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Leveraging Long Short-Term User Preference
in Conversational Recommendation via
Multi-agent Reinforcement Learning
Yang Deng , Yaliang Li, Bolin Ding, and Wai Lam , Senior Member, IEEE

Abstract—Conversational recommender systems (CRS) endow traditional recommender systems with the capability of dynamically

obtaining users’ short-term preferences for items and attributes through interactive dialogues. There are three core challenges for CRS,

including the intelligent decisions for what attributes to ask, which items to recommend, and when to ask or recommend, at each

conversation turn. Previous methods mainly leverage reinforcement learning (RL) to learn conversational recommendation policies for

solving one or two of these three decision-making problems in CRS with separated conversation and recommendation components.

These approaches restrict the scalability and generality of CRS and fall short of preserving a stable training procedure. In the light of

these challenges, we tackle these three decision-making problems in CRS as a unified policy learning task. In order to leverage

different features that are important to each sub-problem and facilitate better unified policy learning in CRS, we propose two novel

multi-agent RL-based frameworks, namely Independent and Hierarchical Multi-Agent UNIfied COnversational RecommeNders (IMA-

UNICORN and HMA-UNICORN), respectively. In specific, two low-level agents enrich the state representations for attribute prediction

and item recommendation, by combining the long-term user preference information from the historical interaction data and the short-

term user preference information from the conversation history. A high-level meta agent is responsible for coordinating the low-level

agents to adaptively make the final decision. Experimental results on four benchmark CRS datasets and a real-world E-Commerce

application show that the proposed frameworks significantly outperform state-of-the-art methods. Extensive analyses further

demonstrate the superior scalability of the MARL frameworks on the multi-round conversational recommendation.

Index Terms—Conversational recommender system, multi-agent reinforcement learning, graph representation learning

Ç

1 INTRODUCTION

CONVERSATIONAL Recommender Systems (CRS), which
aim to make recommendations by learning user’s pref-

erences through multi-turn dialogues [1], [2], [3], have
become one of the trending research topics for recom-
mender systems and are gaining increasing attention. Tradi-
tional recommender systems [4], [5], [6] or interactive
recommender systems (IRS) [7], [8] mainly focus on solving
the problem of (i) which items to recommend. There exists
generally the other two core research questions for CRS [9],
namely (ii) what questions to ask and (iii) when to ask or
recommend. The CRS has the natural advantage of explic-
itly acquiring user’s preferences and revealing the reasons
behind the recommendation. Recent works have demon-
strated the importance of asking clarifying questions in CRS
[1], [10], [11]. More importantly, deciding when to ask or

recommend is the key to coordinating conversation and rec-
ommendation for developing an effective CRS [2], [12], [13].
Different problem settings of CRS have been proposed,
either from the perspective of dialog systems, being a varia-
tion of task-oriented dialog [3], [14], or from the perspective
of recommender systems, being an enhanced interactive
recommender system [2], [12], [15]. In this work, we study
the multi-round conversational recommendation (MCR)
setting [2], where the system asks questions about users’
preferences on certain attributes or recommends items mul-
tiple times, with the goal of making a successful recommen-
dation with the minimum number of interactions.

In MCR scenario, the CRS is typically formulated as a
multi-step decision-making process and solved by rein-
forcement learning (RL) methods for policy learning [2],
[12], [13]. Early studies on MCR typically target at solving
one or two core research questions. For example, CRM [12]
and EAR [2] employ policy gradient [16] to improve the
strategies of when and what attributes to ask, while the rec-
ommendation decision is made by an external recommen-
dation model. In order to reduce the action space in policy
learning, SCPR [13] and SeqCR [17] only consider learning
the policy of when to ask or recommend, while two isolated
components are responsible for the decision of what to ask
and which to recommend. Despite the effectiveness of these
methods, there are some challenges that remained to be
tackled for real-world applications: (i) Models trained with
existing CRS methods lack generality to different domains
or applications, since there are three separated decision-
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making processes to be considered in CRS, including what
attributes to ask, which items to recommend, and when to
ask or recommend. It requires extra efforts to train an offline
recommendation model [2], [13] or pretrain the policy net-
work with synthetic dialogue history [2], [12]. (ii) The policy
learning is hard to converge, since the conversation and rec-
ommendation components are isolated and lack of mutual
influence during the training procedure.

To this end, our recent work [18] formulated the aforemen-
tioned three separated decision-making processes in CRS as a
unified policy learning problem. This can not only harness
the ultimate goal of CRS but also fill the gap between the rec-
ommendation and conversation components during the train-
ing procedure. Such unified conversational recommendation
policy learning (UCRPL) aims at learning a unified policy to
decide the action, either asking an attribute or recommending
items, at each conversation turn to maximize the cumulative
utility over the whole MCR process. For the UCRPL problem,
we proposed a novel and adaptive graph-based reinforce-
ment learning framework, namely UNICORN. Specifically,
we employ the graph structure, capturing the rich correlated
information among different types of nodes (i.e., users, items,
and attributes), to discover collaborative user preferences
towards attributes and items. The recommendation and con-
versation components are integrated as an organic whole,
where the conversation session is regarded as a sequence of
nodes maintained in the graph. Then the conversation history
can be dynamically exploited for predicting the action at the
next turn.

However, during the online training of the UNICORN
framework, we encounter two practical issues that can be
addressed for further enhancement: (i) Since both attributes
and items are equally regarded as possible actions that can
be taken by the same RL agent, it is difficult to introduce
separated features that might be beneficial to either attribute
prediction or item recommendation, respectively. For
instance, the historical interactions, e.g., purchase history,
have been identified to attach great importance in determin-
ing which items to recommend for CRS [17], [19]. This kind
of historical interaction data is typically adopted for model-
ing the long-term user preference in traditional recom-
mender systems [20], [21]. Besides, there often exists user
profile data, e.g., user-liked attribute [13], which can also
benefit the decision of what questions to ask. (ii) UNICORN
only considers the user preference towards each candidate
attribute or item at each conversation turn, but neglects
some global features that are also valuable and important in
determining the timing of recommendation, such as the
user feedback history or the number of candidate items.
Therefore, UNICORN may continuously recommend items
even when encountering successive failures or there are still
a large number of candidate items, or keep asking questions
when the candidate items have already been narrowed
down. Therefore, in order to adaptively incorporate differ-
ent features that are important to each sub-problem and
facilitate better unified conversational recommendation pol-
icy learning, we investigate the utilization of multi-agent
reinforcement learning (MARL) in CRS.

To this end, in this paper, we substantially extend the UNI-
CORN framework to be a multi-agent RL-based framework,
including two variants, namely Independent Multi-Agent

(IMA-UNICORN) and Hierarchical Multi-Agent UNIfied
COnversational RecommeNders (HMA-UNICORN). In spe-
cific, we leverage a dynamic weighted graph to model the
changing interrelationships among users, items, and attrib-
utes during the conversation, and consider a graph-based
Markov Decision Process (MDP) environment. We integrate
graph-enhanced representation learning and sequential con-
versation modeling to capture dynamic short-term user pref-
erences towards items and attributes along with the ongoing
conversation as the generic state representation. Then two
agents for attribute prediction and item recommendation fur-
ther combine long-term user preference information from the
historical interaction data with the generic state representa-
tion into the agent-specific state representations, respectively.
Ameta-agent is introduced to decide the final action that con-
ditions on the meta state and the actions of all agents. Finally,
two types of multi-agent Q-learning frameworks are pro-
posed to facilitate the unified conversational recommendation
policy learning by soliciting both long-term and short-term
user preference information.

The main contributions are summarized as follows:

� To the best of our knowledge, this is the first attempt
to study the utility of multi-agent reinforcement
learning for solving CRS problems. We propose two
novel MARL frameworks for the unified policy
learning problem in multi-round conversational rec-
ommendation, including Independent and Hierar-
chical Multi-Agent Q-learning.

