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We study quadrilaterals inscribed and circumscribed about conics and prove interesting theorems. The-
orems are discovered by experimenting with dynamical geometry software. The Poncelet theorem for
quadrilaterals is proved by elementary means together with Poncelet’s grid property.
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1. Introduction

Our research is motivated by the conjecture of Schwartz and Tabachnikov [22, Theorem 4.c
]. While searching for the proof we encountered several interesting results about conics and
quadrilaterals.

Conjecture 1 (Conjecture of Tabachnikov and Schwartz) Let A1A2 . . . A12 be a 12-gon inscribed
in a conic C. Let π map 12-gon X1X2 . . . X12 onto a new 12-gon according to the rule π(Xi) =
l(XiXi+3) ∩ l(Xi+1Xi+4). Then, 12-gon A1A2 . . . A12 is mapped with π(3) = π ◦ π ◦ π onto a
12-gon inscribed in a conic.

It seemed that this conjecture is a perfect candidate to use the technique illustrated in the paper
Illumination of Pascal’s Hexagrammum and Octagrammum Mysticum by Baralić and Spasojević
[2,3]. The problems we study are strongly influenced by the very inspirative paper [13]. Many
important questions in dynamical systems and combinatorics have their equivalents in the terms
of algebraic curves. Schwartz and Tabachnikov originally formulated their conjecture in [22,
Theorem 4.c ] in terms of a pentagram map [20].

We will explain Figure 1 carefully. We start with a 12-gon A1A2 . . . A12 (the green points lying on
the violet conic) inscribed in a conic and define the (yellow) points obtained by π , (blue and violet
lines), π(2) the red points (green and orange lines) and π(3) the violet points (black and yellow
lines). It turns out that at each step we have a 6 × 6 cage of curves, see [13]. But instead of dealing
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Figure 1. Conjecture of Tabachnikov and Schwartz (color online only).

with 24 points at the second step we take only 12 of them. It is not possible to catch the curves we
want in the cage. By the Mystic Octagon theorem, we could catch three interesting conics and one
quartic in the blue-violet cage. What to do with the curves at other steps? Definitely we should
try to add some new points and then apply Bézout’s theorem or a similar statement. But what are
those points and how to find them? If we look more carefully, three quadrilaterals inscribed in a
conic can be noticed (A1A4A7A10, A2A5A8A11 and A3A6A9A12) and usually the steps are always
defined as the certain intersection points of the side lines of quadrilaterals. Thus, we thought that
if we want to overcome the problems we faced, we should understand the quadrilaterals inscribed
in conics better.

Theorems about quadrilaterals and conics are usually known like degenerate cases of Pascal
and Brianchon theorems. Baralić and Spasojević [2] proved some new results about two quadrilat-
erals inscribed in a conic. However, in this paper we study more complicated structures involving
both tangents at the vertices and the side lines of quadrilateral. We start from the degenerate form
of Pascal and Brianchon theorems for the quadrilateral and then we discover new interesting
points, conics and loci. Classical projective geometry from the nineteenth century studied exten-
sively these objects, leading to the founding of new mathematical disciplines such as algebraic
geometry. Development of computer graphics, dynamical geometry, dynamical systems, etc. dur-
ing the second half of the twentieth century renewed the interest of researchers for the classical
projective geometry. Recently, two excellent book on this topic were published [15,19]. Theo-
rems 3.1–3.3 we present here extend the known results about geometry of quadrilaterals inscribed
in a conic.

The objects are studied by elementary means. Some of the results are in particular the corollary
of the Great Poncelet Theorem for the case when n-gon is quadrilateral. Here we give a short
proof for this case. Some special facts about this special case are explained as well.

