
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2023

KAPE: kNN-based performance testing for deep code search KAPE: kNN-based performance testing for deep code search

Yuejun GUO

Qiang HU

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Cordy MAXIME

Mike PAPADAKIS

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
GUO, Yuejun; HU, Qiang; XIE, Xiaofei; MAXIME, Cordy; PAPADAKIS, Mike; and LE TRAON, Yves. KAPE: kNN-
based performance testing for deep code search. (2023). ACM Transactions on Software Engineering and
Methodology. 33, (2), 1-24.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9093

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9093&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yuejun GUO, Qiang HU, Xiaofei XIE, Cordy MAXIME, Mike PAPADAKIS, and Yves LE TRAON

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9093

https://ink.library.smu.edu.sg/sis_research/9093

48

KAPE: kNN-based Performance Testing for Deep Code
Search

YUEJUN GUO, Luxembourg Institute of Science and Technology, Luxembourg

QIANG HU, SnT, University of Luxembourg, Luxembourg

XIAOFEI XIE, Singapore Management University, Singapore

MAXIME CORDY, MIKE PAPADAKIS, and YVES LE TRAON, SnT, University

of Luxembourg, Luxembourg

Code search is a common yet important activity of software developers. An efficient code search model can

largely facilitate the development process and improve the programming quality. Given the superb perfor-

mance of learning the contextual representations, deep learning models, especially pre-trained language mod-

els, have been widely explored for the code search task. However, studies mainly focus on proposing new

architectures for ever-better performance on designed test sets but ignore the performance on unseen test

data where only natural language queries are available. The same problem in other domains, e.g., CV and

NLP, is usually solved by test input selection that uses a subset of the unseen set to reduce the labeling ef-

fort. However, approaches from other domains are not directly applicable and still require labeling effort. In

this article, we propose the kNN-based performance testing (KAPE) to efficiently solve the problem without

manually matching code snippets to test queries. The main idea is to use semantically similar training data

to perform the evaluation. Extensive experiments on six programming language datasets, three state-of-the-

art pre-trained models, and seven baseline methods demonstrate that KAPE can effectively assess the model

performance (e.g., CodeBERT achieves MRR 0.5795 on JavaScript) with a slight difference (e.g., 0.0261).

CCS Concepts: • Computing methodologies→Artificial intelligence; • Software and its engineering;

Additional Key Words and Phrases: Deep code search, software testing, deep learning testing, test selection

ACM Reference format:

Yuejun Guo, Qiang Hu, Xiaofei Xie, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2023. KAPE: kNN-

based Performance Testing for Deep Code Search. ACM Trans. Softw. Eng. Methodol. 33, 2, Article 48 (Decem-

ber 2023), 24 pages.

https://doi.org/10.1145/3624735

This work is supported by the Luxembourg National Research Funds (FNR) through CORE project C18/IS/12669767/

STELLAR/LeTraon.

Y. Guo this work was partially done while Yuejun Guo worked at SnT, University of Luxembourg.

Authors’ addresses: Y. Guo, Luxembourg Institute of Science and Technology, Luxembourg; e-mail: yuejun.guo@list.lu;

Q. Hu (Corresponding author), M. Cordy, M. Papadakis, and Y. Le Traon, SnT, University of Luxembourg, Luxembourg;

e-mails: qiang.hu@uni.lu, maxiem.cordy@uni.lu, michail.papadakis@uni.lu, yves.letraon@uni.lu; X. Xie, Singapore Man-

agement University, Singapore; e-mail: xiaofei.xfxie@gmail.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/12-ART48

https://doi.org/10.1145/3624735

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

https://orcid.org/0000-0002-5535-2420
https://orcid.org/0000-0002-8251-1669
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0001-8312-1358
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0002-1045-4861
https://doi.org/10.1145/3624735
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624735
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624735&domain=pdf&date_stamp=2023-12-21

48:2 Y. Guo et al.

1 INTRODUCTION

Code search aims to retrieve semantically relevant code snippets from a large code corpus that
mostly match a natural language query, which is an essential practice of software developers to
avoid “reinventing the wheel.” An early case study conducted in Google shows that a developer, on
average, makes 5 search sessions with 12 queries every workday [40]. Beyond serving as a critical
development activity, code search can support other software engineering tasks, such as defect
localization [49], program repair [2], and code synthesis [38]. Generally, given a functionality,
developers seek to reuse previously written code examples by searching over popular platforms,
such as Stack Overflow [51], GitHub [10], and Google [30]. For example, developers have sought
coding help from Stack Overflow over 45.1 billion times, and more than 21 million queries
were made. Due to constantly growing demand, researchers have leveraged the data from these
platforms as a way to power the code search engines. Studies have shown that deep learning

(DL) is the most popular modeling technique for code search [27] given its ability to embed the
code representation [4, 14, 31].

Although deep code search has attracted popular attention from researchers to devote to the
development of ever-better deep neural networks (DNNs) [4, 14, 31], the testing of such models
for secure and reliable deployment is lagging behind. For instance, the common scenario of testing
the model performance given unknown queries has not been studied. Differing from traditional
software systems, the DL-based system has a fundamentally different nature and computing logic.
In conventional programming, developers design the computing logic to obtain the executable
code for solving a given task. The change of data will not influence the functionality. However, in
DL, developers design the architecture of the DNN that learns the computing logic from the input
data and expected results. Specifically, the logic is defined by the weights and bias parameterizing
the connections inside a DNN. By contrast, the DNN’s behavior may evolve in response to the
change in new data. Namely, given a trained deep code search model, the reported performance on
the original test data cannot reflect the actual performance on unseen data, leading to the demand
for a dedicated testing before deployment. For example, the mean reciprocal rank (MRR) per-
formance of a pre-trained CodeBERT is 0.8048 on the original Ruby test data but changes to 0.7301
on new test data (see Table 2; more details of the dataset and MRR can be found in Section 4).

Due to the supervised learning nature of DL [11], testing a trained deep code search model re-
quires query-code pairs to calculate the correctness of identifying the best code snippets. In prac-
tice, it is easy to collect a large number of natural language queries from public platforms, such as
Stack Overflow. However, the corresponding code snippets are usually missing, which makes the
testing challenging. Assigning the matched code snippet for each unseen query is straightforward
but impractical and almost impossible for four main reasons. ❶ Time cost: Collecting queries from
online platforms is easy and free, but manually checking the code snippet is time-consuming, espe-
cially with the continuous surging queries every day. ❷ Domain knowledge: Generally, a specific
programming language code data is used to test the DL model. Given various languages, e.g., Java,
Python, and Go, domain experts are required to give reliable matching. ❸ Correctness: Even with
domain knowledge, errors are inevitable in human beings’ work. ❹ Financial cost: For instance,
labeling 1,000 units (50 words per unit) per human labeler of texts for classification costs 129 dol-
lars by the Google Cloud AI platform data labeling, and each unit needs at least three labelers to
guarantee correctness [13]. Remarkably, the cost increases significantly when it requires excellent
query understanding and strong developing experience in specific programming languages. To the
best of our knowledge, there is no work in the literature that focuses on this specific testing.

The same issue also happens to DL models in other domains, such as computer vision

(CV) [5, 26] and natural language processing (NLP) [19]. Researchers tend to apply the test

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:3

input selection technique [5] to solve this issue in CV and NLP, especially for classification tasks,
e.g., image classification and text classification. In this technique, a subset of data is selected based
on a specific selection metric to represent the entire set. Many selection metrics have been pro-
posed in these two domains [5, 17, 26]. However, they are not directly applicable to deep code
search models. For instance, in CV and NLP, studies have shown the success of selecting data
based on the prediction probability [26]. However, deep code search is not a classification task,
and it aims to, given a query, find the best-match code snippet from a large codebase. Thus, there
is no prediction probability to use but only the contextual representation of natural queries.

This article focuses on testing a trained deep code search model on unseen data without extra hu-
man power, namely, manual query-snippet matching. We propose the kNN-based performance

estimation (KAPE) that takes advantage of the similar queries from the training set for each un-
seen data to undertake the performance estimation. Concretely, KAPE first feeds both the training
and test queries into a trained model to obtain the contextual representations for the following
similarity calculation. Then, we leverage the widely used cosine similarity [50] to quantify the
semantic similarity between representations. Next, to locate the corresponding queries from the
training set for each test query, we utilize the simple yet efficient non-parametric k-nearest neigh-
bors algorithm [3]. Finally, concerning the difference in data, we propose to adaptively determine
the relevant nearest neighbors and their weights contributing to the performance based on the
Z-Score [53]. The evaluation on six programming languages and three pre-trained models demon-
strates that KAPE is capable of estimating the model performance on unseen data. Meanwhile, our
investigation on the parameter sensitivity and data distribution influence shows that KAPE is sta-
ble and flexible to possible changes. Additionally, our ablation study demonstrates the usefulness
of the calculation of the adaptive weights. To summarize, the main contributions of our work are
as follows:

(1) To the best of our knowledge, this is the first work that undertakes performance estimation
testing for deep code search models.

(2) We propose KAPE, which requires no manpower to manually match code snippets to unseen
test queries. KAPE is automatic and practical in real-world applications.

(3) We conduct comprehensive experiments on six popular programming languages, three state-
of-the-art pre-trained models, and seven baseline methods to evaluate the effectiveness of
KAPE.