� We propose to enrich the state representation learn-
ing by combining long-term user preference infor-
mation from the historical interaction data and
short-term user preference information from the con-
versation history.

� Experimental results show that the proposed frame-
works significantly outperform state-of-the-art CRS
methods across four public benchmark datasets and
a real-world E-Commerce application.

2 RELATED WORKS

2.1 Conversational Recommendation

Based on the problem settings, current CRS studies can be cat-
egorized into four directions [9], [22]: (1) Exploration-Exploi-
tation Trade-offs for Cold-start Users [10], [23], [24]. These
approaches leverage bandit approaches to balance the explo-
ration and exploitation trade-offs for cold-start users in con-
versational recommendation scenarios. (2) Question-driven
Approaches [1], [11], [15] aim at asking questions to users to
get more information about their preferences, which is often
addressed as “asking clarifying question”. (3) Dialogue
Understanding and Generation [3], [25], [26]. These studies
focus on how to understand users’ preferences and intentions
from their utterances and generate fluent responses so as to
deliver natural dialogue actions. (4) Multi-round Conversa-
tional Recommendation [2], [12], [13]. Under this problem set-
ting, the system asks questions about the user’s preferences or
makes recommendations multiple times, with the goal of
achieving engaging and successful recommendations with
fewer turns of conversations. Among these settings, we focus
on theMCRproblem.
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Most of existing CRS studies [2], [13], [18] focus on explor-
ing the real-time user preferences during the on-going conver-
sations for making better recommendations. Motivated by
session-based recommendation studies [27], [28], some latest
works [14], [17], [19] identify that the long-term user preferen-
ces from historical interaction data also attach great impor-
tance in making a better decision of which items to
recommend for CRS. In this work, we investigate the combi-
nation of short-term and long-term user preferences for
improving the unified policy learning in CRS.

2.2 RL in Recommendation

Reinforcement learning (RL) has been widely introduced
into recommender systems due to its advantage of consider-
ing users’ long-term feedbacks [29], [30]. RL-based recom-
mendation formulates the recommendation procedure as an
MDP of the interactions between the user and a recommen-
dation agent, and employs RL algorithms to learn the opti-
mal recommendation strategies [29], [30], [31], [32]. Recent
works on sequential recommendation [33], [34] and interac-
tive recommendation [7], [8], [35] adopt RL to capture users’
dynamic preferences for generating accurate recommenda-
tions over time. The goal of these approaches typically is to
learn an effective policy for determining which items to rec-
ommend. As for CRS, RL-based methods are adopted to
improve the strategies of the other two decision processes,
including (i) what attributes to ask [2], [12] and (ii) when to
ask or recommend [13]. In order to simplify the overall
framework of MCR with better scalability and generality,
we formulate these three core decision processes in CRS as
a unified policy learning problem.

2.3 Graph-Based Recommendation

Graph-based recommendation studies mainly leverage the
graph structure for two purposes. The first one is to enhance
the recommendation performance by graph-based represen-
tation learning, including exploiting the structure information
for collaborative filtering [36], [37], [38], and adopting knowl-
edge graph embeddings as rich context information [39], [40].
The other group of studies models recommendation as a path
reasoning problem for building explainable recommender
systems [41], [42]. Recent years havewitnessedmany success-
ful applications of graph-based RL methods on different sce-
narios of recommender systems [8], [13], [43], [44], [45], [46].
For example, [44] employ a policy-guided graph search
method to sample reasoning paths for recommendation,
which is enhanced with adversarial actor-critic for demon-
stration-guided path reasoning [46]. [45] and [8] employ
graph convolutional network (GCN) [47] for state representa-
tion learning to enhance the performance of traditional RL
methods on recommendation policy learning.

2.4 Multi-Agent Reinforcement Learning (MARL)

MARL algorithms [48] are generally categorized into four
groups according to fully cooperative, fully competitive,
both cooperative and competitive, and neither cooperative
nor competitive tasks. The simplest approach to realizing a
MARL algorithm is to learn each agent independently [49].
However, the independent agents are not able to coordinate
their actions, failing to achieve complicated cooperation. To

achieve agents’ cooperation, several attempts have been
made on learning communication among multiple agents
[50] or employing the centralized training decentralized
execution architecture [51]. For instance, in multi-module
recommendation, the MASSA approach [52] restricts differ-
ent modules not to communicate with each other and a sig-
nal network is developed to promote cooperation by
generating signals for different modules. Besides, different
centralized critics [53], [54] are designed to coordinate the
recommendation between multiple agents. In this work, we
make the first attempt to introduce MARL into CRS and
investigate the utilization of two kinds of MARL frame-
works for the policy learning of CRS.

3 PRELIMINARY

3.1 Problem Definition

Multi-Round Conversational Recommendation. In this work,
we focus on the multi-round conversational recommenda-
tion (MCR) scenario [2], [13], in which the CRS is able to ask
questions about attributes or make recommendations multi-
ple times. Specifically, on the system side, the CRS main-
tains a large set of items V to be recommended, and each
item v is associated with a set of attributes Pv. In each epi-
sode, a conversation session is initialized by a user u speci-
fying an attribute p0. For the user u, we can obtain an
interaction sequence of her/his historical items Vu and a set
of her/his liked attributes P�u. Then, the CRS is free to ask
the user’s preference on an attribute selected from the can-
didate attribute set Pcand or recommend a certain number of
items (e.g., top-K) from the candidate item set Vcand. Follow-
ing the assumptions from [2], the user preserves clear pref-
erences towards all the attributes and items. Thus, the user
will respond accordingly, either accepting or rejecting the
asked attributes or the recommended items. The CRS
updates the candidate attribute and item sets, and decides
the next action based on the user response. The system-ask
and user-respond process repeats until the CRS hits the tar-
get item or reaches the maximum number of turn T .

Unified Conversational Recommendation Policy Learning.
MCR aims to make successful recommendations within a
multi-round conversation session with the user. At each
timestep t, according to the observation on past interactions,
the CRS selects an action at, either asking an attribute or rec-
ommending items. In return, the user expresses his/her
feedback (accept or reject). This process repeats until the
CRS hits the user-preferred items or reaches the maximum
number of turn T . Such MCR task can be formulated as a
Markov Decision Process (MDP). The goal of the CRS is to
learn a policy p maximizing the expected cumulative
rewards over the observed MCR episodes as

p� ¼ argmaxp2PE
XT

t¼0 rðst; atÞ
h i

; (1)

where st is the current state representation, at is the action
that the agent takes at timestep t, and rð�Þ is the intermediate
reward, abbreviated as rt.

3.2 Graph-Based MDP Environment

The MDP environment is responsible for informing the
agent about the current state and possible actions to take,
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and then rewards the agent based on how the current policy
fits the observed user interactions. Formally, the MDP envi-
ronment can be defined by a tuple ðS;A; T ;RÞ, where S
denotes the state space, A denotes the action space, T :
S � A ! S refers to the state transition function, and R :
S � A ! R is the reward function.

State.As for the graph-based MDP environment, the state
st 2 S at timestep t is supposed to contain all the given
information for conversational recommendation, including
the previous conversation history and the full graph G that
includes all the users, items, and attributes. Given a user u,
we consider two major elements:

st ¼ ½HðtÞu ;GðtÞu �; (2)

whereHðtÞu ¼ ½PðtÞu ;PðtÞrej;V
ðtÞ
rej� denotes the conversation history

until timestep t, and GðtÞu denotes the dynamic subgraph of G
for the user u at timestep t. Pu denotes the user-preferred

attribute. Prej and Vrej are the attributes and items rejected by

the user, respectively. The initial state s0 is initialized by the

user-specified attribute p0, i.e., s0 ¼ ½½fp0g; fg; fg�;Gð0Þu �.
Action. According to the state st, the agent takes an action

at 2 A, where at can be selected from the candidate item set
VðtÞcand to recommend items or from the candidate attribute
set PðtÞcand to ask attributes. Following the path reasoning
approach [13], we have

VðtÞcand ¼ VPðtÞu n V
ðtÞ
rej; PðtÞcand ¼ PVðtÞ

cand

n ðPðtÞu [ P
ðtÞ
rejÞ; (3)

where VPðtÞu is the set of item vertices directly connecting all

PðtÞu (i.e., items satisfying all the preferred attributes), and

PVðtÞ
cand

is the set of attribute vertices directly connecting to

one of VðtÞcand (i.e., attributes belonging to at least one of the

candidate items).