Finally, we compare two theorems – the Mystic Octagon theorem for the case of two quadrilat-
erals and the Poncelet Theorem for the quadrilaterals. They have in common that they state that
certain 8 points coming from two quadrilaterals inscribed in a conic lie on the same conic. While
the first one is a pure algebro-geometric fact, the latter involves much deeper structure of the
space and cannot be seen naturally as a special case of the first one. Thus, we could not find ‘The
theorem of all theorems for conics in projective geometry’ and elementary surprises in projective
geometry like those in [22,23] could come as the special cases of different general statements.
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2. From Pascal to Brocard theorem

In this section we show how the Pascal theorem for hexagon [16] (1639) inscribed in a conic
degenerates to the Brocard theorem for the quadrilateral inscribed in a circle. All results here are
well known and are part of the standard olympiad problem solving curriculum, but our aim is to
illustrate the power of degeneracy tool and prepare the background for the next sections.

Lemma 2.1 Let ABCD be a quadrilateral inscribed in a conic C and let M be the intersection
point of the lines AD and BC, N be the intersection point of the lines AB and CD, P be the
intersection point of the tangents to C at A and C, and Q be the intersection point of the tangents
to C at B and D. Then, the points M, N , P and Q are collinear (Figure 2).

Proof Apply the Pascal theorem to degenerate hexagon AABCCD and we get the points M, N
and P are collinear. Apply the Pascal theorem to degenerate hexagon ABBCD and we get that the
points M, N and Q are collinear. �

Dual statement to Lemma 2.1 is the following:

Lemma 2.2 Let conic C touch the sides AB, BC, CD and DA of a quadrilateral ABCD in the
points M, N , P and Q, respectively. Then the lines AC, BD, MP and NQ pass through the same
point O ( Figure 3).

Lemmas 2.1 and 2.2 will be used to prove other interesting relations among the lines and points
that naturally occur in a quadrilateral inscribed in conics configurations. Many points are going
to be introduced so we are going to organize labels of our points.

Let A1A2A3A4 be a quadrilateral inscribed in a conic C and let M1 be the intersection point of the
lines A1A2 and A3A4, M2 of A2A3 and A4A1 and M3 of A3A1 and A2A4. Let N3 be the intersection
point of the tangent lines to the conic at A1 and A3, P3 of the tangents at A2 and A4, N2 of the
tangents at A1 and A4, P2 of the tangents at A2 and A3, N1 of the tangents at A1 and A2 and P1 of

Figure 2. Lemma 2.1.
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Figure 3. Lemma 2.2.

Figure 4. Lemma 2.3.

the tangents at A3 and A4. Let U1 and U2 be the points where the tangents from M1 touch C, and
analogously V1, V2 and W1, W2 for the points M2 and M3, respectively.

Lemma 2.1 states that the points M1, M2, N3, P3 are collinear, as well as the points M2, M3, N1,
P1 and M3, M1, N2 and P2. Denote these three lines by m3, m1 and m2, respectively. We are going
to prove that U1 and U2 lie on the line m3, V1 and V2 on the line m2 and W1 and W2 on m1 – so
that m1, m2 and m3 are the polar lines of the points M1, M2 and M3 with respect to C.

The following lemma is a well-known result about poles and polars. A classical proof using
harmonic division could be found in [10]. However, for the reader’s convenience we give a proof
based on a different, well-known idea. Indeed, moving the configuration into a special position
will be a central idea in the proof of Theorem 3.3.

Lemma 2.3 The points U1, M2, U2 and M3 are collinear (Figure 4).

Proof There is a projective transformation ϕ that maps the points A1, A2, A3 and A4 onto the
vertices of a square. Thus, ϕ(M3) is the centre of a square with vertices ϕ(A1), ϕ(A2), ϕ(A3) and
ϕ(A4). The points ϕ(M1) and ϕ(M2) are at infinity. There is a unique way to inscribe a square into
a conic, and the lines ϕ(A1)ϕ(A2) and ϕ(A1)ϕ(A4) are parallel to the axes of the conic ϕ(C), see
[1]. The points ϕ(U1) and ϕ(U2) must be mapped onto the axis parallel to the line ϕ(A1)ϕ(A4).

