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A Unified Framework for Contextual and Factoid
Question Generation

Chenhe Dong , Ying Shen , Shiyang Lin , Zhenzhou Lin , and Yang Deng

Abstract— Question generation (QG) aims to automatically gen-
erate fluent and relevant questions, where the two most mainstream
directions are generating questions from unstructured contextual
texts (CQG), such as news articles, and generating questions from
structured factoid texts (FQG), such as knowledge graphs or tables.
Existing methods for these two tasks mainly face challenges of
limited internal structural information as well as scarce back-
ground information, while these two tasks can benefit each other
for alleviating these issues. For example, when meeting the entity
mention “United Kingdom” in CQG, it can be inferred that it is a
country in European continent based on the structural knowledge
“(Europe, countries_within, United Kingdom)” in FQG. And when
meeting the entity “Houston Rockets” in FQG, more background
information, such as “an American professional basketball team
based in Houston since 1971”, can be found in the related passages
of CQG. To this end, we propose a unified framework for the tasks
of CQG and FQG, where: (i) two types of task-sharing modules
are developed to learn shared contextual and structural knowledge,
where the task format is unified with a pseudo passage reformu-
lation strategy; (ii) for the CQG task, a task-specific knowledge
module with a knowledge selection and aggregation mechanism
is introduced, so as to incorporate more factoid knowledge from
external knowledge graphs and alleviate the word ambiguity prob-
lem; and (iii) for the FQG task, a task-specific passage module
with a multi-level passage fusion mechanism is designed to extract
fine-grained word-level knowledge. Experimental results in both
automatic and human evaluation show the effectiveness of our
proposed method.

Index Terms—Question generation, multi-task learning,
knowledge acquisition.

I. INTRODUCTION

QUESTION generation (QG) aims at automatically gen-
erating questions based on various forms of input data

such as image [1], [2], text [3], [4], knowledge base (KB)
and knowledge graph (KG) [5], [6]. QG is also categorized
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into different types [7] such as follow-up, clarifying, and in-
formation seeking. In recent years, QG has raised a lot of
attention and has shown its advantages in many scenarios such
as intelligent tutoring systems in education [8] and dialogue
systems [9]. In this paper, we target the two most mainstream
information seeking QG directions in natural language process-
ing (NLP): generating questions from unstructured contextual
data (CQG), such as news articles; and generating questions
from structured factoid data (FQG), such as knowledge graphs or
tables.

The end-to-end sequence-to-sequence (Seq2Seq) framework
has become the de-facto method to tackle QG tasks [10], [11],
[12]. For the task of CQG, many methods have been proposed
to fully explore the internal structural information (e.g., answer-
relevant relations, dependency parsing relations, etc.), which can
guide the model focus on more prominent phrases to generate
more consistent and to-the-point questions. For example, Li
et al. [13] jointly model the unstructured texts and the structured
answer-related relations contained in the input texts (e.g., the
structured relation “the daily mean temperature in January; is;
0.3 ◦C” corresponding to the answer “0.3 ◦C”), which helps the
model capture distant dependencies to the answer and ignore the
extraneous information, leading to more to-the-point generated
questions. Chen et al. [4] utilize the Graph Neural Network
(GNN) to embed the syntax-based and semantics-aware re-
lations inside the texts, which helps the model discover the
syntactic and semantic relationships between any pair of words
and generate more fluent and consistent questions. However,
the structural knowledge hidden in the context is relatively
limited and how to effectively incorporate external structural
information (e.g., from other related tasks, external KBs, etc.)
has not been well studied. For the task of FQG, due to an
extreme lack of background and contextual information, many
works attempt to introduce external related off-the-shelf contexts
(e.g., distant supervised relation contexts, entity domains and
descriptions) or related KG subgraphs in a multi-hop manner
to generate more fluent and diversified questions. For example,
Liu et al. [5] propose a context-augmented fact encoder and a
multi-level copy mechanism to incorporate diversified off-the-
shelf KB contexts, Chen et al. [6] utilize GNN to encode the KG
subgraphs with multiple fact triples. However, the introduced
KB contexts or KG subgraphs are usually composed of short
words or phrases, which still suffer from limited knowledge and
cannot remarkably address the above challenges. For example,
the relation “person/place_of_birth” has a distant supervised
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Fig. 1. Examples where CQG and FQG can benefit from each other. The answers are underlined and the beneficial cues are highlighted in the same colors of
blue, orange, and green.

context “is birthplace of”, which still contains limited back-
ground and contextual information.

Fortunately, these two tasks (i.e., CQG and FQG) can per-
fectly compensate for the limitations of each other, where the
CQG task can learn more structural knowledge from the FQG
task, and the FQG task can obtain more background and contex-
tual information from the CQG task. Several intuitive examples
are shown in Fig. 1. For CQG, more structural knowledge of the
entity mentions (e.g., United Kingdom) in the source context
can be found in the external samples from FQG, which can help
generate the related fact “European countries” in the question
that is not contained in the source context (based on the subject
“Europe” and relation “countries_within”). And for FQG, more
background information of the entity “Houston Rockets” can
be found in the external samples from CQG, which can help
infer the description “sports team” in the question that is not
mentioned in the source fact triples. Meanwhile, for the task of
CQG, apart from learning from the FQG task, external KGs can
also be leveraged to further enhance the model’s ability to dis-
cover important entities, which contain a considerable amount
of structural factoid knowledge far exceeding that involved in
the FQG task.