TransitionWe consider that the current state st will transi-
tion to the next state stþ1 when the user responds to the
action at. In specific, if CRS asks an attribute pt and the user
accepts it, the next state stþ1 will be updated by Pðtþ1Þu ¼
PðtÞu [ pt. Conversely, if the user rejects the action at, stþ1
will be updated by Pðtþ1Þrej ¼ PðtÞrej [ at or Vðtþ1Þrej ¼ VðtÞrej [ at for
at 2 P or at 2 V, respectively. As a result, the next state stþ1
will be ½Hðtþ1Þu ;Gðtþ1Þu �.

Reward. Following previous MCR studies [2], [13], our
environment contains five kinds of rewards, namely, (1)
rrec suc, a strongly positive reward when the user accepts the
recommended items, (2) rrec fail, a negative reward when the
user rejects the recommended items, (3) rask suc, a slightly
positive reward when the user accepts the asked attribute,
(4) rask fail, a negative reward when the user rejects the asked
attribute, and (5) rquit, a strongly negative reward when
reaching the maximum number of turns.

3.3 Dynamic Graph Construction

We represent the current state of the graph-based MDP
environment as a dynamic weighted graph. Formally, we
denote an undirected weighted graph as G ¼ ðN ; AAAAAAAÞ, with
the node ni 2 N , the adjacency matrix element AAAAAAAi;j denoting
the weighted edges between nodes ni and nj. In our case,
given the user u, we denote the dynamic graph at the time-
step t as GðtÞu ¼ ðN

ðtÞ
; AAAAAAAðtÞÞ:

N ðtÞ ¼ fug [ PðtÞu [ P
ðtÞ
cand [ V

ðtÞ
cand (4)

AAAAAAA
ðtÞ
i;j ¼

wðtÞv ; if ni ¼ u; nj 2 V
1; if ni 2 V; nj 2 P
0; otherwise

8><
>:

(5)

where wðtÞv is a scalar indicating the recommendation score
of the item v in the current state. In order to incorporate the

Fig. 1. Overview of the proposed frameworks, namely IMA-UNICORN and HMA-UNICORN.
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user preference as well as the correlation between the asked
attributes and the items, such weight wðtÞv is calculated as

wðtÞv ¼ s
�
e>u ev þ

X
p2PðtÞu

e>v ep �
X

p2PðtÞ
rej
\Pv

e>v ep

�
; (6)

where sð�Þ denotes the sigmoid function, eu, ev, and ep
are the embeddings of the user, item, and attribute,
respectively.

4 PROPOSED FRAMEWORKS

The overview of the proposed frameworks, IMA-UNI-
CORN and HMA-UNICORN, are depicted in Fig. 1, which
consist of four main components:

1) Generic Graph-based State Encodermodels the dynamic
short-term user preference towards items and attrib-
utes along with the conversation over a graph-based
MDP environment;

2) Item Recommendation Agent captures the sequential
information of users’ historical interactions for long-
term preference modeling and performs candidate
item selection;

3) Attribute Prediction Agent models the static long-term
user preferences towards attributes from user profil-
ing data and performs candidate attribute selection;

4) Multi-agent Q-learning. We investigate two types of
multi-agent Q-learning, i.e., Independent Multi-
agent Q-learning and Hierarchical Multi-agent Q-
learning.

4.1 Generic Graph-Based State Encoder

We first employ a generic graph-based state encoder to
model the dynamic short-term user preference towards
items and attributes along with the conversation. As we for-
mulate conversational recommendation as a unified policy
learning problem over a graph-based MDP environment, it
is required to encode both the conversational and graph
structural information into the latent distributed representa-
tions. In order to make use of the interrelationships among
users, items, and attributes, we first adopt graph-based pre-
training methods [55], [56] to obtain node embeddings for
all the nodes in the full graph G.

4.1.1 Graph-Based Representation Learning

In order to comprehensively take advantage of the correla-
tion information among the involved user, items, and attrib-
utes from the connectivity of the graph, we employ a graph
convolutional network (GCN) [47] to refine the node repre-
sentations with structural and relational knowledge. The
representations of the node ni in the ðlþ 1Þth layer can be
computed by:

e
ðlþ1Þ
i ¼ ReLU

X
j2N i

LLLLLLLi;jWWWWWWWle
ðlÞ
j þBBBBBBBle

ðlÞ
i

� �
; (7)

where N i denotes the neighboring indices of the node ni,
WWWWWWWl and BBBBBBBl are trainable parameters representing the trans-
formation from neighboring nodes and the node ni itself,
and LLLLLLL is a normalization adjacent matrix as LLLLLLL ¼ DDDDDDD�

1
2AAAAAAADDDDDDD�

1
2

withDDDDDDDii ¼
P

j AAAAAAAi;j.

4.1.2 Sequential Representation Learning

Apart from the interrelationships among the involved user,
items, and attributes, the CRS is also expected to model the
conversation history in the current state. Unlike previous
studies [2], [13] that adopt heuristic features for conversa-
tion history modeling, we employ Transformer encoder [57]
for capturing the sequential information of the conversation
history as well as attending the important information for
deciding the next action. As described in [57], each Trans-
former layer consists of three components: (i) The layer nor-
malization is defined as LayerNorm ð�Þ. (ii) The multi-head
attention is defined as MultiHeadðQQQQQQQ;KKKKKKK;VVVVVVV Þ, where QQQQQQQ;KKKKKKK;VVVVVVV
are query, key, and value, respectively. (iii) The feed-for-
ward network with ReLU activation is defined as FFNð�Þ.
Take the l th layer for example:

XXXXXXX� ¼ MultiHeadðXXXXXXXðlÞ; XXXXXXXðlÞ; XXXXXXXðlÞÞ; (8)

XXXXXXXðlþ1Þ ¼ LayerNormðFFNðXXXXXXX�Þ þXXXXXXXðlÞÞ; (9)

where XXXXXXX 2 RL�d denotes the embeddings, and L is the
sequence length. In our case, the input sequence XXXXXXXð0Þ is
the accepted attributes PðtÞu in the current conversation with
the learned graph-based representation feðLgÞ

p : p 2 PðtÞu g
and the learnable position embeddings, where Lg is the
number of layers in GCN. After the sequential learning
with Ls Transformer layers, we aggregate the information
learned from both the graph and the conversation history
by a mean pooling layer to obtain the state representation of
st:

fuS ðstÞ ¼ MeanPoolðXXXXXXXLsÞ: (10)

For simplicity, we denote the learned generic state represen-
tation of st as fuS ðstÞ, where uS is the set of all network
parameters for state representation learning, including
GCN and Transformer layers.