Now the points ϕ(U1), ϕ(U2), ϕ(M2) and ϕ(M3) lie on the axis of the conic ϕ(C). Consequently,
the points U1, M2, U2 and M3 then lie on the same line. �



International Journal of Computer Mathematics 1411

Figure 5. Quadrilateral inscribed in a conic.

Figure 6. Brocard theorem.

Lemma 2.3 clearly implies the analogous statement for the lines m2 and m3. This is the classical
theorem of the projective geometry and a very useful tool (Figure 5).

We treat one very special case – when the conicC is a circle. Projective geometry gives us a plenty
of techniques. For example, in the proof of Lemma 2.3 we used the projective transformation.
We have already described degeneracy tool when we take some limit cases of polygons inscribed
(or circumscribed) in a conic. It is good to keep in mind that a conic could degenerate itself for
example to the two lines. This is a way to get interesting configurations of points and lines.

The configuration 5 in the case of a circle has a nice property which is known as the Brocard
theorem. Let O be the centre of a circle C. Then the quadrilateral M1U1OU2 is deltoid and we get
M1O ⊥ m1. Similarly, M2O ⊥ m2. Thus:
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Figure 7. Mystic Octagon Theorem 2.2.

Theorem 2.1 (Brocard theorem) Let O be the centre of circumscribed circle of a cyclic
quadrilateral A1A2A3A4. Then O is the orthocentre of triangle �M1M2M3 (Figure 6).

Theorem 2.2 (Mystic Octagon Theorem) Let ABCDEFGH be an octagon inscribed in a conic
C and let the lines AB, CD, EF and GH intersect the lines BC, DE, FG and HA in the points K ,
L, M, N , O, P, Q and R. Then the eight points K , L, M, N , O, P, Q and R lie on the same conic
(Figure 7).

Proof This theorem was formulated by Wilkinson [25]. The proof we present uses only the
Pascal theorem and is given by Evans and Rigby [11]. It could also be found in the monograph
[4] by Bix.

Let U be the intersection point of the lines BC and EH. By Pascal’s theorem the points K , R
and U are collinear, see Figure 7. Then by the converse of Pascal’s theorem, the points K , L, N ,
O, Q and R lie on the same conic. Analogously, we prove that the points L, M, N , O, Q and R lie
on the same conic. There is a unique conic through some five points, so the points K , L, M, N , O,
Q and R lie on the same conic. In the same manner we can prove that the point P also belongs to
this conic. �

3. More lines, pencils of lines and surprising conics

We continue in the same manner. The lines and the pencils of lines we study came from various
degenerations of the vertices of hexagon inscribed in a conic. Let us note that configuration
associated with 60 Pascal lines has been described in [2,14,24]. All results from this section could
be obtained as certain degenerate cases. But we are going to treat them by elementary means.

Let T1 be the point of intersection of the line A3A4 and the tangent at A1 to C, T2 of A4A1 and
the tangent at A2, T3 of A1A2 and the tangent at A3 and T4 of A2A3 and the tangent at A4. Let X1 be
the point of intersection of the line A2A3 and the tangent at A1 to C, X2 of A3A4 and the tangent at
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Figure 8. Lemma 3.1.

A2, X3 of A4A1 and the tangent at A3 and X4 of A1A2 and the tangent at A4. Let Y1 be the point of
intersection of the line A2A3 and the tangent at A1, Y2 of A1A4 and the tangent at A2, Y3 of A1A4

and the tangent at A3 and Y4 of A2A3 and the tangent at A4.

Lemma 3.1 The points X1, X2, X3, X4, T1, T2, T3 and T4 lie on the same conic C1; Y1, Y2, Y3, Y4,
X1, X3, T2, and T4 lie on the same conic C2; T1, T3, X2, X4, Y1, Y2, Y3 and Y4 lie on the same conic
C3 ( Figure 8).

