Random requires a much longer query

time, highlighting the importance of proper partitioning, as the main difference between Random

(after major extension) and 𝜏-DLBP is the way they form partitions.

Data Throughput vs. 𝑑 .We further evaluate the data throughput of different algorithms when

dimansionality𝑑 increases, with the results reported in Figure 7.We observe that the data throughput

of all algorithms decreases with the increase of 𝑑 , and 𝜏-DLBP outperforms all the competitors

once again. One important reason for this is that as 𝑑 increases, the score difference among objects

becomes smaller, leading to fewer partitions that need to be maintained. We also find that after

𝑑 reaches 5, M-Tree outperforms QC-Tree. One reason is that when 𝑑 increases, the search region

under QC-Tree becomes larger, and more cubes need to be accessed. In contrast, M-Tree uses a

distance-based split criterion to guide the tree construction, which ensures that nearby points are

grouped together in the same sub-tree, thereby reducing the search space.

Index Size Comparison.We report the index size of different algorithms in Table 3. It is observed

that the size difference among various indexes is small. All the algorithms have to spend extra

space in maintaining streaming data. For example, 𝜏-DLBP and Random use a group of hash tables

to maintain objects in each partition; QC-Tree, C-Box, and R-Tree have to maintain all NN pairs.

QC-Tree vs.Quad-Tree. To demonstrate the advantage of QC-Tree overQuad-Tree, we compare their

performance via an experimental study. We observe consistent comparison trends across all five

datasets, though the advantage of QC-Tree over Quad Tree diminishes as 𝑑 increases. For the sake of

brevity, we only report our results on Trip (𝑑 = 3) under different 𝑛 values in Table 4. As observed,

QC-Tree is more efficient in terms of construction and incremental maintenance, primarily due to

its lower height. As a contrast, Quad-Tree may have a higher height if the object distribution is

skewed, which can result in more processing time for range queries during the construction and

maintenance of NNS.

The impact of 𝜏 . In our last set of experiments, we evaluate the impact of 𝜏 on the performance

of 𝜏-DLBP. The overall running time required by 𝜏-DLBP for handling 1M updates and 100 query

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:24 Rui Zhu et al.

Table 3. Index size of different algorithms (unit:MB)

Dataset Stock(𝑑 = 2) Trip(𝑑 = 3) Multi(𝑑 = 4) Normal(𝑑 = 4) Uniform(𝑑 = 4)

𝜏-DLBP 49.0 73.2 92.1 91.8 94.2

QC-Tree 53.0 81.0 106.5 111.7 109.2

Random 42.0 64.0 72.5 79.1 76.1

C-Box 51.6 72.0 107.4 105.9 103.1

M-Tree 55.1 80.0 112.1 117.4 119.2

R-Tree 57.1 84.2 109.3 115.2 116.4

Table 4. QC-Tree vs. Quad-Tree under Trip (𝑑 = 3)

streaming data scale 𝑛 100K 200K 500K 1M 2M 5M 10M

QC-Tree

Construction Time (s) 2.1 4.8 11.8 24.9 60.1 129.1 288.7

Data Throughput (K/S) 34.6 33.3 33.3 29.3 27.3 25.3 23.9

Average Height 6.4 7.1 8.5 8.9 9.3 10.6 11.2

Quad-Tree

Construction Time (s) 3.1 6.3 14.1 28.7 64.9 147.4 316.5

Data Throughput (K/S) 29.7 27.2 26.5 24.3 22.8 20.8 18.4

Average Height 10.3 10.8 11.5 12.6 13.1 14.3 15.1

Table 5. Overall running time of 𝜏-DLBP vs. 𝜏 (unit: s)

𝜏 10 50 100 200 300 400 400 600 800 1000

Stock 2.77 2.69 2.71 2.66 2.66 2.66 2.68 2.72 2.76 2.80

Trip 3.93 3.84 3.80 3.79 3.79 3.79 3.77 3.82 3.86 3.88

Mutli 4.96 4.84 4.77 4.77 4.77 4.79 4.76 4.71 4.66 4.75

Normal 4.41 4.23 4.02 4.02 4.02 3.99 3.76 3.71 3.86 3.95

Uniform 4.20 4.50 4.10 4.10 4.10 4.40 3.90 3.80 4.00 4.40

workloads under different 𝜏 values is reported in Table 5. The result shows that the parameter 𝜏 has a

relatively small impact on the performance of 𝜏-DLBP. While a small 𝜏 reduces the maintenance cost,

it increases query time, as discussed in Section 4.4. Nevertheless, its impact on overall performance

is small. Notably, even when 𝜏 = 10, which is much smaller than the mean of 𝑘 (= 100), 𝜏-DLBP still

outperforms its competitors (whose performance is shown in Figure 5) by a significant margin.