The rest of this article is organized as follows: Section 2 introduces the background and related
work of this article. Section 3 details the methodology of our proposed KAPE. Sections 4 and 5 cover
the experimental setup and the results analysis. Section 6 discusses the strengths and limitations
of KAPE and lists the potential threats that influence our conclusions. In Section 7, we conclude
our work and point out the future work.

2 BACKGROUND AND RELATED WORK

2.1 Code Search and Pre-trained Models

Code search is a daily activity of software developers during software development. Given
its importance, many code search tools/models have been developed, which can be divided
into two categories: traditional and DL-based methods [27]. The traditional manner mainly
utilizes the information retrieval technique, such as the Boolean model [23, 32, 55], vector space
model [23, 34], and PageRank algorithm [35]. The DL-based models take advantage of DL given
its powerful ability in learning language representations [4, 7, 14]. In particular, pre-trained

models (PTMs) have gained remarkable attention. Figure 1 illustrates a general process of using

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:4 Y. Guo et al.

Fig. 1. An illustration of deep code search.

deep learning models for code search where the DL model learns the mapping between queries
and snippets from a large set.

PTMs were proposed initially for NLP tasks [37]. A PTM is first fed with a huge text corpus to
learn the representations. Then the PTM is transferred to a downstream task with fine-tuning on a
specific dataset. The performance of a PTM is usually better than a task-focused model that trains
on a specific dataset directly. Typical PTMs are Google’s bidirectional encoder representations
from transformers (BERT) [6] and Facebook’s robustly optimized version named RoBERTa [29].
Due to their considerable functionality, researchers have been seeking to apply PTMs to source
code analysis. Built on the top of BERT and RoBERTa, Microsoft proposed CodeBERT [9], which
learns the representations of both programming and natural languages. Specifically, concerning
the inherent structure of code, GraphCodeBERT was developed [15].

2.2 Deep Learning Testing

DL is a machine learning technique that learns complex patterns in data by multiple layers of
neurons that mathematically transform the data and the connection between neurons forms the
data flow. Due to this complex computing logic, DL models are lacking interpretability [59] and
require comprehensive testing before being deployed in real-world applications. DL testing refers
to evaluating the quality of DL systems for further deployment [20, 57]. The testing-related works
in the literature mainly focus on the domains of CV and NLP, while very few consider deep code
search systems [46].

As a new type of data-driven software, DL models have advantages in learning features from
a large input space. However, the input space is expected to cover all possible cases in the real
world to ensure performance, which is infeasible. In practice, only a fixed training set is applied
to approximate the input space, and undoubtedly, this approximated input space is much smaller
than the real one. Hence, generally, a DL model performs well on designed test data during
development but exhibits performance degradation on unseen test data when deployed in the real
world [18, 24].

Test input selection is essential for developers to estimate a DL model performance after de-
ployment and has been well studied for classification tasks in the domains of computer vision and
natural language processing [5, 26]. This technique decides which test data should be used from
available unlabeled tests to cut the cost associated with the labeling effort. Instead of the man-
ual and ad hoc way, these tests can be selected strategically based on the behavior of DL models.
For instance, Chen et al. proposed the practical accuracy estimation (PACE) [5] to approxi-
mate the accuracy of classifiers and regression models. PACE utilizes the model output at different

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:5

levels (e.g., first layer, last hidden layer, confidence output) as data features. Based on extracted fea-
tures, PACE performs clustering to group data into different clusters where representative data are
selected proportionally and separately. For the same tasks, Li et al. proposed the cross-entropy-

based sampling (CES) [26]. The main idea is to select data that has the minimum cross-entropy
with the entire test set. CES also uses the confidence output (prediction probability of belonging
to a certain class) as the data feature. However, concerning deep code search, the prediction prob-
ability is not available from the model but the contextual representations of text query with the
absence of corresponding code snippets. Therefore, these probability-based SOTA approaches are
directly inapplicable. Some other test input selection approaches have been proposed to locate er-
ror inputs where the model has not learned sufficiently. Note that these approaches are also called
test input prioritization in the literature [5]. Pei et al. proposed the first white box testing, Deep-
Xplore [36], to find test inputs that trigger the error behavior of DL models with a high neuron
coverage. Similarly, References [25, 33, 54] also select data based on the neuron coverage. Some
other approaches utilize the prediction probability to select data. For instance, Shen et al. select
data with a small probability ratio between the first two predicted classes [47]. Feng et al. identify
test inputs with the largest Gini impurity [8]. However, these types of approaches mainly select
test inputs to enhance the model performance, which is different from this article’s focus.

Another relevant technique to test input selection is active learning from the machine learning
community [44]. In active learning, a DL model is trained iteratively through multiple steps. At
each step, a small set of training data is selected based on a specific acquisition function to update
the pre-trained model from the previous step. The goal of both test selection metrics and acquisi-
tion functions in active learning is to reduce the labeling cost when given massive unlabeled data.
The main difference is that selection metrics target the test data while acquisition functions select
data from the training set. In the literature, studies have proved that these acquisition functions
perform effectively as test selection metrics [17–19]. For example, Ozan and Silvio proposed the
core set selection [43] for the image classification task. The core set tends to select the represen-
tative data from the training set for the current step training. Nevertheless, this approach also
requires the prediction probability to select data. Additionally, due to its greedy algorithm in the
selection procedure, its execution is prohibitive and impractical.

3 KAPE

We first describe the problem that is targeted in this work. Next, before the detailed explanation
of KAPE, we present a motivating example. Via the example, one gets a preliminary insight into
the key idea of our proposed KAPE. Finally, we explicitly present KAPE.

3.1 Problem Definition

Given a deep code search model f and its training set DDD, where DDD consists of query-code pairs,
this article focuses on the problem of estimating the model performance PTTT on a set of unseen
data TTT . Specifically, TTT only includes a number of queries and their corresponding code snippets
are missing. However, the code snippets are required to precisely calculate the model performance.

To solve this problem, there is the test input selection technique that is well-studied in the CV
and NLP fields, especially for classification tasks (e.g., image classification, sentiment classification).
The core idea is to select a subset of data from the test set and manually assign the corresponding
labels (code snippets in code search). This subset is assumed to be representative of the entire set,
and, thus, the performance of this subset is considered as the estimated performance of the entire
set. Formally,

PTTT ≈ PT ∗T ∗T ∗ , whereT ∗T ∗T ∗ ⊆ TTT . (1)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:6 Y. Guo et al.

Fig. 2. An example of performance estimation by KAPE on three test queries with seven training query-code
pairs.

Fig. 3. Overview of KAPE.

However, manually assigning the best-match code snippet to a test query is more challenging than
annotating the label (e.g., cat) of an animal in image classification or the review sentiment (e.g.,
positive, negative) in sentiment classification. Concerning this, we are interested in solving this
problem without any manpower.

3.2 Motivating Example

Our intuition is that a model outputs the same code snippet if two queries are similar enough.
Figure 2 presents a motivating example of our proposed kNN-based performance estimation

(KAPE). In this example, the training set includes seven query-code pairs (d1,d2, . . . ,d7) and the
test set has three queries. We first find the two nearest neighbors for each test query from the train-
ing set. Next, we obtain the individual model performance of each neighbors group. Concretely,
we create a neighbors group of query-code pairs where the queries from the training set are the
nearest neighbors of test queries. The model can output the performance on each individual pair
(P2, P4, P7). Finally, for each test query, given its two nearest neighbors, we assign the weights
(e.g., ω12 is the weight of the second nearest neighbor for the first test query) and obtain the final
result P .

3.3 Methodology

Our proposed KAPE consists of four main steps. Figure 3 presents an overview of KAPE, and
Algorithm 1 gives details of KAPE.

Step 1: Feature extraction. Since KAPE relies on the semantic similarity between the unseen
test set and training set to conduct performance estimation, the first step is to determine the query
feature for the following similarity measure. In this article, we utilize the contextual representation
of natural language queries obtained from the trained model. The reason is that, in general, deep
code search models utilize the similarity between the representation vectors of queries and code
snippets to find the best match. Namely, if a training query has the same representation vector as a

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:7

ALGORITHM 1: KAPE: KNN-based performance estimation

Input : f : trained model

DDD : training set of query-snippet pairs

TTT : unseen test set of queries

k : hyperparameter of kNN

Output :PTTT : model performance onTTT
/* Step1: Obtain natural language contextual representations */

1 EDEDED ,ETETET = f (DDD), f (TTT)
/* Step 2: Calculate similarity */

2 SSS = ∅

3 for i = 1→m do

4 for j = 1→ n do

5 Si, j = CosineSimilarity (EDEDED i ,ETETET j) ; // Equation (2)

6 end

7 end

/* Step 3: Locate k nearest neighbors */

8 NNNNNN ,NSNSNS = ∅,∅ ; // matrix of the first k similar queries and corresponding similarity matrix

9 for i = 1→ n do

10 NNiNNiNNi ,NSiNSiNSi = DecendinдSort (SiSiSi ,k)

11 end

/* Step 4: Estimate performance */

12 for j = 1→ k do

13 D jD jD j = SelectTrain(DDD,NNNNNN , j) ; // A subset of training data of the ith nearest

14 PjPjPj = Evaluate (f ,D jD jD j) ; // PjPjPj is a vector of model performance on each data

15 end

16 for i = 1→ n do

17 for j = 1→m do

18 zi, j =
N Si, j−μ

σ ; // μ and σ are the mean and standard deviation of N Si, respectively

19 end

20 end

21 WWW =WeiдhtCalculate (NSNSNS,zzz) ; // Calculate weights of each nearest neighbor by Equation (3)

22 PTTT =
1
n (
∑n

i=1

∑k
j=1 Pi, j ∗ ωi, j)

23 return PTTT

test query, then the model will identify the same code snippet. Line 1 extracts the natural language
representation vectors of the training and test queries, respectively.