Proof This statement is a special case of the Mystic Octagon theorem. The first conic appears
when we consider degenerate octagon A1A2A2A3A3A4A4A1, the second for A1A3A3A2A2A4A4A1,
and the third for A1A3A3A4A4A2A2A1. �

Proposition 3.1 The following 16 triples of points are collinear: (M1, Y1, Y2), (M1, Y3, Y4),
(M1, X3, T4), (M1, X1, T2), (M2, Y1, Y4), (M2, Y2, Y3), (M2, X4, T1), (M2, X2, T3), (M3, T1, T3),
(M3, X2, X4), (M3, X1, X3), (M3, T2, T4), (X2, Y3, T4), (X1, Y2, T3), (X3, Y4, T1), (X4, Y1, T2)

(Figure 9).

Proof The collinearity of the points M1, X3 and T4 follows from Pascal’s theorem for degen-
erate hexagon A1A4A4A3A3A2, the collinearity of the points M1, Y3 and Y4 from degenerate
hexagon A1A3A3A4A4A2 and the collinearity of the points X2, Y3 and T4 from degenerate hexagon
A2A3A3A4A4A2. The proof for the rest is analogous. �

Proposition 3.2 The following six triples of lines are concurrent: (M2M3, X2Y3, X3Y4),
(M1M3, X1Y2, X2Y3), (M1M2, X1Y2, X3Y4), (M2M3, X1Y2, X4Y1), (M1M3, X4Y1, X3Y4), (M1M2, X4

Y1, X2Y3) (Figure 9).

Proof By Lemma 3.1 the points X1, X2, X3, X4, T1, T2, T3 and T4 lie on the same conic. From
the Pascal theorem for the hexagon T1X3X1T2X4X2 we get that lines M1M3, X4Y1 and X3Y4 are
concurrent. Analogously for other triples. �

Define the points as the intersections of the lines: B1 = l(A2V1) ∩ l(A1V2), C1 =
l(A1V1) ∩ l(A2V2), D1 = l(A3V1) ∩ l(A4V2), E1 = l(A4V1) ∩ l(A3V2), B3 = l(A4V1) ∩ l(A2V2),
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Figure 9. Propositions 3.1 and 3.2.

Figure 10. Propositions 3.3.

C3 = l(A4V2) ∩ l(A2V1), D3 = l(A1V1) ∩ l(A3V2), E3 = l(A1V2) ∩ l(A3V1), D2 = l(A4U1) ∩
l(A1U2), E2 = l(A1U1) ∩ l(A4U2), B2 = l(A3U1) ∩ l(A2U2), C2 = l(A2U1) ∩ l(A3U2), F3 =
l(A4U1) ∩ l(A2U2), H3 = l(A4U2) ∩ l(A2U1), G3 = l(A1U1) ∩ l(A3U2), I3 = l(A1U2) ∩ l(A3U1),
E1 = l(A2W1) ∩ l(A1W2), F1 = l(A1W1) ∩ l(A2W2), G1 = l(A3W1) ∩ l(A4W2), H1 = l(A4W1) ∩
l(A3W2), H2 = l(A4W1) ∩ l(A1W2), I2 = l(A4W2) ∩ l(A1W1), F2 = l(A2W1) ∩ l(A3W2) and
G2 = l(A2W2) ∩ l(A3W1).

Proposition 3.3 The points B1, C1, D1, E1, F1, G1, H1, I1 lie on the line M2M3. Similarly, the
points B2, C2, D2, E2, F2, G2, H2, I2 lie on the line M3M1 and the points B3, C3, D3, E3, F3, G3,
H3, I3 lie on the line M1M2.

Proof Consider the quadrilateral formed by the tangent lines to the conic C at the points A4, A2,
V1 and V2. Applying Lemma 2.2, we get that the point B3 lies on the line M1M2. Analogously for
other points. �

We introduced many points and showed that some of them are collinear while some are the
intersections of certain lines. But some of them lie on the conics that we are going to introduce
(Figure 10).
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Figure 11. Theorem 3.1.

