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Efficient Resource Allocation with Fairness Constraints in Restless
Multi-Armed Bandits

Dexun Li1 Pradeep Varakantham1

1School of Computing and Information Systems, Singapore Management University, Singapore

Abstract

Restless Multi-Armed Bandits (RMAB) is an apt
model to represent decision-making problems in
public health interventions (e.g., tuberculosis, ma-
ternal, and child care), anti-poaching planning,
sensor monitoring, personalized recommendations
and many more. Existing research in RMAB has
contributed mechanisms and theoretical results to
a wide variety of settings, where the focus is on
maximizing expected value. In this paper, we are
interested in ensuring that RMAB decision mak-
ing is also fair to different arms while maximiz-
ing expected value. In the context of public health
settings, this would ensure that different people
and/or communities are fairly represented while
making public health intervention decisions. To
achieve this goal, we formally define the fairness
constraints in RMAB and provide planning and
learning methods to solve RMAB in a fair manner.
We demonstrate key theoretical properties of fair
RMAB and experimentally demonstrate that our
proposed methods handle fairness constraints with-
out sacrificing significantly on solution quality.

1 INTRODUCTION

Picking the right time and manner of limited interventions
is a problem of great practical importance in tuberculo-
sis [Mate et al., 2020], maternal and child care [Biswas et al.,
2021, Mate et al., 2021b], anti-poaching operations [Qian
et al., 2016], cancer detection [Lee et al., 2019], and many
others. All these problems are characterized by multiple
arms (i.e., patients, pregnant mothers, regions of a forest)
whose state evolves in an uncertain manner (e.g., medica-
tion usage in the case of tuberculosis, engagement patterns
of mothers on calls related to good practices in pregnancy)
and threads moving to "bad" states have to be steered to

"good" outcomes through interventions. The key challenge
is that the number of interventions is limited due to a lim-
ited set of resources (e.g., public health workers, patrol
officers in anti-poaching operations). Restless Multi-Armed
Bandits (RMAB), a generalization of Multi-Armed Bandits
(MAB) that allows non-active bandits to also undergo the
Markovian state transition, has become an ideal model to
represent the aforementioned problems of interest as it mod-
els uncertainty in arm transitions (to capture uncertain state
evolution), actions (to represent interventions) and budget
constraint (to represent limited resources).

Existing work [Mate et al., 2020, Biswas et al., 2021, Mate
et al., 2021a] has focused on developing theoretical insights
and practically efficient methods to solve RMAB. At each
decision epoch, RMAB methods identify arms that provide
the biggest improvement with an intervention. Such an ap-
proach though technically optimal can result in certain arms
(or type of arms) getting starved for interventions.

In the case of interventions with regards to public health,
RMAB algorithms focus interventions on the top beneficia-
ries who will improve the objective (public health outcomes)
the most. This can result in certain beneficiaries never talk-
ing to public health workers and thereby moving to bad
states (and potentially also impacting other beneficiaries
in the same community) from where improvements can be
minor even with intervention and hence never getting picked
by RMAB algorithms. As shown in Fig. 1, when using the
Threshold Whittle index approach proposed by Mate et al.
[2020], the arm activation probability is lopsided, with 30%
of arms getting activated more than 50 times and 50% of the
arms are never activated. Such starvation of interventions
can result in arms moving to a bad state from where inter-
ventions cannot provide big improvements and therefore
there is further starvation of interventions for those arms.
Such starvation can happen to entire regions or communities,
resulting in lack of fair support for beneficiaries in those
regions/communities. To avoid such cycles between bad
outcomes, there is a need for RMAB algorithms to consider
fairness in addition to maximizing expected reward when

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR 180:1158–1167.

mailto:<dexunli.2019@phdcs.smu.edu.sg>?Subject=Your UAI 2022 paper


picking arms. Risk sensitive RMAB [Mate et al., 2021b]
considers an objective that targets to reduce such starvation,
however, they do not guarantee that arms (or types of arms)
are picked a minimum number of times.
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Figure 1: The x-axis is the number of times activated, and
the y-axis is the percentage of each frequency range. We
consider the RMAB given in Section 2, with k = 10, N =
100, T = 1000 and L = 50, η = 2. Left: the result of using
the Whittle index algorithm without considering fairness
constraints. Right: the result of when considering fairness
constraints. As can be noted, without fairness constraints in
place, almost 50% of the arms never get activated.