In this paper, we propose a unified framework for jointly
learning the tasks of CQG and FQG, named UniCFQG. For the
task of CQG, we present two strategies to incorporate external
structural information, including the shared structural knowl-
edge from the FQG task via a task-sharing graph module and the
factoid knowledge from external KGs via a task-specific CQG
knowledge module. In the CQG knowledge module, in order to
alleviate the word ambiguity problem (e.g., “apple” can refer to a
fruit or a company) when linking the entities in the text to those in
the knowledge graph, we design a knowledge selection module,
which consists of a Graph Convolutional Network (GCN) [14]
to incorporate more related factoid relationships for each KG
entity, and a knowledge attention mechanism to dynamically
select the most suitable KG entities from a large candidate
set. Meanwhile, to aggregate the KG entity embeddings and
fuse the external knowledge into the original contextual rep-
resentations, we design a knowledge aggregation module with
a Convolutional Neural Network (CNN) to extract high-level
local n-gram information and a GNN model to learn the fused

knowledge. For the task of FQG, we incorporate more contextual
information via a task-sharing passage module and a multi-level
passage fusion module. To facilitate the joint learning with the
CQG task to learn shared contextual knowledge, we design a
word-level passage reformulation strategy to convert each KG
subgraph in the FQG task into a pseudo passage. And to discover
more internal contextual information, we present a multi-level
passage fusion module. In specific, we first reformulate the
passage representations at phrase-level and align them with that
of the word-level reformulated passages, so as to enhance the
correlation among words in the same fact phrases. Then we
propose a Multi-level Fused GNN (MFGNN) to capture the
internal and external relationships between words in the same
and different fact phrases, which includes both word-level and
phrase-level graph aggregation mechanisms.

Our contributions can be summarized as follows:
� We propose a multi-task learning framework for the tasks

of CQG and FQG to compensate their limitations for each
other, i.e., limited contextual and structural information.

� For the CQG task, we propose a task-sharing graph module
to learn shared structural knowledge from the FQG task,
and a task-specific knowledge module to incorporate fac-
toid knowledge from external knowledge graphs.

� For the FQG task, we propose a task-sharing passage mod-
ule to learn shared contextual knowledge from the CQG
task, and a multi-level passage fusion module to extract
fine-grained internal contextual knowledge.

� Experimental results on two popular datasets, i.e., SQuAD
and WebQuestions, demonstrate the effectiveness of our
method in enhancing the performances on both the CQG
and FQG tasks.

II. RELATED WORK

A. Contextual Question Generation

Contextual question generation (CQG) aims to generate the
question given an unstructured text with contextual information,
such as the reading comprehension passages.

Early works mainly rely on heavy hand-crafted rules. Heil-
man et al. [15] propose an overgenerate-and-rank framework,
which first converts declarative sentences into questions with
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manually written rules, and then ranks these questions with
a logistic regression model. Labutov et al. [16] propose an
ontology-crowd-relevance workflow, including representing the
texts in ontology, crowdsourcing candidate question templates,
and ranking relevant templates.

In recent years, driven by advances in deep learning, Seq2Seq
based neural networks have been widely used. Du et al. [17] in-
troduce an end-to-end trainable attention-based sequence learn-
ing model. Zhou et al. [18] propose a feature-rich neural encoder-
decoder model with answer position. Zhao et al. [10] propose
a Seq2Seq framework with a gated self-attention encoder and a
maxout pointer decoder to process long texts.

Later, many works are proposed to explore the rich semantic
information lying in the answer or question. Sun et al. [19]
design an answer-focused and position-aware QG model, which
explicitly models answer-focused question word and relative
distance to the answer. Kim et al. [3] present an answer-separated
Seq2Seq model that treats the answer and passage separately
to better utilize the information from both sides, and present a
keyword-net to extract the key information from target answer.
Ma et al. [20] design a sentence-level semantic matching module
and an answer position inferring module to explore the question
semantics and answer position-aware features. Liu et al. [21]
propose to generate question-answer pairs from unlabelled text
corpora consisting of an information extractor, a neural question
generator, and a neural quality controller.

Meanwhile, some researchers also exploit the structural in-
formation hidden in the context (e.g., answer-relevant relations,
dependency parsing relations, etc.) to improve the consistency
of generated questions. Li et al. [13] jointly model the unstruc-
tured sentence and structured answer-related relation to generate
questions to the point. Pan et al. [22] construct semantic-level
graphs for the input texts and encode them with an attention-
based Gated Graph Neural Network, which is able to capture
global structure information and generate deep questions. Chen
et al. [4] propose a reinforcement learning-based graph-to-
sequence model to encode the internal structural information
and alleviate exposure bias. Jia et al. [23] target generating
exam-like questions based on an answer-guided Graph Convo-
lutional Network (GCN) to capture the structural inter-sentence
and intra-sentence relations.

Apart from exploiting the internal information, many recent
works try to perform multi-task learning (MTL) with related
tasks to integrate external information. Wang et al. [24] design
a multi-agent communication framework with agents of phrase
extraction and question generation to generate question-worthy
phrases. Zhou et al. [25] design a hierarchical multi-task learning
framework for QG with language modeling. Liu et al. [26]
propose to jointly train QG with clue prediction to identify
potential clue words in the input passage to be copied into the
target question with GCN. Jia et al. [27] propose to train QG
with paraphrase generation to generate human-like questions.

Despite the tremendous advances in the CQG task, only
considering internal structural information is far from enough
due to its limited amount, and previous works with MTL only
consider the external knowledge at contextual-level while ignor-
ing the external structural knowledge. To solve this problem, we

propose two methods to integrate external structural informa-
tion, including an MTL framework with the FQG task to learn
shared structural knowledge and a task-specific knowledge mod-
ule to incorporate factoid knowledge from external KGs.

B. Factoid Question Generation

Factoid question generation (FQG) aims to generate questions
given the related structured texts with factoid relationships, such
as the knowledge base (KB) and knowledge graph (KG).

Similar to the CQG task, early works are generally based on
human-created templates. Seyler et al. [28], [29] propose to use
SPARQL queries as the intermediate representation and con-
vert them into natural language questions based on predefined
templates. Song et al. [30] present an in-domain QG system,
which first generates the question candidates based on several
templates and rich web information, and then uses a filter model
for selection.

Later, the Seq2Seq framework is widely adopted. Serban et
al. [31] propose an end-to-end neural model to convert the facts
in knowledge bases into natural language questions with a fact
encoder and a Recurrent Neural Network (RNN) based decoder.
Reddy et al. [11] present a neural model to generate question-
answer pairs given a KB entity and an RNN-based method to
generate corresponding questions. Wang et al. [32] offer a neural
generation method with the Long Short-Term Memory (LSTM)
model and a new format of the input sequence.