Let J2i−1 be the intersection point of the tangents at Xi−2 and Ti on the conic C1, and J2i be the
intersection point of the tangents at Xi−1 and Ti (modulo 4), for i = 1, 2, 3, 4. Then the following
claim is true:

Theorem 3.1

• The lines JiJi+4, for i = 1, 2, 3, 4 intersect at the point M3.
• The lines J1J7, J2J6 and J3J5 intersect at M1 and the lines J1J3, J4J8 and J5J7 intersect at M2.
• The lines J1J4 and J2J5 intersect at A1, the lines J4J7 and J3J6 at A2, the lines J6J1 and J5J8 at

A3 and the lines J3J8 and J2J7 at A4.
• The intersection points l(J2J4) ∩ l(J6J8), l(J2J8) ∩ l(J4J6), l(J3J6) ∩ l(J2J7), l(J5J8) ∩ l(J1J4),

l(J3J8) ∩ l(J4J7), l(J2J5) ∩ l(J1J6) and l(JiJi+1) ∩ l(Ji+4Ji+5) for i = 1, 2, 3, 4 lie on the same
line M1M2.

• The intersection points l(J4J5) ∩ l(J7J8) and l(J3J4) ∩ l(J1J8) lie on the same line M1M3, and
the intersection points l(J2J3) ∩ l(J5J6) and l(J1J2) ∩ l(J6J7) lie on the same line M2M3.

• The point P3 lies on the line J3J7 and the point N3 on the line J1J5.
• Three lines J2iJ2i+4, J2i+1J2i−2 and J2i−1J2i+2 (modulo 8) are concurrent for i = 1, 2, 3, 4

(Figure 11).

Proof Consider the quadrilateral formed by tangents to C1 at J2 and J6. By Lemma 2.2 and
Proposition 3.1 the points M3 and M2 lie on the line J2J6 (we could take different orders of
points). Analogously, the lines J1J5, J3J7 and J4J8 pass through the point M3. In a similar manner
we prove other statements for the points M1 and M2, as well as the points N3 and P3.

Lemma 2.2 applied to the quadrilateral formed by the tangents to C1 at J2 and J5 implies that
the line J2J5 passes through A1. Similarly, A1 belongs to the line J1J4. Analogously, we prove the
corresponding statements for the points A2, A3 and A4.

From Lemma 2.1 applied to the quadrilateral T2X1T4X3 and Proposition 3.1, it follows that the
intersection point of the lines J3J4 and J7J8 and the intersection point of the lines J4J5 and J8J1
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Figure 12. Theorem 3.2.

lie on the line M1M2. Then by Brianchon’s theorem for the hexagon formed by the tangents to C1

at T2, X1, T3, T1, X3 and T4 the intersection point of the lines J1J4 and J5J8 lies on the line M1M2.
Analogously, we prove the same statement for other points.

The Brianchon theorem for the hexagon formed by the tangents to C1 at T2, X1, X4, T1, X3 and
T4 gives the concurrency of the lines J2J6, J1J4 and J5J8. We use the similar argument for the rest
of the proof. �

Let Ki be the intersection point of the lines JiJi+1 and Ji+2Ji+3 (modulo 8) for i = 1, . . . , 8.

Theorem 3.2 The points Ki lie on the same conic D1 (Figure 12).

Proof It is not hard to prove that the lines K1K5, K2K6, K3K7 and K4K8 pass through the point M3,
the lines K2K3, K1K4, K5K8 and K6K7 pass through the point M1 and the lines K2K7, K1K8, K3K6

and K4K5 pass through the point M2. From the collinearity of the points M1, J2 and l(J4J5) ∩ l(J7J8)

the points K1, K2, K4, K5, K7 and K8 lie on the same conic. Using the similar argument we show
that K2, K4, K5, K6, K7 and K8 lie on the same conic as well. Because there is a unique conic that
passes through some 5 points, the points K1, K2, K4, K5, K6, K7 and K8 are on the same conic.
Then it is easy to prove that K3 also lies on the conic. �

Let Z1 = l(M1U1) ∩ l(M2V1), Z2 = l(M1U1) ∩ l(M2V2), Z3 = l(M1U2) ∩ l(M2V2) and Z1 =
l(M1U2) ∩ l(M2V1).