Recent work in Multi-Armed Bandits (MAB) has presented
different notions of fairness. For example, Li et al. [2019]
study a Combinatorial Sleeping MAB model with Fairness
constraints, called CSMAB-F. The fairness constraints en-
sure a minimum selection fraction for each arm. Patil et al.
[2020] introduce similar fairness constraints in the stochastic
multi-armed bandit problem, where they use a pre-specified
vector to denote the guaranteed number of pulls. Joseph et al.
[2016] define fairness as saying that a worse arm should not
be picked compared to a better arm, despite the uncertainty
on payoffs. Chen et al. [2020] define the fairness constraint
as a minimum rate that is required when allocating a task
or resource to a user. The above fairness definitions are rel-
evant and we generalize from these to propose a fairness
notion for RMAB. Unfortunately, approaches developed for
fair MAB cannot be utilized for RMAB, due to uncertain
state transitions with passive actions as well.

Contributions: To the best of our knowledge, this is the
first paper to consider fairness constraints in RMAB. Here
are the key contributions:

• We propose a fairness constraint wherein for any arm
(or more generally, for a type of arm), we require that
the number of decision epochs since the arm (or the
type of arm) was activated last time is upper bounded.
This will ensure that every arm (or type of arm) gets ac-
tivated a minimum number of times, thus generalizing
on the fairness notions in MAB described earlier.

• We provide a modification to the Whittle index algo-
rithm that is scalable and optimal while being able to
handle both finite and infinite horizon cases. We also
provide a model-free learning method to solve the prob-
lem when the transition probabilities are not known

beforehand.

• Experiment results on the generated dataset show that
our proposed approaches can achieve good perfor-
mance while still satisfying the fairness constraint.

2 PROBLEM DESCRIPTION

In this section, we formally introduce the RMAB problem.
There are N independent arms, each of which evolves ac-
cording to an associated Markov Decision Process (MDP).
An MDP is characterized by a tuple {S,A,P, r}, where S
represents the state space, A represents the action space,
P represents the transition function, and r is the state-
dependent reward function. Specifically, each arm has a
binary-state space: 1 ("good") and 0 ("bad"), with action-
dependent transition matrix P that is potentially different
for each arm. Let ait ∈ {0, 1} denote the action taken at
time step t for arm i, and ait = 1(ait = 0) indicates an active
(passive) action for arm i. Due to limited resources, at each
decision epoch, the decision-maker can activate (or inter-
vene on) at most k out ofN arms and receive reward accrued
from all arms determined by their states.

∑N
i=1 a

i
t = k de-

scribes this limited resource constraint. Figure 2 provides
an example of an arm in RMAB.

0
(bad)

1
(good)

P01
i,a , P01

i,p

P10
i,a , P10

i,p

P11
i,a , P11

i,p
P00
i,a , P00

i,p

Figure 2: a and p denote the active and passive actions on
arm i respectively. P i,as,s′ and P i,ps,s′ are the transition probabil-
ities from state s to state s′ under action a and p respectively
for arm i.

The state of arm i evolves according to the transition matrix
P a,is,s′ for the active action and P p,is,s′ for the passive action.
We follow the setting in Mate et al. [2020], when the arm i
is activated, the latent state of arm i will be fully observed
by the decision-maker. The states of passive arms are unob-
served by the decision-maker.

When considering such partially observable problem, it is
sufficient to let the MDP state be the belief state: the proba-
bility that the arm is in the "good" state. We need to keep
track of the belief state on the current state of the unob-
served arm. This can be derived from the decision-maker’s
partial information which is encompassed by the last ob-
served state and the number of decision time steps since the
last activation of the arm. Let ωis(u) denote the belief state,
i.e., the probability that the state of arm i is 1 when it was
activated u time steps ago with the observed state s. The
belief state in next time step can be obtained by solving the
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following recursive equations:

ωis(u+ 1) =

{
ωis(u)P p,i1,1 + (1− ωis(u))P p,i0,1 passive
P i,as′,1 active

(1)
Where s′ is the new state observed for arm i when the
active action was taken. The belief state can be calculated
in closed form with the given transition probabilities. We
let ω = ωis(u+ 1) for ease of explanation when there is no
ambiguity.