Step 2: Similarity calculation. We utilize the cosine similarity to capture the similarity be-
tween two queries, which is defined as:

CosineSimilarity (EDEDED i ,ETETET j) =
EDEDED i · ETETET j

‖ EDEDED i ‖‖ ETETET j ‖
=

∑t
l=1 ED

l
iET

l
j√∑t

l=1 (ED
l
i)2
√∑t

l=1 (ET
l
j)

2

, (2)

where EDEDED i and ETETET j are the contextual representations (vectors) of the ith query in the training set
and the jth query in the test set, respectively. t is the length of the representation vector. For each
test query, we compare its similarity with all the queries in the training set (Lines 2–7).

Step 3: kNN locating. Given the similarity matrix calculated in Step 2, the k-nearest neigh-

bors (kNN) algorithm is applied, for each test query, to locate the first k most similar queries from

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:8 Y. Guo et al.

Table 1. Examples of the Most Similar Queries from the Training Set for Queries from the Test Set

No. Query source Query content Reciprocal rank Similarity

1
Test set Get all comments for a commit 0.1667

0.8223
Training set Fetch comments for PRs and add them to comments 0.2500

2
Test set Produces a log message 0.1111

0.8528
Training set Logs a message. 0.2000

3
Test set Create a new builder object for evaluation. 0.1429

0.8427
Training set Create a new builder. 0.1429

4
Test set Extracts the downloaded archive file into project_dir. 1.0000

0.8334
Training set Extract the given tarball to the target directory 1.0000

5
Test set Shells out and runs +command+. 0.5000

0.8649
Training set Execute shell command 0.1250

6
Test set Remove the file at the given path. 1.0000

0.9496
Training set Delete the file at the given path 1.0000

7
Test set Save the file to disk. 1.0000

0.8842
Training set Save the file 1.0000

8
Test set Resets all configuration options to the defaults. 0.5000

0.9919
Training set Reset all configuration options to defaults. 0.5000

9
Test set Start a timer in the included object 1.0000

0.8136
Training set Start the timer 1.0000

10
Test set Render the barcode to a PNG image 0.3333

0.8659
Training set Writes a barcode PNG image. 0.3333

The reciprocal rank of the ground truth in the result list is the model performance we consider in this article. Dataset:

Ruby. Model: GraphCodeBERT. For more details of the dataset, model, and performance measure, please refer to

Section 4.2.

the training set (Lines 8–11). kNN is a simple and easy-to-implement machine learning algorithm
that is widely employed in recommendation system [1], classification [58], and regression [45]. We
assume that similar queries, respectively, from training and test sets will trigger a similar model
performance. Table 1 lists 10 pairs of queries and the corresponding similarities. The examples are
from the Ruby dataset and GraphCodeBERT model (more details can be found in Section 4.2). The
semantic similarity between two queries is measured by the widely used cosine similarity [50] in
NLP. The last two columns (Reciprocal rank, more details in Section 4.2) show the model perfor-
mance on each test query and its corresponding matched training query. In most cases (7 of 10),
the test query shares the same performance as its matched one.

Step 4: Performance estimation. Finally, we estimate the model performance based on the
kNN of test data and the corresponding similarity. As shown in Table 1, similar queries do not
always have the same performance. For example, the fifth test query has a similarity of 0.8649 to its
most similar query from the training set, but the model performance is 0.5 and 0.125, respectively.
This is reasonable, because if a test query is very similar to several training queries, then the
output code snippets can vary. As a result, the selected training query-snippet cannot precisely
approximate the model performance on this test query. Concerning this, we propose to calculate
the weight of each nearest neighbor to approximate the model performance. We undertake this step
in two sub-steps (individual training subset evaluation and weight calculation). In concrete,
first, for each i = 1→ k (Line 12), we can extract a subset of training data including query-snippet
pairs of the ith nearest to test queries (Line 13). The subset has the same size as the test set, and we
can obtain the performance on each query-snippet pair by simply evaluating the model (Line 14).

In weight calculation, we utilize the similarity between queries to obtain the weight. Given the
similarity matrix NS , for each test query, we first determine the neighbors/similarities to use. This

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:9

is to avoid the impact of low similarities. For example, the similarities between a test query and its
5 nearest neighbors from the training set are 1, 0.8743, 0.8718, 0.8472, and 0.8443, respectively. The
actual performance on this test query is 0.2 and 0.2, 0.2, 1, 1, and 1, respectively, on its 5 neighbors.
Using the first nearest neighbor can precisely estimate the performance. However, if we take the
average of the 5 results or use similarity as the weight to calculate the final result, then there will
be an inevitable difference. To solve this problem, we use the Z-Score [53] to adaptively identify
to-be-used neighbors (Lines 16–20). In statistics, the Z-Score tells how far a data is from the mean,
which can be used to identify outliers in a set of data [39]. A Z-Score of 1.0 indicates that the value
is one standard deviation from the mean. A value with a high Z-Score is usually considered as an
outlier in the group. In this article, we experimentally take the neighbors that have an absolute
Z-Score of less than 1 into consideration. Thus, given the Z-Scores, zizizi , of the ith test query and its
similarity matrix, NSiNSiNSi , the weight of each neighbor is:

ωi, j =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

N Si, j∑{
N Si,l

���1≤l ≤k,zi,l ≤1

} , zi, j ≤ 1

0 ,otherwise .

(3)

Finally, the model performance is calculated given the weight (Line 21) and performance on each
individual training subset (Lines 22–23).

4 EXPERIMENTAL SETUP

Our experiments aim to address four research questions:

RQ1 Effectiveness. How effective is KAPE in estimating the model performance given an unseen
test set?

RQ2 k sensitivity. How sensitive is KAPE to the setting of k in the kNN algorithm?
RQ3 Impact of data distribution. Does the data distribution w.r.t. the similarity affect KAPE’s

effectiveness?
RQ4 Impact of nearest neighbors’ weights. What is the impact of weight calculation on

KAPE?

RQ1 gives an insight into KAPE’s effectiveness in assessing the model performance using dif-
ferent datasets and models. By RQ2, we analyze if KAPE performs consistently given different
settings of its only parameter k , which will demonstrate how flexible KAPE is. Since KAPE takes
advantage of the similarity between the test queries and training set to approximate the model
performance, we conduct RQ3 to explore if KAPE is stable with different data distributions w.r.t.
the similarity. Finally, as an important component of KAPE, the weight calculation is adaptive in
the number of k for each test data as well as the weight from each nearest neighbor, which makes
KAPE practical for real-world applications. We undertake an ablation study for RQ4 to verify the
importance of this component.

4.1 Implementation Details

All experiments were conducted on a high-performance computer cluster, and each cluster node
runs a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA Tesla V100 16 G SXM2 GPU. We imple-
ment KAPE and baseline methods using the PyTorch 1.6.0 framework. We repeat each experiment
three times to reduce the influence of randomness. Additionally, for reproducing the results, we
use fixed random seeds of 0, 1, and 2 in the experiments. Due to the space limitation, we only
report the results of the largest dataset PHP for RQ3, and the remaining results corroborating our
findings are available on our companion project website [16].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:10 Y. Guo et al.

Table 2. Summary of Datasets and the MRR on the Validation (Left) and Test Sets (Right)

Dataset #Training #Validation #Test
MRR

RoBERTa CodeBERT GraphCodeBERT

JavaScript 123,889 8,253 6,483 0.4867 0.5125 0.5493 0.5795 0.5682 0.5992
Java 454,451 15,328 26,909 0.5005 0.4828 0.5329 0.5227 0.5385 0.5291
Python 412,178 23,107 22,176 0.5812 0.6149 0.6401 0.6735 0.6546 0.6905
Ruby 48,791 2,209 2,279 0.6214 0.5717 0.7080 0.6360 0.7244 0.6602
PHP 523,712 26,015 28,391 0.4750 0.4475 0.5142 0.4856 0.5242 0.4947
Go 317,832 14,242 14,291 0.7872 0.7018 0.8048 0.7301 0.8054 0.7296

4.2 Datasets, Models, and Performance Measure

Datasets and models. We use the six benchmark datasets provided by the CodeSearchNet chal-
lenge [21] including different programming languages, namely, JavaScript, Java, Python, Ruby,
PHP, and Go. For all the datasets, we utilize three state-of-the-art pre-trained models for deep code
search, RoBERTa [29], CodeBERT [9], and GraphCodeBERT [15], which are superb in learning the
contextual representations of both natural and programming language data. The pre-trained mod-
els are obtained by the implementation provided by the CodeXGLUE project [31] (epoch number is
5 and default for the other parameters). Each model is fine-tuned using the training set and tested
on the validation set. The test set is regarded as unseen data and untouched in the fine-tuning
procedure. Table 2 lists more details of each dataset.