Due to the limited background information, many works
attempt to incorporate off-the-shelf contexts to generate more
fluent and diversified questions. Liu et al. [5] propose an encoder-
decoder model by integrating diversified off-the-shelf contexts
and multi-level copy mechanisms to generate questions refer-
ring to definitive answers. Bi et al. [33] propose a knowledge-
enriched, type-constrained, and grammar-guided KBQG model,
which incorporates auxiliary KB information and uses a condi-
tional copy mechanism to modulate question semantics.

Recently, multi-hop methods based on KG subgraphs have
raised more and more attention, which contain more complex
relationships and background information. Kumar et al. [34]
propose a Transformer-based difficulty-controllable multi-hop
QG model, which estimates the difficulty based on the named
entity popularity. Chen et al. [6] propose to encode the KG
subgraphs with a bidirectional graph-to-sequence model based
on GNN and a node-level copying mechanism. Ke et al. [35]
design a graph-text joint representation learning framework,
which contains a structure-aware semantic aggregation module
and three new pre-training tasks.

However, the KB contexts or KG subgraphs introduced
by previous works in the FQG task are often composed of
short words or phrases, which still contain limited background
and contextual information. For instance, the relation “per-
son/place_of_birth” has a distant supervised context “is birth-
place of”, and the entity “LeBron James” has a distant supervised
domain and description “human” and “American Basketball
Player”, respectively, both of which still contain insufficient
relevant knowledge. To tackle this challenge, we propose an
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Fig. 2. An overview of UniCFQG. We design a task-sharing module to learn common task knowledge (middle), a task-specific CQG knowledge module to
introduce factoid knowledge from external KGs (right), and a task-specific FQG passage module to learn fine-grained word-level knowledge (left).

MTL framework with the CQG task to learn the shared back-
ground and contextual knowledge, which can help the model
in the FQG side discover relevant long-term background and
contextual dependencies from the voluminous training passages
in the CQG side, and is achieved by reformulating the KG
subgraphs into pseudo passages at word-level. Furthermore, we
present a multi-level passage fusion module to discover more
internal contextual information at both word and phrase levels.

III. METHOD

In this paper, we focus on the tasks of CQG and FQG.
For the CQG task, the purpose is to generate a question Y c

given a text sentence X and an answer Ac contained in the
text, which relies on the maximum conditional likelihood Y c =
argmaxY P (Y |X,Ac). For the FQG task, each input contains a
KG subgraph G and an answer Af , where the KG subgraph is a
collection of triples in the format of (subject, relation, object)
and the answer is an entity (i.e., subject or object) in the original
KB entity set. The goal is to generate questions Y f as calcu-
lated by Y f = argmaxY ′P (Y ′|G,Af ). An example of these
two tasks is shown in Fig. 1. Our UniCFQG mainly contains
three components: a task-sharing module, a task-specific CQG
knowledge module, and a task-specific FQG passage module,
which is shown in Fig. 2.

A. Task-Sharing Module

In this section, we propose the task-sharing passage and graph
modules to learn the shared contextual and structural knowledge
between the tasks of CQG and FQG.

1) Task-Sharing Passage Module: In order to facilitate the
joint learning between the tasks of CQG and FQG, we first
reformulate each KG subgraph of the FQG task into a word-
level pseudo passage. Specifically, for the arrangement of each
passage, the facts containing the same subject and relation are
merged where different objects are separated by commas “,”; the
facts containing the same subject are merged where different
relation-object pairs are separated by semicolons “;”; and the
facts containing different subjects are separated by periods “.”.
An illustration is shown in Fig. 3.

Afterward, to extract the shared contextual knowledge be-
tween the CQG and FQG tasks, we jointly align the passages
and their corresponding answers in the task-sharing passage
module. To deeply incorporate the answer information, we
conduct the alignment at both word and contextual levels in
a progressive manner, which is implemented by utilizing the
static input embeddings and dynamic contextual representations,
respectively. Specifically, given word embeddingsGp,Ga of the
passage and answer, and passage linguistic embedding Lp, the
word-level task-sharing passage embedding S̃p is calculated by
a bidirectional long short-term memory (BiLSTM) model [36]:

S̃p = BiLSTM([Gp;Lp;Gaβ̃
�
]), (1)

β̃ ∝ exp
(
f(W̃cGp)�f(W̃cGa)

)
, (2)

where f(·) represents the rectified linear unit (ReLU) function,
[; ] denotes the concatenation operation, β̃ denotes the attention
score matrix and represents the semantic similarities among
words in the passage and answer, and W̃c is a trainable weight
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Fig. 3. Illustration for the arrangement of each FQG reformulated pseudo passage and the multi-level graph aggregation mechanism. Phrase-level connection
means linking each of the words inside the connected phrases for aggregation, while word-level connection means linking the connected words directly. Phrases
in blue, orange, and green denote subjects, relations, and objects, respectively.

matrix. For the passage linguistic features in CQG, apart from the
case, NER, and POS embeddings, we use an entity embedding
to identify whether a word is contained by a KG entity; and
for those in FQG, we use a Subject Relation and Object (SRO)
embedding to identify whether a word is subject, relation, or ob-
ject. Then the contextual-level task-sharing passage embedding
Ŝp can be calculated by:

Ŝp = BiLSTM([S̃p; S̃aβ̂
�
]), (3)

β̂ ∝ exp
(
f(Ŵc[Gp; S̃p])�f(Ŵc[Ga; S̃a])

)
, (4)

where S̃a is the contextualized answer embedding and is ob-
tained by S̃a = BiLSTM(Ga).