A policy π maps the belief state vector Ωt = {ω1
t , · · · , ωNt }

at each time step t for all arms to the action vector, at =
{0, 1}N . Here ωit is the belief state for arm i at time step t.
We want to design an optimal policy to maximize the cumu-
lative long-term reward over all the arms. One widely used
performance measure is the expected discounted reward
over the horizon T :

Eπ[

T∑
t=1

βt−1Rt(Ωt, π(Ωt))|Ω0]

Here Rt(Ωt, π(Ωt)) is the reward obtained in slot t under
action at = π(Ωt) determined by policy π, β is the discount
factor. As we discussed in the introduction, in addition to
maximizing the cumulative reward, ensuring fairness among
the arms is also a key design concern for many real-world
applications. In order to model the fairness requirement,
we introduce constraints that ensure that any arm (or kind
of arms) is activated at least η times during any decision
interval of length L. The overall optimization problem cor-
responding to the problem at hand is thus given by:

maximize
π

Eπ[

T∑
t=1

βt−1Rt(Ωt, π(Ωt))|Ω0]

subject to
N∑
i

ait = k, ∀t ∈ {1, . . . , T}

u+L∑
t=u

ait ≥ η ∀u ∈ {1, . . . , T − L},∀i ∈ {1, . . . , N}.

(2)
η is the minimum number of times an arm should be ac-
tivated in a decision period of length L. The strength of
fairness constraints is thus governed by the combination of
L and η. Obviously, this requires k × L > N × (η − 1) as
the fairness constraint should meet the resource constraint.
This fairness problem can be formulated at the level of re-
gions/communities by also summing over all the arms, i in
a region in the second constraint, i.e.,

∑
i∈r

u+L∑
t=u

ait ≥ η

Our approaches with a simple modification are also ap-
plicable to this fairness constraint at the level of re-
gions/communities.

3 BACKGROUND: WHITTLE INDEX

In this section, we describe the Whittle Index algo-
rithm [Whittle, 1988] to solve RMAB. This algorithm at ev-
ery time step, computes index values (Whittle Index values)
for every arm and then activates the arms that have the top
"k" index values. Whittle index quantifies how appealing it
is to activate a certain arm. This algorithm provides optimal
solutions if the underlying RMAB satisfies the indexability
property, defined in Definition 1.

Formally1, the Whittle index of an arm in a belief state ω
(i.e., the probability of good state 1) is the minimum subsidy
λ such that it is optimal to make the arm passive in that
belief state. Let Vλ,T (ω) denote the value function for the
belief state ω over a horizon T . Then it could be written as

Vλ,T (ω) = max{Vλ,T (ω; a = 0), Vλ,T (ω; a = 1)}, (3)

where Vλ,T (ω; a = 0) and Vλ,T (ω; a = 1) denote the value
function when taking passive and active actions respectively
at the first decision epoch followed by optimal policy in the
future time steps. Because the expected immediate reward
is ω and subsidy for a passive action is λ, we have the value
function for passive action as:

Vλ,T (ω, a = 0) = λ+ ω + βVλ,T−1(τ1(ω)), (4)

where τ1(ω) is the 1-step belief state update of ω when the
passive arm is unobserved for another 1 consecutive slot (see
the update rule in Eq. 1). Note that ω is also the expected
reward associated with that belief state. For an active action,
the immediate reward is ω and there is no subsidy. However,
the actual state will be known and then evolve according to
the transition matrix for the next step:

Vλ,T (ω, a = 1) = ω+β(ωVλ,T−1(P a1,1)+

(1− ω)Vλ,T−1(P a0,1)). (5)

Definition 1 An arm is indexable if the passive set under
the subsidy λ given as Pλ = {ω : Vλ,T (ω, a = 0) ≥
Vλ,T (ω, a = 1)} monotonically increases from ∅ to the
entire state space as λ increases from−∞ to∞. The RMAB
is indexable if every arm is indexable.

Intuitively, this means that if an arm takes passive action
with subsidy λ, it will also take passive action if λ′ > λ.
Given the indexability, WT (ω) is the least subsidy, λ that
makes it equally desirable to take active and passive actions.

WT (ω) = inf
λ
{λ : Vλ,T (ω; a = 1) ≤ Vλ,T (ω; a = 0)}

(6)
1Since we will only be talking about one arm at a time step,

we will abuse the notation by not indexing belief, action and value
function with arm id or time index.
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Definition 2 A policy is a threshold policy if there exists
a threshold λth such that the action is passive a = 0 if
λ > λth and a = 1 otherwise.

Existing efficient methods for solving RMABs derive these
threshold policies.

4 FAIRNESS IN RMAB

The key advantage of a Whittle index based approach is
scalability without sacrificing solution quality. In this sec-
tion, we provide Whittle index based approaches to handle
fairness constraints under known and unknown transition
models, with both infinite and finite horizon settings. We
specifically consider partially observable settings2.

4.1 INFINITE HORIZON

When we need to consider the partial observability of the
state of the RMAB problem, it is sufficient to let the MDP
state be the belief state: the probability that the arm is in
the "good" state [Kaelbling et al., 1998]. As a result, the
partially observable RMAB has a large number of belief
states [Mate et al., 2020].