Theorem 3.3 The points N1, N2, P1, P2, Z1, Z2, Z3 and Z4 lie on the same conic.

Proof There exists a projective transformation ϕ that maps the vertices A1, A2, A3 and A4 onto
the vertices of a square. Then the point ϕ(M3) is mapped onto the centre of a conic ϕ(C) and the
lines ϕ(N1)ϕ(P1) and ϕ(N2)ϕ(P2) are the axes of this conic. The points ϕ(U1), ϕ(U2), ϕ(V1) and
ϕ(V2) also lie on the axes. As we could see from Figure 13, everything is symmetric with respect
to the axes and it is easy to conclude that there is a conic through ϕ(Z1), ϕ(Z2), ϕ(Z3), ϕ(Z4),
ϕ(N1), ϕ(N2), ϕ(P1) and ϕ(P2). �

Theorems 3.1–3.3 associate new conics to the quadrilateral inscribed in a conic. They have
interesting properties which will be explained in the following section.
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Figure 13. Theorem 3.3.

4. Poncelet’s quadrilateral porism

Jean-Victor Poncelet’s famous Closure theorem states that if there exists one n-gon inscribed
in a conic C and circumscribed about a conic D then any point on C is the vertex of some n-
gon inscribed in a conic C and circumscribed about a conic D. Poncelet published his theorem
in [18]. However, this result influenced mathematics until nowadays. In a recent book [9] by
Dragovic and Radnovic there are several proofs of the Closure theorem, its generalizations as
well as its relations with elliptic functions theory. The proof is not elementary for an arbitrary n,
although in the case n = 3 an elegant proof can be found in almost every monograph in projective
geometry, see [5,17].

Theorems 3.2 and 3.3 are the special cases of the Poncelet theorem for n = 4. Actually, quadri-
laterals and conics in them have a poristic property. An elementary proof using harmonic locus
of two conics can be found in [12]. We kept the spirit of elementarity through our paper and our
agenda was: At first, we experiment in Cinderella, after that the proof is recovered by elementary
tools (again directly guided by Cinderella’s tools). In the same style we continue and offer a direct
analytic proof of the Poncelet theorem for quadrilaterals without using differentials and elliptic
functions. A synthetic version of this proof is presented in [15].

Lemma 4.1 Let λ, μ be such that the conics C : λx2 + (1 − λ)y2 − 1 = 0 and D : x2 + μxy +
y2 + (μ2 − 1)/4 = 0 are non-degenerate. Let A be a point on C and B and B′ be the intersections
of the tangent lines from A to D with the conic C. Then the points B and B′ are symmetric with
respect to the origin.

Proof Let t : y = kx + n be a tangent line to the conic D (Figure 14). The condition of tangency
between t and D is

n2 = k2 + mk + 1. (1)

The coordinates of the intersection points of t and C are

(x1, y1) =
(

−2(1 − λ)kn − √
D

2(λ + (1 − λ)k2)
, k ·

(
−2(1 − λ)kn − √

D

2(λ + (1 − λ)k2)

)
+ n

)

and

(x2, y2) =
(

−2(1 − λ)kn + √
D

2(λ + (1 − λ)k2)
, k ·

(
−2(1 − λ)kn + √

D

2(λ + (1 − λ)k2)

)
+ n

)
,
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Figure 14. Lemma 4.1 and Theorem 4.1.

where D = 4(λ − λ(1 − λ)n2 + (1 − λ)k2). It is necessary and enough to prove that a line through
the points (−x1, −y1) and (x2, y2) is tangent to D. This line has the equation y = k̃x + ñ where k̃
and ñ can be calculated as

k̃ = −λ

(1 − λ)k
and ñ =

√
D

2k(1 − λ)
. (2)

We need to check if

ñ2 = k̃2 + mk̃ + 1.