2) Task-Sharing Graph Module: To extract the shared struc-
tural knowledge, we incorporate the Graph Neural Network
(GNN) into the task-sharing graph module. For the CQG task,
the encoded inputs are natural passage representations enhanced
by KG entity embeddings, thus we use the Bidirectional Gated
GNN (BiGGNN) model [4] to encode the structural infor-
mation into the passage representations, where each word in
a sentence is considered a graph node, and the connections
between different words are determined by their dependency
parsing relationships. For the FQG task, the encoded inputs are
pseudo passage representations reformulated from structured
fact triples. In order to capture the internal and external rela-
tionships between words in the same and different fact phrases,
we design a Multi-level Fused GNN (MFGNN) model with a
multi-level graph aggregation mechanism at both word-level and
phrase-level based on BiGGNN, as shown in Fig. 3. Specifically,
the adjacent words in the same fact phrase (i.e., subject, relation,
and object) are connected to be aggregated so as to learn internal
word-level relationships, and the words in adjacent fact phrases
(i.e., subject-relation, and relation-object) that belong to the
same subject are connected to learn external phrase-level rela-
tionships. The first words of adjacent subjects are also connected
to learn the global relationships.

Since the structural information contained in the CQG and
FQG tasks is different (i.e., one is syntax dependency informa-
tion while the other is factoid relationships), we introduce an
additional weight-sharing structure rather than directly sharing
the weights to avoid mutual interference. The task-sharing graph
module takes the knowledge-enhanced passage embedding H̃p

and the multi-level aligned passage embedding X̃p as input for
the CQG and FQG tasks, respectively (described in Sections II-
I-B and III-C). As each KG is actually a directed graph, we adopt

the bidirectional aggregation strategy in BiGGNN to deeply fuse
the node information learned from both incoming and outgoing
directions. For node v at the k-th graph layer, we first calculate
the backward and forward aggregation vectors hk

N�(v)
,hk

N�(v)

separately with an element-wise mean aggregator:

hk
N�(v)

= Mean({hk−1
u , ∀u ∈ N�(v)}), (5)

hk
N�(v)

= Mean({hk−1
u , ∀u ∈ N�(v)}), (6)

where N�(v),N�(v) are incoming and outgoing neighboring
node vectors of node v (including v itself). Then we use a gated
fusion function to fuse the aggregated vectors of both directions.
The bidirectional aggregated vectorhk

N (v) at the k-th graph layer
is calculated by:

hk
N (v) = z
 hk

N�(v)
+ (1− z)
 hk

N�(v)
, (7)

z = σ (Wzhz + bz) , (8)

where z is the gating vector, σ is the sigmoid function, and hz

is calculated by:

hz =
[
hk
N�(v)

;hk
N�(v)

;hk
N�(v)


 hk
N�(v)

;hk
N�(v)

− hk
N�(v)

]
, (9)

where 
 is component-wise multiplication operation, and
Wz,bz are trainable parameters. After that, a Gated Recurrent
Unit (GRU) model [37] is adopted, and the final aggregated
vector hk

v of node v at k-th layer is given by:

hk
v = GRU(hk−1

v ,hk
N (v)), (10)

The obtained task-sharing graph representations are subse-
quently concatenated with task-specific passage embeddings
Xp,Hp (described in Sections III-B and III-C) to derive the
final passage representations XP ,HP for the CQG and FQG
tasks, respectively.

B. Task-Specific CQG Knowledge Module

In order to enhance the model’s ability to discover important
entities in the source passages and generate consistent questions,
we propose a knowledge selection and aggregation module to
incorporate more structural knowledge from external KGs.

1) Knowledge Selection Module: For the CQG task, the in-
puts of the knowledge selection module are important entities
in the source passages and their factoid relationships are not
assigned like the inputs of the FQG task, thus we use Graph
Convolutional Network (GCN) [14] to learn their relationships
with each other. In addition, the entities in CQG are linked with
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external KGs where each entity in the source passage might
corresponds to multiple KG entity embeddings, thus we propose
a knowledge attention method to select the most semantically
suitable entity embedding, which is able to alleviate the word
ambiguity problem (e.g., “apple” can refer to a fruit or a com-
pany) as pointed out by Deng et al. [38].

Sepcifically, to discover more factoid relationships for each
candidate entity, we utilize GCN to learn the relationships be-
tween each entity and its one-hop neighboring entities in KG,
as well as the relationships among all the entities in a sentence.
The aggregated entity embeddingE(l) at the l-th graph layer can
be formulated by:

E(l) = σ
(
D− 1

2AD− 1
2E(l−1)W(l)

)
, (11)

where σ(·) is an activation function, W(l) is a trainable weight
matrix at the l-th layer, and A,D is the adjacency matrix and
degree matrix, respectively (with added self-connections).

Then we apply a knowledge attention method to calculate
the similarity between each candidate entity embedding and
the task-specific context representation Ĥp = BiLSTM(Ŝp).
Given top-K candidate entity embeddings of the t-th sentence
wordEt = {Et1,Et2, . . . ,EtK} (based on their occurrence fre-
quency) from the last GCN layer and the average-pooled passage
embedding Ĥp

avg = AVG(Ĥp), the best entity embedding Ẽt of
the t-th word is formulated as:

Ẽt =

K∑
i=1

αtiEti, (12)

αti =
exp(WmMti)∑K
j=1 exp(WmMtj)

, (13)

Mti = tanh
(
WctxH

p
avg +WentEti

)
, (14)

whereWm,Wctx,Went are learnable weight matrices, andαti

is the knowledge attention score applied on the i-th candidate
KG entity embedding of the t-th word.

2) Knowledge Aggregation Module: After obtaining the best
entity embeddings, we feed them into the knowledge aggre-
gation module to capture their global relationships. Since the
entities are always phrases and different entities might not be
adjacent, we use a Convolutional Neural Network (CNN) with
various sizes of filters to capture the high-level local n-gram
information. The local feature He

t extracted by the t-th move
with filter size n is calculated by:

He
t = tanh(Wc ∗ et + bc), (15)

et = {Ẽt−(n−1)/2, . . . , Ẽt, . . . , Ẽt+(n−1)/2}, (16)

where ∗ is the convolution operation, Wc,bc are learnable
convolution kernel matrix and bias vector, respectively, and et
is the local n entity embeddings at the t-th filter move. Then the
derived local feature He is concatenated with the task-specific
context representation Ĥp forming H̃p = [Ĥp;He]. Finally, A
BiLSTM model followed by a BiGGNN model is applied to
refine the global sequential information and generate the final
task-specific CQG passage representation Hp.