4.2 Item Recommendation Agent

4.2.1 State Encoder With Long-Term Preference

Inspired by sequential recommendation [58], several previ-
ous studies [17], [19] identify that the interaction sequence
of historical items can improve the performance of recom-
mendation in CRS. Therefore, we employ another Trans-
former encoder to capture the sequential information of the
user’s historical interactions for long-term preference
modeling:

EEEEEEE� ¼ MultiHeadðEEEEEEEðlÞ; EEEEEEEðlÞ; EEEEEEEðlÞÞ; (11)

EEEEEEEðlþ1Þ ¼ LayerNormðFFNðEEEEEEE�Þ þ EEEEEEEðlÞÞ; (12)

where EEEEEEE 2 RjVuj�d denotes the embeddings. Here the input
sequence EEEEEEEð0Þ is the user’s historical interacted items with
the pre-trained graph embeddings fev : v 2 Vug and the
learnable position embeddings. After the sequential learn-
ing with Lv Transformer layers, we can aggregate the long-
short term user preference information learned from both
the generic graph-based state encoder and the agent-specific
state encoder for the state representation fuv

S
ðstÞ of the item

recommendation agent:
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fuv
S
ðstÞ ¼ ½fuS ðstÞ;MeanPoolðEEEEEEELvÞ�; (13)

where ½:� denotes the concatenate operation.

4.2.2 Candidate Item Selection

A large action search space will harm the performance of
the policy learning to a great extent [13]. Thus, it attaches
great importance to handling the overwhelmingly large
action space in UCRPL. In general, for candidate items to be
recommended, we can consider only the action of making
recommendations from a small number of candidate items
that fit the user preference the most, since users are not
likely to be interested in all items. To achieve this, we select
top-Kv candidate items from VðtÞcand into the candidate action
space Av

t at each timestep t, which is ranked by the recom-
mendation score wðtÞv in Eq.(6).

Algorithm 1. Independent Multi-Agent Q-Learning for
Multi-Round Conversational Recommendation

Input: feigi2N ; Dp; Dv; t; �; g;K; T ;Kv;Kp;
Output: uvS ; u

p
S ; u

v
Q; u

p
Q;

1: Initialize all parameters: uvS , u
p
S , u

v
Q, u

p
Q, u

v
Q
0  uvQ, u

p
Q
0  upQ;

2: for episode ¼ 1; 2; . . . ; N do
3: User u specifies an attribute p0 to start;
4: Update: Pð0Þu ¼ fp0g; P

ð0Þ
rej ¼ fg; V

ð0Þ
rej ¼ fg,

Hð0Þu ¼ ½Pð0Þu ;Pð0Þrej ;V
ð0Þ
rej �; s0 ¼ ½Hð0Þu ;Gð0Þu �;

5: Get candidate action space Ap
0, A

v
0 via Action Selection w.

r.t. Eq.(15) and Eq.(6);
6: for turn t ¼ 0; 1; . . . ; T � 1 do
7: // Transition Generation;
8: for each agent x 2 fp; vg do
9: Get state representation fux

S
ðstÞ via Eq.(14) or Eq.(13);

10: Select the action axt by �-greedy w.r.t Eq.(17);
11: Receive reward rxt from environment;
12: Update the next state sxtþ1 ¼ T ðst; axt Þ;
13: Get Ax

tþ1 via Action Selection;
14: Store ðst; axt ; rxt ; sxtþ1;A

x
tþ1Þ to buffer Dx;

15: end
16: Select the action at w.r.t. Eq.(17);
17: Receive reward rt from environment;
18: Update the next state stþ1 ¼ T ðst; atÞ;
19: Get Atþ1 via Action Selection;
20: // Parameter Updating;
21: for each agent x 2 fp; vg do
22: Sample mini-batch of ðst; at; rt; stþ1;Atþ1Þ w.r.t Eq.

(23);
23: Compute the target value yt via Eq. (21);
24: Update uxS , u

x
Q via SGD w.r.t the loss function Eq.(19);

25: Update uxQ
0 via Eq.(22) ;

26: end
27: end
28: end

4.3 Attribute Prediction Agent

4.3.1 State Encoder with Long-term Preference

In practice, those recommendation platforms often maintain
a considerable amount of user profiling data, such as user-
liked attribute [13]. This kind of data provides prior knowl-
edge about the static long-term user preferences, which can

be combined with the dynamic short-term user preferences
learned from the current conversation to facilitate better
attribute prediction. Thus, we employ a self-attention layer
to aggregate the pre-trained graph embeddings of the user-
liked attributes EEEEEEEP�u ¼ fep : p 2 P

�
ug. The static and dynamic

user preferences are concatenated to form the state repre-
sentation for the attribute prediction agent:

fup
S
ðstÞ ¼ ½fuS ðstÞ;MultiHeadðEEEEEEEP�u ; EEEEEEEP�u ; EEEEEEEP�uÞ�: (14)

4.3.2 Candidate Attribute Selection

Similar to candidate item selection, we also impose candi-
date attribute selection to handle the large action space for
attribute prediction. Whereas for candidate attributes to be
asked, the expected one is supposed to not only better elimi-
nate the uncertainty of candidate items, but also encode the
user preference. Inspired by [13], we adopt weighted
entropy as the criteria to prune candidate attributes:

wðtÞp ¼ �probðpðtÞÞ � log ðprobðpðtÞÞÞ; (15)

probðpðtÞÞ ¼
X

v2VðtÞ
cand

\VðtÞp
wðtÞv

.X
v2VðtÞ

cand

wðtÞv ; (16)

where Vp denotes the items with the attribute p. Similar to
item selection, we select top-Kp candidate attributes from
PðtÞcand into A

p
t based on the weighted entropy score wðtÞp .

4.4 Independent Multi-Agent Q-Learning

One natural approach for the multi-agent RL problem is
independent Q-learning [49], which assumes that each
agent, including the agent for attribute prediction and the
agent for item recommendation, ignores the existence of the
other agent in the environment and learns its own Q-func-
tion that conditions on the state and its own action without
communication. After obtaining the state representation
and the candidate action space, we introduce the deep Q-
learning network (DQN) [59] to conduct the policy learning
for each single agent. In order to enhance and stabilize the
training of DQN, we further incorporate some RL techni-
ques into the implementation.

4.4.1 Single-Agent Deep Q-Learning Network

In the MCR scenario, two agents discussed above share the
same DQN structure and loss function, but are updated
independently. Here we adopt the same notations to intro-
duce the single-agent DQN for simplicity.

Following the standard assumption that delayed rewards
are discounted by a factor of g per timestep, we define the
Q-value Qðst; atÞ as the expected reward based on the state
st and the action at. As shown in the rightmost part of
Fig. 1, the dueling Q-network [60] employs two deep neural
networks to compute the value function fuV ð�Þ and advan-
tage function fuAð�Þ, respectively. Then the Q-function can
be calculated by:

Qðst; atÞ ¼ fuV ðatÞ þ fuAðfuS ðstÞ; atÞ; (17)

where fuV ð�Þ and fuAð�Þ are two separate multi-layer percep-
tions with parameters uV and uA, respectively, and let
uQ ¼ fuV ; uAg.
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Algorithm 2. Hierarchical Multi-Agent Q-Learning for
Multi-Round Conversational Recommendation

Input: feigi2N ; Dh; Dp; Dv; t; �; g;K; T ;Kv;Kp;
Output: upS ; u

v
S ; u

h
Q; u

p
Q; u

v
Q;

1: Initialize all parameters: upS , u
v
S , u

h
Q, u

p
Q, u

v
Q, u

h
Q

0  uhQ, u
p
Q
0  

upQ, u
v
Q
0  uvQ;

2: for episode ¼ 1; 2; . . . ; N do
3: User u specifies an attribute p0 to start;
4: Update: Pð0Þu ¼ fp0g; P

ð0Þ
rej ¼ fg; V

ð0Þ
rej ¼ fg,

Hð0Þu ¼ ½Pð0Þu ;Pð0Þrej ;V
ð0Þ
rej �; sl0 ¼ ½Hð0Þu ;Gð0Þu �;

5: Get candidate action space Ap
0, A

v
0 via Action Selection w.

