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This article presents a comprehensive survey on test optimization in deep neural network (DNN) testing.
Here, test optimization refers to testing with low data labeling effort. We analyzed 90 papers, including 43
from the software engineering (SE) community, 32 from the machine learning (ML) community, and 15 from
other communities. Our study: (i) unifies the problems as well as terminologies associated with low-labeling
cost testing, (ii) compares the distinct focal points of SE and ML communities, and (iii) reveals the pitfalls in
existing literature. Furthermore, we highlight the research opportunities in this domain.
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1 INTRODUCTION

With the growth of deep learning (DL)-based applications, such as face recognition [43], self-
driving car [80], and malware detection [119], assessing the reliability of deep neural networks—
the cornerstone of DL systems—emerges as a pivotal concern. To this end, the most common and
straightforward way is to prepare a dedicated test set and subsequently evaluate the performance
of DNNs based on this curated set. Generally, this testing process is fully supervised where the
test data must be labeled. However, data labeling is acknowledged as a time-intensive process de-
manding substantial financial resources, domain expertise, and human labor. Therefore, it presents
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a significant challenge for developers, especially when confronted with a large corpus of data or
when engaging in continuous DNN testing, which entails the ongoing acquisition of new data on
a daily basis.

To alleviate the cost associated with data labeling during the DNN testing phase, researchers
explore strategies such as selecting and labeling a subset of the test data or directly leveraging the
unlabeled test data to fulfill testing requirements. These activities collectively are known as test
optimization in DNN testing [12, 48]. In these activities, methods that require labeling a portion
of test data are termed sampling-based testing methods, while those demanding zero labeling effort
are referred to as labeling-free testing methods.

According to the testing objective, existing methods can be categorized into four groups, fault
detection methods, sampling-based model retraining methods, model selection methods, and perfor-
mance estimation methods. Simply speaking, given a fixed labeling budget, fault detection aims to
identify as many mispredicted inputs as possible, sampling-based model retraining tends to leverage
labeled inputs for retraining models with better performance, Model selection focuses on finding
the best model to use, and performance estimation strives to estimate a model’s performance with
a minimum bias.

Since 2017, different communities have delved into test optimization, presenting a wide range
of solutions to alleviate the testing effort [41]. The fields of software engineering (SE) and ma-
chine learning (ML) have been major contributors, with 43 and 32 papers coming from these
two communities, respectively. Nevertheless, no systematic reviews of such works have been con-
ducted, particularly with regard to cross-community perspectives. To bridge this gap, in this arti-
cle, we provide a comprehensive survey about test optimization in DNN testing. Specifically, we
collected all related articles and divided them into three groups, SE, ML, and Others, based on their
origin. Surprisingly, our findings reveal the inconsistent problem definitions and terminology us-
age across existing works. For instance, among the 46 collected works related to fault detection,
we identified 14 different terminologies to denote this task, such as test selection, error detection,
and bug detection. To establish clarity, we first standardize the terminologies used in each task
and give each a clear definition. Subsequently, we delve into a detailed examination of each article.
We compare the research focuses between SE and ML communities. Besides, we emphasize the
pitfalls found in existing works to assist developers in making more effective use of existing meth-
ods. For example, we found that the widely used evaluation metric fault detection ratio (FDR)
[18, 28,71, 95, 112] is not precise enough. When the total fault number is greater than the labeling
budget, the fault detection rate cannot reflect the ability of the method to reveal faults.

Lastly, we provide an overview of the promising research avenues in this domain. For instance,
while existing labeling-free testing techniques mainly focus on vision tasks (image classification),
exploring the development of novel methods for other tasks, like generation tasks propelled by
large language models (LLM), presents an interesting research topic.

In the literature, there are studies that have conducted surveys on testing ML systems.
Zhang et al. [120] comprehensively discussed the ML testing works where test optimization is
a sub-topic named as test prioritization and reduction. [49, 74, 82] surveyed works that focus on
quality assurance of ML systems. Riccio et al. [90] discussed existing works that focus on testing
ML systems. They discussed the studied problems, their features, and their empirical evaluation
in the existing works. Unlike previous surveys, our survey is the first one that targets the specific
problem in ML testing — test optimization in DNN testing. Apart from reviewing existing works,
our aim is to consolidate insights on this topic from different research communities.

To summarize, the main contributions of this article are as follows:

Definition. We establish a unified problem definition for test optimization in DNN testing,
bringing together perspectives from both SE and ML communities.
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Fig. 1. article structure.

Survey. We conduct a thorough survey of test optimization in DNN testing, covering a total of
90 articles. Among these, 43 originate from the SE community, 32 come from the ML community,
and the remaining 15 are from other communities.

Analysis. Via comparing the research focuses between the SE and ML communities, we reveal
disparities in the intuition behind proposed methods, as well as in the used datasets and evaluation
metrics. Besides, we identify pitfalls in existing works and offer guidance for good practices.

Vision. We present promising research opportunities to catalyze further advancements in this
domain.

Figure 1 depicts the article structure.

2 PRELIMINARIES

In this section, we delve into the fundamental terminology of deep learning and its associated
testing activity.

2.1 Deep Learning

DL is an advanced technique of artificial intelligence. Basically, DNNs are the fundamental com-
ponent of DL systems. Similar to classical ML techniques, for example, linear regression [109],
DNNs learn knowledge from training data and make decisions on unseen data. Essentially, DL is
data-driven.

Architecture. A DNN consists of multiple layers, including input layers, hidden layers (op-
tional), and output layers. Each layer comprises a number of weighted neurons which are the basic
computation units. In general, DNN receives input information from the input layer and transfers
it layer by layer to the output layer. The output layer finally produces the prediction results based
on a well-designed activation function. Nowadays, different types of DNN architectures have been
developed to address specific tasks, for example, the Convolutional Neural Network (CNN) [33]
is famous for its impressive performance in computer vision tasks, and Recurrent Neural Net-
works (RNNs5s) [83] is the well-know architecture for handling time-series data.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 111. Publication date: April 2024.
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Dataset. Data constitutes the pivotal element in building a high-performance DNN model. Typ-
ically, a dataset is divided into three distinct parts, training data, validation data, and test data. The
training data is used to tune the parameters of DNN models, for example, weights. The validation
set serves to assess the model’s performance after each training epoch. Following the completion
of model training, the test data is employed to report the final performance of DNN models. The
independence of training, training, validation, and test data ensures that the test data remains
unseen by the model, contributing to a robust evaluation of its generalization capabilities.

The data distribution of the original test set (split from the original dataset) is the same as the
training data. Nevertheless, once the model is deployed in the wild, the distribution of test data
may deviate from that of the training data, and the performance of the model degrades dramat-
ically. This phenomenon is commonly referred to as the distribution shift problem. Many test
optimization articles (e.g., [32, 41, 44, 107]) proposed methods to alleviate the harmfulness of
different types of distribution shift. Generally, there are two types of distribution shift, (1) syn-
thetic distribution shift and (2) natural distribution shift. Synthetic distribution shift comes from
the computer-generated perturbation. For example, ImageNet-C [40] is a famous benchmark that
provides synthetic distribution shifted datasets by adding common corruptions (e.g., brightness,
fog) into original images. Natural distribution shift comes from unseen and unperturbed data. In
this case, the data containing the natural distribution shift are usually collected from real-world
scenarios. The recent natural distribution benchmark WILDs [58] provides ten datasets ranging
from image to the source code domain. For example, iWildCam collects images of wild animals
from specific camera traps, designating them as in-distribution data. Simultaneously, it acquires
and categorizes images from other camera traps as distribution shifted data.

Tasks and evaluation measurements. DNNs are powerful tools to automate diverse tasks,
and the architecture of a DNN is tailored to the specific requirements of each task. For instance,
tasks may necessitate the use of different activation functions in the last layer. In this article, we
primarily emphasize two common tasks, classification and regression. In a classification task, a
DNN model, when presented with an input sample, identifies the category to which the input be-
longs. The evaluation of classification models usually employs accuracy as a metric, computing
the percentage of correctly classified inputs over the total number of inputs. Different from classi-
fication tasks, in a regression task, the objective is to predict a specific value directly, for example,
predict the steering angle of a self-driving car. Mean squared error which computes the average
of the squares of the errors between the ground truth and labels is the commonly used metric for
evaluating regression models.

2.2 DNN Testing

DNN testing is an essential activity in the DL-enabled system development process to guarantee
the quality and reliability of DNN. It consists of various activities [120], such as test input gen-
eration, test adequacy evaluation, DNN debugging, and DNN repair (via sampling-based model
retraining). Although there are multiple testing objectives, the primary DNN testing target is to
assess the performance of DNN models, which is most often done by testing the model on the
labeled test data. In this work, our targeted testing problem is the quality assessment of DNN
models.

3 PROBLEM DEFINITION

Test optimization contains different tasks. In the literature, researchers use different terminologies
to define these tasks as shown in Table 1. For example, for the task select wrongly predicted test
samples, there are seven definitions in SE papers and three in ML papers. We unify the four test
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Table 1. Terminologies used for Test Optimization in DNN Testing from SE and ML Communities

Task/Description SE ML
Test selection [7]
Error detection [77]
Bug detection [71]

Fault revealing [76] Misclassification detection

Fault detection [3, 32, 41, 79, 93]
Fault detection/ (1, 26, 28, 67, 95] [73, 89, 103, 126]
Select wrongly predicted Test prioritization Incorrectly classified detection [51]
test samples [8, 26, 107, 108, 111] Failure prediction [125]

[4, 18, 24, 86, 116] Errors detection [10]

[85, 122] Input prioritization [66]

Misbehaviour prediction [97]
Violations detection [115]
Misclassification detection [39]

Model selection/

Label the selected data and

select the model with the Comparative testing [84]
best performance and Model selection [47]

use unlabeled data to

select the best model

Model ranking [98]

Model debugging [75]
Model repair [65]

Model enhancement [38, 44]
Model retraining

[54, 56, 94, 105, 110]

Sample-based model retraining/
Label the selected data and improve
the model performance accordingly

Model retraining [37]

[5, 11, 55]
Sample-efficient model evaluation [60]
. . Label-efficient model evaluation [61]
Performance estimation/ . . .
Accuracy estimation Performance prediction [6, 25, 29, 68]
Label the selected data and R
[12, 35, 48] Performance estimation [13, 16, 20, 36]
assess the performance of the -
model accordingly and Performance estimation [121]  AutoEval [22]
Y Efficient testing [69] Errors estimation [14, 53]
use unlabeled data to assess Lo L S
Accuracy estimation [10] Generalization gap prediction [52]

the performance of the model . . L
P Predictive Uncertainty Estimation

Accuracy predicting [19, 34, 57]

optimization-related tasks as fault detection, model selection, sample-based model retraining, and
performance estimation. Table 2 lists the notations employed to represent basic concepts when
formalizing the four tasks.

3.1 Fault Detection

The purpose of the fault detection task is to select and label as much as possible wrongly pre-
dicted data within the labeling budget. Here, for the classification task, wrongly predicted refers
to misclassification. For the regression task, if the difference between the predicted value and
the ground-truth value is greater than a threshold, we say the test case is wrongly predicted. In
other words, fault detection is to select a subset of test data that DL models perform the worst on.
We divide fault detection methods into two types based on their design construction, (1) output-
based fault detection method which directly utilizes the outputs from DNN models to identify
faults, and (2) learning-based fault detection method that uses other classifiers to distinguish the
correctly predicted data and faults. Figure 2 depicts the common processes of output-based fault
detection.
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Table 2. List of Notations

Notation Description
X the input space
Y the label space

M: X =Y a DNN model
(x,y) € X XY aninput x with its ground truth label y

Yy’ = M(x) the label predicted by M for x
pi (x) the predicted probability of x belonging to the ith class
Xirain © X a set of training inputs
Yirain €Y a set of training labels
Xiest € X a set of test inputs
X C Xtest a subset from Xyes;
X C Xpest /X a set of inputs of Xy, after removing X
o(M,X,Y) a function measuring the performance of M when predicting the labels Y for the input set X
wrong prediction?
oO——11
0 - o—————x1
° geea forward ) inference E—=o select )
0 o———
oO—nmn
0 ML model ———=x @
Unlabeled tests Prediction Selected tests

Fig. 2. Overview of output-based fault detection pipeline.