C. Task-Specific FQG Passage Module

In this section, we introduce two types of encoding methods
to learn the contextual and structural information at both node-
level and word-level, including a node encoding module and a
multi-level passage fusion module.

1) Node Encoding Module: For the FQG task, the inputs of
the node encoding module are fact triples and different entities
in each triple have contextual dependencies with each other,
thus we use BiLSTM to learn contextual knowledge and use
BiGGNN to extract bidirectional factoid relationships among
entities, and finally derive the node-level representation of each
fact phrase.

Since each KG is a directed graph and might contain various
relation types between two entities, we utilize the Levi graph [39]
to transform the original KGs into bipartite graphs. Specifically,
the entities and relations of each KG subgraph are all treated
as graph nodes, and new edges are added to connect them.
Then we use two BiLSTM models to encode the texts in each
entity and relation separately and use the concatenation of the
last forward and backward hidden states as the corresponding
node embeddings. In addition, we add answer embeddings and
concatenate them with their corresponding node embeddings to
incorporate the answer information. Finally, the concatenated
node embeddings X̂n are fed into a BiGGNN model to learn
the relationships between different nodes and derive the refined
node representation Xn.

2) Multi-Level Passage Fusion Module: In order to learn
fine-grained word-level information, we propose a multi-level
passage fusion module to align the representations between the
word-level and phrase-level reformulated pseudo passages. The
knowledge of different levels of pseudo passages is extracted
separately and is then fused via an attention mechanism and the
Multi-level Fused GNN model.

We first reformulate the KG subgraphs into word-level pseudo
passages and extract their word-level contextual information as
described in Section III-A. Afterward, to enhance the correla-
tion among words in the same entity or relation, we perform
phrase-level passage reformulation to incorporate phrase-level
contextual information. In detail, based on the task-specific pas-
sage embedding X̂p = BiLSTM(Ŝp), we first rearrange node
embedding X̂n into passage order similar with the word-level
arrangement strategy in Section III-A, which however is per-
formed at phrase-level. Then we extract their contextualized em-
bedding Xc = BiLSTM(X̂n), and use an attention mechanism
to align the information between the word-level and phrase-level
passage embeddings:

X̃p = [X̂p;Xcγ̃�], (17)

γ̃ ∝ exp
(
f(W̃fX̂p)�f(W̃fXc)

)
. (18)

Subsequently, X̃p is fed into a BiLSTM model followed by
an MFGNN model with the graph aggregation mechanism de-
scribed in Section III-A to learn word-level structural knowledge
and derive Xp. Finally, we adopt a similar attention mechanism
to incorporate passage information into node embedding Xn

and derive the final task-specific FQG node embedding XN as
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follows:

XN = [Xn;Xpγ�], (19)

γ ∝ exp
(
f(WfXn)�f(WfXp)

)
. (20)

D. Training

During training, we use the cross-entropy loss and coverage
loss [40] to train our model. The total loss function L is formu-
lated as:

L =
∑
t

− logP (y∗t |X, y∗<t) + λ
∑
t

∑
i

min(ati, c
t
i), (21)

where y∗t is the word at the t-th position of the ground-truth
output sequence, X is the input text or KG subgraph, ati, c

t
i are

the i-th element of attention and context vectors at the t-th time
step respectively, and λ controls the weight of coverage loss.

E. Decoding

Following See et al. [40], we use an attention-based unidi-
rectional LSTM model with a copying mechanism to be the
decoder. We use the max-pooled passage and node embeddings
of HP ,XN to initialize the decoder of CQG and FQG, respec-
tively, and take HP ,XN as the attention memory.

IV. EXPERIMENT

A. Datasets and Metrics

For the evaluation of the CQG task, we use the Stanford
Question Answering Dataset (SQuAD) [41], which is a large
reading comprehension dataset consisting of questions posed by
crowd workers based on Wikipedia articles. The answer to each
question is a segment of text from the corresponding passages,
and there are totally 107,785 question-answer pairs on 536 arti-
cles. We adopt the data split in Zhou et al. [18], which contains
86,635/8,965/8,964 examples for the train/development/test set.

For the evaluation of the FQG task, we use the WebQues-
tions benchmark1 with several multi-hop question answering
datasets based on Freebase, including WebQuestionsSP [42] and
ComplexWebQuestions [43]. The samples in WebQuestions are
composed of tuples {(Q,G,E)}, where Q is a natural language
question, G is the KG subgraph from which the question is
derived, and E is the set of answer entities corresponding to
the question. In total, WebQuestions contain 25,703 entities,
672 relations, 2 to 100 hops, and 22,989 instances. We adopt the
data split ratio of 80%/10%/10% for the train/development/test
set as in Kumar et al. [34].

Following previous works, we use both automatic and human
evaluation metrics to assess our model. We adopt BLEU [44],
ROUGE [45], and METEOR [46] for automatic evaluation. For
human evaluation, we mainly consider three aspects, including:
(i) fluency, which evaluates whether the question is grammati-
cally correct and fluent; (ii) relevancy, which evaluates whether
the question is relevant to the source text; and (iii) answerability,
which evaluates whether the question can be answered by the

1https://github.com/liyuanfang/mhqg

given answer. We randomly select 50 samples from the generated
questions and ask three annotators to score them with the rating
score in the range 1-5.

B. Baselines

For the task of CQG, we compare with the following baseline
methods:
� NQG++ [18] consists of a feature-rich encoder and an

attention-based decoder.
� s2sa-at-mp-gsa [10] proposes a gated self-attention en-

coder with a maxout pointer in decoder.
� ASs2s [3] proposes an answer-separated model to extract

answer information.
� LM-QG [25] introduces language modeling as an auxiliary

task to help QG in a hierarchical MTL structure.
� Sent-Relation [13] introduces answer-relevant relation to

help generated questions keep to the point.
� CQC-QG [26] presents a multi-task labeling strategy with

GCN to discover potential clue words to be copied into the
target question.

� CS2S-VR-A [21] proposes to generate question-answer
pairs with the information extractor, question generator,
and quality controller.