Recall that the definition of the Whittle index WT (ω) of
belief state ω is the smallest λ s.t. it is optimal to make the
arm passive in the current state. We can compute the Whittle
index value for each arm, and then rank the index value of
allN arms and select top k arms at each time step to activate.
With fairness constraints, the change to the approach is mini-
mal and intuitive. The optimal policy is to choose the arms
with the top "k" index values until a fairness constraint is
violated for an arm. In that time step, we replace the last
arm in top-k with the arm for which fairness constraint is
violated. We show that this simple change works across the
board for the infinite and finite horizon, fully and partially
observable settings. We provide the detailed algorithm in
Algorithm 1 and also provide sufficient conditions under
which the Algorithm 1 is optimal.

We now provide the expression for λ. Vλ,∞(ω) denotes
the value that can be accrued from a single-armed bandit
process with subsidy λ over infinite time horizon (T →∞)
if the belief state is ω. Therefore, we have:

Vλ,∞(ω) = max

{
λ+ ω + βVλ,∞(τ1(ω)) passive
ω + β

(
ωVλ,∞(P a1,1) + (1− ω)Vλ,∞(P a0,1)

)
active

(7)

For any belief state ω, the u-steps belief update τu(ω) will

converge to ω∗ as u → ∞, where ω∗ =
Pp0,1

1+Pp0,1−P
p
1,1

. It
should be noted that this convergence can happen in two
ways depending on the state transition patterns:

2We also provide a discussion about fully observable setting
in the appendix

• Case 1: Positively correlated channel (P p1,1 ≥ P
p
0,1).

The belief update process is shown in Figure 3. We can
see that for the positively correlated case, they have a
monotonous belief update process.

𝜔

𝜏𝑢(𝜔)

𝜔∗

𝑢

𝜔

𝜏𝑢(𝜔)

𝜔∗

𝑢

Figure 3: The u-step belief update of an unobserved arm
(P p1,1 ≥ P

p
0,1)

We first consider the non-increasing belief process as
indicated in the right graph. Formally, for ∀u ∈ N+,
we have ω(u) ≥ ω(u + 1) if the initial belief state
ω is above the convergence value. Similarly, for the
increasing belief process shown in the left graph, we
have the initial belief state ω < ω∗.

• Case 2: Negatively correlated channel (P p1,1 < P p0,1).

𝜔

𝜔0(𝑢)

𝜔∗

𝑢

𝜔

𝜔1(𝑢)

𝜔∗

𝑢0 1 2 3 0 1 2 3

Figure 4: The u-step belief update of an unobserved arm
(P p1,1 < P p0,1)

The belief state converges to ω∗ from the opposite
direction as shown in Figure 4. This case has similar
properties and is less common in the real world because
it is more likely to remain in a good state than to move
from a bad state to a good state. Therefore, we omit
the lengthy discussion.

The belief state transition patterns are of particular impor-
tance because in proving optimality of Algorithm 1, the
belief evolution pattern for the arm (whose fairness con-
straint will be violated) plays a crucial role.

Theorem 1 For infinite time horizon (T →∞) RMAB with
Fairness Constraints governed by parameters η and L, Algo-
rithm 1 ( i.e., activating arm i at the end of the time period
when its fairness constraint is violated) is optimal:

1. For ωi ≤ ω∗ (increasing belief process), if

(P i,p1,1 − P
i,p
0,1)

(
1 +

β∆3

1− β

)(
1− β(P i,a1,1 − P

i,a
0,1)
)

≤ (P i,a1,1 − P
i,a
0,1) (8)

∆3 = min{(P i,p1,1 − P
i,p
0,1), (P i,a1,1 − P

i,a
0,1)}.
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Algorithm 1: Fair Whittle Thresholding (FaWT)
Input: Transition matrix P , fairness constraint, η and

L, set of belief states {ω1, . . . , ωN}, k
1 for each arm i in 1 to N do
2 Compute the corresponding Whittle index TW (ωi)

under the infinite horizon using the Forward and
Reverse Threshold policy;

3 if the activation frequency η for arm i will not be
satisfied at the end of the period of length L then

4 Add arm i to the action set φ;
5 k = k − 1;
6 if finite horizon then
7 Compute the the index value W1(ωi);
8 Compute the Whittle index WT (ωi) using

Equation 10;
9 Add arms with top k highest TW (·) (for infinite

horizon case) or WT (·) (for finite horizon case) values
to the action set φ Decrease the residual time horizon
by T = T − 1;