Fault Detection. Given a DNN M, an unlabeled test set X;.s;, and a labehng budget Budget,
fault detection is the problem of selecting a subset X of X;es; such that |X | = Budget and
X = argminy y,  o(M,X;,Y;), where Y; are the labels corresponding to X;.

3.2 Sampling-Based Model Retraining

The purpose of this task is to find and label the budget number of test data, and these labeled
data can improve the model performance the most by retraining. Different from training a model
from scratch, retraining starts with a pre-trained model and fine-tunes it for a few more epochs.
Following the guidance from [44], model retraining uses the combination of original training data
and newly collected data. Some works showed that the detected faults can be used to achieve
the goal of this task (e.g., [26, 71]), and some works proposed new methods specifically for this
task (e.g., [44, 94]). Figure 3 shows the output-based fault detection-driven model retraining.

Sampling-based model retraining. Given a DNN M trained over a training set (X;rqin, Yerain), an
unlabeled test set X;.s;, and a labeling budget Budget, sampling-based model retraining is the
problem of selecting a subset X of X;¢s; and getting corresponding labels Y such that |X | <
Budget and X = argmaxy,cy, ., 0 o(M’ ,X,, Yl), where Y, are the labels corresponding to X, and

M’ is M retrained with (X;rqin, Yirain) U (X,Y).

3.3 Model Selection

The purpose of model selection is to rank candidate models based on their performance, and
then choose the best model for the usage. Model selection techniques can be sampling-based or

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 111. Publication date: April 2024.
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Fig. 3. Overview of sampling-based model retraining pipeline.

ranking on performance

forwa rd |nfe rence o—o

forwa rd infe rence o———n discriminative?

|
0 .
e&?@ forward |nference o———oD select @ @
009 — =" "0,09

forward |nference o—=o Ranking result

Unlabeled
tests

—1n Selected tests

forwa rd |nfe rence —x

ML models

t

Predictions

estimate
Fig. 4. Overview of sampling-based model selection pipeline.
labeling-free. For the sampling-based model selection, a budget number of test data is labeled to

rank models. For the labeling-free model selection, the unlabeled dataset is used directly for the
ranking. Figure 4 presents the workflow of sampling-based model selection.

Model Selection. Given a set of DNN models {M;}, an unlabeled test set X;.s;, and a labeling

budget Budget, model selection is the problem of selecting a subset X of X;.s; and getting corre-

sponding labels Y such that [X| < Budget and max;o(M;,X,Y) = maxo(M;, Xtest, Yiest), Where
A

Y and Y:iest are the labels corresponding to X and Xiest, respectively.

3.4 Performance Estimation

The purpose of performance estimation is to assess the model performance on the unlabeled
dataset. The related techniques can be also divided into sampling-based and labeling-free two types.
For the sampling-based methods, the budget number of data is labeled and the performance of the
model is measured only using these labeled ones. For the labeling-free methods, the performance
can be estimated according to the unlabeled data. Figure 5 shows the pipeline of sampling-based
performance estimation.
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Fig. 5. Overview of sampling-based performance estimation pipeline.

Performance Estimation. Given a DNN M, an unlabeled test set X;.s;, and a labeling
budget Budget, performance estimation the problem of selecting a subset X of X, and get-
ting corresponding labels Y such that |X| < Budget and X = arg miny . |o(M, X;,Y:) -
o(M, Xyest, Ytest)|, where Y; and Y,.s; are the labels corresponding to X; and Xiess,
respectively.

4 PAPER COLLECTION
4.1 Survey Scope

Our survey focuses on the DNN test optimization problem, which is a sub-task in ML testing [120].
Here, optimization indicates that the testing methods aim to reduce the testing effort, more
precisely, the data labeling effort. As mentioned in Section 3, test optimization has four target
activities, fault detection, model selection, sampling-based model retraining, and performance es-
timation. From the perspective of how much effort can be reduced, the test optimization methods
can be divided into two groups, labeling-free methods and sampling-based methods.

We use the following three selection criteria to collect papers. A paper must satisfy at least one
of the criteria to be included in our survey.

(1) The paper proposes a new technique that targets at least one test optimization activity.

(2) The paper empirically studies/analyzes existing test optimization techniques.

(3) The paper introduces benchmarks, datasets, or criteria that are specifically designed for test
optimization activities.

Some papers, for example, [41, 126], target our defined test optimization activity, fault detec-
tion, but do not mention their purpose of reducing the labeling effort are also considered in our
survey. Besides, some papers, for example, [72, 118] predict the out-of-distribution errors are also
categorized as fault detection. Since out-of-distribution error is one type of fault. However, works
that only consider detecting out-of-distribution samples, for example, [62], are not included in our
survey since these samples can be correctly predicted data or faults. Moreover, we only consider
natural errors but not anomaly threats, thus do not include the adversarial detection methods in
our work. We also found multiple papers [15, 59, 78] that study the test optimization problems
but focus on classical ML classifiers instead of DNNs. These papers are excluded from our survey
since we only focus on DNNs.
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Fig. 6. Trend in the number of papers with year.

4.2 Paper Collection Methodology

We search papers from public databases including DBLP,! Arxiv,? and Google Scholar.? First,
we use keywords to search papers from DBLP and Arxiv. Here, we only consider if the title of
the paper has these keywords. There will be too many irrelevant papers (more than 10,000) if
we use keywords to search on Google Scholar or search in abstracts. Then, we use citation-based
search [90], also called snowballing to check the missing papers. In this step, we search for papers
from Google Scholar and consider (1) the references in the collected papers, and (2) the papers
that cite the collected papers. To conduct the first step, we design the following keywords. For the
sampling-based model retraining task, we do not design specific keywords since they are often
accompanied by the fault detection task.

— deep learning | neural network + test select

— deep learning | neural network + misclassification detect

— deep learning | neural network + failure predict

— deep learning | neural network + performance/accuracy estimation
— deep learning | neural network + test prioritization

— deep learning | neural network + efficient model evaluation

Besides, we double-check the papers with keywords DL | neural network + terminologies that
appear in Table 1. We found using the listed keywords above is sufficient to find all relevant papers.

4.3 Collection Results

Table 3 presents the results of our paper collection. In total, our survey includes 90 papers related
to test optimization in DNN testing up until July 29th, 2023. Figure 6 illustrates the trend of pa-
pers from 2017 to 2023, which shows that the ML community has taken the lead in studying this
problem, while the SE community has focused more on this field in recent years.

Additionally, we analyze the distribution of collected papers from the perspectives of (1) the
number of labeled data required for testing DNNs, for example, sampling-based testing and
labeling-free testing, and (2) the goals focused by the papers. Interestingly, only two papers from

Thttps://dblp.org/
2https://arxiv.org/
Shttps://scholar.google.com/
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Table 3. Paper Collection Results

Keywords Collected Relevant
deep learning test select 9 5
deep learning misclassification detect 5 1
deep learning failure predict 59 0
deep learning performance/accuracy estimation 52 2
deep learning test prioritization 5 3
deep learning efficient model evaluation 1 0
neural network test select 23 10
neural network misclassification detect 12 2
neural network failure predict 90 0
neural network performance/accuracy estimation 124 2
neural network test prioritization 19 9
neural network efficient model evaluation 3 1
In total 401 34
Query 35

Snowball 55

In total 920

Collected: initial number of papers found on DBLP and Arxiv. Relevant: the
number of papers satisfying the selection criteria after manual checking. Query: the
total number of papers collected from DBLP and Arxiv. Snowball: the number of
papers by analyzing the references of existing collected papers.

the SE community target labeling-free testing of DNNs, the other 41 papers are all about sampling-
based testing of DNNs. By contrast, for the papers from the ML community, 20 are about labeling-
free testing of DNNs, and the others are about sampling-based testing. The SE community works
more on sampling-based testing while the ML community works more on labeling-free testing of
DNNE.

Next, we investigate the distribution of the goals of existing works. Since some work targets
more than one goal, for example, [26] studies both fault detection and sampling-based model re-
training tasks, the total number of goals is not the same as the number of papers. Figure 7 depicts
the visualized results. Figure 7(a) shows the distribution of all papers. We can see that fault de-
tection is the most prominent goal among the four goals, while model selection gained the least
attention from existing works. Interestingly, we found that there is a big difference between the
task distributions from SE (Figure 7(b)) and ML (Figure 7(c)) communities. Fault detection is the
most studied task in the SE community, and mode retraining is the second one. However, for
the ML community, performance estimation is the most studied task, and model retraining is the
least one. Many works from the SE community are inspired by test selection, a conventional SE
field, and to study the fault detection problem in DNNs, for example, [26, 28, 44, 71, 84, 91, 105, 107].
Thus, they focus more on sampling-based testing.

5 FAULT DETECTION

This section summarizes papers that target the fault detection goal. First, we introduce the de-
tails of each work. The existing works can be divided into two types, the first type proposed new
methods for fault detection, and the second type empirically studied the effectiveness of existing
methods. We introduce works in the order of their types and the communities they were published.
Then, we discuss the evaluation metrics and the datasets used in these works. Moreover, we ana-
lyze the pitfalls that exist in existing works and provide suggestions for good practice. Finally, we
compare the research focuses from different communities.
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Fig. 7. Distribution of studied tasks from different communities.

Table 4. Summary of Fault Detection Papers

Community Methodology References
new output-based method [1,4,7,24, 26, 28, 35, 54, 55, 67, 71, 77, 100, 101, 106, 108, 115, 116, 122]
SE new learning-based method [18, 39, 97, 104, 107]
empirical study [8, 76, 85, 95, 111]
new output-based method [10, 41, 51, 73, 79, 107]
ML new learning-based method [3, 32, 66, 89, 93, 126]
empirical study [103, 125]
new output-based [2, 63,112, 117]
Others new learning-based [9]
empirical study [46]

Others refer to other communities and Arxiv.

5.1 Article Survey

We categorize the fault detection methods into output-based methods and leaning-based methods.
Output-based methods distinguish faults only based on the outputs of layers (can be intermediate
or last layer), while leaning-based methods utilize learners, for example, regression models, to train
a model to predict the correctness of tests. Table 4 summarizes the category of each article.

5.1.1  New Method from SE.

5.1.1.1 Output-Based Methods. In 2018, Kim et al. [54] proposed the surprise adequacy (SA)
criteria for testing of DNNs systems, called SADL, which is a very early work that introduced
test selection for DNNs. SADL first extracts the intermediate outputs from DNNs of test data and
training data as features. Then, it measures the SA according to the dissimilarity between these
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Table 5. Uncertainty Scores
No. Method Equation Description
1 DeepGini [26] 1- Zfil (p; (x))* -

2 Entropy [8] Zfil pi (x) log p; (x) -
. e pk: Maximum probability

3 Margin [52] Pi () = p; () p;: Second maximum probability

4 Entropy Dropout [8] I ST Entropy (M, x) T: Dropout repetition times

5 MaxP [76] arg max (p; (x)) -

i=1:N
6 Dropout Variance [76] % ZiTzl Var (x) T: Dropout repetition times
. . Dropout Variance MaxP: Equation (5)

7 Weighted Variance [76] Maxp Dropout Variance: Equation (6)
H: normalized frequencies of

8 Kullback-Leibler [76] >N Hiln % class predictions from dropouts
0L
T: Dropout repetition times

9 Variation Ratio [95] -7 Zl 1Y; = lmax Imax: The mode of the
predicted label
T: Dropout repetition times

10 Variation Ratio for Original [95] 1 - & LT Y = lori lori: Predicted label by

the original model
(without dropout)

T: Dropout repetition times
M: Original model

M’: Surrogate model

11 Mutual Information [95] Entropy (M, x) + % Z;rzl Entropy (M’, x)

two features. Two measurements have been proposed in the original work, likelihood-based sur-
prise adequacy (LSA) and distance-based surprise adequacy (DSA). LSA uses kernel density
estimation to calculate the distance, while DSA uses Euclidean distance directly. Even though the
authors did not state that SADL can be used to detect the faults of DNNs, they evaluated the rela-
tion between the accuracy and the SA scores of selected test inputs. This evaluation indicates that
SADL can reveal the faults of DNNs. In their extension version [55], the authors proposed a variant
SA, Mahalanobis Distance based Surprise Adequacy (MDSA), and evaluated SA criteria on
complex models trained on a large dataset.