r.t. Eq.(15) and Eq.(6);
6: for turn t ¼ 0; 1; . . . ; T � 1 do
7: // Transition Generation;
8: Get state representation fup

S
ðsltÞ via Eq.(14);

9: Compute the Q-value Qpðslt; atÞ for each candidate
action apt 2 A

p
t ;

10: Get state representation fuv
S
ðsltÞ via Eq.(13);

11: Compute the Q-value Qvðslt; atÞ for each candidate
action avt 2 A

v
t ;

12: Get meta state sht via Eq.(24);
13: Select the meta action aht by �-greedy w.r.t

argmaxat2Ah
t
Qhðsht ; atÞ;

14: if aht ¼¼ aask then
15: alt ¼ argmaxat2Ap

t
Qpðslt; atÞ

16: else
17: alt ¼ argmaxat2Av

t
Qvðslt; atÞ;

18: else
19: Receive reward rt from environment, and intrinsic

rewards rvt or r
p
t via Eq.(25);

20: Update the next state sltþ1 ¼ T ðslt; altÞ;
21: Update the next meta state shtþ1;
22: Get Ap

tþ1,A
v
tþ1 via Action Selection;

23: Store ðsht ; aht ; rt; shtþ1Þ to buffer Dh;
24: if aht ¼¼ aask then
25: Store ðslt; alt; rt; sltþ1;A

p
tþ1Þ to buffer Dp;

26: else
27: Store ðslt; alt; rt; sltþ1;A

v
tþ1Þ to buffer Dv;

28: end
29: // Parameter Updating;
30: for each agent x 2 fp; v; hg do
31: Sample a mini-batch from Dx w.r.t Eq.(23);
32: Compute the target value yt via Eq. (21);
33: Update uxS , u

x
Q via SGD w.r.t the loss function Eq.(19);

34: Update uxQ
0 via Eq.(22) ;

35: end
36: end
37: end

The optimal Q-function Q�ðst; atÞ, which has the maxi-
mum expected reward achievable by the optimal policy p�,
follows the Bellman equation [61] as:

Q�ðst; atÞ ¼ Estþ1

h
rt þ gmaxatþ12Atþ1Q

�ðstþ1; atþ1Þjst; at
i
: (18)

During each episode in the MCR process, at each time-
step t, the agent obtains the current state representation
fuS ðstÞ via the corresponding state encoder described in Sec-
tion 4.2.1 or Section 4.3.1. Then the agent selects an action at
from the candidate action space At, which is obtained via
the action selection strategies described in Section 4.2.2 or
Section 4.3.2. Here we incorporate �-greedy method to

balance the exploration and exploitation in action sam-
pling (i.e., select a greedy action based on the max Q-
value with probability 1� �, and a random action with
probability �).

Then, the agent will receive the reward rt from the user’s
feedback. According to the feedback, the current state st
transitions to the next state stþ1, and the candidate action
space Atþ1 is updated accordingly. The experience
ðst; at; rt; stþ1;Atþ1Þ is then stored into the replay buffer D.
To train DQN, we sample mini-batch of experiences from
D, and minimize the following loss function:

LðuQ; uSÞ ¼ Eðst;at;rt;stþ1;Atþ1Þ�D
�
ðyt�Qðst; at; uQ; uSÞÞ2

�
; (19)

yt ¼ rt þ gmaxatþ12Atþ1Qðstþ1; atþ1; uQ; uSÞ; (20)

where yt is the target value with the currently optimal Q�.
To alleviate the overestimation bias problem in conven-

tional DQN, we adopt Double Q-learning [62], which
employs a target network Q0 as a periodic copy from the
online network. The target value of the online network is
then changed to:

yt ¼ rt þ gQ0
�
stþ1; argmaxatþ12Atþ1Qðstþ1; atþ1; uQ; uSÞ; uQ0 ; uS

�
;

(21)

where uQ0 denotes the parameter of the target network,
which is updated by the soft assignment as:

uQ0 ¼ tuQ þ ð1� tÞuQ0 ; (22)

where t is the update frequency.
In addition, the conventional DQN samples uniformly

from the replay buffer. In order to sample more frequently
those important transitions from which there is much to
learn, we employ prioritized replay [63] as a proxy for learn-
ing potential, which samples transitions with probability d

relative to the absolute TD error:

d /
���rtþ1 þ gQ0

�
stþ1; argmaxatþ12Atþ1Qðstþ1; atþ1Þ

�

�Qðst; atÞ
���: (23)

4.4.2 Independent Multi-Agent Training and Inference

The training procedure of the Independent Multi-agent Q-
learning for Multi-round Conversational Recommendation
(IMA-UNICORN) is presented in Algorithm 1. At each con-
versation turn, the item recommendation agent and the
attribute prediction agent first interact with the same envi-
ronment independently to collect their own transitions of
episodic experiences. Then we select the real action at with
the highest Q-value among two agents to proceed the con-
versation. After all, each agent is trained over the sampled
mini-batches of experiences to update the network parame-
ters of DQN for approximating their own Q-function by
using the overall loss function in Eq.(19). Although each
agent is responsible for maintaining its own network
parameters, they share the same graph-based MDP environ-
ment and are trained end-to-end as a unified model.

With the learned IMA-UNICORN model, given a user
and her/his conversation history, we follow the same
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process to obtain the candidate action space and the current
state representation for each agent, and then decide the next
action according to the max Q-value in Eq.(17) among two
agents. If the selected action points to an attribute, the sys-
tem will ask the user’s preference on the attribute. Other-
wise, the system will recommend top-K items with the
highest Q-value to the user.

4.5 Hierarchical Multi-Agent Q-Learning

Another approach that can be applied to the multi-agent RL
problem is to introduce a “meta-agent” that decides the
final action that conditions on the meta state and the actions
of all agents. Therefore, we further propose a Hierarchical
Multi-agent Q-learning method for unified policy learning.

4.5.1 Meta State

Intuitively, the role of the meta-agent is to decide whether to
ask questions or recommend items, which is similar to the
policy learning problem in [13]. Similarly, the meta-state
vector sht first consists of two vectors shis and slen. shis enco-
des the user’s feedback history, which can guide the meta-
agent to adjust its strategy, e.g., if the user accepts the asked
attributes for multiple turns, it is likely to be a suitable tim-
ing to make recommendations. slen encodes the size of the
candidate item set. As discussed in [2], it is easier to make
successful recommendations when there are fewer candi-
date items.

Besides these two vectors, the meta-state sht is also sup-
posed to involve the actions selected by the low-level
agents, i.e., apt and avt , since it would be better to take the
low-level action with higher estimated rewards. To achieve
this, we further concatenate the Q-values of the selected
actions by each low-level agent into the meta-state vectors:

sht ¼ ½shis; slen;Qpðst; apt Þ;Qvðst; avt Þ�: (24)

4.5.2 Internal Critic

The internal critic is responsible for providing intrinsic
reward rxt to a specific low-level agent x 2 fv; pg after an
action alt is taken at turn t. Here we just employ a simple
reward function to enable the internal critic as follows:

rxt ¼
0:1; if rt > 0; aht ¼ x;
�0:1; if rt < 0; aht ¼ x;
0; otherwise:

8<
: (25)

4.5.3 Deep Q-Learning Network for Meta-Agent

The DQN for meta-agent takes the meta-state vector sht as
input and outputs the Q-values Qhðsht ; aht Þ for the two
actions, i.e., aask and arec, to estimate the reward. In other
words, the action space for meta-agent is fixed: Ah

t ¼
faask; arecg. We use a two-layer feed forward neural network
to approximate the Q-function. Except that there is no can-
didate action selection, the loss function and other RL tech-
niques are the same as the low-level agent as described in
Section 4.4.1.