Output: Action set φ

2. For ωi ≥ ω∗ (non-increasing belief process), if:

(P i,p1,1−P
i,p
0,1)(1− β)∆1 ≥

(P i,a1,1 − P
i,a
0,1)

(
1− β(P i,a1,1 − P

i,a
0,1)
)

(9)

∆1 = min{1, 1 + β(P i,p1,1 − P
i,p
0,1)− β(P i,a1,1 − P

i,a
0,1)}

Proof Sketch. Consider an arm i that has not been acti-
vated for L− 1 time slots. In such a case, Algorithm 1 will
select arm i to activate in the next time step t = L. Define
the intervention effect of activating arm i as

Vλ,∞(ω, a = 1)− Vλ,∞(ω, a = 0)

Following standard practice and for notational convenience,
we do not index the intervention effect and value functions
with i. Due to independent evolution of arms, moving active
action of arm i does not result in a greater value function for
other arms according to the Whittle index algorithm, thus it
suffices to only consider arm i. Here is the proof flow:
(1) Algorithm 1 optimality requires that the intervention
effect at time step t = L − 1 is smaller than intervention
effect at t = L. Optimality can be established by requiring
the partial derivative of the intervention effect w.r.t. time
step t is greater than 0.
(2) However, computing this partial derivative
∂(Vλ,∞(ω,a=1)−Vλ,∞(ω,a=0))

∂t is difficult because value
function expression is complex. We use chain rule to get:

∂(Vλ,∞(ω, a = 1)− Vλ,∞(ω, a = 0))

∂ω
· ∂(ω)

∂(t)

(3) The sign of second term, ∂ω
∂t is based on the be-

lief state transition pattern described before this theo-
rem. We then need to consider the sign of the first term,

𝑎𝐿

length of 𝐿

𝑎𝐿−1𝑎𝐿−2𝑎1

𝑎𝐿 ∖ {𝑎
𝑖} ∪ {𝑎𝑙}

𝑎𝐿−1 ∖ 𝑎𝑗 ∪ {𝑎𝑖}

𝑎𝐿−2𝑎1

…

…

Figure 5: The action vector for RMAB is at at time step t.
Then we move the action ai that satisfies fairness constraint
to earlier slot and replace k-th ranked action aj . Action al

is then added according to the index value at the end.

∂(Vλ,∞(ω,a=1)−Vλ,∞(ω,a=0))
∂ω .

(4) We can compute this by deriving the bound on
Vλ,∞(ω1) − Vλ,∞(ω2),∀ω1, ω2 as well as bounds on
∂Vλ,∞(ω)

∂ω . Detailed proof in appendix. �

4.2 FINITE HORIZON

In this part, we demonstrate that the mechanism developed
for handling fairness in the infinite horizon setting can also
be applied to the finite horizon setting. In showing this, we
address two key challenges:

1. Computing the Whittle index under the finite horizon
setting in a scalable manner.

2. Showing that Whittle index value reduces as residual
horizon decreases. This will assist in showing that it
is optimal to activate the fairness violating arm at the
absolute last step where a violation will happen and
not earlier;

It is costly to compute the index under the finite horizon
setting – O(|S|kT ) time and space complexity [Hu and
Frazier, 2017]. Therefore, we take advantage of the fact
that the index value has an upper and lower bound, and
it will converge to the upper bound as the time horizon
T → ∞. Specifically, we use an appropriate functional
form to approximate the index value. To do this, we first
show gradual Index decay (λT > λT−1 > λ0) by improving
on the Index decay (λT > λ0) introduced in [Mate et al.,
2021a].

Theorem 2 For a finite horizon T , the Whittle index λT
is the value that satisfies the equation VλT ,T (ω, a = 0) =
VλT ,T (ω, a = 1) for the belief state ω. Assuming indexa-
bility holds, the Whittle index will decay as the value of
horizon T decreases: ∀T > 1 : λT+1 > λT > λ0 = 0.