Another previous work DeepGini [26] was proposed by Feng et al. DeepGini is an output
probability-based test prioritization technique. After obtaining the output of the test input, the
Gini score is calculated by Equation (1) in Table 5. The input is more likely a fault if it has a higher
Gini score. The authors demonstrated that DeepGini has a powerful ability to reveal DNN faults.

Wang et al. [106] proposed to leverage the neural coverage to rank the test inputs and find the
faults. Concretely, given the unlabeled data pool, it iteratively selects a subset that has the same
coverage score as the whole unlabeled set and removes the selected set from the pool. Finally,
the remaining data in the pool are the ones that have different activation distributions from the
whole set and are regarded as faults. Similar to [106], Yan et al. tried to use activation patterns of
classes to distinguish if the output of one input is reliable [116]. Concretely, given all the training
data of each class, the authors computed the lower bound and upper bound of activation values
of each neuron as the pattern of this class. Then, given the test data and their predicted label, the
authors compared their activation information with the activation pattern of the corresponding
class. The priority score is finally calculated by the number of neurons that have greater activa-
tion values than a threshold plus the number of neurons that have smaller activation values than
a threshold, divided by the total number of neurons. A greater priority score indicates that the
prediction of this input is more reliable.
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Guerriero et al. introduced the adaptive test selection (ATS) method DeepEST [35] for fault
detection. It randomly selects one input sample first and then uses two selection methods, simple
random sampling (SRS) and weight-based sampling (WBS) to add more test inputs to the
selected pool. Thus, the key component of DeepEST is the WBS method. Roughly speaking, WBS
assigns a weight to each input based on its distance to the labeled data divided by the total distance
between all unlabeled data and labeled data. Here, the distance is defined by auxiliary variables
which are the prediction confidence, distance based on SA, and the combination of confidence and
SA distance. Another ATS [28] method was proposed by Gao et al. to select diverse faults from
the unlabeled dataset. In this work, the output vectors are used to represent the model behaviors
and measure the diversity of test inputs. ATS first projects the output vectors (top-3 maximum
vectors are considered in ATS) to a space plane and then calculates the coverage of each data on
this plane. After that, the difference between the coverage of a single data and the whole candidate
set is utilized as an identifier to distinguish the faults and correctly predicted test data. Compared
to previous works, ATS can select more diverse faults that range from different classes.

Inspired by the metamorphic testing in SE, Xie et al. proposed a diversity-guided method to
detect faults [115]. The key idea is to rank metamorphic test case pairs (MPs) based on their ability
to reveal violations of DNNs, Specifically, it chooses an internal layer L in the DNN model and
splits this model into two parts, (1) the first part consists of layers from the input layer to L, (2) the
second part consists of layers from L layer to the output layer. Then, MPs are prioritized based on
the diversity of outputs from the first part. Here, the authors tried different distribution discrepancy
methods to compute the output diversity, for example, Kullback-Leibler (KL) divergence. Finally,
the sorted MPs are fed to the second part of the model to check the output consistency for fault
detection.

Ma et al. [77] proposed to use the prediction difference between the DNN model and its sub-
specialized models to select fault data. Specifically, a series of models (called subspecialized mod-
els) have been trained to classify one single class. Here, each subspecialized model follows the
same architecture as the original model. Then, the inputs are selected if they have high output
discrimination between the original and subspecialized models. Similar to [77] and inspired by
mutation testing in SE, Wei et al. proposed the Efficient Mutation Analysis for Prioritiza-
tion (EffiMAP) [108] for fault detection. EfiMAP has three components, Generator, Tracer, and
Estimator. Generator aims at generating fault-revealing models and input mutants. Specifically, it
selects model mutants with higher killing scores and uses an autoencoder to generate input mu-
tants. This autoencoder is iteratively updated with the generated diverse inputs. Besides, Tracer
collects trace information for the given inputs. Three trace features have been considered by Ef-
fiIMAP, feature map, proportion of activated neurons, and entropy of outputs. Finally, EiMAP uses
XGBoost to learn the above two types of features for fault prediction.

To further enhance the uncertainty-based methods, Li et al. proposed the distance-based dy-
namic random testing with prioritization (D-DRT-P) [67]. D-DRT-P first extracts features of
inputs and clusters them into different subdomains. Then, D-DRT-P borrows uncertainty metrics
to assign prioritization scores to each data in each subdomain. Finally, the input with the highest
prioritization is selected. At the same time, if the selected input is a fault, the selection probabil-
ity for its subdomain is increased. In this way, the importance of each subdomain dynamically
changes and there is more chance to detect faults. Bao et al. introduced their approach Nearest
Neighbor Smoothing (NNS) based test case selection method [7] by calculating the uncertainty
score on the input and its neighbors. Specifically, NNS first extracted the representation of inputs
using the outputs of inner layers from the model. Then, the cosine distance between each pair of
inputs is computed using these representations. Inputs that are close to each other are put in the
same group and their predictions are used for output probability smoothing by label smoothing
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technique [100]. Finally, NNS used the smoothed outputs to compute the uncertainty score for
prioritization.

Tao et al. proposed TPFL [101], a test prioritization method based on fault location. Firstly, TPFL
uses all the training data to collect the activation information of each neuron. Different from the
classical way to set the activation threshold, TPFL sets the threshold of each neuron by the sum
of its average and standard deviation of outputs. Then, TPFL indicates the suspicious neurons if
they have a higher frequency activated by test inputs where the DNN makes incorrect decisions
and a lower frequency activated by test inputs where the DNN makes correct decisions. Finally, if
the new unlabeled data activate more suspicious neurons, they are more likely faults.

Al-Qadasi et al. proposed DeepAbstraction [4], which leverages runtime monitors to detect
faults. Specifically, DeepAbstraction first extracts the features of training data to build the abstrac-
tion box. It considers the vectors extracted from the penultimate layer and the predicted classes as
the features. In the abstraction box, the inputs are divided into two groups, correct inputs and in-
correct inputs. Then, given new unlabeled data, DeepAbstraction checks whether their features be-
long to these two groups. If not, DeepAbstraction assigns these data to the third group—uncertain
group. Finally, using uncertainty metrics, DeepAbstraction prioritizes the data from each group in
order of incorrect, uncertain, and correct.

Different from prior works that primarily focused on computer vision tasks and feed-forward
neural networks (FNNs), Liu et al. proposed the first method DeepState [71] to specifically target
the fault detection problem of RNNs. DeepState extracts the predictions from the internal output
state and builds a label sequence for each input. Then, DeepState defines a changing rate (CR) to
measure the uncertainty of inputs based on the label changes of the collected sequence. A higher
CR indicates a more uncertain input. DeepState uses the changing trend (CT) metric to help re-
move the redundant inputs with the same CRs. CT measures how two label sequences are different.
In this way, the selected inputs are both uncertain and diverse.

Aghababaeyan et al. proposed a black-box method for fault detection [1]. Specifically, it first used
VGG16 models to extract the features of mispredicted inputs from training and test sets. Then,
it used Uniform Manifold Approximation and Projection (UMAP) method to reduce the
dimension of collected features. After that, the hierarchical density-based spatial clustering
of applications with noise (HDBSCAN) was used to cluster the faults into different groups.
Finally, the authors found that, given new inputs, using inputs within one cluster to retrain the
model can help fix the model with respect to that fault represented by this cluster.

To tackle more practical problems, Deng et al. proposed the Scenario-based Test Reduction
and Prioritization (STRaP)[24] to detect faults in self-driving systems efficiently. Firstly, given
a driving recording, STRaP converts messages in each time frame into vectors based on a driving
scene schema. Here, the authors defined multiple driving scene schemas. for example, Is there any
pedestrian crossing the road? 1 for yes and 0 for no. Then, STRaP slices the vectors transformed from
the last step into segments based on their similarity. Finally, it prioritizes the vectors based on their
coverage and the rarity of driving scene features.

Lastly, Zheng et al. proposed CertPri [122], a certifiable method for fault detection. The intuition
behind CertPri is that a significant difference exists in the movement cost of correctly and incor-
rectly predicted test inputs. Here, the movement cost means the cost of moving the input to the
class center. Interestingly, the movement cost of correctly predicted inputs is significantly higher
than the cost of incorrectly predicted inputs. Thus, this cost can be used to distinguish the faults.

5.1.1.2 Learning-Based Methods. Wang et al. proposed Dissector [104] to detect unexpected
conditions produced by faults. The intuition behind Dissector is that DNNs should have increasing
confidence in the normal input (correctly predicted input) from the input layer to the output layer.
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Based on this intuition, Dissector slices the DNN model into multiple sub-models and adds an
output layer to each sub-model. Then, Dissector collects the output (so-called snapshot) from each
sub-model as the sequence of confidence by the original DNN model. Finally, the authors defined
an SVscore to measure the snapshot validity and computed the final profile validity score of inputs
by weighting all SVscores. A higher profile validity score indicates the input is more likely a normal
one.

Based on mutation testing techniques, Wang et al. proposed the PRioritizing test inputs via
Intelligent Mutation Analysis (PRIMA) [107] for fault detection. The intuition behind PRIMA is
that the faults are near the decision boundary and, thus, more sensitive to the perturbation. Based
on this intuition, the authors designed two types of mutation roles, model mutation and input
mutation. Then, given input and these mutation rules, PRIMA collects the multiple features based
on the killing information and leverages the learning-to-rank strategy to train a ranking model
for fault prediction. Here, the famous XGBoost ranking algorithm has been used for building the
ranking model.

He et al. proposed the Parallel Signal Routing Paths (PSRP) [39] to identify misclassified
samples. PSRP contains three components, feature space compression, extraction of PSRP, and
misclassified sample detection. In the first step, PSRP compresses the input by computing the mean
value of a two-dimensional tensor produced by a convolution kernel. Then, PSRP trains an SVM
model to solve a binary classification task for fault detection. The training data is the trace of
compressed data from the first CNN layer to the last one.

To tackle other types of datasets, Stocco et al. proposed SelfOracle [97], an online misbehavior
prediction method for self-driving cars. SelfOracle first uses an autoencoder to reconstruct the
training inputs of self-driving cars. Then, it computes the mean pixel-wise squared error as the
reconstruction error. After that, SelfOracle uses the maximum likelihood estimation to fit the sum
of the squares of pixel-wise errors and estimates the parameters of a Gamma distribution. Finally,
by setting a threshold, the Gamma distribution will be used to predict the probability of misbe-
havior of the unseen inputs. As stated by the authors, SelfOracle can be used for online misbehav-
ior prediction and time-aware anomaly score prediction. Dang et al. proposed the GNN-oriented
Test Prioritization (GraphPrior) [18], a fault detection method specifically designed for graph data.
GraphPrior defined 10 rules for mutating GNN models, for example, adding self-loops to the nodes.
After the model mutation, inputs are prioritized based on their killing score on this mutant, which
means the input is more likely a fault if mutants have higher disagreements on the input.

5.1.2  New Method from ML.

5.1.2.1 Output-Based Methods. In 2017, Dan et al. introduced the well-known baseline for fault
detection, maximum softmax probabilities based detection [41]. This work showed that it is promis-
ing to detect out-of-distribution data and misclassified faults by simply using the maximum soft-
max probabilities of outputs.