MRR. We adopt the widely used mean reciprocal rank (MRR) [14, 31] in our experiments to
measure the model performance. MRR is calculated by:

MRR =
1

n

n∑
i=1

1

ranki
, (4)

where ranki is the position of the matched code snippet in the returned results of the ith test query.
The higher the MRR, the better the searching performance. Note that Pi, j in Algorithm 1 is equal

to 1
r anki

instead of the MRR. The reciprocal rank of each query in Table 1 is also 1
r anki

.

4.3 Baseline Methods

Concerning that this is the first performance estimation work for deep code search, we take three
test selection metrics (random sampling, PACE, and DeepGini) and three acquisition functions
(LC, Margin sampling, and MaxEntropy) from active learning that are widely studied in the CV
and NLP domains [5, 19] as the baseline methods. Note that References [17–19] have demonstrated
that the acquisition functions can act as test selection metrics. In addition, as KAPE selects data
from the training set, we propose the baseline method of randomly selecting data from the training
set. Without loss of generality, we use random sampling (test) to refer to the sampling from the
test set and random sampling (train) for sampling from the training set.

— Random sampling (test) A fixed number of test data is randomly selected and the corre-
sponding code snippets are manually matched.

— PACE [5] The Practical ACcuracy Estimation (PACE) method first divides the test queries
into different clusters using the HDBSCAN (hierarchical density-based spatial cluster-

ing of applications with noise) clustering algorithm. Then PACE utilizes the MMD-critic
algorithm [22] to select the most representative data from each cluster proportionally con-
cerning the cluster size. PACE was initially proposed for image classification and regression
tasks.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:11

Table 3. Differences between KAPE and Baseline Methods

Method Selection object Selection number Manpower free Stability

Random sampling (test)

test data limit to manpower budget ×

×
PACE

√

LC, Margin
√

MaxEntropy, DeepGini
√

Random sampling (train)
training data the same as test data

√ ×
KAPE

√

— DeepGini [8] For a classification task (e.g., image classification), it selects the most infor-
mative data that have the highest Gini impurity. The Gini impurity measures how likely a
sample is wrongly classified based on the prediction possibilities of all classes.

— LC [17] The least confidence (LC) metric selects data where the model has the least con-
fidence (probability) in the most likely class label.

— Margin sampling [41] Similar to LC, the margin sampling considers the prediction confi-
dence. Instead of using the most likely class, it selects data that have the smallest difference
between the first and second most probable class labels.

— MaxEntropy [17] This metric selects the most uncertain data where the Shannon entropy
of the prediction probability is the highest. The only difference with DeepGini is the
measure (Gini impurity and Shannon entropy) used to calculate the uncertainty.

— Random sampling (train) A set of training data is randomly selected from the training set.

Note that PACE, DeepGini, LC, Margin sampling, and MaxEntropy require the prediction prob-
ability to perform the clustering procedure or the uncertainty calculation. Since, in the deep code
search task, the prediction probability is unavailable, these metrics are not directly applicable. To
solve this issue, we calculate the similarity between each test query and its predicted 10 best-match
code snippets from the training set and apply softmax function [12] to obtain the probability for
each best-match. The probabilities of 10 best-match are considered as the prediction probability of
10 classes.

Table 3 presents the four main differences between KAPE and baseline methods. First, compared
to test selection metrics where a subset of test data approximates the model performance on the
entire test set, KAPE selects data from the training set to achieve the goal. Second, in test selection
metrics, the selected data size depends on the given budget of manpower and is usually much
smaller than the given test set size. By contrast, KAPE selects the same size of training data. Third,
since KAPE relies on the training set to undertake the performance estimation, no manpower is
required, which is more practical. Finally, due to the sampling randomness, the random manner
(from test or training data) has low stability of performance estimation. Namely, the estimated
performance by random sampling varies among several repetitions.

For the six test selection metrics, we use different labeling percentages, i.e., 1%, 3%, 5%, . . . , and
50%. 1% means that 1% test data is selected. The sampling size of random sampling (train) is the
same as the unseen test set.

5 RESULTS AND DISCUSSION

In this section, we first compare the performance estimation effectiveness of KAPE and baseline
methods. Next, by assigning different ks, we explore the KAPE’s sensitivity to k . Third, we inves-
tigate if the type of data influences KAPE’s effectiveness. The type of data means test queries are
very similar or different to the training set. Finally, we discuss the necessity of adaptive weight
calculation in Section 3.3 via an ablation study.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:12 Y. Guo et al.

Fig. 4. Effectiveness comparison between KAPE and baseline methods given the CodeBERT model.
Groundtruth: the actual MRR of the model on the test set. Shaded area illustrates the standard deviation
of three experiment repetitions.

5.1 RQ1: Effectiveness

Figure 4 shows the comparison between KAPE and seven baseline methods based on the Code-
BERT model. Compared to random sampling (train), KAPE always estimates the model perfor-
mance more accurately for all datasets and models. We can first conclude that selecting data from
the training set based on the semantic similarity between training and test data is more reasonable
than simple test-independent sampling. However, the effectiveness of random sampling (test) and
Margin sampling improves along with increasing the labeling percentage. The other test selec-
tion metrics perform inconsistently across different datasets. For instance, LC, MaxEntropy, and
DeepGini perform well on JavaScript and Ruby but act extremely badly on Java, PHP, and Go. In
particular, when the labeling percentage is less than 10%, these three metrics estimate the model
performance as around 0, which is far from the ground truth. In addition, PACE improves the effec-
tiveness along with the increment of labeling budget on JavaScript, Python, and Ruby but degrades
on the other datasets. By contrast, in most cases, KAPE outperforms baselines in the six datasets
regardless of the labeling percentage. For instance, in PHP, random sampling (test), LC, MaxEn-
tropy, Margin, and DeepGini can only reach a competitive performance when manually matching
more than 50% (14,196) code snippets from the unseen test queries. In addition, due to the sampling
randomness, there is a performance deviation in random sampling (train) and random sampling
(test) over three repetitions, which is avoided by KAPE.

Table 4 lists the results of KAPE on the PHP dataset based on the RoBERTa and GraphCodeBERT
models. KAPE always outperforms random sampling (test), random sampling (train), DeepGini,
Margin sampling, and MaxEntropy regardless of the labeling percentage and model. With more

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:13

Table 4. Effectiveness Comparison between KAPE and Baseline Methods on PHP Given
the RoBERTa and GraphCodeBERT Models

Labeling percentage (%)
Dataset

1 3 5 10 15 20 25 30 35 40 45 50

RoBERTa

Groundtruth 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475 0.4475
Random (test) 0.8295 0.7647 0.7222 0.6612 0.6249 0.5986 0.5814 0.5648 0.5500 0.5360 0.5255 0.5162
Random (train) 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686
PACE 0.6320 0.5676 0.5240 0.4696 0.4342 0.4113 0.3932 0.4006 0.4232 0.4375 0.4449 0.4513
DeepGini 0.0219 0.0086 0.0055 0.0808 0.1919 0.2619 0.3054 0.3247 0.3464 0.3636 0.3772 0.3857
LC 0.0219 0.0086 0.0055 0.0862 0.2286 0.2817 0.3234 0.3468 0.3565 0.3735 0.3857 0.3918
Margin 0.5030 0.2665 0.1547 0.1243 0.2836 0.3501 0.3718 0.3936 0.4066 0.4126 0.4149 0.4151
MaxEntropy 0.0219 0.0086 0.0055 0.0788 0.1928 0.2616 0.2901 0.3211 0.3429 0.3571 0.3719 0.3801
KAPE (k = 1) 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880
KAPE (k = 5) 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766 0.3766

GraphCodeBERT

Groundtruth 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947 0.4947
Random (test) 0.8512 0.7967 0.7559 0.7061 0.6699 0.6466 0.6308 0.6140 0.5988 0.5853 0.5741 0.5657
Random (train) 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328 0.6328
PACE 0.6445 0.5553 0.5298 0.4776 0.4467 0.4267 0.4109 0.4349 0.4647 0.4820 0.4943 0.4991
DeepGini 0.0219 0.0086 0.0055 0.0762 0.2106 0.2842 0.3391 0.3742 0.3946 0.4113 0.4253 0.4367
LC 0.0219 0.0086 0.0055 0.0809 0.2347 0.3001 0.3552 0.3813 0.4055 0.4187 0.4309 0.4438
Margin 0.5572 0.5939 0.3959 0.1901 0.2887 0.3643 0.3986 0.4136 0.4300 0.4401 0.4492 0.4565
MaxEntropy 0.0219 0.0086 0.0055 0.0713 0.2071 0.2862 0.3334 0.3682 0.3896 0.4074 0.4197 0.4323
KAPE (k = 1) 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442 0.4442
KAPE (k = 5) 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380 0.4380

Values highlighted in grey indicate that KAPE outperforms the baseline methods. Groundtruth: the actual MRR of

the model on the test set.

manpower added, the effectiveness of LC improves. However, it still requires at least 50% (14,196)
and 45% (12,776) manually matched query-code pairs given the RoBERTa and GraphCodeBERT
models, respectively, to achieve similar performance to KAPE. Similar to the case in CodeBERT
(Figure 4(e)), PACE occasionally degrades the performance when increasing the labeling percent-
age. For instance, in GraphCodeBERT, PACE outperforms KAPE when the labeling percentage is
5%, 10%, and 15% but fails when increasing the percentage to 20%, 25%, and 30%.