� PG-QG [27] proposes an MTL framework between para-
phrase and question generation.

� G2S+BERT [4] proposes a syntax-based static Graph2Seq
model with a deep answer alignment network.

� EQG-RACE [23] proposes an answer-guided GCN for
examination-type QG.

And for the task of FQG, we compare with the following
baseline methods:
� L2A [17] is an LSTM-based Seq2Seq model with attention

mechanism and takes linearized sequences of KG sub-
graphs as input.

� Transformer [47] is a Transformer-based encoder-decoder
model with sequences of word embeddings as input.

� MHQG+AE [34] is a Transformer-based model with an-
swer encoding and takes sequences of TransE embeddings
as input.

� G2S+AE [6] proposes a bidirectional Graph2Seq model to
encode the input KG subgraphs.

� T5 [48] and BART [49] are the state-of-the-art pre-trained
models for text-to-text generation and are applied for the
KG-to-text task with linearized KGs.

� JointGT (T5) and JointGT (BART) [35] designs several pre-
training tasks to enhance graph-text alignment based on
backbones of T5 and BART.

C. Implementation Details

For the knowledge graph used in the CQG knowledge mod-
ule, we adopt a subset of FreeBase [50], FB5M,2 as the KG
source, which contains 3,988,105 entities, 7,523 relations, and
17,872,174 facts. Since the entity linking is not the focus of

2https://research.fb.com/downloads/babi/
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TABLE I
AUTOMATIC EVALUATION RESULTS ON THE SQUAD DATASET FOR THE TASK OF CQG. BOLD AND UNDERLINED INDICATE METHODS WITH BEST AND

SECOND-BEST PERFORMANCES, RESPECTIVELY. METHODS WITH † ARE CONDUCTED WITH THE RELEASED CODES

TABLE II
AUTOMATIC EVALUATION RESULTS ON THE WEBQUESTIONS DATASET FOR THE

TASK OF FQG

this work, we use a widely-adopted package, TagMe,3 as an
off-the-shelf tool for entity linking in our experiments, which
is widely adopted in related studies [51], [52]. Other recent
libraries can also be considered to extract the entity mentions,
such as BLINK.4

We use both pre-trained 300-dim GloVe [53] and 1024-dim
BERT [54] embeddings to initialize the word embeddings, and
use 300-dim TransE [55] embeddings to initialize the KG entity
embeddings, which are trained with OpenKE [56] under the
default settings. We keep the most frequent 70,000 and 20,000
words in the training set of the CQG and FQG tasks, respectively,
and select the top-5 most frequently mentioned entities and their
top-5 one-hot neighbors as candidates in the CQG knowledge
module. The dimensions of the case, POS, and NER embeddings
in CQG are set to 3, 12, and 8, respectively, while those of the
answer and SRO embeddings in FQG are both set to 32. The
dimension of entity embeddings in CQG is set to 9 to align with
the input dimension of FQG (i.e., 32). The dimensions of all
other hidden layers are set to 300. The number of layers for the
graph networks in CQG and FQG is set to 3 and 4, respectively.
The convolutional filter sizes are set to 2 and 3. The variational
dropout rates [57] over the word embeddings and RNN layers
are set to 0.4 and 0.3, respectively.

3https://github.com/marcocor/tagme-python
4https://github.com/facebookresearch/BLINK

During training, we use Adam [58] as the optimizer and set
the initial learning rate to 0.001. The learning rate is reduced by
half when the validation score (BLEU-4) stops improving for
three epochs, and the training process is terminated when there
are no improvements for ten epochs. The batch size is set to 50.
The beam search widths of CQG and FQG are set to 15 and 9,
respectively. The coverage loss ratio λ is set to 0.4 and 0 for CQG
and FQG, respectively. We use label smoothing for FQG and set
the ratio to 0.2. We also adopt schedular teacher forcing [59]
to alleviate the exposure bias problem, where the initial teacher
forcing probability is set to 0.75 and is exponentially increased
to 0.75 ∗ 0.9999i at the i-th training step. The hyperparameters
are tuned on the development set, and all the experimental results
are averaged over three runs. The experiments are conducted on
a GeForce RTX 3090 GPU.

D. Experimental Results

1) Automatic Evaluation: The automatic evaluation results
on the SQuAD and WebQuestions test sets are reported in
Tables I and II. For the CQG task, compared with the pre-
vious method G2S+BERT, our model achieves an improve-
ment of 0.64%/0.42%/0.29% in the metric of BLEU-4/ROUGE-
L/METEOR. And compared with EQG-RACE, the correspond-
ing improvement is 2.02%/1.95%/1.54%. For the FQG task,
compared with the counterpart G2S+AE, the gain of BLEU-
4/METEOR is 0.51%/0.53%. And in comparison to previous
pre-trained methods, our method can still achieve competitive
results. For example, compared with T5, the improvement of
BLEU-4/ROUGE-L/METEOR is 1.18%/0.42%/0.94%. The re-
sults show that UniCFQG has outstanding performances on both
the CQG and FQG tasks.

In our opinion, the reason that traditional pre-trained methods
not working well on the FQG task can be attributed to the signif-
icantly different input formats of training samples between pre-
training and fine-tuning. During pre-training, the inputs are long
consecutive passages, while during fine-tuning, each input is
composed of separate factoid triples. Such a discrepancy leads to
the less training effectiveness. And for JointGT, since it designs
several graph-to-text pre-training tasks based on huge amount of
crawled pre-training dataset, it has better performances than the
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TABLE III
HUMAN EVALUATION RESULTS FOR THE TASK OF CQG

TABLE IV
HUMAN EVALUATION RESULTS FOR THE TASK OF FQG

vanilla pre-trained models T5 and BART, and the performance
of JointGT (BART) is better than our methods. The number of
parameters in our framework is around 50 million, while that
of JointGT (T5) and JointGT (BART) is 265 and 160 million,
respectively.