To enhance uncertainty-based methods, Malinin et al. proposed the Dirichlet Prior Networks
(DPNss) [79] to model the predictive uncertainty of DNNs. Simply speaking, the DPN model directly
parameterized the Dirichlet distribution as a prior for predicting the classification distribution on
the probability simplex. The most important part is the loss function of DPNs which was defined
as the KL divergence between the model and a sharp Dirichlet distribution on the appropriate class
for in-distribution data, plus the model and a flat Dirichlet distribution for out-of-distribution data.
Lastly, the existing uncertainty measurements, max probability and entropy were used to detect
the faults based on the output of DPNs. Importantly, this work summarized the different types
of uncertainty, model uncertainty, data uncertainty and distributional uncertainty which were
confused by previous works.
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Similar to mutation-based methods from SE [107], Chen et al. proposed a framework to use
an ensemble of models to identify faults [10]. Specifically, the disagreement between the original
model and the majority voting of the ensemble model was used as the indicator for fault detection.
That means if the ensemble disagrees with the original model, the input has a higher ability to
be a fault. Most importantly, to improve the performance of fault detection, the authors built the
ensemble models iteratively and added the selected faults at each iteration to the training data,
and then performed self-training in the ensemble model.

Lust et al. proposed a Gradient’s Norm (GraN) based method [73] to detect faults. GraN con-
tains three steps, input pre-processing, feature extraction, and feature processing. In the first step,
given an input image, GraN utilized image smoothing techniques to generate a new input. Then,
GraN fed the smoothed image with the predicted label of the original image into the DNN model to
calculate the gradients via backpropagation. In the last step, a logistic regression network was used
to learn the connection between the gradient features extracted from the last step and the correct-
ness of the inputs. The output of the regression model indicates the likelihood of the correctness
of inputs.

Instead of directly using the prediction score to detect faults, Jiang et al. proposed the trust
score [51] to identify the correctness of unlabeled test data. To do so, firstly, the authors removed the
data that has a low density from the training set for each class. Here, any data representation and
distance methods can be used for this process. After that, the trust score was defined to measure the
reliability of inputs. Given an input, Trust scorewas calculated by the ratio between its distance from
this input to the nearest class different from the predicted class and the distance to its predicted
class. A lower trust score indicates that this input is more likely a fault.

5.1.2.2 Learning-Based Methods. Aigrain et al. proposed Introspection-Net [3] to use a 3-layer
regression NN to predict the correctness of inputs. Introspection-Net is a binary classification
model that takes the output logits from the original DNNs as inputs and produces a confidence
value for the inputs that is, whether the classification is correct (output value of (1) or not (output
value of 0). The experiments showed that Introspection-Net accompanied by adversarial training
and data augmentation has a competitive fault detection ability with the Trust Score approach [51]
and Softmax Baseline [41].

Li et al. proposed TestRank [66] to rank test inputs based on their likelihood of being a failure.
Specifically, TestRank extracted two types of features from inputs, the output from the logits layer
and the graph information that represents the distance of this input (here, cosine distance was used
for the computation) to others. After that, a GNN model was used to learn the graph information
and predict the learned contextual attributes of the data. Finally, given the correctness label (e.g.,
0 for incorrect, 1 for correct) of inputs, TestRank utilized a simple binary classification model to
learn the output information and the contextual attributes and predict the correctness of inputs.

Granese et al. proposed DOCTOR [32], which defined two types of discriminators to determine
whether the input is a fault or not. The first one is based on the sum of squared softmax proba-
bilities, and the second one is computed by the predicted model for the posterior class probability.
Interestingly, the authors considered two scenarios for the evaluation, Totally Black Box (TBB)
where only the predictions are available and Partially Black Box (PBB) where gradient infor-
mation is allowed. In the PBB situation, the authors found adding a small perturbation brought
advantages for fault detection.

Sensoy et al. proposed the risk-calibrated evidential classifiers [93] whose outputs are more
sensitive to the faults. The purpose of such classifiers is to force the faults to be biased toward
less risky categories to increase the fault detection rate. To do so, firstly, the authors utilized the
Dirichlet Distributions to reform the outputs and therefore, to quantify the uncertainty of inputs

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 111. Publication date: April 2024.



Test Optimization in DNN Testing: A Survey 111:17

against DNNs. After that, an evidential deep classifier was trained where the activation function
of the classifier was changed to the exponential function for predicting the Dirichlet distribution
for each sample. Finally, uncertainty methods were used on the evidential deep classifier for fault
detection.

Qiu et al. proposed the Residual-based Error Detection (RED) [89] to enhance error fault
score based on the original maximum class probability. Specifically, RED first assigned a target
detection score to each training input according to whether it is correctly classified by the base
model, that is, 1 for correct and 0 for incorrect. Then, it computed the residual between the target
score and the maximum class probability produced by the original model. After that, a Residual
prediction with an Input/Output kernel (RIO) model is trained to predict this residual. Finally, when
new inputs come, RED combines the score produced by the RIO model and the output probability
produced by the original for fault detection.

Zhu et al. [126] conducted a study and found that adding out-of-distribution (OOD) detec-
tion methods, for example, Outlier Exposure, to the training process, harms the performance of
output-based fault detection. Then, based on this finding, the authors proposed a method called
OpenMix to help the fault detection. Specifically, OpenMix changed the OE loss in Outlier Expo-
sure to in/OOD (ID) Mixup-based loss to increase the exposure of low-density regions. In this way,
the OOD detection methods have both good OOD detection ability and fault detection ability.

5.1.3  New Method from Others.

5.1.3.1 Output-Based Methods. Aghababaeyan et al. introduced DeepGD [2], a search-based test
selection method for detecting faults. Specifically, DeepGD considered both uncertainty scores and
diversity scores of inputs to conduct test prioritization. Gini [26] score is used for uncertainty cal-
culation and geometric diversity on the features extracted from VGG models is applied for diversity
calculation. An NSGA-II algorithm is used for optimization uncertainty and diversity to assign a
final score to each input for prioritization.

Yang et al. proposed PROPHET [117] to detect faults in automated speech recognition (ASR)
systems. In this work, the authors introduced a new fine-grained word-level error metric for eval-
uating the correctness of audio-to-text tasks. By comparing the reference text and predicted text,
PROPHET labeled the token as 0 (1)if it is correctly (incorrectly) predicted. Then, it trained a BERT
model to predict word errors. Given the new coming data, after feeding them to the trained BERT
model, the ones that have higher word errors have higher probabilities be faults.

Lee et al. proposed a neuron activation similarity-based sample selection method [63] for fault
detection. The method first collected the neuron activation information for each class from the
training data and then checked the activation of the test data. If the difference between the simi-
larities of training and test data is less than the threshold, these inputs are considered to be faults.

Wu et al. propose RNNtcs [112], a test prioritization method for RNNs. Given the unlabeled test
data, RNNtcs first extracted the outputs of the test inputs and utilized HDBSCAN to cluster the
outputs into different groups. Then, it utilized uncertainty methods (Least confidence was used in
RNNtcs) to compute uncertainty scores for outliers identified by HDBSCAN and prioritized them
accordingly. If the number of outliers is less than the labeling budgets, the uncertainty scores
of other inputs in each cluster (normal data) were also calculated and prioritized. After that, the
hidden state CR of RNN models was computed as the second uncertainty measurement. Finally,
the budget number of inputs with higher hidden state CRs was selected from the prioritized sets
in the order of outliers and normal data.

5.1.3.2 Learning-Based Methods. Chen et al. proposed ActGraph [9], an activation graph-based
test prioritization method. ActGraph first extracted the activation value from the last K layers and
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built an adjacency matrix. Then, a GNN model is used to aggregate the activation features, and an
aggregation function is used to obtain the center node feature. Here, ActGraph used Sum () as the
aggregation function. Finally, a learning-to-rank algorithm is applied to build a ranking model for
test prioritization. XGBoost is applied in ActGraph as the ranking model.

5.1.4 Empirical Study from SE. The very first empirical study was conducted by Byun et al. [8].
In this work, the authors explored the effectiveness of three fault detection methods, En-
tropy (method 2 in Table 5), uncertainty in Bayesian neural networks (method 4 in Table 5), and
DSA [54]. The key finding from this empirical study is that when the DNN under test has a higher
test accuracy, these methods are more effective in detecting faults. Besides, Mosin et al. compared
SA, autoencoder-based, and similarity-based fault detection methods [85]. They found that SA has
the most effective fault detection ability among the considered methods. However, the similarity-
based method is the most efficient method which is more than 1,000 times faster than the SA
method.

Ma et al. evaluated the fault detection ability of 12 methods [76]. In their work, they divided
existing fault detection methods into two groups, methods from ML testing literature including
coverage-guided methods, SA-based methods, and so on, and model uncertainty-based methods,
such as maximum probability (method 5 in Table 5). Importantly, the authors suggested using Sil-
houette coefficient [92] to detect faults and also defined two new methods, Variance, and Weighted
Variance (methods 6 and 7 in Table 5). They found that uncertainty-based methods have stronger
fault detection ability than SA and neuron coverage-based methods. Shi et al. also empirically
studied the effectiveness of test case prioritization metrics (fault detection methods) [95]. In to-
tal, 11 fault detection methods have been considered by the authors including SA methods and
uncertainty-based methods. Different from the previous work, this work suggested using model
mutants to replace dropout prediction for fault detection and introduced three new methods called
Variation Ratio (VR), Variation Ratio for Original (VRO), and Mutual Information (MI),
which are listed as methods 9, 10, and 11 in Table 5. In addition to analyzing the effectiveness of
existing methods, this study also explored the impact of the test suite size, mutation operators, and
the number of mutants.

More recently, Weiss et al. [111] empirically showed that simple test prioritization methods
perform better than SA and neuron coverage methods in terms of fault detection. Here, simple
methods indicate those methods only rely on the model outputs, for example, using the maximum
probability to detect faults directly (method 5 in Table 5).

5.1.5 Empirical Study from ML. Vazhentsev et al. specifically studied the existing fault detection
methods on natural language processing [103]. Besides, two novel methods have been proposed in
this work, which are based on the Diverse Determinantal Point Process (DDPP) Monte Carlo
Dropout. DDPP sampled (and masked) a subset of neurons from the dropout layer where the activa-
tion values of this subset are similar to the activation values of the whole set. The authors improved
the diversity of the sampled DPP masks by two methods, the first one, determinantal point pro-
cess (DPP) sampled a set of 4ATJdiversedAl masks that activate different sets of neurons by using
the Radial basis function (RBF)-similarity matrix of mask vectors. The second one selected the
masks that yield the highest Probability variance (PV) scores on the given OOD dataset. This
study showed that methods based on the Mahalanobis distance and spectral normalization of a
weight matrix achieved the best results in NLP, and the proposed two methods have competitive
results with the best ones.

Zhu et al. [125] conducted an empirical study to show that confidence calibration methods are
useless or harmful for failure prediction. They studied five calibration methods method, for exam-
ple, mixup, and found that after adding these methods, the existing fault detection methods have
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poorer detection performance. Inspired by this finding, the authors proposed to use flat minima
methods for enhancing the existing fault detection methods. Two methods have been considered
in this work stochastic weight averaging and sharpness-aware minimization. The experiments
demonstrated that flat minima are useful for improving the detection ability of existing methods.

5.1.6  Empirical Study from Others. Hu et al. [46] empirically explored the robustness of fault de-
tection methods. Here, robustness means how good the methods are in handling uncommon test
inputs. The authors designed two types of uncommon inputs that the benchmark datasets (e.g.,
MNIST) do not have but could appear in the wild. The first type of test is high uncertainty but cor-
rectly predicted data, and the second one is low uncertainty but wrongly predicted data. Extensive
experiments demonstrated that existing fault detection methods cannot distinguish faults and the
first type of test data, and cannot detect the second type of fault.

5.2 Analysis and Discussion

5.2.1 Evaluation Metric. Table 6 lists the evaluation metrics used for fault detection. We can
see different works used different metrics and there is no uniform one. The most used metric is
receiver operating characteristic, that is, 11 works used AUC-ROC for the evaluation.

5.2.2 Datasets. Table 7 presents the types of data used for evaluating fault detection methods
from existing works. Most works (27 out of 46) only tried to detect faults in the test set (Original
test set) that split from the original dataset. Works [7, 9, 101, 107, 122] conducted relatively more
comprehensive evaluations, which considered faults in original tests, adversarial examples, and
synthetic distribution shifted datasets.

5.2.3 Pitfalls and Good Practice. Although many works take an effort to solve fault detection
problems, there are some pitfalls revealed in existing works. We analyze such pitfalls from three
perspectives, datasets, evaluation metrics, and robustness issues.