Proof Sketch. We can calculate λ0 and λ1 by solving equa-
tion Vλ0,0(ω, a = 0) = Vλ0,0(ω, a = 1) and Vλ1,1(ω, a =
0) = Vλ1,1(ω, a = 1) according to Eq. 4 and Eq. 5. We can
then derive λt > λt−1 by obtaining ∂λt

∂t > 0 for ∀t > 1
through induction method. The detailed proof can be found
in the appendix. �
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We can easily compute λ0, λ1, and we have ∀T > 1 :
λT+1 > λT > λ0 = 0 according to Theorem 2, and
lim
T→∞

λT → TW (ω), where TW (ω) is the Whittle index

value for state ω under infinite horizon. Hence, we can use a
sigmoid curve to approximate the index value. One common
example of a sigmoid function is the logistic function. This
form is also used by Mate et al. [2021a]. Specifically, we let

WT (ω) =
A

1 + e−kT
+ C, (10)

where A and
A

2
+ C are the curve’s bounds; k is the lo-

gistic growth rate or steepness of the curve. Recall that
the definition of the Whittle index WT (ω) of belief state
ω is the smallest λ s.t. it is optimal to make the arm
passive in the current state. We have W0(ω) = 0 and
W1(ω) = β(ω(P a1,1 − P

p
1,1) + (1− ω)(P a0,1 − P

p
0,1)), and

W∞(ω) = TW (ω). By solving these three constraints, we
can get the three unknown parameters,

C = −TW (ω), A = 2TW (ω),

k = − log( 2TW (ω)
β(ω(Pa1,1−P

p
1,1)+(1−ω)(Pa0,1−P

p
0,1))+TW (ω)

− 1)

Algorithm 1 shows how to use WT (ω) in considering fair-
ness constraint under the finite horizon setting. Next, we
show that like in the infinite horizon case, value function
and Whittle index decay over time in the case of the finite
horizon.

Theorem 3 Consider the finite horizon RMAB problem
with fairness constraint. Algorithm 1 (activating arm i at
the end of the time period when its fairness constraint is
violated) is optimal:

1. When ωi ≤ ω∗ (increasing belief process), if

(P i,p1,1 − P
i,p
0,1)

(
∆4β

T−2∑
t=0

[βt] + 1

)
≤

(P i,a1,1 − P
i,a
0,1)

T−2∑
t=0

[βt(P i,a1,1 − P
i,a
0,1)t]

(11)

∆4 = min{(P i,p1,1 − P
i,p
0,1), (P i,a1,1 − P

i,a
0,1)}, and T is the

residual horizon length.

2. When ωi ≥ ω∗ (non-increasing belief process), if

(P i,p1,1 − P
i,p
0,1)

(
∆2β

T−2∑
t=0

[βt(P i,a1,1 − P
i,a
0,1)t] + 1

)
≥

(P i,a1,1 − P
i,a
0,1)

T−2∑
t=0

βt (12)

∆2 = min{(P i,p1,1 − P
i,p
0,1), (P i,a1,1 − P

i,a
0,1)}.

Proof Sketch. The proof is similar to the infinite horizon
case (detailed in Appendix). �

4.3 UNCERTAINTY IN TRANSITION MATRIX

In most real-world applications [Biswas et al., 2021], there
may not be adequate information about all the state transi-
tions. In such cases, we don’t know how likely a transition is
and thus, we won’t be able to use the Whittle index approach
directly. We provide a mechanism to apply the Thompson
sampling based learning mechanism for solving RMAB
problems without prior knowledge and where it is feasible
to get learning experiences. Thompson sampling [Thomp-
son, 1933] is an algorithm for online decision problems,
and can be applied in MDP [Gopalan and Mannor, 2015] as
well as Partially Observable MDP [Meshram et al., 2016].
In Thompson sampling, we initially assume that arm has a
prior Beta distribution in the transition probability according
to the prior knowledge (if there is no prior knowledge avail-
able, we assume a prior Beta(1, 1) as this is the uniform
distribution on (0, 1)). We choose Beta distribution because
it is a convenient and useful prior option for Bernoulli re-
wards [Agrawal and Goyal, 2012].

In our algorithm, referred to as FaWT-U and provided in 2,
at each time step, we sample the posterior distribution over
the parameters, and then use the Whittle index algorithm
to select the arm with the highest index value to play if the
fairness constraint is not violated. We can utilize our obser-
vations to update our posterior distribution, because playing
the selected arms will reveal their current state. Then, the
algorithm takes samples from the posterior distribution and
repeats the procedure again.