6 CONCLUSION AND FUTUREWORKS
In this paper, we propose a novel concept named NNS for supporting KCP search over stream

data. It is able to return the result pairs via accessing O(𝑘) objects. Furthermore, we propose

TNNS and a group of algorithms for supporting KCP search under TNNS. We have conducted

extensive experiments to evaluate the performance of our proposed algorithms on several datasets

with different distributions. The results demonstrate the superior performance of our proposed

algorithms.

In the near future, we would like to study approximate search to support KCP search in streaming

data with higher dimensionalities. We plan to propose a 𝜏-DLBP-alike structure to organize objects,

but apply an approximate algorithm with error guarantee to calculate approximate scores/score

lower bounds of objects, which can provide a flexible trade-off between query quality and update

efficiency to cater for different needs of real applications and alleviate the curse of dimensionality.

ACKNOWLEDGMENTS
The work is partially supported by the National Natural Science Foundation of Liao Ning (2022-

MS-302, 2022-MS-303 and 2022-BS-218), the National Key Research and Development Program of

China (2020YFB1707901), National Natural Science Foundation of China (Nos. U22A2025, 62072088,

62232007, 61991404), Ten Thousand Talent Program (No.ZX20200035), and Science and Technology

Projects in Liaoning Province (No. 2023JH2/101300182).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

Closest Pairs Search Over Data Stream 205:25

REFERENCES
[1] Michiel H. M. Smid. Closest-point problems in computational geometry. In Handbook of Computational Geometry,

pages 877–935. North Holland / Elsevier, 2000.

[2] Timothy M. Chan. Dynamic generalized closest pair: Revisiting eppstein’s technique. In 3rd Symposium on Simplicity
in Algorithms, SOSA 2020, Salt Lake City, UT, USA, January 6-7, 2020, pages 33–37. SIAM, 2020.

[3] Sanguthevar Rajasekaran, Subrata Saha, and Xingyu Cai. Novel exact and approximate algorithms for the closest pair

problem. In ICDM 2017, New Orleans, LA, USA, November 18-21, 2017, pages 1045–1050. IEEE Computer Society, 2017.

[4] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassilakopoulos. Closest pair queries in

spatial databases. In SIGMOD 2000, May 16-18, 2000, Dallas, Texas, USA, pages 189–200. ACM, 2000.

[5] Sergei Bespamyatnikh. An optimal algorithm for closest-pair maintenance. Discret. Comput. Geom., 19(2):175–195,
1998.

[6] Mordecai J. Golin, Rajeev Raman, Christian Schwarz, and Michiel H. M. Smid. Randomized data structures for the

dynamic closest-pair problem. SIAM J. Comput., 27(4):1036–1072, 1998.
[7] Christian Schwarz, Michiel H. M. Smid, and Jack Snoeyink. An optimal algorithm for the on-line closest-pair problem.

Algorithmica, 12(1):18–29, 1994.
[8] Yunjun Gao, Lu Chen, Xinhan Li, Bin Yao, and Gang Chen. Efficient k-closest pair queries in general metric spaces.

VLDB J., 24(3):415–439, 2015.
[9] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: A review. ACM Comput. Surv., 31(3):264–323,

1999.

[10] David Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs. ACM J. Exp. Algorithmics,
5:1, 2000.

[11] Alexandros Nanopoulos, Yannis Theodoridis, and Yannis Manolopoulos. C
2
p: Clustering based on closest pairs. In

VLDB 2001, September 11-14, 2001, Roma, Italy, pages 331–340. Morgan Kaufmann, 2001.

[12] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. Self-adaptive anytime stream clustering. In ICDM
2009, Miami, Florida, USA, 6-9 December 2009, pages 249–258. IEEE Computer Society, 2009.