— Datasets. Pitfalls. In total, 69% works only evaluate fault detection methods on the origi-
nal test set. Since such a test set is split from the original dataset and follows a similar data
distribution to the training data, the model typically performs well. The reported results can-
not be generalized to other datasets that have different data distributions from the training
dataset. Good Practice. When proposing or studying existing fault detection methods, the
datasets used for evaluation should cover diverse data distribution — considering both in
and out-of-distribution data.

— Evaluation metrics. Pitfalls. FDR and the number of faults are not precise metrics for evalu-
ating fault detection methods. However, some of the existing works used them. In a situation
where the faults number is greater than the labeling budget, FDRs and the number of faults
can be 1 and the labeling budget and methods are incomparable according to these scores.
Good Practice. We recommend not using FDR and the number of faults as the evaluation met-
rics. Average percentage of fault-detection (APFD) and receiver operating characteristic
metrics are mature ones that should be used for the evaluation.

— Robustness issues. Pitfalls. Existing research [46] reveals that fault detection methods can
be fooled by correctly classified but with high uncertainty data, and wrongly classified but
with low uncertainty data. This indicates that fault detection methods were designed for
normal data but uncommon tests which can also appear in the wild. Good Practice. In ad-
dition to the common evaluation of fault detection methods using widely used datasets, it
is better to (1) evaluate the robustness of these methods using correctly classified but with
high uncertainty data, and wrongly classified but with low uncertainty data, or (2) discuss
the robustness limitations of the proposed methods.
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Table 6. Evaluation Metrics for Fault Detection
Name Equation Description Involved references
n: number of tests,
Average Percentage of 1- sk o L L k: number of faults, [8, 24, 26, 67, 111]
Fault-Detection (APFD) kn 2n 0;: the order of the first test [18, 85, 116]
that reveals the ith faults
Kendall correlation Equation (3) - [76]
Spearman correlation Equation (1) - [1]
- TP: True positive
TP
True positive rate (TPR) TPIFN FN: False negative [97, 106]
.. FP: False positive [3,32, 39, 97, 125]
__FP__ P s D4, 97, 9/,
False positive rate (FPR) FPiTN TN: True negative [126]
Precision = - [39, 51, 89, 93]
F1 score TTPLFPIFN - [10]
AURC - The area under the [103, 125, 126]
(empirical) RC-curve
Arear under curve.
41
AUC-PRC - X-axis: TPR Ez By 79.89.97]
Y-axis: FPR
Arear under curve. [3, 41, 79, 97, 104]
AUC-ROC - X-axis: Recall [32, 73, 89, 93, 125]
Y-axis: Precision [126]
Ratio of the area under the curve
RAUC B for the test input prioritization [9, 101, 107, 108, 122]
approach to the area under the curve
of the ideal prioritization
. . 1Dy [Dg|: number of fault,
Fault Detection Ratio (FDR) Bl D] number of all tests [18, 28, 71, 95, 112]

Number of faults - [35, 63]

APFD,,,4x: APFD when all faults
N _ APFD-APFDpin are prioritized at first

Normalized-APFD (NAPFD) APFDmax~APFDmin APFD,,;n,: APFD when all faults are (115]
prioritized at last
The amount of segments required

Top-K N for finding the first fault 124]

b [Dg|: number of fault,

Test Relative Coverage (TRC) m B: labeling budgets, [2, 7, 46, 66]
Dr: total number of faults

Average Test Relative
Average of TRC under

1 vN-1 . g

of Coverage (ATRC) v TRG different budget settings [4, 66]
S: Substitutions,

Word error rate (WER) IS|41T1+ID] I: Insertions, [117]

Character error rate (CER) Wl D: Deletions,
W (C): Words or (Characters)

. . , y: ground-truth label
Fault Diversity ly = v’ y': predicted label [28, 112]
Reversed pair proportion (RPP) % Xl jer lu(xi) > u (xj) .1 < Iyl ?:llgzscertalnty metric [103]

5.24 SE vs. ML. We can see both SE (26 papers) and ML (13 papers) communities contributed
to the study of the problem of fault detection in DNNSs. It is worth comparing the research focuses
of these two different communities.

— Proposed methods. (1) 70% of fault detection methods proposed by the SE community are
output-based, while only 45% of methods from ML are output-based. Researchers from the
ML community prefer to utilize the relation between features and faults to detect faults, that
is, to train another model for fault prediction. (2) Compared to works in SE, works from
the ML community prefer to propose techniques to enhance existing methods, for example,
[79, 126] changed the loss function of DNNs to enhance the detection ability of existing
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Table 7. Types of Tests used for Fault Detection

Faults Type Papers
Original test set + adversarial examples [26, 95]

[35, 67, 77, 104, 108]

[1, 4, 39, 85, 86, 106, 115, 116]
[2, 41, 51, 63, 85, 117]

[10, 66, 79, 93, 103]
[
[
[
[7

Original tests

89, 125, 126]
3,28, 71, 112]
24, 97]

Original tests + mutated data (e.g., image transformation)
Mutated data (e.g., image transformation)
(1) Original tests
(2) Mutated data (e.g., image transformation)
1) Original tests,
2) Original tests + mutated data (e.g., image transformation)
1) Original test set,
2) Original test set + adversarial examples
)
)
)
)

3]

[46]

(
(
(
( (76]

(1) Original tests

(2) Adversarial examples
(1) Original tests

(2) Original tests + adversarial examples [9, 107, 122]
3) mutated data (e.g., image transformation)

(1) Original tests

(18]

(2) Original tests + adversarial examples [101]
3) Original tests + mutated data (e.g., image transformation)
Distribution shift benchmarks (e.g., MNIST-C) [111]
Extension set (EMNIST) of original test set (MNIST) [8]
(1) Original tests

(2) Distribution shift benchmarks, [7]

3) Original tests + adversarial examples
(1) Original tests,
(2) Original tests + OOD tests

output-based methods. (3) Interestingly, some methods from SE and ML communities are
based on similar intuitions, that is, [107, 108] from the SE and [10] from the ML changed the
DNN models and then utilized the corresponding output changes to detect faults. However,
the changed models obtained from [107, 108] were based on model mutation, while from [10]
are based on training ensemble models.

— Evaluation metrics. Researchers from the SE community rarely use receiver operating
characteristics to measure the effectiveness of fault detection methods, only two works (out
of 25) used TPR and FPR for the evaluation. However, almost all (12 out of 13 cases) works
from the ML community evaluate their methods by using receiver operating characteristics.

— Evaluated datasets and models. (1) More than half of SE works (13 out of 25) evaluate fault
detection methods on datasets other than the original tests. However, most of the works (10
out of 13) from ML only evaluate methods on original tests. (2) Four works from the SE
community consider self-driving cars as their study objective which is a more practical task.
(3) None of the SE works consider the datasets and models that are specifically designed
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Table 8. Summary of Sampling-based Model Retraining Papers

Community Methodology References
new method [5, 8, 11, 18, 26, 28, 38, 44, 54, 55, 65, 71, 75, 94, 105, 117]

SE empirical study [56, 76, 110]

ML new'n'lethod [37]
empirical study -

Others new method -

empirical study [46]

Others refer to other communities and Arxiv.

for SE tasks, for example, code generation tasks and code completion tasks. All their used
datasets and models are originally provided by the ML community.

— Research questions. Seven works from SE study the effectiveness of using detected faults
to enhance the pre-trained DNNs via retraining while none of the works from ML does
that. Researchers from SE treat the fault detection process as the debug process in software
development and the retraining as the patching process for fixing the bugs.

6 MODEL RETRAINING
6.1 Article Survey

Similar to the fault detection methods, we introduce sampling-based model retraining from two
perspectives, works that propose new methods and works that conduct empirical studies, and
follow the order of SE, ML, and others. Before that, we found many fault detection works [8, 18, 26,
28, 46,54, 55, 71,76, 117] from the SE community also evaluated the effectiveness of using detected
faults to enhance the pre-trained models via model retraining. Since we already explained these
works in the last section, we skip them here. Table 8 summarizes the type of each article.

6.1.1  New Methods from SE. The first work is MODE which proposed a differential analysis-
based input selection method for debugging (via retraining) DNNs by Ma et al. [75]. MODE con-
tains three main components. First, it selects the intermediate layer in the DNN that is important
for causing under-fitting or over-fitting problems. Then, MODE builds a feature model by adding
one output layer after the selected layer and uses this model to produce heat maps of benign and
faulty data. Finally, MODE selects new data based on the heat maps and the characteristics of
under-fitting and over-fitting, for example, for under-fitting bugs, it selects more faulty data from
under-fitted classes. The authors have shown MODE has a strong ability to fix bugs in pre-trained
DNNE.

Shen et al. proposed the Multiple-Boundary Clustering and Prioritization (MCP) [94] to
enhance the DNN retraining. The basic idea of MCP is to select data near the decision boundary and
control the diversity of the selected set. Specifically, MCP first computes the output probabilities
of all test inputs. Then, MCP divides all the data into different clusters according to their top-2
predicted classes. Besides, for each data, MCP computes its priority in its belonging cluster as the
ratio of the probability of the first class to the probability of the second class. Finally, MCP evenly
selects inputs with high priorities from each cluster to form the final set as the output. Since MCP
considers top-2 classes, the selected inputs are close to multiple (2) boundaries.

Different from other works that mainly focused on the clean accuracy of DNN models,
Wang et al. introduced Robustness-Oriented Testing (RobOT) [105] to enhance the robustness
of DNNs by retraining. This article designed two robustness-oriented testing metrics to guide the
test selection process, zero-order loss (ZOL) and first-order loss (FOL). ZOL is calculated by
the loss of the input directly, and FOL is based on the gradient of the input against the DNN model.
The authors demonstrated that there is a strong correlation between the robustness of the model
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and the FOL score, and showed FOL is good guidance for selecting data to improve the robustness
of DNNs. Besides, in the extension work of RobOT [11], the authors added both tabular and im-
age domain data in the experiments and explored the usefulness of using RobOT to improve the
fairness of DNNs.

In order to provide guidance for users to better use sampling-based retraining methods,
Hu et al. [44] first empirically studied how existing methods perform on datasets with distribution
shifts. They found that no method can constantly outperform others across all ranges of distri-
bution shifts. When the candidate set contains more than 70% distribution shifted data, random
selection performs better than other well-designed methods. To tackle the distribution shift prob-
lem, the authors proposed a distribution-aware test (DAT) selection. DAT has two key steps,
firstly, it splits the candidate set into in-distribution data and OOD data based on OOD detectors.
The DAT selects data that the model has low confidence in from the in-distribution set and selects
diverse (diverse in terms of the predicted labels)data from the OOD set.

Li et al. proposed HybridRepair [65], a method smartly combining semi-supervised learning
and sampling-based retraining to improve the performance of DNNs. HybridRepair has two main
steps, (1) it uses data augmentation methods to generate data for each input and then average
their predictions. After that, the averaged predictions will be used as a groud-ture to calculate the
loss for each data. Finally, semi-supervised learning is performed to train the model. In this step,
the authors also defined a local entropy metric to only select the less uncertain data for semi-
supervised learning. (2) The second step tends to use fully-surprised learning on a selected subset.
HybridRepair uses a feature extractor to obtain the important features of inputs and leverages
these features to conduct clustering-based sample selection. In this step, the local entropy is also
used for guiding the data selection (select data with higher local entropy).

Attaoui et al. proposed the Safety Analysis based on Feature Extraction (SAFE) [5] to retrain
and improve DNNs. SAFE utilizes pre-trained image models to extract the features from existing
faults first. Then it uses the DBSCAN algorithm to cluster the extracted features into different fault
groups. After that, when new data come, engineers extract their features, and then select and label
the data that are close to the fault clusters. Finally, the selected data are used to retrain the DNN
models.

Hao et al. proposed the Multiple-Objective Optimization-Based Test Input Selec-
tion (MOTS) [38] to consider both uncertainty and diversity in the data selection process. For
the uncertainty measurement, MOTS considers the entropy score of output probabilities. On the
other hand, the Euclidean distance between two inputs is used for the diversity score. A multiple-
objective optimization algorithm NSGA-II is used to store the Pareto optimal solution. Finally,
MOTS selects the samples based on the aforementioned solution.