Additionally, as shown in Figure 4 and Table 4, KAPE performs consistently with different set-
tings of k , i.e., k = 1 and k = 5 and the difference is very slight. To analyze the sensitivity of KAPE
to this parameter, we conduct the next experiment in Section 5.2.

Answer to RQ1: KAPE is efficient in performance estimation and outperforms the test selection
metrics in most cases (e.g., even with 50% manual matching in PHP, GraphCodeBERT, MaxEn-
tropy still performs worse than KAPE by 0.0119). In addition, KAPE outperforming random sam-
pling (train) indicates that KAPE’s efficiency comes from the similarity-based selection strategy.

5.2 RQ2: k Sensitivity Analysis

KAPE only includes one parameter, k , which determines the number of nearest neighbors of test
queries to consider for performance estimation. To investigate whether KAPE is sensitive to this
parameter or not, we conduct the sensitivity analysis experiment by using 10 different ks (k =
1, 2, . . . , 10).

Table 5 shows KAPE’s effectiveness given different ks with the statistical average and standard
deviation. In general, the deviation is slight and ranges from 0.0011 to 0.0090, which draws the
conclusion that KAPE is insensitive to k . However, we observe that, in many cases, KAPE performs
equally with k = 1 and k = 2. For example, for JavaScript, KAPE obtains the same result regardless

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:14 Y. Guo et al.

Table 5. Comparison of KAPE Using 10 Different k Settings

Dataset k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Avg Std

RoBERTa

JavaScript 0.5136 0.5136 0.5141 0.5118 0.5119 0.5111 0.5120 0.5139 0.5137 0.5140 0.5130 0.0011
Java 0.3993 0.4020 0.4021 0.4040 0.4047 0.4051 0.4065 0.4069 0.4073 0.4077 0.4045 0.0026
Python 0.5347 0.5391 0.5389 0.5394 0.5406 0.5416 0.5423 0.5435 0.5445 0.5447 0.5409 0.0029
Ruby 0.6307 0.6405 0.6427 0.6474 0.6486 0.6523 0.6548 0.6566 0.6589 0.6608 0.6493 0.0089
PHP 0.3880 0.3841 0.3828 0.3792 0.3766 0.3738 0.3723 0.3708 0.3697 0.3685 0.3766 0.0064
Go 0.6036 0.6066 0.6078 0.6106 0.6134 0.6139 0.6148 0.6158 0.6164 0.6174 0.6120 0.0044

CodeBERT

JavaScript 0.6065 0.6065 0.6066 0.6042 0.6056 0.6075 0.6073 0.6079 0.6088 0.6091 0.6070 0.0014
Java 0.4627 0.4627 0.4626 0.4629 0.4637 0.4654 0.4663 0.4677 0.4688 0.4701 0.4653 0.0027
Python 0.5983 0.6015 0.6008 0.6032 0.6049 0.6065 0.6072 0.6080 0.6092 0.6104 0.6050 0.0038
Ruby 0.7089 0.7111 0.7111 0.7127 0.7171 0.7216 0.7247 0.7266 0.7281 0.7292 0.7191 0.0074
PHP 0.4325 0.4275 0.4254 0.4229 0.4217 0.4198 0.4190 0.4181 0.4172 0.4163 0.4220 0.0049
Go 0.6258 0.6309 0.6313 0.6341 0.6356 0.6357 0.6363 0.6374 0.6381 0.6388 0.6344 0.0038

GraphCodeBERT

JavaScript 0.6270 0.6270 0.6287 0.6311 0.6317 0.6330 0.6345 0.6360 0.6360 0.6367 0.6322 0.0035
Java 0.4770 0.4770 0.4766 0.4785 0.4810 0.4824 0.4837 0.4841 0.4853 0.4864 0.4812 0.0035
Python 0.6200 0.6251 0.6264 0.6284 0.6307 0.6321 0.6337 0.6348 0.6366 0.6377 0.6306 0.0053
Ruby 0.7398 0.7433 0.7433 0.7483 0.7519 0.7564 0.7587 0.7627 0.7646 0.7655 0.7534 0.0090
PHP 0.4442 0.4428 0.4408 0.4390 0.4380 0.4365 0.4355 0.4342 0.4334 0.4328 0.4377 0.0037
Go 0.6204 0.6230 0.6240 0.6280 0.6293 0.6312 0.6320 0.6324 0.6330 0.6336 0.6287 0.0044

“Avg” and “Std” are short for average and standard deviation, respectively.

of the model. Additionally, given the GraphCodeBERT, Table 5 shows that KAPE has a greater
deviation on Ruby (0.009) and Python (0.0053) than other datasets. We conjecture the reason is
that the unseen test sets in these two datasets include many data that have very low and different
similarities to their nearest neighbors. Thus, more neighbors and their corresponding similarities
are considered in the weight calculation. To verify this, we conduct the next experiment to explore
the impact of data similarity on KAPE.

Answer to RQ2: KAPE’s effectiveness is stable with different k settings with a slight deviation
less than 0.01.

5.3 RQ3: Impact of Data Distribution

Concerning that KAPE is based on the semantic similarity between test queries and the training
set, we explore, in this research question, the impact of data distribution. Namely, we assess
KAPE’s performance in challenging scenarios, where the test set closely resembles or significantly
differs from the training set. Here, the data distribution refers to the distribution based on
semantic similarity. We evenly split each test set into two subsets, i.e., a similar set and a different
set. In concrete, the similarity between each test query and its nearest neighbor is first calculated.
Then, we group each test data into a similar set if its similarity is greater than half of the test and
vice versa. Figure 5 shows the density distribution of similarities of the two sets for each dataset.
In PHP and Go, the difference between similar and different test sets is smaller than in other
datasets, since most data have a similarity between 0.8 and 1.0. For example, in Ruby, the lower
bound of data similarity reaches 0.5.

Figure 6 shows the results on the similar and different sets on the PHP dataset. In general, KAPE
still outperforms baseline methods in most cases and performs better on similar test sets. Concern-
ing the similar set, KAPE performs the best regardless of the model by achieving only 0.0118, 0.0079,
and 0.0112 differences with the ground truth given RoBERTa, CodeBERT, and GraphCodeBERT,
respectively. Random sampling (train) still performs worse than KAPE as in Section 5.1. Random

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:15

Fig. 5. Similarity density distribution of test sets where data is “similar” to or “different” from the training
set. Model: CodeBERT.

Fig. 6. Effectiveness of KAPE and baseline methods given the similar (first row) and different (second row)
PHP test set. Groundtruth: the actual MRR of the model on the test set. Shaded area illustrates the standard
deviation of three experiment repetitions.

sampling (test) improves the performance with a greater labeling percentage but consistently per-
forms worse than KAPE even with the labeling percentage at 50%. LC, MaxEntropy, and DeepGini
estimate the model performance around 0 when the labeling percentage is less than 20% (5,678 test
data). The effectiveness of Margin sampling and PACE varies much when increasing the labeling

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:16 Y. Guo et al.

percentage. For instance, Margin sampling performs the worst when 15% of test queries are manu-
ally matched with code snippets and improves the performance by increasing and decreasing the
percentage. Concerning the different sets, in general, all test selection metrics improve the effec-
tiveness when increasing the labeling percentage. In all models, when the labeling percentage is
less than 30%, KAPE still outperforms all these metrics. By comparison, the estimation error in-
creases given the different sets and is up to 0.0660 (RoBERTa). The reason is that when the nearest
neighbors from the training set are similar to the test data, the performance of the training data is
more reliable to be transferred to the test set.

Answer to RQ3: Although KAPE is based on the similarity between test and training sets, its
effectiveness is flexible to various (similar or different) data distributions. In addition, KAPE
benefits more from the similar data distribution where most test data are close to the training
set.

5.4 RQ4: Impact of Nearest Neighbors’ Weights

Recall that in the last step of KAPE, given k , the number (≤ k) of used nearest neighbors of each
test query and the weight of each nearest neighbor are assigned adaptively based on the Z-Score
and similarity (Section 3.3). To verify the importance of this adaptive calculation, we conduct an
ablation study. We compare KAPE to the other three manners of obtaining the estimated perfor-
mance (Equation (3), Line 21 in Algorithm 1):

— Fixed k , equal weight: For each test query, we assign equal weights to its k nearest neighbors.
The variant of Equation (3) is defined as:

ωi, j =
1

k
. (5)

— Fixed k , adaptive weight: We utilize the similarity to determine the weight:

ωi, j =
NSi, j∑k

l=1 NSi,l

. (6)

— Adaptive k , equal weight: We utilize a flexible number of k for each test query based on the
Z-Score and re-define Equation (3) as:

ωi, j =
⎧⎪⎨
⎪
⎩

1
| {N Si,l |1≤l ≤k,zi,l ≤1} | , zi, j ≤ 1

0 ,otherwise .
(7)

Table 6 presents the statistical result of adaptive k calculated by the Z-Score method. It shows
that with the adaptive manner, test queries have different numbers of nearest neighbors contribut-
ing to the weight calculation. For example, in Go, GraphCodeBERT, given the pre-set maximum
k = 10, the 14,291 test queries have an average use of nearest neighbors of 8.97, and the minimum
number drops to 5. In concrete, only 43.96% (6,282) test data fully take all the 10 neighbors and 1
data uses 5 neighbors. 20.26% (2,896), 25.21% (3,604), 9.94% (1,406), and 0.71% (102) test data use
9, 8, 7, and 6 neighbors for the weight calculation, respectively. This is reasonable given that, for
each test query, the similarity between it and its nearest neighbors can be significantly different
from the others.