2) Human Evaluation: The human evaluation results are
listed in Tables III and IV. As can be seen, our UniCFQG still
has better effects on both CQG and FQG tasks. In terms of
all the metrics including fluency (flu.), relevancy (rel.), and an-
swerability (ans.), our method shows significant improvements
against its counterparts. For the CQG task, our method achieves
an improvement of 0.18/0.40/0.42 in the metric of flu./rel./ans.
compared with other best-performed baselines. And for the FQG
task, the corresponding improvement is 0.14/0.16/0.23. These
results validate the superiority of the proposed methods from
practical perspectives.

E. Ablation Study

To assess the effectiveness of each module in our model,
we conduct an ablation study by progressively removing each
part from our UniCFQG as shown in Tables V and VI. We
first sequentially remove the BERT embeddings and the task-
sharing module, and as can be seen, the task-sharing mod-
ule contributes 0.24%/0.23%/0.26% to the performances of
BLEU-4/ROUGE-L/METEOR on the CQG task and contributes
0.22% to the performance of BLEU-4 on the FQG task, which
demonstrate that both of the CQG and FQG tasks can learn
helpful knowledge from each other. Then we separately remove
the CQG knowledge module and FQG passage module, where
the performances are further decreased by 0.33%/0.31%/0.22%
and 0.13%/0.46%/0.16% on the metric of BLEU-4/ROUGE-
L/METEOR in the CQG and FQG task, respectively. This
shows the effectiveness of the external factoid knowledge and
fine-grained word-level knowledge brought by the reformulated
pseudo passages. Finally, we remove all the components of our

UniCFQG, and the performance of ROUGE-L on the CQG
task is further decreased by 0.16%, whilst the performance of
BLEU-4/ROUGE-L/METEOR on the FQG task is decreased
by 0.39%/0.12%/0.29%. Meanwhile, compared with those base-
lines in Tables I and II, we can observe that after removing all the
modules, the performances of our method are lower than many
baselines. For example, in CQG, our BLEU-4 score is lower
than that of CGC-QG, PG-QG, and G2S+BERT. And in FQG,
our BLEU-4 score is lower than that of BART, G2S+AE, and
JointGT (BART). The above results further verify the advantage
of each module of our method.

In addition, we evaluate the effectiveness of attention mecha-
nisms in different modules of our model as shown in Table VII.
We mainly report the average score of the CQG and FQG
tasks in terms of BLEU-4, ROUGE-L, and METEOR. We first
evaluate the word-level and contextual-level answer alignment
attention mechanisms in the task-sharing passage module, which
are respectively formulated by (2) and (4). From the results,
we can observe that both of these attention mechanisms benefit
the overall performance; and by removing both of them, the
performance of BLEU-4/ROUGE-L/METEOR is significantly
decreased by 2.35%/3.61%/2.02%. This demonstrates that the
answer information is crucial for generating to-the-point ques-
tions. Then we evaluate the knowledge attention mechanism
in the task-specific CQG knowledge selection module as for-
mulated by (13). We only select the top-1 frequent KG entity
embedding for each entity in the source passage and remove
the knowledge attention mechanism to access its effectiveness.
From the results, we can see that knowledge attention also con-
tributes a lot to the model performance, especially for the metric
of BLEU-4, which is decreased by 0.29% after removing the
attention mechanism. This shows that knowledge attention can
effectively alleviate the word ambiguity problem and help the
model generate more semantically consistent questions. Finally,
we evaluate the multi-level attention mechanism between word-
level and phrase-level passage embeddings in the task-specific
FQG multi-level passage fusion module, which is formulated by
(18). We remove both of the phrase-level passage reformulation
and multi-level attention mechanisms to show the attention
effect, and the performance of BLEU-4/ROUGE-L/METEOR is
decreased by 0.24%/0.16%/0.15%. This proves that enhancing
the correlation among words in the same entity or relation is
important and beneficial, and conducting attention with such
fine-grained knowledge can help the model generate more fluent
questions.

F. Analysis for Consistency and Diversity

In this section, we use additional metrics to evaluate the con-
sistency and diversity of generated questions in the tasks of CQG
and FQG, respectively, as shown in Tables VIII and IX. For the
CQG task, we use the entity matching ratio (i.e., the proportion of
matching entities, which also appear in the corresponding source
passages, between the generated and ground-truth questions)
to evaluate the consistency between generated questions and
source contexts; and use entity recognition ratio (i.e., the pro-
portion of generated entities from all entities in source passages)
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TABLE V
ABLATION RESULTS FOR THE EFFECTIVENESS OF DIFFERENT MODULES IN THE CQG TASK. CK, FP, TS DENOTES THE CQG KNOWLEDGE MODULE, THE FQG

PASSAGE MODULE, AND THE TASK-SHARING MODULE, RESPECTIVELY

TABLE VI
ABLATION RESULTS FOR THE EFFECTIVENESS OF DIFFERENT MODULES IN THE

FQG TASK

TABLE VII
ABLATION RESULTS FOR THE EFFECTIVENESS OF ATTENTION MECHANISMS IN

DIFFERENT MODULES

TABLE VIII
RESULTS FOR THE CONSISTENCY OF GENERATED QUESTIONS IN CQG

TABLE IX
RESULTS FOR THE DIVERSITY OF GENERATED QUESTIONS IN FQG

to assess the model’s ability to recognize potential entities.
From the results, we can see that our method significantly
outperforms its counterpart G2S+BERT with an improvement
of 5.66%/1.70% on the metric of matching/recognition ratio,
and both the task-sharing module and CQG knowledge module
contribute a lot to generate consistent questions with improve-
ments of 1.89%/1.19% and 3.76%/0.40%, respectively. For the
FQG task, we use Distinct-n [60] to measure the diversity. From
the results, we can observe that our method also outperforms its
counterpart G2S+AE by a large margin with an improvement of
0.18%/2.16% on the metric of Distinct-1/2, and both the task-
sharing module and FQG passage module have large positive
impacts on generating diversified questions with contributions
of 0.07%/0.91% and 0.17%/0.52%, respectively.