6.1.2  New Methods from ML. Guo et al. proposed the density-based robust sampling with
entropy (DRE) [37]. DRE calculated the entropy score from the predicted probabilities of each data
first. Then, it split the data space into multiple intervals and mapped each input to the interval
according to its entropy score. Finally, DRE randomly selected inputs from each interval. The
number of selected inputs from each interval was determined by the probability density function.

6.1.3  Empirical Study from SE. Empirical studies on sampling-based model retraining mainly
focus on SA. Kim et al. showed how surprise SA performed on the industrial-level datasets [56].
They took the self-driving car as the use case and explored the effectiveness of SA in guiding DNN
retraining. The study results demonstrated that SA is a promising metric for producing DNN mod-
els with good performance while reducing the labeling effort. Weiss et al. refined the well-known
DNN testing metric, SA to reduce its computation cost [110]. Concretely, they proposed three
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Table 9. Types of Tests used for Retraining

Data used for retraining Test data Reference

Original training + Selected tests Independent tests [11, 18, 28, 37, 44, 46, 75, 76, 105]
Selected tests Whole tests [38, 54, 55, 94, 117]

Original training + Selected tests Whole tests [5, 8, 26, 56, 110]

Selected tests Independent tests [65]

Part of original training + Selected tests Independent tests [71]

methods to reduce the size of training data and then build the activation trace, The first one is
uniform sampling which randomly selects a part of training data. The second one is unsurprising-
first sampling which selects the data with the lowest surprise from each class. The last one is
neighbor-free sampling. The authors suggested removing the redundant data if the distance be-
tween their activation traces to any activation trace of an already selected one is smaller than a
threshold. Here, the considered data should be in the same class. The authors demonstrated that
their refined SA metrics have similar effectiveness to the original one while significantly reducing
computation costs.

6.2 Analysis and Discussion

6.2.1  Evaluation Metric. Most of the works evaluated the retraining methods by comparing the
accuracy of DNNs before and after retraining. Three works [11, 37, 105] considered and evaluated
another property of DNNs — adversarial robustness. Adversarial robustness here means the ability
of DNNs to correctly predict adversarial examples.

6.2.2 Datasets. Different from the fault detection task one DNN model and a test set are
enough for the evaluation, retraining must be conducted on a DNN model and three parts of data,
(1) candidate data that is used for data selection, (2) data that are used to retrain the model, and
(3) test data that used to evaluate the performance of the retrained model. Therefore, there could
be different settings for these three groups of data. Table 9 lists the types of data that were used
for the retraining process from existing works. Here, independent tests in column Test data means
that the candidate data and test data are different. We can summarize that existing works mainly
lie in five modes as follows. And most of the works (43%) chose to combine the training data and
selected test data for retraining, and then evaluate the model using another independent test set.

— Original training + Selected tests | Independent tests (43% works) — combine the training data
and selected data for retraining, and evaluate the DNN using an independent test set.

— Part of original training + Selected tests | Independent tests (5% works) — combine the selected
part of training data and selected data for retraining, and evaluate the DNN using an inde-
pendent test set.

— Selected tests | Whole tests (24% works) — only use the selected data for retraining, and evaluate
the DNN using the candidate set, that is, the candidate set and test set are the same.

— Original training + Selected tests | Whole tests (24% works) — combine the training data and
selected data for retraining, and evaluate the DNN using the whole candidate set.

— Selected tests | Independent tests (5% works) —only use the selected data for retraining, and
evaluate the DNN using an independent test set.

Additionally, we noticed that similar to the fault detection works, all the sampling-based retrain-
ing methods from the SE community only considered datasets and models that were originally
studied by the ML community. SE tasks were ignored by the SE community.
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6.2.3  Pitfalls and Good Practice.

— Pitfall. As shown by [44], when facing data distribution shifts in the candidate set, using
only the selected data to retrain the model could produce a model with good performance
on shifted data but will harm the performance of DNN on the in-distribution data. Thus, how
to conduct the retraining (use which data) process highly affects the quality of the retrained
model. The reported retraining performance can make a miss leading to developers when
DNN s have been developed in the wild facing diverse data distributions. Good practice. We
need to use the proper way for the retraining process. As suggested by [44], the good way
is Original training + Selected tests.

— Pitfall. As revealed by [37], sampling-based training produces DNN models with good per-
formance on clean test data but fails to produce models with good adversarial robustness.
In terms of adversarial robustness, well-designed data selection methods cannot beat ran-
dom selection. Good practice. In case the retraining will introduce biased performance to the
retrained models, we need to prepare diverse datasets (not only the original test data) to
evaluate the retrained model.

— Pitfall. Another problem with existing works is around half (48%) of works used the candi-
date set as the test set to evaluate the retrained model. There is a data leakage problem in
this situation that the test set contains some training set. Thus, the reported results are not
rigorous. Good practice. We need to avoid the data leakage problem and use an independent
test set to evaluate the retrained model.

7 MODEL SELECTION

Since only three works specifically focused on the model selection task, we introduce them
together.

7.1 Article Survey

Sun et al. introduced the problem of ranking models in unlabeled new environments [98]. To solve
this problem, a novel method selects the labeled data that are similar to the unlabeled data from
the training set to rank the model has been proposed by the authors. This data selection proposed
was called proxy set searching. The search algorithm consists of three steps, first, the data pool
was clustered into K subsets. Then, Frechet Inception Distance (FID) and feature variance gap
between each subset and the target set were computed. Finally, inputs are selected from each
cluster based on the FID and variance gap values. Here, considering the data from each cluster can
guarantee the diversity of selected data to produce better estimation performance. As a result, the
selected data will be used for ranking the models.

Hu et al. proposed a labeling-free model selection (LaF) [47]. Concretely, LaF uses data diffi-
culty and model specialty to build a Bayesian model to estimate the likelihood of a predicted label
being the true label. Here, data difficulty refers to how difficult a sample is for all DNNs to pre-
dict correctly. The model specialty reflects how good a model is to predict the correct labels of
all samples. Thus, by optimizing the Bayesian model, we can get a proper value of the model spe-
cialty which can be directly used for the model selection. In this work, LaF utilizes expectation-
maximization (EM) to optimize the Bayesian model. Different from other test optimization works
from the SE community that only test their methods on ML tasks, this work conducted experiments
on SE-related tasks, for example, problem classification Java250 [88].

Different from the above two works that do not need to label any new data, Meng et al. pro-
posed a sampling-based model selection method named Sample Discrimination based Selec-
tion (SDS) [84]. SDS includes two key steps, firstly, it uses majority voting to label the unlabeled
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test data. Based on the labeled data, SDS filters out the top models with higher performance and
the bottom models with lower performance. Secondly, SDS computes sample discrimination of
each input based on its prediction consistency with the labels on top/bottom models. The inputs
with higher consistency on top models have greater discrimination scores and will be selected for
labeling and ranking models.

7.2 Analysis and Discussion

7.2.1  Evaluation Metric. Model selection works mainly utilize correlation analysis metrics to
measure the correctness between the idea performance ranking and the estimated performance
ranking. Three metrics have been used in existing works, Spearman’s rank correlation coefficient,
Jaccard similarity coefficient, and Kendall’s rank correlation.

Given n samples and s1, Sz, ..., Sy, let r(s1),r(s2),...,r(s,) be the ground truth ranking and
r’(s1),r (s2),...,r" (sn) be the estimated ranking.

Spearman’s rank correlation coefficient. (Used in [47, 84, 98])

n Xy r(si)r (si) = (X7, 7 (s0) (X7, 7 (s0))
I E 60 = (S )] [n 2t 0 = (S8 60

Jaccard similarity coefficient. (Used in [47, 84] to measure the correctness of top-k rankings.)

p= (1)
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Kendall’s rank correlation. (Used in [47, 98])
P —
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T = ,

VP+Q+T)(P+Q+U)
where P and Q are the numbers of ordered and disordered pairs in {r (s;),r’ (s;)}, respectively. T
and U are the numbers of ties in {r (s;)} and {r’ (s;)}, respectively.

7.2.2  Pitfalls and Good Practice. Pitfalls. No comparison with performance estimation methods.
The existing works have not clearly explained when we need to use model selection methods
and when we need to use labeling-free performance estimation methods. The fact is that we can
use performance estimation methods to assign performance to every single model and then rank
them accordingly. However, since these model selection words have not conducted comparison
experiments between their proposed methods with labeling-free performance estimation methods,
it is doubtful whether these proposed model ranking methods are not necessarily needed.

Good Practice. When proposing new model selection methods, it is important to clarify why
performance estimation methods cannot work in the studied scenario or conduct experiments
to compare the proposed methods with state-of-the-art performance estimation methods to
show their advantages. Besides, instead of using the aforementioned three evaluation metrics in
Section 7.2.1, other recently proposed ranking evaluation metrics, such as normalized dis-
counted cumulative gain (NDCG) [50] can be also considered in the experiments.

8 PERFORMANCE ESTIMATION
8.1 Article Survey

We divide performance estimation methods into two groups, sampling-based performance estima-
tion methods and labeling-free performance estimation methods. The first type of method still
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Table 10. Summary of Performance Estimation Papers

Community Methodology References
new sampling-based method [12, 69, 124]
SE new labeling-free method [48]
empirical study [121]
new sampling-based method [60, 61]
ML new labeling-free method [6, 14, 16, 19, 20, 22, 29, 34, 36, 52, 57, 68]
empirical study [25]
new sampling-based method [99]
Others new labeling-free method 17, 21, 53, 81, 102, 113, 127]

empirical study -

Others refer to other communities and Arxiv.

needs to label a part of the data from the unlabeled test set and then estimate the model perfor-
mance using the labeled ones. The second one can predict the model performance without ad-
ditional labeling effort. The same as the previous sections, we introduce works in order of their
sources (i.e., from which community). Table 10 summarizes the type of each article.

8.1.1  New Methods from SE.

8.1.1.1 Sampling-Based Methods. Li et al. [69] first introduced the concept of efficient DNN test-
ing to the SE community and proposed to select a subset of test data to assess the performance of
DNN s based on the conditioning of the learned representation. It minimizes the distance between
the whole test set and the selected set. Here, the distance is the probability distribution of the
neuron outputs in the last hidden layer of the DNN models. The authors introduced two ways to
measure the distribution, (1) output confidence-based distribution called CSS, and (2) cross entropy-
based distribution called CES. The authors demonstrated that CES is more stable in different eval-
uation situations. Following the first work, Chen et al. introduced a clustering-based approach for
model performance estimation, Practical ACcuracy Estimation (PACE) [12]. PACE first clus-
ters all the test inputs into different groups using the HDBSCAN algorithm. Then, it utilizes the
MMD-critic algorithm to select representative inputs from each cluster. Besides, PACE uses adap-
tive random exploration to collect inputs from the data that do not belong to any cluster and adds
it to the already selected data. This step is useful to increase the diversity of the finally collected
data. Importantly, the authors studied the impact of different features (which is an important factor
for clustering) used to conduct the clustering.

Zhou et al. proposed a two-phase approach DeepReduce [124], to select test inputs and esti-
mate the performance of DNNs accordingly. Firstly, DeepReduce uses a famous algorithm HGS to
select a subset of test inputs that have the same neuron coverage as the whole inputs. Secondly,
DeepReduce iteratively selects inputs to minimize the difference between the output distribution
of selected data and the output distribution of the whole input. Here, the authors split the output
of neurons in the last layer into K sections, and then use the percentage of data located in different
sections as the output distribution. Besides, the KL Divergence is used to compute the difference
in distribution. Finally, if the KL distance is smaller than a user-defined threshold, DeepReduce
outputs the selected data.

8.1.1.2 Labeling-Free Methods. The only labeling-free performance estimation method in SE
was Aries proposed by Hu et al. [48]. Aries is based on the distribution analysis of training and
test data. Given the training data, Aries first uses dropout prediction to collect multiple outputs
of each input. Then, it computes the distance of input to the decision boundaries based on the
change rate of predicted labels across these multiple predictions. That means, if the change rate
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is higher, the input is closer to decision boundaries. After that, Aries splits the data space into
multiple sections regarding the distance and computes the accuracy of each section using the data
mapped in each section. Finally, given the new unlabeled test data, Aries maps them into each
section and uses the corresponding accuracy to estimate the final accuracy of the set.