[13] Dingming Wu, Erjia Xiao, Yi Zhu, Christian S. Jensen, and Kezhong Lu. Efficient retrieval of the top-kk most relevant

event-partner pairs. IEEE Trans. Knowl. Data Eng., 35(3):2529–2543, 2023.
[14] Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Kinetic and dynamic data structures for closest pair and all nearest

neighbors. ACM Trans. Algorithms, 5(1):4:1–4:37, 2008.
[15] Jianzhong Qi, Rui Zhang, Christian S. Jensen, Kotagiri Ramamohanarao, and Jiayuan HE. Continuous spatial query

processing: A survey of safe region based techniques. ACM Comput. Surv., 51(3), may 2018.

[16] Yuandong Wang, Hongzhi Yin, Lian Wu, Tong Chen, and Chunyang Liu. Secure your ride: Real-time matching success

rate prediction for passenger-driver pairs. IEEE Trans. Knowl. Data Eng., 35(3):3059–3071, 2023.
[17] Arneish Prateek, Arijit Khan, Akshit Goyal, and Sayan Ranu. Mining top-k pairs of correlated subgraphs in a large

network. Proc. VLDB Endow., 13(9):1511–1524, 2020.
[18] Jeffrey D. Ullman and Jonathan R. Ullman. Some pairs problems. In Proceedings of the 3rd ACM SIGMOD Workshop on

Algorithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2016, San Francisco, CA, USA, July 1, 2016,
page 8. ACM, 2016.

[19] Fangwei Wu, Xike Xie, and Jieming Shi. Top-k closest pair queries over spatial knowledge graph. In Database Systems
for Advanced Applications - 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11-14, 2021, Proceedings,
Part I, volume 12681 of Lecture Notes in Computer Science, pages 625–640. Springer, 2021.

[20] Dingming Wu, Yi Zhu, and Christian S. Jensen. In good company: Efficient retrieval of the top-k most relevant

event-partner pairs. In Database Systems for Advanced Applications - 24th International Conference, DASFAA 2019,
Chiang Mai, Thailand, April 22-25, 2019, Proceedings, Part II, volume 11447 of Lecture Notes in Computer Science, pages
519–535. Springer, 2019.

[21] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Efficient and accurate nearest neighbor and closest pair search in

high-dimensional space. ACM Trans. Database Syst., 35(3):20:1–20:46, 2010.
[22] Bolong Zheng, Xi Zhao, Lianggui Weng, Quoc Viet Hung Nguyen, Hang Liu, and Christian S. Jensen. PM-LSH: a

fast and accurate in-memory framework for high-dimensional approximate NN and closest pair search. VLDB J.,
31(6):1339–1363, 2022.

[23] Michiel H. M. Smid. Maintaining the minimal distance of a point set in polylogarithmic time. In Proceedings of the
Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 28-30 January 1991, San Francisco, California,
USA, pages 1–6. ACM/SIAM, 1991.

[24] Sanjiv Kapoor and Michiel H. M. Smid. New techniques for exact and approximate dynamic closest-point problems.

SIAM J. Comput., 25(4):775–796, 1996.
[25] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassilakopoulos. Algorithms for processing

k-closest-pair queries in spatial databases. Data Knowl. Eng., 49(1):67–104, 2004.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

205:26 Rui Zhu et al.

[26] Yifan Zhu, Lu Chen, Yunjun Gao, and Christian S. Jensen. Pivot selection algorithms in metric spaces: a survey and

experimental study. VLDB J., 31(1):23–47, 2022.
[27] Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen. Indexing metric spaces

for exact similarity search. ACM Comput. Surv., 55(6):128:1–128:39, 2023.
[28] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. A parallel batch-dynamic data structure for the closest pair problem.

In 37th International Symposium on Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY, USA (Virtual
Conference), volume 189 of LIPIcs, pages 60:1–60:16, 2021.

[29] Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Haixun Wang. Efficiently monitoring top-k

pairs over sliding windows. In IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC,
USA (Arlington, Virginia), 1-5 April, 2012, pages 798–809, 2012.

[30] Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, and Wenjie Zhang. A unified framework for answering k

closest pairs queries and variants. IEEE Trans. Knowl. Data Eng., 26(11):2610–2624, 2014.
[31] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and M. Brandon Westover. Exact discovery of time

series motifs. In Proceedings of the SIAM International Conference on Data Mining, SDM 2009, April 30 - May 2, 2009,
Sparks, Nevada, USA, pages 473–484. SIAM, 2009.