4.5.4 Hierarchical Multi-Agent Training and Inference

The training procedure of the Hierarchical Multi-agent Q-
learning for Multi-round Conversational Recommendation
(HMA-UNICORN) is presented in Algorithm 2. At each
conversation turn, each low-level agent encodes its state
representation and computes the Q-value for each candi-
date action from its candidate action space. Then, based on
the meta state and the selected actions by low-level agents,
the high-level meta-agent decides to take the action selected
by which low-level agent. After the meta-agent interacts
with the environment, the state for each low-level agent as
well as the meta state will transit to the next state. The tran-
sition of the meta state and the transition of the state of the
activated low-level agent will be stored into corresponding
buffers. The parameter updating, training and inference
processes are the same as IMA-UNICORN as described in
Section 4.4.2.

4.6 Complexity Analysis

In this section, we discuss the time complexity of the pro-
posed methods. As shown in Algorithm 1 and 2, the time
complexity of IMA-UNICORN and HMA-UNICORN is
mainly dependent of two parts: the state representation
learning and the computation of Q-value.

For IMA-UNICORN, the state representation learning is
in threefold: 1) The time complexity for the graph-based
representation learning in Eq.(7) is OðLgjN jd2Þ, where jN j is
the number of nodes. 2) The time complexity for the sequen-
tial representation learning in Eq.(8) is OðLsT

2dÞ, where T is
the maximum number of conversation turns. 3) The time
complexity of long-term preference modeling in item rec-
ommendation agent (Eq.(13)) and attribute prediction agent
(Eq.(14)) is OðLvjVuj2dÞ and OðjP�uj

2dÞ, respectively. Besides,
the time complexity of the computation of Q-value in Eq.
(17) is Oðd2Þ. To sum up, the time complexity of IMA-UNI-
CORN includes the state representation learning and the
computation of Q-value for one of the low-level agent
depending on the selected action, i.e., OðLgjN jd2 þ LsT

2dþ
LvjVuj2dþ d2Þ or OðLgjN jd2 þ LsT

2dþ jP�uj
2dþ d2Þ.

For HMA-UNICORN, the only difference is the incorpo-
ration of the meta agent. The time complexity of the addi-
tional meta-state representation learning in Eq.(24) is
OðLvjVuj2dþ jP�uj

2dÞ. Besides, it requires to compute three
different Q-values for each agent. Therefore, the time com-
plexity of HMA-UNICORN can be estimated as OðLgj
N jd2 þ LsT

2dþ LvjVuj2dþ jP�uj
2dþ d2Þ.

Overall, as T , jVuj, and jP�uj are typically less than jN j,
IMA-UNICORN and HMA-UNICORN share a similar time
complexity, which mainly depends on the graph-based
representation learning module. Therefore, it would be ben-
eficial to leverage a more efficient graph learning algorithm
for improving the overall time complexity of the proposed
method.

5 EXPERIMENTAL SETTINGS

5.1 Datasets

We evaluate the proposed methods on four existing multi-
round conversational recommendation benchmark datasets
and a real-world E-Commerce dataset. The statistics of these
datasets are presented in Table 1.
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� LastFM and Yelp. The LastFM dataset is used for
evaluation on music artist recommendation, while
the Yelp dataset is for business recommendation. [2]
manually categorize the original attributes in LastFM
into 33 coarse-grained groups, and build a 2-layer
taxonomy with 29 first-layer categories for Yelp.

� LastFM* and Yelp*. [13] consider that it is not realistic
to manually merge attributes for applications, so
they adopt original attributes to reconstruct these
two datasets.

� E-Commerce. A real-world E-Commerce dataset [18]
collected from Taobao.

5.2 Evaluation Metrics

Following previous studies on multi-round conversational
recommendation [2], [13], we adopt success rate at the turn
t (SR@t) [12] to measure the cumulative ratio of successful
conversational recommendation by the turn t. Besides, aver-
age turn (AT) is adopted to evaluate the average number of
turns for all sessions (if the conversation session reaches the
maximum turn T , the turn for such session is also counted
as T ). The higher SR@t indicates a better performance of the
CRS at a turn t, while the lower AT means an overall higher
efficiency. In addition, we also adopt hNDCG@(T;KT;KT;KT;KT;KT;KT;K) [18] to
conduct a comprehensive evaluation of CRS, which extends
the normalized discounted cumulative gain (NDCG@K) to
be a two-level hierarchical version. The intuition behind
hNDCG@(T;K) is that the less number of turns of a success-
ful session is favorable for the CRS, while the target item is
expected to be ranked higher in the recommendation list at
the successful turn.

5.3 User Simulator

Due to the interactive nature of MCR, it needs to be trained
and evaluated by interacting with users. We adopt the stan-
dard user simulator in MCR setting as previous studies [2],
[13], [17] to simulate a conversation session for each
observed user-item interaction pair ðu; vÞ. We regard the
item v as the ground-truth target item and treat its attribute
set Pv as the oracle set of attributes preferred by the user u
in this conversation session. The session is initialized by the
simulated user who specifies a certain attribute randomly
chosen from Pv. Then the session follows the process of
“System Ask, User Respond” [1] as described in Section 3.1.

5.4 Baselines

We compare the proposed method with several state-of-the-
art methods on MCR as follows:

� Max Entropy is a rule-based strategy to choose attrib-
utes to ask based on the maximum entropy within
the current state or recommend items with a certain
probability [2].

� Abs Greedy [10] only performs recommendation
actions until the CRSmakes a successful recommenda-
tion or exceeds themaximum turns of conversation.

� CRM [12] employs policy gradient [16] to learn the
policy deciding when and which attributes to ask.

� EAR [2] is a three-stage method to enhance the inter-
action between the conversation and recommenda-
tion components with a similar RL framework as
CRM.

� SCPR [13] leverages path reasoning on the graph to
prune off candidate attributes and adopts the DQN [59]
framework to determinewhen to ask or recommend.

� SeqCR [17] incorporates users’ historical interactions
into the recommendation model in SCPR method to
facilitate better recommendation performance.

� UNICORN [18] is a graph-based DQN framework to
handle the unified conversational recommendation
policy learning problem.

5.5 Implementation Details

Following previous studies [2], [13], [18], we set the size K
of the recommendation list as 10, the maximum turn T as
15. Different from existing methods for MCR [2], [12], [13],
which requires to train an offline recommendation models
(e.g., FM) as well as pretrain the policy network with offline
dialogue history, we can simply initialize the whole frame-
work with pretrained graph-based embeddings. We adopt
TransE [55] from OpenKE [64] to pretrain the node embed-
dings in the constructed graph with the training set. Follow-
ing previous studies [2], [13], we adopt the same reward
settings to train the proposed model: rrec suc=1, rrec fail=-0.1,
rask suc=0.01, rask fail=-0.1, rquit=-0.3. The hyper-parameters
are empirically set as follows: The embedding size and the
hidden size are set to be 64 and 100. The numbers of GCN
layers (i.e., Lg) and Transformer layers (i.e., Ls, Lv) are set to
be 2 and 1, respectively. The numbers of selected candidate
attributesKp and itemsKv are set to be 10. During the train-
ing procedure of DQN, the size of experience replay buffer
is 50,000, and the size of mini-batch is 128. The learning rate
and the L2 norm regularization are set to be 1e-4 and 1e-6,
with Adam optimizer. The discount factor g and the update
frequency t are set to 0.999 and 0.01.

We adopt the user simulator described in Section 5.3 to
interact with the CRS for online training the model using
the validation set. Due to the difficulty of the convergence
for training RL-based methods, we conduct the online train-
ing for the same number of training episodes, i.e., 10,000
episodes, for all implemented methods.

6 EXPERIMENTAL RESULTS AND ANALYSES

6.1 Overall Performance

Table 2 shows the performance comparison between the
proposed methods, IMA-UNICORN and HMA-UNICORN,
and all baselines across five datasets. Among the baselines,
UNICORN not only enables the conversation and recom-
mendation to be mutually enhanced during the training

TABLE 1
Summary Statistics of Datasets

LastFM LastFM* Yelp Yelp* E-Com.