8.1.2  New Methods from ML.

8.1.2.1 Sampling-Based Methods. Inspired by the problem of active learning, Kossen et al. in-
troduced the novel testing framework, Active testing [60], which aims to sample test inputs to
estimate the loss of the whole set of inputs to reduce the labeling effort. This is the first work that
explained the importance of active testing and the difference between active testing and active
learning. In this work, the authors proposed a surrogate model-guided acquisition strategy for test
selection. This is based on the Monte Carlo estimator and acquisition distribution g. Here, ¢ was
defined differently for different tasks. For example, for classification tasks, g = 1-7 (y = y* (x) |x),
where y* (x) is the index of maximum probability and 7 is the surrogate model. Besides, to increase
the estimation precision, the surrogate model is iteratively updated using the labeled test inputs
by retraining. Following their previous work, Kossen et al. proposed the Active Surrogate Esti-
mators (ASEs) [61], that actively learn a surrogate model and use this surrogate to select inputs
to estimate the loss of the original model. This basic idea is similar to active testing [60], a new
acquisition strategy, called Expected Weighted Disagreement (XWED), was proposed to select
inputs. Simply speaking, XWED is a modified BALD [42]. It assigned a weight for each data point
using its corresponding loss value from the original model and then applied BALD to select the
inputs. Finally, the selected inputs were labeled and used for computing the total loss of the DNN
model.

8.1.2.2 Labeling-Free Methods. Jiang et al. proposed the first work to use the correlation be-
tween the margin distribution of hidden layers and the model performance to predict the gener-
alization gap [52]. Here, the margin distribution means the distance from the data to decision
boundaries. The authors defined the decision boundary for each class pair (i, j) as D(; ;) =
{x|pi (x) = p; (x)} and approximated it as follows:

~ pixl _ijl
||Vxlpixl - Vx’pjxl“Z

dr.(i.j). (x l) ()

where x! means the representation of x from the Ith later. Finally, the performance estimation
was conducted by using a linear regression model to learn the relation between the distance and
the performance. Similar to [52], DeChant et al. [19] also used the output of intermediate layers
for performance estimation. The difference is this work trained a meta-model to predict accuracy.
Specifically, it collected the intermediate and final outputs first. Then these outputs were labeled
as correct or incorrect based on the correctness of their corresponding inputs. Finally, a binary
classification model was trained using the outputs and labels. Given the new unlabeled inputs, their
intermediate can be used to predict their correctness according to this trained binary classifier.

Different from [19] that relied on meta-model, Chuang et al. proposed to use domain-invariant
representations (DIR) models to learn a latent, joint embedding of source and target data, and
a predictor from the latent space to the output labels for target risk prediction [14]. A Foac-
divergence was defined and used for measuring the difference between two representation do-
mains. Besides, in this work, the authors demonstrated that for DNNs, the selection of the interme-
diate layer to divide the model into encoder (which affects the complexity of produced embeddings)
and predictor highly affects the trained DIR models for risk prediction.
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Corneanu et al. proposed to use persistent topology measures to estimate the testing error of
DNNs on unseen samples [16]. Specifically, firstly, given the DNN model and inputs, the correla-
tions between each pair of neurons were computed by:

i (api — @) (agi ‘@), )
i=1 S ap S“q

where a; is the activation value of a neuron, a and S, are the mean and standard deviation of
all activate values. After that, a persistent diagram was computed based on the activation values
using Vietoris-Rips filtration and persistent homology methods. This persistent diagram indicates
the sequence status of birth and death of neurons. Then, topological summaries (average time
and average density) of the persistent diagram were used to build a linear function to predict the
performance gap.

Instead of training learners for performance estimation, Guillory et al. proposed a simple method
that uses the difference of confidence (DoC) to estimate the performance of classifiers [36]. Here,
the DoC was computed by the difference between the average maximum probabilities of training
data and the average maximum probabilities of test data. Besides, the authors introduce a vari-
ant of DoC, the difference of average entropy (DoE) which uses the entropy of probabilities
to replace the maximum probabilities in DoC. After getting the DoC or DoE, a linear regression
model was used to learn the relation between DoC (or DoE) and the accuracy of models for perfor-
mance estimation. Garg et al. also proposed a very simple method Average Thresholded Confi-
dence (ATC) [29] to detect faults. ATC first utilized the validation set to find a threshold that the
fraction of the confidence of inputs above the threshold matches the validation set accuracy. After
that, given the enabled test data, ATC calculated such fraction based on the determined threshold
and estimated the performance of DNN on this set accordingly.

Deng et al. introduced a new model evaluation paradigm—Automatic model Evalua-
tion (AutoEval) [22]. AutoEval tends to assess the quality of DNN models without using the
labeled data. To do so, the authors proposed a dataset-level regression method. Specifically, given
a DNN model, and a training dataset, this method first generated a large number of metasets based
on a randomly sampled seed set using image synthesis techniques. After that, the Frechet distance
between the representation of the original training set and the met sets is calculated. Here, the rep-
resentation is the mean and covariance of the image feature vectors. Finally, a regression model or
NN model was used to learn the relation between the distance and model performance for further
performance estimation. Following this work, the authors found that there is a strong linear rela-
tionship between semantic classification accuracy and the accuracy of the rotation prediction task
which can be used for performance estimation [20]. Based on this finding, given a DNN model,
the authors added an auxiliary rotation prediction into the model, in turn, building a multi-task
model. Since the rotation prediction is an unsupervised task, when facing new unlabeled inputs,
the model can predict their rotation head directly. Then, the linear relationship between the two
accuracies can be used to predict the semantic prediction accuracy of DNNs.

Baek et al. discovered a phenomenon, Agreement-on-the-Line [6], which means ID vs. OOD
agreement for pairs of DNNs has a linear correlation when the corresponding ID vs. OOD accuracy
also lies on a line. Based on this phenomenon, the authors proposed two methods ALine-D and
ALine-S to estimate the performance of DNNs on new unlabeled data. More concretely, the authors
first conducted a large-scale empirical study and revealed that When ID vs. OOD accuracy observes
a strong linear correlation (> 0.95 R2 values), we see that ID vs. OOD agreement is also strongly
linearly correlated with the similar slope and bias. Then, based on the finding, ALine-S and ALine-
D have been proposed. ALine-S simply used the slope and bias from disagreement to estimate the
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accuracy of unlabeled data, while ALineD built a matrix of the combination of slope and bias and
found the best solution for performance estimation.

Li et al. considered the label-imbalanced situation where the existing performance estimation
methods could produce unexpected results [68]. To tackle this label-imbalanced issue, the authors
plugged a class-specific temperature scaling (TS) technique into existing methods to improve
their effectiveness. Specifically, the TS technique rescaled the output probabilities using the tem-
perature parameter to fit the distribution of classes.

Unlike other works, Guan et al. brought the performance estimation to the instance segmenta-
tion problem in self-driving cars [34]. A distance-based method has been proposed in this work.
Concretely, it extracted the representation vectors of ID and OOD inputs by instance segmentation
detectors first, and then computed the FrAlchet distance (FD) between these two representations.
Here, the first-order mean and second-order covariance matrix of the representation vectors has
been used for the distance calculation. Finally, regression models were used to learn the relation
between the distance gap and the accuracy for further performance estimation.

Finally, Kleyko et al. proposed to use Perceptron theory to predict the performance of DNNs [57].
In the perceptron theory, the mean and standard deviation of the last hidden layer can be used to
predict the accuracy of DNN models. Therefore, the authors train regression models to estimate
the performance based on the last hidden layer outputs.

8.1.3  New Methods from Others.

8.1.3.1 Sampling-Based Methods. Sun et al. proposed a three-step clustering-based method to
estimate the model performance [99]. In this first step, the histograms of marginal distributions
have been recorded to represent the input data as hspape, that is, the matrix contains the number
of values in each range of each feature dimension. After that, clustering methods were applied
to divide the inputs into K groups, where K is the number of classes. The cluster centers will be
selected as the first part of the labeled data as h.jysser- Then, the farthest points sampling (FPS)
method was applied to select diverse data samples from the center to the marginal as hsgmpie-
Finally, the combined features [Ashape, Petuster> and Agampie] were used to train a regression model
for performance estimation.

8.1.3.2 Labeling-Free Methods. Martin et al. found that there is a clear correlation between the
weight matrix and the accuracy of DNNs [81] that can be used for performance estimation. Specif-
ically, the authors empirically studied the linear correlation between the norm-based capacity con-
trol metrics and the power law-based metrics from the Theory of Heavy-Tailed self-regularization
with the model performance. By using this correlation, it is able to estimate the accuracy of any
DNN model. Following the same intuition, Unterthiner et al. directly used the weights of DNNs
to predict their performance [102]. They empirically showed the correlation between the model
parameters (flattened weights, weight statistics, and weight norms) and the model performance,
and found that weight statistics are the best feature to build this correlation. Besides, they studied
three types of estimators for learning such correlations, logit-linear (L-Linear) model, gradient
boosting machine (GBM) using regression trees, and a fully connected DNN, and found DNN is
the best option. Most importantly, the authors released a large dataset with 120k CNNS to support
the research of performance estimation. Besides, Deng et al. found that there is a strong correla-
tion between the dispersity of outputs (i.e., label-balance, the entropy of predicted probabilities
was used in the work) and the accuracy of DNNs and utilized this phenomenon to predict the
model performance [21]. In addition to using the dispersity value to predict performance directly,
the nuclear norm [17] has been used to combine the model confidence and the dispersity. After
that regression model was trained based on the combined values for final performance estimation.
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Similar to work [6], Jiang et al. also found that there is a strong correlation between the disagree-
ment and test errors of two DNNs that were trained by using the same architecture and training
data but different random seed [53]. Thus, this finding can be used to estimate the performance of
DNN s by only using the disagreement information from the model and its auxiliary model. Besides,
the authors found that the ensembled model using these trained models has a well-calibrated na-
ture. Zhu et al. found that OOD data could affect the effectiveness of AutoEval [23] and proposed
to remove the OOD data from the unlabeled set before conducting performance estimation [127].
Here, an Energy-based OOD detection method that uses the energy score of output probabilities
to detect OOD data has been used in the OOD detection process.

Xie et al. [113] empirically demonstrated that the distribution difference cannot be always useful
for performance estimation, that is, existing methods are not always reliable. Besides, the authors
defined a new score—dispersion score to replace the distribution difference. To do so, the inputs
were divided into different groups first based on their pseudo labels. Then, the dispersion score
was computed by the average distances between each cluster center and the center of all features,
weighted by the sample size of each cluster. Finally, regression models were trained for perfor-
mance estimation using the pairs of dispersion score and model performance.

8.1.4  Empirical Study from SE. In contrast to prior studies that assess model performance across
all classes, Zhao et al. [121] conducted an empirical investigation to explore the effectiveness of
existing performance estimation methods for individual classes. Based on the empirical study,
they found that (1) existing methods have high estimation errors in each class especially when
the subset size is small, (2) the overall performance of the methods can be further improved if
we reduce their accuracy estimation errors in each class, and (3) there is still a large performance
improvement room for each performance estimation method.

8.1.5 Empirical Study from ML. Elsahar et al. [25] empirically studied three methods, H-
divergence, Confidence-based, and Reverse classification accuracy for predicting the performance
drops of DNNs. H-divergence-based methods use another classification model to distinguish be-
tween training data and target data. Confidence-based methods use the difference of output prob-
abilities to measure the performance drops. Reverse classification accuracy methods utilize the
pseudo-label predicted by the original DNN to train a new DNN with the same architecture and
training configuration. The performance drops are calculated by comparing the performance of
original and newly trained DNNs. The authors found the H-divergence-based methods are better
at predicting the performance drop on natural distribution shift while Confidence-based methods
are good at predicting the performance drop on adversarial distribution shift.