Algorithm 2: Fair Whittle Thresholding with Uncer-
tainty in transition matrix(FaWT-U)
Input: Posterior Beta distribution over the transition

matrix P , fairness constraint, η and L, set of
belief states {ω1, . . . , ωN}, budget k

1 for each arm i in 1 to N do
2 Sample the transition probability parameters

independently from posterior;
3 Compute Whittle indices based on the transition

matrix and belief state;
4 if the activation frequency η for arm i is not satisfied at

the end of the period of length L then
5 Add arm i to the action set φ;
6 k = k − 1;
7 Add the arms with top k index value into φ;
8 Play the selected arms and receive the observations;
9 Update the posterior distribution;

Output: Action set φ and updated posterior distribution
over parameters

We employ the sampled transition probabilities and belief
states {ω1, . . . , ωN}, as well as the residual time horizon
T as the input to the Whittle index computation (Line 3 in
Algorithm 2).
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4.4 UNKNOWN TRANSITION MATRIX

We now tackle the second challenge mentioned, in which
the transition matrix is completely unknown. In this case,
we can take advantage of the model-free learning method to
avoid directly using the whittling index policy.

Q-Learning is most commonly used to solve the sequen-
tial decision-making problem, which was first introduced
by Watkins and Dayan [1992] as an early breakthrough
in reinforcement learning. It is widely studied for social
good [Nahum-Shani et al., 2012, Li et al., 2021], and it has
also been extensively used in RMAB problems [Fu et al.,
2019, Avrachenkov and Borkar, 2020, Biswas et al., 2021]
to estimate the expected Q-value, Q∗(s, a, l), of taking ac-
tion a ∈ {0, 1} after l ∈ {1, . . . , L} time slots since last
observation s ∈ {0, 1}. The off-policy TD control algorithm
is defined as
Qt+1(st, at, lt)← Qt(st, at, lt)+

αt(st, at, lt)
[
Rt+1 + γmax

a

(
Qt(st+1, a, lt+1)−Qt(st, at, lt)

)]
(13)

Where γ is the discount rate, αt(st, at, lt) ∈ [0, 1] is
the learning rate parameter, i.e., a small αt(st, at, lt) will
result in a slow learning process and no update when
αt(st, at, lt) = 0. While a large αt(st, at, lt) may cause
the estimated Q-value to rely heavily on the most recent
return, when αt(st, at, lt) = 1, the Q-value will always be
the most recent return.

We now describe how to use the Whittle index-based Q-
Learning mechanism to solve the RMAB problem with
fairness constraints. We build on the work by Biswas et al.
[2021] for fully observable settings. In addition to consid-
ering fairness constraints, our model can be viewed as an
extension to the partially observable setting. Due to fairness
constraints, l can be a maximum of L time steps. There-
fore, belief space is also limited. We are able to use the Q-
Learning based approach to effectively compute the Whittle
index value and this approach is summarized in Algorithm 3,

One typical form of αt(st, at, lt) could be 1/z(st, at, lt),
where z(st, at, lt) =

(∑t
u=0 I{su = s, au = a, lu = l}

)
+

1 for each initial observed state s ∈ {0, 1}, action a ∈
{0, 1} and time length since last activation l ∈ {1, . . . , L}
at the time slot u from the beginning. With such mild form
of αt(st, at, lt), we now are able to build the theoretical
support for the Q-Learning based Whittle index approach.

Theorem 4 Selecting the highest-ranking arms accord-
ing to the Q∗i (s, a = 1, l) − Q∗i (s, a = 0, l) till the
budget constraint is met is equivalent to maximizing{∑N

i=1Q
∗
i (s, a, l)

}
over all possible action set {0, 1}N

such that
∑N
i=1 ai = k.

Proof Sketch. A proof based on work by [Biswas et al.,
2021] is given in Appendix. �

Algorithm 3: Fair Whittle Thresholding based Q-
Learning(FaWT-Q)
Input: parameter ε and k, and αt(st, at, lt), initial

observed state set {s}N ,
1 for each arm i in 1 to N do
2 Initialize the Qi(s, a, l)← 0 for each state

s ∈ {0, 1}, and each action a ∈ {0, 1} and time
length l ∈ {1, . . . , L};

3 For each s ∈ {0, 1} and l ∈ {1, . . . , L} initialize
the Whittle index value set λi(s, l)← 0;

4 for t from 1 to T do
5 for arm i in 1 to N do
6 if the fairness constraint is violated then
7 Add arm i to the action set φ;
8 k = k − 1;
9 With prob ε add random k arms to φ and with prob

1− ε add arms with top k λi(s, l) value ;
10 Activate the selected arms and receive rewards and

observations;
11 for each arm i in 1 to N do
12 Update the Qt+1

i (s, a, l) according to Eq. 13;
13 if i ∈ φ then
14 Set l = 1 and update si according to the

received observation;
15 else
16 Set l = l + 1;
17 Update the new Q-Learning based Whittle

index by
λt+1
i (s, l) = Qi(s, a = 1, l)−Qi(s, a = 0, l)