Table 7 presents the results of the ablation study on the JavaScript dataset. Regardless of the
model, the adaptive setting of k and weight achieves the best result in most cases. With a very
small k (k = 1 and k = 2), the four ways of weight calculation obtain the same results, but the
estimation precision can be lower than using greater ks. For example, in RoBERTa, using seven
nearest neighbors can reach a difference at 0.0005 but 0.0011 by only using the first neighbor.
When increasing the k , the advantage of using the adaptive setting stands out. Additionally, given

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:17

Table 6. Statistics (Min: Minimum and Avg: Average) of Involved k Nearest Neighbors by KAPE Given a
Fixed k (k = 3, 4, . . . , 10)

Model
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg

JavaScript

RoBERTa 2 2.49 3 3.45 3 4.33 4 5.28 4 6.16 5 7.09 5 8.01 6 8.92
CodeBERT 2 2.47 3 3.45 3 4.33 3 5.27 4 6.18 5 7.09 5 8.00 6 8.92
GraphCodeBERT 2 2.48 2 3.44 3 4.32 3 5.27 4 6.17 5 7.09 5 7.99 5 8.90

Java

RoBERTa 2 2.50 3 3.48 3 4.36 3 5.29 4 6.19 5 7.10 5 8.00 5 8.91
CodeBERT 2 2.50 3 3.48 3 4.37 3 5.29 4 6.18 5 7.09 5 7.99 5 8.91
GraphCodeBERT 2 2.50 3 3.47 3 4.35 3 5.27 4 6.17 5 7.09 5 8.00 5 8.91

Python

RoBERTa 2 2.43 3 3.41 3 4.29 3 5.20 4 6.10 5 7.01 5 7.92 6 8.84
CodeBERT 2 2.44 3 3.41 3 4.29 3 5.21 4 6.11 5 7.01 5 7.93 6 8.85
GraphCodeBERT 2 2.44 3 3.41 3 4.30 3 5.21 4 6.11 5 7.03 5 7.93 5 8.84

Ruby

RoBERTa 2 2.44 3 3.40 3 4.29 4 5.20 4 6.10 5 6.98 5 7.89 6 8.82
CodeBERT 2 2.44 3 3.38 3 4.26 4 5.18 4 6.10 5 6.99 5 7.91 6 8.83
GraphCodeBERT 2 2.41 2 3.38 3 4.27 4 5.19 4 6.09 5 6.98 5 7.90 6 8.82

PHP

RoBERTa 2 2.56 3 3.54 3 4.41 3 5.35 4 6.25 5 7.17 5 8.08 5 9.00
CodeBERT 2 2.56 3 3.54 3 4.40 3 5.35 4 6.25 5 7.16 5 8.07 5 8.99
GraphCodeBERT 2 2.56 3 3.54 3 4.42 3 5.35 4 6.25 5 7.17 5 8.07 5 8.99

Go

RoBERTa 2 2.49 3 3.48 3 4.37 4 5.30 4 6.23 5 7.16 5 8.08 5 9.00
CodeBERT 2 2.50 3 3.48 3 4.38 4 5.30 4 6.21 5 7.12 5 8.05 6 8.95
GraphCodeBERT 2 2.49 3 3.47 3 4.37 4 5.30 4 6.22 5 7.14 5 8.06 5 8.97

Table 7. Ablation Study on the k Nearest Neighbors’ Weights of KAPE

Dataset Base k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

RoBERTa

Fixed k , equal weight 0.5125 0.5136 0.5136 0.5135 0.5120 0.5120 0.5127 0.5136 0.5145 0.5151 0.5149
Fixed k , adaptive weight 0.5125 0.5136 0.5136 0.5136 0.5120 0.5121 0.5128 0.5136 0.5145 0.5151 0.5149
Adaptive k , equal weight 0.5125 0.5136 0.5136 0.5141 0.5117 0.5119 0.5110 0.5119 0.5139 0.5137 0.5140
Adaptive k , adaptive weight (KAPE) 0.5125 0.5136 0.5136 0.5141 0.5118 0.5119 0.5111 0.5120 0.5139 0.5137 0.5140

CodeBERT

Fixed k , equal weight 0.5795 0.6065 0.6065 0.6047 0.6057 0.6075 0.6077 0.6083 0.6083 0.6092 0.6101
Fixed k , adaptive weight 0.5795 0.6065 0.6065 0.6048 0.6057 0.6074 0.6076 0.6083 0.6082 0.6091 0.6100
Adaptive k , equal weight 0.5795 0.6065 0.6065 0.6066 0.6042 0.6056 0.6076 0.6073 0.6079 0.6089 0.6092
Adaptive k , adaptive weight (KAPE) 0.5795 0.6065 0.6065 0.6066 0.6042 0.6056 0.6075 0.6073 0.6079 0.6088 0.6091

GraphCodeBERT

Fixed k , equal weight 0.5992 0.6270 0.6270 0.6306 0.6317 0.6334 0.6357 0.6361 0.6371 0.6380 0.6387
Fixed k , adaptive weight 0.5992 0.6270 0.6270 0.6305 0.6316 0.6333 0.6355 0.6359 0.6368 0.6377 0.6384
Adaptive k , equal weight 0.5992 0.6270 0.6270 0.6287 0.6312 0.6318 0.6331 0.6346 0.6362 0.6363 0.6370
Adaptive k , adaptive weight (KAPE) 0.5992 0.6270 0.6270 0.6287 0.6311 0.6317 0.6330 0.6345 0.6360 0.6360 0.6367

Values highlighted in grey indicate the best performance. Groundtruth: the actual MRR of the model on the test set.

Dataset: JavaScript.

fixed k , using adaptive weight is always better than the equal manner in most cases, which also
happens when given adaptive k . However, given adaptive weight, using adaptive k is always better.

Answer to RQ4: Our proposed adaptive strategy to determine the number of nearest neighbors
and the corresponding weight contributes positively to KAPE’s effectiveness.

5.5 Human Evaluation

We conducted a human study to evaluate the effectiveness of KAPE. Five experienced software de-
velopers, familiar with Java, were invited to participate in the study. First, we obtained the answers
by the RoBERTa and CodeBERT models (see more details in Section 4.2) to 23 Java-related queries

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:18 Y. Guo et al.

Fig. 7. Results of the user study to evaluate the effectiveness of KAPE. The x-axis represents the five indepen-
dent participants, and the y-axis corresponds to the number of correct answers identified by participants.

collected from StackOverflow. Subsequently, the developers were asked to manually inspect and
verify the correctness of these answers. Specifically, each developer was given the answers gen-
erated by two models along with corresponding queries, all while being unaware of the specific
details (e.g., name, architecture, or any other distinguishing characteristics) about the underlying
model. The results in Figure 7 revealed that, on average, RoBERTa provided 16.4 out of 23 correct
answers, whereas CodeBERT yielded 17.8 out of 23 correct answers. This suggests that the develop-
ers considered CodeBERT to be a superior search model for these particular queries. However, we
employed KAPE to estimate the MRR for both RoBERT and CodeBERT. Notably, CodeBERT was
estimated to have a higher MRR (0.9783) than RoBERTa (0.9565), which aligns with the conclusion
from the human inspection.

6 DISCUSSION

6.1 Strengths and Limitations

Strengths. First, unlike the test selection metrics where a subset of test data is selected and man-
ually labeled, KAPE does not require manpower for the test data. Second, although based on the
similarity between training and test data, KAPE is flexible to different data distributions, e.g., the
unseen test data are very similar or very different to the training set.

Limitations. Since KAPE performs the performance estimation based on the semantic similar-
ity between training and test queries, the training set is required to be accessible. In addition, as
demonstrated by RQ3 in Section 5.3, KAPE benefits more from the similarity when the test data
is more similar to the training set than different. A new method is in demand for accurate perfor-
mance estimation.

6.2 Threats to Validity

The internal threat mainly comes from the implementations of baseline methods, KAPE, model
preparation, and testing. For random sampling (test) and random sampling (train), we apply the
random module in Python. We use the original implementation of PACE [5] and use the same
parameters, e.g., the maximum number of clusters and MMD-critic-related settings. The definitions
of DeepGini [8], LC [17], Margin sampling, and MaxEntropy [17] are simple, and these metrics are
easy to implement. For model preparation and evaluation, we use the original implementation on

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:19

GitHub [31] provided by Lu et al. For KAPE, the cosine similarity calculation is implemented using
the public library SciPy [42].

The external threat is due to selected datasets, models, baseline methods, and evaluation mea-
sures. Regarding the datasets, we test on all the six benchmark datasets provided by the Code-
SearchNet challenge [21]. For the models, we employ three popular and state-of-the-art pre-trained
models for deep code search. For comparison, concerning that our work is the first and the test
input selection metrics in other fields are inapplicable, we consider the most widely used baseline
method, random sampling (test), and apply different labeling percentages. In addition, since KAPE
utilizes training data to estimate the model performance, we also implement the baseline method,
random sampling (train), that selects training data for comparison. Regarding the performance
measure, we consider the widely used MRR. There are other measures, such as Answerd@k [4, 52],
which can be considered in a further study.