It is directly verified that condition (1) multiplied by λ(1 − λ)/k2(1 − λ)2 finishes our proof. �

Theorem 4.1 Let C and D be conics such that there exists one quadrilateral inscribed in a conic
C and circumscribed about a conic D. Then any point on C is the vertex of some quadrilateral
inscribed in a conic C and circumscribed about a conic D.

Proof There exists a projective transformation that maps the vertices of the quadrilateral
inscribed in a conic C and circumscribed about a conic D onto the points (1, 1), (1, −1), (−1, −1)

and (−1, 1) (in the standard chart). Thus, the conics C and D are transformed in those with the
equations as in Lemma 4.1. Now the claim follows. �

In fact, we proved more. All quadrilaterals with poristic property with respect to C and D have
a common point of the intersection of diagonals (lines joining opposite vertices) and a common
line passing through the intersections of opposite side lines. Our work in previous section now
could be reviewed in a new light.

Theorems 3.1–3.3 are obtained after we defined certain points. If we apply the same procedure
for defining new points on the points and conics in theorems, again we come to similar conclusions.
Thus, by repeating this procedure, we obtain an infinite sequence of conics (Figure 15). Every
two consecutive conics in this sequence are Poncelet 4-connected.
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Figure 15. The first five conics in the sequence.

Figure 16. Theorem 4.2.

Our theorems resemble Darboux’s theorem, see [6–8]. They could be seen as a very spe-
cial case of Dragović–Radnović theorem 8.38 [9]. Such constructions are also studied in
the paper of Schwartz, see [21]. The following result further explains their connection, but
first we define 16 points of the intersections R1 = l(Z1Z2) ∩ l(N1N2), R2 = l(Z1Z2) ∩ l(N1P2),
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R3 = l(Z2Z3) ∩ l(N1P2), R4 = l(Z2Z3) ∩ l(P1P2), R5 = l(Z3Z4) ∩ l(P1P2), R6 = l(Z3Z4) ∩ l(P1N2),
R7 = l(Z1Z4) ∩ l(P1N2), R8 = l(Z1Z4) ∩ l(N1N2), R9 = l(Z1Z2) ∩ l(P1P2), R10 = l(Z3Z4) ∩
l(N1P2), R11 = l(Z2Z3) ∩ l(P1N2), R12 = l(Z1Z4) ∩ l(P1P2), R13 = l(Z3Z4) ∩ l(N1N2), R14 =
l(Z1Z2) ∩ l(P1N2), R15 = l(Z1Z4) ∩ l(N1P2) and R16 = l(Z2Z3) ∩ l(N1N2) (Figure 16).

Theorem 4.2 The next groups of 8 points lie on the same conic: {R1, R2, R3, R4, R5, R6, R7, R8},
{R9, R10, R11, R12, R13, R14, R15, R16}, {R1, R2, R5, R6, R11, R12, R15, R16}, {R3, R4, R7, R8, R9, R10,
R13, R14}, {R1, R5, R7, R9, R11, R13, R15} and {R2, R3, R4, R6, R8, R10, R12, R14, R16}.

The proof of Theorem 4.2 uses the same arguments we used in the previous proofs so we omit it.
If we look at the conic C and a conic F through the points {R1, R2, R3, R4, R5, R6, R7, R8}

we see they are Poncelet 8-connected and appropriate conics from Theorem 4.2, the
conic from Theorem 3.3 with the line M1M2 form Poncelet-Darboux grid. Two conics
{R2, R3, R4, R6, R8, R10, R12, R14, R16} and {R1, R5, R7, R9, R11, R13, R15} are not coming from
Poncelet-Darboux grid, but they could be directly obtained from Dragović–Radnović theorem
8.38, [9]. This result improves the result of Schwartz [21] in a particular case.
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[2] –D. Baralić and I. Spasojević, Illumination of Pascal’s Hexagrammum and Octagrammum Mysticum, preprint (2012).

Available at arXiv:1209.4795v2, sent.
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