Output: Action set φ

Theorem 5 Stability and convergence: The proposed ap-
proach converges to the optimal with probability 1 under
the following conditions:
1. The state space and action space are finite;
2.
∑∞
t=1 αt(st, at, lt) =∞

∑∞
t=1 α

2
t (ωi(t)) <∞

Proof Sketch. The key to the convergence is contingent
on a particular sequence of episodes observed in the real
process [Watkins and Dayan, 1992]. Detailed proof is given
in Appendix. �

5 EXPERIMENT

To the best of our knowledge, we are the first to explore fair-
ness constraints in RMAB, hence the goal of the experiment
section is to evaluate the performance of our approach in
comparison to existing baselines:
Random: At each round, decision-maker randomly select
k arms to activate.
Myopic: Select k arms that maximize the expected reward
at the immediate next round. A myopic policy ignores the
impact of present actions on future rewards and instead fo-
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Figure 6: Comparison of performance of our approach and baseline approaches
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Figure 7: Intervention benefit ratio of our approach and baseline approaches without penalty for the violation of the fairness
constraint. We set N = 100, k = 10, T = 1000, η = 2 and L = {15, 30, 50}.

cuses entirely on predicted immediate returns. Formally, this
could be described as choosing the k arms with the largest
gap ∆ωt = (ωt+1|at = 1)− (ωt+1|at = 0) at time t.
Constraint Myopic: It is the same as the Myopic when
there is no conflict with fairness constraints, but if the fair-
ness constraint is violated, it will choose the arm that satis-
fies the fairness constraint to play.
Oracle: Algorithm by Qian et al. [2016] under the assump-
tion that the states of all arms are fully observable and the
transition probabilities are known without considering fair-
ness constraints.
To demonstrate the performance of our proposed methods,
we test our algorithms on synthetic domains [Mate et al.,
2020] and provide numerical results averaged over 50 runs.

Average reward value with penalty: In Figure 6, we
show the average reward R̄ at each time step received
by an arm over the time interval T = 1000 for N =
50, 100, 200, 500 and k = 10%×N with the fairness con-
straint L = 20, and η = 2. We will receive a reward of
1 if the state of an arm is s = 1, and no reward other-
wise. We impose a small penalty of −0.01 if the fairness
constraint of an arm is not satisfied. The graph on the left
shows the performance of FaWT method when assuming
the transition matrix is known. The middle graph is the av-
erage reward obtained using the FaWT-U approach when
the transition model is not fully available. The right graph
illustrates the result of FaWT-Q method when the transition
model is unknown. As shown in the figure, our approaches
consistently outperform the Random and Myopic baselines,

and in addition to satisfying the fairness constraints, they
have a near-optimal performance with a small difference
gap when compared to the Oracle baseline. Note that the
Myopic approach may fail in some cases(shown in Mate
et al. [2020]), it performs worse than the Random approach.

No penalty for the violation of the fairness constraint:
We also investigate the intervention benefit ratio defined
as R̄method−R̄No intervention

R̄Oracle−R̄No intervention
× 100%, where R̄No intervention denotes

the average reward without any intervention involved. Here,
we do not employ penalties when the fairness constraint is
not satisfied, as we want to evaluate the benefit provided
by interventions with our fair policy and policies of other
approaches. We provide the intervention benefit ratio for
different values of L for all approaches in Figure 7. Again,
the left graph shows the result of FaWT approach, the mid-
dle graph is the result of FaWT-U approach, and the right
graph shows the result of FaWT-Q method. Our proposed
approaches can achieve a better intervention benefit ratio
compared with the baseline when L is 30 and above. How-
ever, for L = 15, where there is a strict fairness constraint
(i.e., k×L

(η−1)×N is close to 1), it has a significant impact on
solution quality. The performances of all our approaches
improve when the fairness constraint’s strength decreases (L
increases). Overall, our proposed methods can handle vari-
ous levels of fairness constraint strength without sacrificing
significantly on solution quality.

We also provide the additional experiment result that studies
the influence of intervention level and fairness constraint’s
strength in the Appendix.
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6 CONCLUSION

In this paper, we initiate the study of fairness constraints in
Restless Multi-Arm Bandit problems. We define a fairness
metric that encapsulates and generalizes existing fairness
definitions employed for Multi-Arm Bandit problems. Con-
trary to expectations, we are able to provide minor modifica-
tions to the existing algorithm for RMAB problems in order
to handle fairness. We provide theoretical results on how
our methods provide the best way to handle fairness without
sacrificing solution quality. This is demonstrated empirically
as well on benchmark problems from the literature.
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