8.2 Analysis and Discussion

8.2.1 Evaluation Metric. Table 11 lists the evaluation metrics used for performance estimation.
Basically, there are two types of metrics, the first one directly computes the difference between real
model performance and estimated model performance, for example, MSE and Accuracy difference.
The second one evaluates the correlation between the scores (computed by their proposed meth-
ods) and the real model performance, for example, Pearson correlation coefficient and Coefficient of
determination Therefore, multiple data values (multiple models or datasets used to calculate such
values) are needed for the computation of correlation.

8.2.2 Datasets. Table 12 summarizes the types of datasets used for the evaluation in each work.
Surprisingly, 32% of the works only evaluated their methods using in-distribution datasets. Besides,
only six studies [6, 10, 21, 36, 99, 127] evaluated performance estimation methods on in-distribution
dataset, synthetic distribution dataset, and natural distribution dataset.
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Table 11. Evaluation Metrics for Performance Estimation

Q. Hu et al.

Name Equation

Description

Involved references

Mean Squared Error (MSE) N Z L, (ACC, — ACCy)?

N: repeat times
ACC,: estimated accuracy
ACCp: base accuracy

12, 22, 35, 52, 69]
13, 20, 34, 81, 127]

Accuracy difference Abs (ACC, — ACCyp)

ACC,: estimated accuracy
ACCy: base accuracy

6, 10, 20, 22, 36, 53]

Coverage difference Abs (Cov, — Covy)

Cov,: estimated coverage
Couvy: base coverage

[
[
[99
[14, 16, 25, 48, 121]
[
[
[

=N, (Vi-V)(ACC;-ACC)
JEN, (v-vY (acc;-acc)

Pearson correlation coefficient

N: number of models (or datasets)
V: metrics proposed from the paper
ACC: accuracy of models

3 14, 20, 57, 121]
13]

S =

Spearman’s rank correlation Equation (1) 21]

Kendall correlation Equation (3) - 57, 81]
ACC,: estimated accuracy

Max error Max (ACCEL — ACCy) ACCy: base accuracy [25]
i€1,2,...,N, N: repetition times
n: number of models

Coefficient of determination (R?) 1 - DA 5 g;: estimated accuracy gap [6, 21, 52, 81, 113]

Zi(9i-% 21 91) (102]

g;: ground-truth accuracy gap

Median squared error - Median value of MSEs [60]
Table 12. Types of Datasets used Performance Estimation
ID data Synthetic DS Natural DS Reference Percentage
v v v (6, 10, 21, 36, 99, 127] 19%
v v X [12, 22, 46, 48, 53, 69, 113, 121] 26%
v X X [16, 19, 35, 52, 57, 60, 63, 81, 102, 124] 32%
v X v [14, 20] 6%
X X 4 [13] 3%
X v v [25, 29, 34, 68] 13%

DS: Distribution Shift.

8.2.3 Pitfalls and Good Practice.

— Pitfall. No cross-type comparison is performed in existing sampling-based methods. All the
works that focus on sampling-based methods have not conducted comparison experiments
with the labeling-free methods. However, some works [48] showed that labeling-free meth-
ods can achieve better results than sampling-based methods.
- Good practice. When proposing new sampling-based methods, it is necessary to show their

advantage not only over other sampling-based methods but also the labeling-free methods.
When evaluating the performance estimation methods, instead of using only a small set
of DNN models, consider statistically checking the effectiveness of proposed methods on
multiple DNNSs is a better choice (e.g., like works [6, 102]).

— Pitfall. As mentioned before, 32% of works only evaluated their methods using in-distribution
datasets. The reliability of using these methods on other data distributions is unclear.

- Good practice. Considering only in-distribution datasets is insufficient, one needs to eval-
uate the performance estimation methods on distribution-shifted datasets (especially the
natural distribution-shifted ones), which are more likely to happen in the wild.

8.24 SE vs. ML. We compare the works from SE and ML from the following three perspectives.

— Proposed methods. We found that researchers from the SE community prefer to pro-
pose sampling-based methods instead of labeling-free methods. Specifically, only one work

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 111. Publication date: April 2024.



Test Optimization in DNN Testing: A Survey 111:33

from SE is labeling-free. However, researchers from the ML community mainly focus on
the labeling-free model evaluation, for example, around 79% of works are labeling-free.
Researchers from SE tend to select representative tests for assessing the model perfor-
mance [12, 69] while researchers from ML try to find the relation between the model perfor-
mance and other properties (e.g., margin distribution [52], agreements [6]).

— Evaluated datasets and models. None of the SE works considers natural distribution
shifted datasets, while more than half (55%) of ML works evaluate their methods on such
datasets. Besides, similar to other tasks in test optimization, none of the SE works consider
estimating the performance of SE-related DL models, for example, clone detection models.
Most of the SE works focus on computer vision tasks and models.

— Evaluation metrics. SE works rarely use correlation analysis metrics since they evaluate
their methods on different single models. On the other hand, nine works from ML utilize
correlation metrics for the evaluation. Besides, among these nine works, [16, 20, 52] utilize
correlation analysis metrics to initially verify their methods, and then report the specific
values of individual models.

9 OPPORTUNITIES

Numerous researchers have dedicated their efforts to enhancing the test optimization in DNN
testing and achieved exciting results. However, there remain several opportunities within this field
that are waiting for exploration.

More tasks. Most (85 out of 90) of the studied works only consider classification tasks and their
proposed methods lack generalizability to other types of tasks. For example, [26, 94] rely on classi-
fication probabilities, which are exclusive to classification datasets. However, other tasks, such as
the regression task in self-driving cars studied in [12], are practical yet receive limited attention.
Additionally, there is a growing interest in generative models like LLMs. How to efficiently esti-
mate the performance of LLMs presents a crucial challenge. For example, when using ChatGPT
to solve a bug detection task for a large-scale project, how can one quickly identify the wrongly-
detected program by ChatGPT or estimate the overall performance of ChatGPT on this project, to
save time and money? In summary, there are many research and practical opportunities in study-
ing test optimization in DNN in regression and generative tasks. To handle non-classification tasks,
it is promising to focus on the embedding features extracted by the data and models (e.g., neuron
outputs) and propose methods to select important test data, which is similar to the work [22] that
estimates the model performance by comparing the feature difference.

Moreover, existing performance estimation methods only considered (or be evaluated on) the
specifically prepared in/out-of-distribution (ID/OOD) datasets. How to efficiently predict the
model performance in terms of the general fairness/adversarial robustness or other DNN prop-
erties is also an important and promising research problem. For example, researchers can test the
effectiveness of performance estimation methods (or propose new methods) on fairness datasets
such as Mep15 [27] using fairness metrics such as Average Odds Difference (AOD).

More application scenarios. Existing works mainly focused on model-level testing — revealed
problems in DNNs, and only a few works targeted the application domains, for example, [104]
specifically proposed a fault detection method for self-driving cars. However, from the real usage
perspective, studying the test optimization problem at the application level is more important. In
addition to the self-driving car, DNNs have been used for many other applications such as video
game [123], code completion [31], and finance analysis [30]. How to propose new methods or study
existing methods in the above applications is a promising research direction. For example, consid-
ering testing code completion applications, for example, Copilot, as the black-box property, we
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can detect the faults only by the input and output, and cannot repair them using model retraining
methods. The promising method to repair such applications is input modification [70].

Besides, when considering tasks in the finance field, it is easy to encounter datasets with con-
straints, for example, the limited number of genders. In this situation, how to design perturbations
for mutation-based input prioritization is an interesting problem. One potential solution is to add
constraint rules in the mutation operators to control the modification of the inputs. There are
multiple constraints-based input generation techniques we can follow [30, 96].

Study cross communities. There is an interesting fact that works in one community rarely
compare baselines from other communities. For example, only two works [37, 66] from the ML com-
munity considered works from the SE community as baselines. It is unclear which method (from
which community) we should use in the real scenario. Therefore, it is necessary to build tools and
benchmarks that support and compare test optimization works from different communities.

LLM-driven test optimization. Recently, Autolabel* has been proposed to use LLM to la-
bel data. The experiments showed that by using Autolabel, the labeling precision is at a similar
level to humans but the labeling speed is 100 times faster than humans. This success brings the
opportunities to use LLM for DNN testing optimization. How to combine the existing test opti-
mization techniques with LLM or how to propose new LLM-based test optimization techniques
could be a promising research direction. One potential solution is to use test optimization meth-
ods to select informative data first, and then use Autolabel such selected data for post-phase model
testing/repairing. In this way, we can avoid the human effort and make the testing process fully
automated.

Combination of test generation and test optimization. Current test optimization works fo-
cus on fixed testing scenarios, that is, testing on existing datasets. Test generation that can create
diverse tests has been studied [87, 114] in the ML testing field. It is possible to combine test gen-
eration and test optimization to better test DNNs. For example, we can use some test generation
methods (e.g., DeepHunter [114]) to generate tests first, and then utilize sampling-based model
retraining methods (e.g., DAT [44]) to further boost the performance of DNN models.

Test optimization vs. active learning. Some works [37, 111] have demonstrated that test
optimization methods can be used for active learning. Thus, it is promising to adapt the existing
test optimization techniques to the active learning scenario to check their effectiveness. On the
other hand, it is also possible to try active learning methods in test optimization problems to check
how they can help DNN testing. There are multiple active learning benchmarks [45, 64] and test
optimization projects [76, 111] that we can directly use for this research topic.

10 DISCUSSION
10.1 Threats to Validity

Our survey may contain the following threats to validity.

Potential oversight of relevant work. This threat may occur during the literature search,
where we utilize the keywords from paper titles. We deliberately avoid using keywords from ab-
stracts due to the substantial volume of unrelated papers retrieved. For instance, a search with the
keyword fault detection in abstracts yields over 2,590,000 results. To mitigate the risk of overlook-
ing literature, we thoroughly check references in each collected paper and do a snowball to find all
related works. All the authors double-checked the references to ensure all the related works were
covered in our survey. Besides, we commit to maintaining our survey website to continuously
gather future literature that is relevant to our research.

4https://github.com/refuel-ai/autolabel
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Potential absence of comparison across diverse communities. Our survey mainly com-
pares works from the SE and ML communities, with limited consideration for other communities.
This choice stems from the fact that the majority of our collected works (75 out of 90) originate
from these two communities. Among the remaining 15 works, 10 are sourced from arXiv. This dis-
tribution implies that the SE and ML communities exhibit a primary focus on the surveyed topic.
In the future, we will broaden the comparison to include specific communities beyond SE and ML,
subject to the appearance of further works from these communities.

10.2 Importance of Test Optimization in DNN Testing

Given a DL model and its associated task, the potential pool of unlabeled test data can be infinite.
For instance, the continual generation of diverse street views in the same location for self-driving
cars. This abundance of unlabeled test data poses a big challenge to DNN testing. Test optimization
steps in to alleviate this challenge by strategically reducing the testing effort from the perspective
of minimizing the labeling cost. Existing studies have successfully demonstrated that it’s possible
to assess the performance of DL models without relying on labeled data [22, 48], and even repair
DL models using just 10% of the test data [26, 65].

This survey provides a comprehensive review of existing studies within the realm of test opti-
mization in DNN testing, encompassing the objectives of proposed methods, studied datasets, and
employed evaluation metrics. This review can help other researchers swiftly grasp the advance-
ments made in this field. Additionally, we reveal potential pitfalls and offer good practice guid-
ance, aiming to steer researchers away from making the same mistakes. Furthermore, we draw
comparisons between works from the SE and ML communities, providing insights to bridge the
gap of understanding in this field between these distinct communities.

11 CONCLUSION

We comprehensively surveyed the works related to test optimization in DNN testing. This sur-
vey unified the four tasks in test optimization, that is, fault detection, sampling-based model re-
training, model selection, and performance estimation. It summarized each work within these
tasks, conducted a comparative analysis of research focuses between the SE and ML communities,
identified pitfalls in existing works, and offered guidance on good practices. Additionally, we out-
lined potential research opportunities in the test optimization field. Our aim is that this survey
proves instrumental for researchers to better understand the existing works and provides insights
into the future trends of test optimization in DNN testing. The entire project can be found at:
https://wellido.github.io/TOID.html
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