G. Analysis for Task Mutual Benefit

To better illustrate the mutual benefit between the tasks of
CQG and FQG, we conduct several experiments with different
proportions of training samples. The results are shown in Fig. 4,
and as can be seen, the BLEU-4 improvements of our method
against the single-task learning (STL) methods for both tasks get
more and more prominent as the sample ratio increases. Specifi-
cally, for the CQG task, the BLEU-4 improvement between STL
and our UniCFQG increases from nearly 0.2% to nearly 0.7%
as the sample ratio increases from 10% to 30%; and for the FQG
task, the BLEU-4 improvement increases from nearly 0.6% to
nearly 1.3%. This indicates that more related information can
be discovered by increasing the training samples and leads to
better task mutual benefit.

H. Case Study

In this section, we provide several examples of generated
questions for the tasks of CQG and FQG in Fig. 5 to intuitively
show the effectiveness of our method.

In the first case of CQG, benefit from the task-sharing mod-
ule and task-specific CQG knowledge module, the KG entity
mention “Super Bowl 50 halftime show” gains more attention
and is entirely predicted in the generated question, while its
counterpart G2S+BERT fails to capture the entire entity and
only predict part of it, i.e., “Super Bowl”. And there exists a
repetition and evidence error of “Bruno Mars” in the prediction
of G2S+BERT corresponding to “Super Bowl XLVIII” in the
source, while our method avoids such a problem. In the second
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Fig. 4. Results for the task mutual benefit between CQG and FQG with
different sample ratios.

case, the prediction of G2S+BERT also has an evidence error of
“Lady Cory’s” corresponding to “major diamond jewellery” in
the source, while our method makes a correct prediction.

Moreover, in the first case of FQG, thanks to the task-sharing
module and task-specific FQG passage module, the model can
generate more fluent and diversified questions and learn more
fine-grained knowledge, such as “win the championship”, while
its counterpart G2S+AE fails to achieve this. G2S+AE also has
a repetition and evidence error of “the coach of the team”,
while our method avoids such a problem. In the second case,
G2S+AE ignores the subject “Arthur Miller” in the source and
repetitively predicts “influenced by Lucian”, while our method
correctly predicts the fact “influcenced Arthur Miller”. These
cases strongly demonstrate the effectiveness of our method.

I. Error Analysis

In this section, we provide the error analysis results of our
method based on its several failure cases on the CQG and
FQG tasks to depict the limitations of our method and promote
the advance of further studies. We analyze 50 cases in total
(25 of each task) as shown in Fig. 6, and the error cases can
be primarily divided into five categories including repetition,
answer mismatch, information loss, evidence error, and syntax
error.

Fig. 5. Case study for tasks of CQG and FQG. The answers are underlined,
and the correct and incorrect predicted words are displayed in blue and red,
respectively.

Repetition: The repetition of words or phrases is the most
frequent problem in both CQG and FQG tasks, which accounts
for around 28% and 52% respectively. The significant higher
frequency of the problem in FQG might be caused by its limited
input contents, i.e., the model might frequently attend to the same
source content during decoding and generate similar words.
Repetition is a common phenomenon in text generation tasks,
which is induced by the maximization-based sampling strategy
during the decoding process (e.g., beam search). Currently, many
methods have been proposed to tackle this problem [61], [62],
and there is still a long distance and large improvement room to
solve it.

Answer Mismatch: Answer mismatch is a frequent problem
in QG tasks, which refers to the phenomenon that the generated
question is unable to be answered by the given answer in the
source inputs. Statistically, there are about 28% cases in CQG
have such mismatch problem. On the contrary, due to the limited
information contained in the inputs of FQG, it is easier for the
model to identify the answer phrases and thus only 8% of the
FQG cases have such problem.
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Fig. 6. Examples for the most frequent error types of our method in the tasks
of CQG and FQG. The incorrect predicted words are displayed in red.

Information Loss: The information loss mainly occurs in CQG
with a proportion of 16% due to the excess input information. In
most cases, the missing information is auxiliary, such as the
specific location, time, person, etc. This indicates that more
effective methods need to be designed to discover the structured
auxiliary information in the source contexts.

Evidence Error: The evidence error can be categorized into
intrinsic and extrinsic evidence errors, where the intrinsic error
refers to the incorrect combination of phrases or clauses from the
source inputs, and the extrinsic error refers to the introduction of
irrelevant words that are not contained by the source inputs. In
CQG, since the relatively more sufficient input contents, there
are mainly intrinsic errors with a proportion of 8%. And in FQG,
due to the limited input information, there are mainly extrinsic
errors with a proportion of 12% as well as 4% intrinsic errors.

Syntax Error: The syntax error is also a common problem in
text generation tasks, including the incorrect choices of spelling,
punctuation, grammars, etc. In CQG and FQG, the syntax error
accounts for around 20% and 24%, respectively. Recently, many
researchers have been committed to solving this problem [63],
[64], which is still a challenging problem and needs deeper and
further research.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-task learning framework to
jointly learn the tasks of CQG and FQG. For the CQG task,
a task-specific knowledge module with a knowledge selection
and aggregation module is designed to incorporate more factoid
knowledge from external KGs and alleviate the word ambiguity
problem. For the FQG task, a task-specific passage module with
a a multi-level passage fusion module is proposed to extract the
fine-grained knowledge at word-level. In addition, two types of
task-sharing modules are presented to learn shared contextual
and structural knowledge, where the input formats of CQG
and FQG are aligned by reformulating the fact triples in FQG
into pseudo passages similar with CQG. Extensive experimental
results on two widely adopted datasets show the effectiveness
of our method.

In the future, we will integrate more types of CQG and FQG
tasks (e.g., multi-hop CQG, table-to-text FQG, etc.) to investi-
gate the transferability of our UniCFQG in the multi-task learn-
ing scenario. Moreover, we will explore more efficient method
to conduct the multi-task learning, such as the prompt-based
learning techniques, and try to discover more effective MTL
strategies in the low-resource setting to aid the demands in the
industry. We will also investigate more appropriate strategies of
concatenating the contextual and knowledge representations in
the task-specific CQG knowledge module to alleviate the prob-
lems of structural alignment and semantic proximity diversity.
Finally, we will explore the utilization of pre-trained language
models instead of the LSTM-based model structure in our MTL
framework.
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