#Users 1,801 1,801 27,675 27,675 26,430
#Items 7,432 7,432 70,311 70,311 29,428
#Interactions 76,693 76,693 1,368,606 1,368,606 748,533
#Attributes 33 8,438 29 590 1,413
#Entities 9,266 17,671 98,605 98,576 57,271
#Relations 4 4 3 3 2
#Triplets 138,215 228,217 2,884,567 2,533,827 2,024,962
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process, but also attains an effective sample efficiency with
the proposed action selection strategies. This leads to a sub-
stantial margin from other baselines, about 18% for SR@15,
2 turns for AT, and 30% for hDCG. As for the proposed
multi-agent RL-based methods, IMA-UNICORN achieves a
competitive performance as UNICORN and effectively
shortens the average turn (AT) of making a successful rec-
ommendation. Furthermore, HMA-UNICORN improves
the performances across all the datasets (except for YELP*)
by achieving a significantly higher success rate and less
average turn than UNICORN, which is also comprehen-
sively validated by the improvements on hDCG. Since there
is no long-term user preference data in YELP dataset, IMA-
UNICORN and HMA-UNICORN may not fully make use
of the MARL framework to improve the performance of
UNICORN on YELP and YELP*.

6.2 Training Efficiency

Fig. 2 shows the test performance curves of different meth-
ods at different training episodes. Due to the large action
space in the last three datasets, there is no much perfor-
mance increase for EAR during the online training process,
even getting worse. Besides, the curves of SCPR and SeqCR
are very vibrant, since they only consider the policy of when
to ask or recommend, while the decisions of question-asking
and recommendation are made by two separated compo-
nents. HMA-UNICORN, IMA-UNICORN, and UNICORN
preserve more stable training process than other baselines.
Among these three methods, UNICORN can converge with
the least number of training episodes, i.e., interaction data.
HMA-UNICORN can achieve the best performance with an
acceptable number of training episodes, while IMA-UNI-
CORN can be regarded as a trade-off model between perfor-
mance and training efficiency.

6.3 Comparison at Different Conversation Turns

6.3.1 Success Rate at Different Conversation Turns

Besides SR@15, we also present the performance compari-
son of success rate at each turn (SR@t) in Fig. 3. In order to
better observe the differences among different methods, we
report the relative success rate compared with the state-of-
the-art baseline SCPR. For example, the line of y ¼ 0 repre-
sents the curve of Success Rate* for SCPR against itself.
There are several notable observations as follows:

i) UNICORN, IMA-UNICORN, and HMA-UNICORN
substantially and consistently outperform other
baselines across all the datasets and almost every
conversation turn.

ii) UNICORN, IMA-UNICORN, and HMA-UNICORN
achieve outstanding performance in the middle stage
of the conversation, where there are still a large num-
ber of candidate items and attributes to be pruned.
This shows the strong scalability of the proposed
methods to effectively handle large candidate action
space in different situations.

iii) The performance of SCPR gets closer to UNICORN
at the latter stage of the conversation, as the candi-
date action space is getting smaller and the task
becomes easier.

iv) EAR and CRM share similar performance as Abs
Greedy in those datasets with a large candidate attri-
bute set, i.e., Yelp* and E-Commerce, indicating their
policy learning is merely working when encounter-
ing a large action space.

v) Compared with UNICORN, IMA-UNICORN and
HMA-UNICORN achieve better performance than
UNICORN on the LastFM* dataset. Besides, the per-
formance of IMA-UNICORN and HMA-UNICORN
is also getting better at the latter stage of the conver-
sation on LastFM, YELP*, and E-Commerce datasets.

6.3.2 Ratio and Success Rate of Asking

In order to analyze how HMA-UNICORN improves the
performance of UNICORN, we further conduct experiments
on the ratio of selecting action “ask” and the success rate of
question prediction at each turn. As shown in Fig. 4, it can
be observed that, generally, HMA-UNICORN tends to ask
questions at the beginning of the conversation, while UNI-
CORN decides to ask questions with a relatively random
ratio at different turns of the conversation. Especially on
those applications with a large number of candidate items
(e.g., YELP* and E-Commerce), HMA-UNICORN is more
likely to ask questions first for reducing the number of can-
didate items, with a larger ratio of asking questions at
around 2rd-8th turn. This explains the reason why the rela-
tive success rate of HMA-UNICORN against UNICORN is
getting better at the last few turns of the conversation. On
those applications with a large number of candidate

TABLE 2
Experimental Results

LastFM LastFM* Yelp Yelp* E-Commerce

SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

Abs Greedy 0.222 13.48 0.073 0.635 8.66 0.267 0.264 12.57 0.145 0.189 13.43 0.089 0.273 12.19 0.138
Max Entropy 0.283 13.91 0.083 0.669 9.33 0.269 0.921 6.59 0.338 0.398 13.42 0.121 0.328 12.98 0.112
CRM [12] 0.325 13.75 0.092 0.580 10.79 0.224 0.923 6.25 0.353 0.177 13.69 0.070 0.294 12.11 0.146
EAR [2] 0.429 12.88 0.136 0.595 10.51 0.230 0.967 5.74 0.378 0.182 13.63 0.079 0.381 11.48 0.161
SCPR [13] 0.465 12.86 0.139 0.709 8.43 0.317 0.973 5.67 0.382 0.489 12.62 0.159 0.518 12.32 0.168
SeqCR [17] 0.501 12.58 0.152 0.739 8.11 0.346 0.976 5.46 0.391 0.478 12.21 0.181 0.545 11.56 0.186
UNICORN [18] 0.535 11.82 0.175 0.788 7.58 0.349 0.985 5.33 0.397 0.520 11.31 0.203 0.602 10.45 0.217
IMA-UNICORN 0.542� 11.64� 0.174� 0.777� 7.05�y 0.412�y 0.978� 5.29� 0.399� 0.506� 11.56� 0.190� 0.644�y 11.08� 0.235�y

HMA-UNICORN 0.576�y 11.35�y 0.185�y 0.824�y 6.78�y 0.421�y 0.986� 5.02�y 0.402�y 0.512� 11.14� 0.205� 0.672�y 10.40�y 0.249�y

� indicates statistically significant improvement (p < 0:05) over SCPR. y indicates statistically significant improvement (p < 0:05) over UNICORN. hDCG
stands for hDCG@(15,10). SR and hDCG are the higher the better, while AT is the lower the better.
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attributes to be asked (e.g., LastFM*, YELP*, and E-Com-
merce), UNICORN still tends to ask questions with a higher
ratio at the last few turns of the conversation than HMA-
UNICORN. These results show that UNICORN falls short
of making a good decision on “when to ask or recommend”.
Due to the remarkable scalability of the MARL framework,
HMA-UNICORN can be adapted to different applications
by incorporating global information to adjust the decision-
making.

6.4 Detailed Analyses & Discussions

6.4.1 Components of Attribute Prediction Agent

The first part in Table 3 (row (a-d)) presents the results that
we replace or discard the attribute selection strategies and
discard the offline user preference information. One alterna-
tive attribute selection strategy is to adopt the same strategy
as the preference-based item selection by changing the
object from items to attributes. Another one is to use the
original maximum entropy function [2]. The results (row (a,
b)) show that the performance suffers a noticeable decrease
when adopting the preference-based or entropy-based strat-
egy, indicating that it is required to consider both the user
preference and the capability of reducing candidate uncer-
tainty when deciding the asked attribute. Without attribute
selection (row (c)), we observe that the impact on applica-
tions with small action space (e.g., LastFM and Yelp) is less
than those with large action space (e.g., LastFM*, Yelp*).
Since there is no such kind of data like user-liked attributes

in Yelp datasets, we only report the results on LastFM and
E-Commerce datasets (row(d)). It can be observed that the
user-liked attributes contribute to a higher success rate and
a fewer average turn, which validates the importance of
combining online and offline user preferences in determin-
ing what questions to ask.