The construct threat mainly lies in the sampling randomness in the baseline methods. To reduce
the impact of randomness, we repeat each experiment three times and report the results of both
average and standard deviation. Additionally, to allow for reproducibility, we use fixed random
seeds (0, 1, and 2) for all the environment settings (e.g., random module in Python, Numpy, Torch,
and CUDA’s manual seed setting).

7 CONCLUSION

In this article, we introduce KAPE, a manpower-free testing approach that takes advantage of
the training set to efficiently estimate the performance on unseen test data of deep code search
models. Via the kNN algorithm, we map the unseen test data to the training space and assign
adaptive weights to the neighbors based on the semantic similarity between training and test data.
Experimental results on six programming languages and three pre-trained models demonstrate
that KAPE is effective in estimating the model performance and outperforms test selection metrics.
In addition, we show that KAPE is randomness-free, stable to parameters, and flexible to data
distributions.

For future work, more advanced deep code search models and evaluation measures will be in-
vestigated.

APPENDIX

A APPENDIX: BEYOND PRE-TRAINED MODELS

In addition to pre-trained models, we evaluate KAPE on other deep learning models that do not
benefit from a large code corpus in advance and are trained from scratch using the training data.

DeepCS [14]. Gu et al. proposed the CODEnn (Code-Description Embedding Neural Net-

work) model and integrated it into the DeepCS tool. CODEnn embeds code snippets into code
vectors via a code embedding network (CoNN) and embeds queries into description vectors
via a description embedding network (DeNN). Specifically, CoNN takes the method name, API
invocation sequence, and tokens contained in the source code as features to embed code.

UNIF [4]. Cambronero et al. built the UNIF (Embedding Unification) model that simply uses
a bag-of-words-based network. In particular, given a bag of code embedding vectors, UNIF designs
an attention-based weighing scheme to calculate the weight of each vector.

CARLCS-CNN [48]. Unlike DeepCS and UNIF, which learn individual embeddings for code
snippets and queries, respectively, CARLCS-CNN (co-attentive representation learning code

search-CNN) learns interdependent representations with a co-attention mechanism. Similar to
DeepCS, CARLCS-CNN also considers the method name, API invocation sequence, and tokens as
features of code.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

48:20 Y. Guo et al.

Tok-Att [56]. Introduced by Chen et al., Tok-Att only exploits the token feature of code to
generate code embeddings.

GraphSearchNet [28]. Proposed by Liu et al., GraphSearchNet consists of a program encoder
and a summary that learn the vector representations of code and queries, respectively. Concretely,
GraphSearchNet constructs graphs for code snippets and queries to capture the structural infor-
mation. In the corresponding encoder (e.g., program encoder), the graphs (e.g., graphs of code) are
fed into a bidirectional gated graph neural network (BiGGNN) with a multi-head attention
layer that learns the node and word embeddings.

Dataset and implementation For DeepCS, UNIF, and CARLCS-CNN, since they share similar
data features, we use two datasets (Example and GitHub with Java code files) provided by DeepCS
to perform the evaluation under the Tensorflow 2.0.0 framework. For GraphSearchNet, we use
its provided dataset named Python. Each model has trained 500 epochs and the best model with
respect to the validation set is saved. Table 8 lists the details of the provided datasets1 and model
performance.

Table 8. Summary of Three Datasets Provided by DeepCS and the MRR on the Validation and Test Sets
by Different Models

Dataset #Training/Validation/Test
MRR of DeepCS MRR of UNIF MRR of CARLCS-CNN MRR of Tok-Att

Validation Test Validation Test Validation Test Validation Test

Example 10,000/5,000/5,000 0.4649 0.4524 0.5472 0.5251 0.6788 0.6670 0.2564 0.2549
GitHub 10,000/5,000/5,000 0.5939 0.5804 0.5830 0.5949 0.6650 0.6526 0.3725 0.3731

Dataset #Training/Validation/Test
MRR of GraphSearchNet

Validation Test

Python 283,318/15,486/15,290 0.7060 0.7408

Figure 8 shows the comparison results. In general, KAPE outperforms baseline methods regard-
less of datasets and the labeling budget.

1All datasets by DeepCS are provided with the pre-processed token, method name, API sequence, and description files. No

pre-processing implementation or source code is available, thus reproduction on other datasets is inapplicable.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

KAPE: kNN-Based Performance Testing for Deep Code Search 48:21

Fig. 8. Effectiveness comparison between KAPE and baseline methods given different models. (a)–(d): result
on the Example dataset. (e)–(h): result on the GitHub dataset. (i): result on the Python dataset. Groundtruth:

the actual MRR of the model on the test set. Shaded area illustrates the standard deviation of three experi-
ment repetitions.

REFERENCES

[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Yang Yongquan. 2016. Automated web usage data mining and recom-

mendation system using K-Nearest Neighbor (KNN) classification method. Appl. Comput. Inform. 12, 1 (2016), 90–108.

[2] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire Le Goues. 2021. SOSRepair: Expressive

semantic search for real-world program repair. IEEE Trans. Softw. Eng. 47, 10 (2021), 2162–2181. DOI:https://doi.org/

10.1109/TSE.2019.2944914

[3] N. S. Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 3 (1992),

175–185. DOI:https://doi.org/10.1080/00031305.1992.10475879

[4] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code

search. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’19). Association for Computing Machinery, New York, NY,

964–974. DOI:https://doi.org/10.1145/3338906.3340458

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

https://doi.org/10.1109/TSE.2019.2944914
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1145/3338906.3340458

48:22 Y. Guo et al.

[5] Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan. 2020. Practical accuracy estimation

for efficient deep neural network testing. ACM Trans. Softw. Eng. Methodol. 29, 4, Article 30 (Oct 2020), 35 pages.

DOI:https://doi.org/10.1145/3394112

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. DOI:https://doi.org/10.48550/ARXIV.1810.04805

[7] Sen Fang, You-Shuai Tan, Tao Zhang, and Yepang Liu. 2021. Self-attention networks for code search. Inf. Softw. Technol.

134 (2021), 106542. DOI:https://doi.org/10.1016/j.infsof.2021.106542

[8] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. 2020. DeepGini: Prioritizing massive

tests to enhance the robustness of deep neural networks. In Proceedings of the 29th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis (ISSTA’20). Association for Computing Machinery, New York, NY, 177–188.

DOI:https://doi.org/10.1145/3395363.3397357

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting

Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-trained Model for Programming and Natural Languages.

DOI:https://doi.org/10.48550/ARXIV.2002.08155

[10] GitHub. 2008. GitHub: A Platform and Cloud-based Service for Software Development and Version Control. Retrieved

from https://github.com/

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Softmax Units for Multinoulli Output Distributions. Deep

Learning. MIT Press.

[13] Google. 2007. AI Platform Data Labeling Service Pricing. Retrieved from https://cloud.google.com/ai-platform/data-

labeling/pricing

[14] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In Proceedings of the IEEE/ACM 40th Inter-

national Conference on Software Engineering (ICSE’18). 933–944. DOI:https://doi.org/10.1145/3180155.3180167

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,

Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,

and Ming Zhou. 2020. GraphCodeBERT: Pre-training Code Representations with Data Flow. DOI:https://doi.org/10.

48550/ARXIV.2009.08366

[16] Yuejun Guo. 2022. Project Site of KAPE. Retrieved from https://sites.google.com/view/kape4dcs/

[17] Yuejun Guo, Qiang Hu, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2021. Robust active learning: Sample-

efficient training of robust deep learning models. CoRR abs/2112.02542 (2021).

[18] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and Yves Le Traon. 2022. An empirical

study on data distribution-aware test selection for deep learning enhancement. ACM Trans. Softw. Eng. Methodol. 31,

4 (2022). DOI:https://doi.org/10.1145/3511598

[19] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Wei Ma, Mike Papadakis, and Yves Le Traon. 2021. Towards

exploring the limitations of active learning: An empirical study. In Proceedings of the 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE’21). 917–929. DOI:https://doi.org/10.1109/ASE51524.2021.9678672

[20] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis, Lei Ma, and Yves Le Traon. 2023. Aries: Efficient

testing of deep neural networks via labeling-free accuracy estimation. In Proceedings of the IEEE/ACM 45th Interna-

tional Conference on Software Engineering (ICSE’23). IEEE, 1776–1787.

[21] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet

challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436 (2019).

[22] Been Kim, Rajiv Khanna, and Oluwasanmi O. Koyejo. 2016. Examples are not enough, learn to criticize! Criticism for

interpretability. Adv. Neural Inf. Process. Syst. 29 (2016).

[23] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and Yves Le Traon. 2018.