[32] Jianzhong Qi, Rui Zhang, Christian S. Jensen, Kotagiri Ramamohanarao, and Jiayuan He. Continuous spatial query

processing: A survey of safe region based techniques. ACM Comput. Surv., 51(3):64:1–64:39, 2018.
[33] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias. Conceptual partitioning: An efficient method for

continuous nearest neighbor monitoring. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages 634–645. ACM, 2005.

[34] Baihua Zheng, Wang-Chien Lee, and Dik Lun Lee. Search continuous nearest neighbors on the air. In 1st Annual
International Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), Networking and Services, 22-25 August
2004, Cambridge, MA, USA, pages 236–245. IEEE Computer Society, 2004.

[35] Baihua Zheng, Wang-Chien Lee, and Dik Lun Lee. On searching continuous k nearest neighbors in wireless data

broadcast systems. IEEE Trans. Mob. Comput., 6(7):748–761, 2007.
[36] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitoring of spatial queries in wireless

broadcast environments. IEEE Trans. Mob. Comput., 8(10):1297–1311, 2009.
[37] Rui Zhu, Bin Wang, Xiaochun Yang, Baihua Zheng, and Guoren Wang. SAP: improving continuous top-k queries over

streaming data. IEEE Trans. Knowl. Data Eng., 29(6):1310–1328, 2017.
[38] Yunjun Gao and Baihua Zheng. Continuous obstructed nearest neighbor queries in spatial databases. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June
29 - July 2, 2009, pages 577–590. ACM, 2009.

[39] Yunjun Gao, Baihua Zheng, Wang-Chien Lee, and Gencai Chen. Continuous visible nearest neighbor queries. In

EDBT 2009, 12th International Conference on Extending Database Technology, Saint Petersburg, Russia, March 24-26, 2009,
Proceedings, pages 144–155. ACM, 2009.

[40] Yunjun Gao, Baihua Zheng, Gencai Chen, Qing Li, and Xiaofa Guo. Continuous visible nearest neighbor query

processing in spatial databases. VLDB J., 20(3):371–396, 2011.
[41] Yunjun Gao, Baihua Zheng, Gang Chen, Chun Chen, and Qing Li. Continuous nearest-neighbor search in the presence

of obstacles. ACM Trans. Database Syst., 36(2):9:1–9:43, 2011.
[42] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras, and Yufei Tao. A threshold-based algorithm for continuous

monitoring of k nearest neighbors. IEEE Trans. Knowl. Data Eng., 17(11):1451–1464, 2005.
[43] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee. Location-based spatial queries. In Proceedings

of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, June 9-12, 2003,
pages 443–454. ACM, 2003.

[44] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik. The v*-diagram: a query-dependent approach to moving

KNN queries. Proc. VLDB Endow., 1(1):1095–1106, 2008.
[45] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework for monitoring continuous spatial queries over moving

objects. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland,
USA, June 14-16, 2005, pages 479–490. ACM, 2005.

[46] Chuanwen Li, Yu Gu, Jianzhong Qi, Ge Yu, Rui Zhang, and Wang Yi. Processing moving knn queries using influential

neighbor sets. Proc. VLDB Endow., 8(2):113–124, 2014.
[47] Stefan Berchtold, Christian Böhm, Daniel A. Keim, and Hans-Peter Kriegel. A cost model for nearest neighbor search

in high-dimensional data space. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 12-14, 1997, Tucson, Arizona, USA, pages 78–86. ACM Press, 1997.

[48] https://www1.nyc.gov/site/tlc/about/tlc-trip-record data.page.

Received January 2023; revised April 2023; accepted May 2023

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 205. Publication date: September 2023.

	Closest pairs search over data stream
	Citation

	Abstract
	1 Introduction
	2 Related Works
	2.1 KCP Search
	2.2 Threshold-based Continuous Spatial Query

	3 Supporting KCP via NN Pair Set
	3.1 Supporting KCP Search Via NNS
	3.2 The Construction of NNS
	3.3 The Maintenance Algorithm

	4 Supporting KCP Via Partial NN PAIRS
	4.1 The Threshold-based NN Pair Set
	4.2 The Partition Construction
	4.3 The Partition Incremental Maintenance
	4.4 KCP Search Under TNNS and -DLBP

	5 PERFORMANCE EVALUATION
	5.1 Experiment Settings
	5.2 Algorithm Comparisons

	6 Conclusion and Future Works
	Acknowledgments
	References