6.4.2 Components of Item Recommendation Agent

The second part in Table 3 (row (e-f)) presents the results of
that we discard the item selection or the user’s historical inter-
action information. We observe that HMA-UNICORN is
merelyworkingwithout item selection, since there are no pre-
trained recommendation components in the framework and
the preference-based item selection serves as an auxiliary
item recall process. Besides, the performance is improved by
incorporating the historical interaction across all the datasets.
However, the information of user-liked attributes is more
effective in LastFM* and E-Commerce datasets than the infor-
mation of historical interactions, which indicates that it
attaches more importance to consider long-term user prefer-
ence on attributes when there is a large number of attributes
to ask.

6.4.3 Features of Meta State

In HMA-UNICORN, the high-level meta agent is responsi-
ble for coordinating the decisions made by two low-level
agents. As described in Section 4.5.1, we consider four fea-
tures in the meta state representations, including the user’s

Fig. 2. Test performance at different training episodes.

Fig. 3. Comparisons of success rate at different conversation turns.

Fig. 4. Ratio and success rate of asking clarification question at different conversation turns.
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feedback history shis, the size of candidate items slen, and
the Q-values of the selected actions by two low-level agents,
i.e., Qpðst; apt Þ and Qvðst; avt Þ. Here we investigate the effect
of each feature by discarding them in the meta state repre-
sentation. The third part in Table 3 (row (g-j)) summarizes
the ablation results. As discussed in Section 6.3.2, the incor-
poration of user’s feedback history and the size of candidate
items make HMA-UNICORN tend to ask questions at the
beginning of the conversation or when there is an extremely
large candidate item set. This also provides the evidence for
explaining why HMA-UNICORN can achieve a better per-
formance than IMA-UNICORN. Here we observe that both
of these two features contribute to a substantial improve-
ment (row (g-h) across all the metrics and datasets. In addi-
tion, the Q-values of two low-level agents also attach great
importance in deciding the final action (row (i-j)).

6.5 Case Study

In order to intuitively study the difference between the pro-
posed HMA-UNICORN and other state-of-the-art CRS
methods, we randomly sample a real-world interaction
from the E-Commerce dataset. The generated conversations
by HMA-UNICORN, UNICORN, SeqCR, and SCPR with
the user simulator are presented in Fig. 5. With the global
features (e.g., the user feedback sequence), HMA-UNI-
CORN, SeqCR, and SCPR can adjust the decision of “when
to ask or recommend” when encountering the failure,
instead of continuously making recommendations in UNI-
CORN. Compared with SCPR, SeqCR incorporates users’
historical interaction information into the recommendation
model for modeling the long-term user preference, which
leads to better performance on recommendation. HMA-
UNICORNmakes a better decision of the next action by sys-

TABLE 3
Ablation Study

LastFM LastFM* Yelp Yelp* E-Commerce

SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

HMA-UNICORN 0.576 11.35 0.185 0.824 6.78 0.421 0.986 5.02 0.402 0.512 11.14 0.205 0.672 10.40 0.249
Attribute Prediction Agent
(a) - Preference-based Attr. Sel. 0.498 12.12 0.159 0.762 7.71 0.343 0.976 5.69 0.381 0.493 11.56 0.174 0.601 11.01 0.211
(b) - Entropy-based Attr. Sel. 0.538 11.60 0.176 0.796 7.02 0.396 0.983 5.44 0.392 0.504 11.38 0.188 0.634 10.71 0.226
(c) - w/o Attribute Selection 0.501 12.01 0.166 0.633 9.21 0.292 0.951 6.66 0.359 0.189 13.27 0.051 0.465 11.78 0.140
(d) - w/o Long-term Preference 0.540 11.84 0.172 0.792 7.24 0.359 - - - - - - 0.632 10.88 0.213

Item Recommendation Agent
(e) - w/o Item Selection 0.161 13.79 0.059 0.658 8.67 0.298 0.801 9.02 0.304 0.152 13.71 0.049 0.169 13.52 0.072
(f) - w/o Long-term Preference 0.531 11.95 0.154 0.792 7.13 0.362 0.978 5.34 0.388 0.501 11.43 0.186 0.652 10.77 0.226

Meta Agent
(g) - w/o shis 0.566 11.54 0.181 0.816 6.85 0.417 0.986 5.12 0.398 0.515 11.16 0.203 0.661 10.72 0.234
(h) - w/o slen 0.550 11.79 0.162 0.796 7.11 0.371 0.980 5.29 0.388 0.508 11.17 0.203 0.666 10.51 0.239
(i) - w/o APA Q-values 0.542 11.74 0.178 0.799 7.12 0.370 0.975 5.56 0.390 0.489 11.66 0.165 0.643 10.97 0.218
(j) - w/o IRA Q-values 0.539 11.80 0.172 0.804 7.01 0.379 0.971 5.60 0.387 0.482 11.82 0.158 0.650 10.86 0.221

SR and hDCG are the higher the better, while AT is the lower the better.

Fig. 5. Sample conversations generated by HMA-UNICORN, UNICORN, SeqCR, and SCPR. For simplicity, we only show the conversation at the last
four turns. jVcandj denotes the number of candidate items at the current turn.

Fig. 6. Effect of the number of selected candidate attributes. Fig. 7. Effect of the number of selected candidate items.
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tematically combining the merits of global features and long
short-term user preference modeling.

6.6 Parameter Sensitivity Analysis

Fig. 6 and Fig. 7 present the experimental results (hDCG) by
varying the number of selected candidate actions. As for the
number of selected attributes, it is likely to discard the impor-
tant attributes when only selected the attribute with the high-
est weighted entropy (e.g., Kp=1). However, within a certain
training interaction period (10,000 episodes in our case), all
these three methods generally achieve the best performance
when only selecting a small number of candidate items for
policy learning (e.g.,Kv=10). The results also demonstrate the
necessity of pruning the available actionswhen there is a large
action search space in UCRPL. As for IMA-UNICORN and
HMA-UNICORN, the increase of the number of selected
actions (Kp or Kv) casts less negative impact on these two
methods than that on UNICORN, which indicates that the
incorporation of long-term user preference information
enhances the robustness of policy learning with more candi-
date actions.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose two novel multi-agent RL-based
frameworks, namely IMA-UNICORN and HMA-UNICORN,
which utilize different important features and facilitate better
unified policy learning in multi-round conversational recom-
mendation systems. In specific, two low-level agents, includ-
ing attribute prediction agent and item recommendation
agent, enrich the state representations by combining the long-
term user preference information from the historical interac-
tion data and the short-term user preference information
from the conversation history. A high-level meta agent is
responsible for coordinating the low-level agents to adap-
tively make the final decision. Experimental results on four
public CRS datasets and a real-world E-Commerce applica-
tion show that the proposed methods significantly outper-
form state-of-the-art methods. Extensive analyses further
demonstrate the superior scalability of the MARL frame-
works onMCR.

This work is the first attempt of applying multi-agent
reinforcement learning to conversational recommendation
systems. There are some limitations and room for further
improvement. For example, we only consider some heuris-
tic reward functions for simplifying the MARL framework,
while it would be better to adopt other sophisticated reward
functions or extend to actor-critic based frameworks. As for
the MARL framework itself, it would also be valuable to
investigate the cooperation and competition organisms in
CRS, which, in return, can benefit better policy learning in
the multi-round CRS. From another perspective, the quality
of the user simulator is important in the applications of rein-
forcement learning methods on CRS. Therefore, it is also
worth studying more natural user simulation approaches
that can be better correlated with real users.
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