FaCoY—A code-to-code search engine. In Proceedings of the IEEE/ACM 40th International Conference on Software Engi-

neering (ICSE’18). 946–957. DOI:https://doi.org/10.1145/3180155.3180187

[24] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua

Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness, Wei Guo, Berton

Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn,

and Percy Liang. 2021. WILDS: A benchmark of in-the-wild distribution shifts. In Proceedings of the 38th International

Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang

(Eds.). PMLR, 5637–5664. Retrieved from https://proceedings.mlr.press/v139/koh21a.html

[25] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Effective white-box testing of deep neural networks

with adaptive neuron-selection strategy. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA’20). Association for Computing Machinery, New York, NY, 165–176. DOI:https://doi.org/

10.1145/3395363.3397346

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

https://doi.org/10.1145/3394112
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.1016/j.infsof.2021.106542
https://doi.org/10.1145/3395363.3397357
https://doi.org/10.48550/ARXIV.2002.08155
https://github.com/
https://cloud.google.com/ai-platform/data-labeling/pricing
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.48550/ARXIV.2009.08366
https://sites.google.com/view/kape4dcs/
https://doi.org/10.1145/3511598
https://doi.org/10.1109/ASE51524.2021.9678672
https://doi.org/10.1145/3180155.3180187
https://proceedings.mlr.press/v139/koh21a.html
https://doi.org/10.1145/3395363.3397346

KAPE: kNN-Based Performance Testing for Deep Code Search 48:23

[26] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü. 2019. Boosting operational dnn testing effi-

ciency through conditioning. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE’19). Association for Computing Machinery,

New York, NY, 499–509. DOI:https://doi.org/10.1145/3338906.3338930

[27] Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. 2021. Opportunities and challenges in code

search tools. ACM Comput. Surv. 54, 9, Article 196 (Oct. 2021), 40 pages. DOI:https://doi.org/10.1145/3480027

[28] Shangqing Liu, Xiaofei Xie, Lei Ma, Jing Kai Siow, and Yang Liu. 2021. GraphSearchNet: Enhancing GNNs via capturing

global dependency for semantic code search. CoRR abs/2111.02671 (2021).

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,

and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. DOI:https://doi.org/10.

48550/ARXIV.1907.11692

[30] Google LLC. 1998. Google. Retrieved from https://www.google.com/

[31] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain,

Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou,

Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE: A machine learning

benchmark dataset for code understanding and generation. CoRR abs/2102.04664 (2021).

[32] Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. 2015. CodeHow: Effective

code search based on API understanding and extended boolean model. In Proceedings of the 30th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE’15). 260–270. DOI:https://doi.org/10.1109/ASE.2015.42

[33] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,

Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: Multi-granularity Testing Criteria for Deep Learning Systems. As-

sociation for Computing Machinery, New York, NY, 120–131. Retrieved from https://doi-org.proxy.bnl.lu/10.1145/

3238147.3238202

[34] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie. 2012. Exemplar: A source code search

engine for finding highly relevant applications. IEEE Trans. Softw. Eng. 38, 5 (2012), 1069–1087. DOI:https://doi.org/

10.1109/TSE.2011.84

[35] Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu. 2013. Portfolio: Searching for relevant

functions and their usages in millions of lines of code. ACM Trans. Softw. Eng. Methodol. 22, 4, Article 37 (Oct. 2013).

DOI:https://doi.org/10.1145/2522920.2522930

[36] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated whitebox testing of deep learning

systems. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP’17). Association for Computing

Machinery, New York, NY, 1–18. DOI:https://doi.org/10.1145/3132747.3132785

[37] XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing Huang. 2020. Pre-trained models for

natural language processing: A survey. Sci. China Technol. Sci. 63, 10 (Sept. 2020), 1872–1897. DOI:https://doi.org/10.

1007/s11431-020-1647-3

[38] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing what I mean—Code search and

idiomatic snippet synthesis. In Proceedings of the IEEE/ACM 38th International Conference on Software Engineering

(ICSE’16). 357–367. DOI:https://doi.org/10.1145/2884781.2884808

[39] Peter J. Rousseeuw and Mia Hubert. 2011. Robust statistics for outlier detection. Wiley Interdiscip. Rev.: Data Min.

Knowl. Discov. 1, 1 (2011), 73–79.

[40] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How developers search for code: A case study. In

Proceedings of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’15). Association for Computing

Machinery, New York, NY, 191–201. DOI:https://doi.org/10.1145/2786805.2786855

[41] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. 2001. Active hidden Markov models for information extrac-

tion. In Advances in Intelligent Data Analysis. Springer Berlin, 309–318.

[42] SciPy. 2023. SciPy: Open-source Python Library. Retrieved from https://scipy.org/

[43] Ozan Sener and Silvio Savarese. 2018. Active learning for convolutional neural networks: A core-set approach. In

Proceedings of the International Conference on Learning Representations.

[44] Burr Settles. 2010. Active Learning Literature Survey. Technical Report 1648. University of Wisconsin, Madison.

[45] Kanish Shah, Henil Patel, Devanshi Sanghvi, and Manan Shah. 2020. A comparative analysis of logistic regression,

random forest and KNN models for the text classification. Augm. Hum. Res. 5, 1 (2020), 1–16.

[46] Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Tiwari, and Federica Sarro. 2021. A Survey on Machine

Learning Techniques for Source Code Analysis. DOI:https://doi.org/10.48550/ARXIV.2110.09610

[47] Weijun Shen, Yanhui Li, Lin Chen, Yuanlei Han, Yuming Zhou, and Baowen Xu. 2020. Multiple-boundary clustering

and prioritization to promote neural network retraining. In Proceedings of the IEEE/ACM International Conference on

Automated Software Engineering. Association for Computing Machinery, New York, United States, 410–422.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

https://doi.org/10.1145/3338906.3338930
https://doi.org/10.1145/3480027
https://doi.org/10.48550/ARXIV.1907.11692
https://www.google.com/
https://doi.org/10.1109/ASE.2015.42
https://doi-org.proxy.bnl.lu/10.1145/3238147.3238202
https://doi.org/10.1109/TSE.2011.84
https://doi.org/10.1145/2522920.2522930
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/2786805.2786855
https://scipy.org/
https://doi.org/10.48550/ARXIV.2110.09610

48:24 Y. Guo et al.

[48] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. 2020. Improving code search with co-attentive

representation learning. In Proceedings of the 28th International Conference on Program Comprehension (ICPC’20). As-

sociation for Computing Machinery, New York, NY, 196–207. DOI:https://doi.org/10.1145/3387904.3389269

[49] Bunyamin Sisman and Avinash C. Kak. 2013. Assisting code search with automatic query reformulation for bug local-

ization. In Proceedings of the 10th Working Conference on Mining Software Repositories (MSR’13). 309–318. DOI:https:

//doi.org/10.1109/MSR.2013.6624044

[50] Pinky Sitikhu, Kritish Pahi, Pujan Thapa, and Subarna Shakya. 2019. A comparison of semantic similarity methods for

maximum human interpretability. In Proceedings of the Conference on Artificial Intelligence for Transforming Business

and Society (AITB’19). IEEE. DOI:https://doi.org/10.1109/aitb48515.2019.8947433

[51] StackOverflow. 2008. StackOverflow. Retrieved from https://stackoverflow.com/

[52] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance of Building High-quality Training Datasets

for Neural Code Search. DOI:https://doi.org/10.48550/ARXIV.2202.06649

[53] G. J. G. Upton. 1987. An introduction to mathematical statistics and its applications, by R. J. Larsen and M. L. Marx.

Pp 630.£ 17· 95. 1987. ISBN 13-487166-9 (Prentice-Hall). Math. Gaz. 71, 458 (1987), 330–330.

[54] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and

Simon See. 2019. DeepHunter: A Coverage-guided Fuzz Testing Framework for Deep Neural Networks. Association for

Computing Machinery, New York, NY, 146–157. DOI:https://doi-org.proxy.bnl.lu/10.1145/3293882.3330579

[55] R. Baeza Yates and B. Ribeiro Neto. 2011. Modern Information Retrieval: The Concepts and Technology behind Search.

Addison-Wesley Professional.

[56] Chen Zeng, Yue Yu, Shanshan Li, Xin Xia, Zhiming Wang, Mingyang Geng, Linxiao Bai, Wei Dong, and Xiangke Liao.

2022. DeGraphCS: Embedding variable-based flow graph for neural code search. ACM Trans. Softw. Eng. Methodol. 32,

2 (July 2022). DOI:https://doi.org/10.1145/3546066

[57] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine learning testing: Survey, landscapes and horizons.

CoRR abs/1906.10742 (2019).

[58] Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Debo Cheng. 2017. Learning k for knn classification. ACM

Trans. Intell. Syst. Technol. 8, 3 (2017), 1–19.

[59] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. 2021. A survey on neural network interpretability. IEEE Trans.

Emerg. Topics Comput. Intell. 5, 5 (2021), 726–742. DOI:https://doi.org/10.1109/TETCI.2021.3100641

Received 13 June 2022; revised 4 July 2023; accepted 22 August 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 48. Pub. date: December 2023.

https://doi.org/10.1145/3387904.3389269
https://doi.org/10.1109/MSR.2013.6624044
https://doi.org/10.1109/aitb48515.2019.8947433
https://stackoverflow.com/
https://doi.org/10.48550/ARXIV.2202.06649
https://doi-org.proxy.bnl.lu/10.1145/3293882.3330579
https://doi.org/10.1145/3546066
https://doi.org/10.1109/TETCI.2021.3100641

	KAPE: kNN-based performance testing for deep code search
	Citation
	Author

	KAPE: kNN-based Performance Testing for Deep Code Search

