Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

1-2017

Stochastic invariants for probabilistic termination

Krishnendu CHATTERJEE
Petr NOVOTNY

Dorde ZIKELIC
Singapore Management University, dzikelic@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Programming Languages and Compilers Commons

Citation

CHATTERJEE, Krishnendu; NOVOTNY, Petr; and ZIKELIC, Dorde. Stochastic invariants for probabilistic
termination. (2017). POPL '17: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Language, Paris, France, January 15-21. 145-160.

Available at: https://ink.library.smu.edu.sg/sis_research/9078

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9078&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Check for
Updates

Stochastic Invariants for Probabilistic Termination

Krishnendu Chatterjee

IST Austria, Klosterneuburg, Austria
Krishnendu.Chatterjee@ist.ac.at

Abstract

Termination is one of the basic liveness properties, and we study the
termination problem for probabilistic programs with real-valued vari-
ables. Previous works focused on the qualitative problem that asks
whether an input program terminates with probability 1 (almost-sure
termination). A powerful approach for this qualitative problem is
the notion of ranking supermartingales with respect to a given set of
invariants. The quantitative problem (probabilistic termination) asks
for bounds on the termination probability, and this problem has not
been addressed yet. A fundamental and conceptual drawback of the
existing approaches to address probabilistic termination is that even
though the supermartingales consider the probabilistic behaviour of
the programs, the invariants are obtained completely ignoring the
probabilistic aspect (i.e., the invariants are obtained considering all
behaviours with no information about the probability).

In this work we address the probabilistic termination problem
for linear-arithmetic probabilistic programs with nondeterminism.
We formally define the notion of stochastic invariants, which are
constraints along with a probability bound that the constraints hold.
We introduce a concept of repulsing supermartingales. First, we
show that repulsing supermartingales can be used to obtain bounds
on the probability of the stochastic invariants. Second, we show
the effectiveness of repulsing supermartingales in the following
three ways: (1) With a combination of ranking and repulsing
supermartingales we can compute lower bounds on the probability
of termination; (2) repulsing supermartingales provide witnesses for
refutation of almost-sure termination; and (3) with a combination of
ranking and repulsing supermartingales we can establish persistence
properties of probabilistic programs.

Along with our conceptual contributions, we establish the following
computational results: First, the synthesis of a stochastic invariant
which supports some ranking supermartingale and at the same time
admits a repulsing supermartingale can be achieved via reduction to
the existential first-order theory of reals, which generalizes existing
results from the non-probabilistic setting. Second, given a program
with “strict invariants™ (e.g., obtained via abstract interpretation)
and a stochastic invariant, we can check in polynomial time whether
there exists a linear repulsing supermartingale w.r.t. the stochastic
invariant (via reduction to LP). We also present experimental
evaluation of our approach on academic examples.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

POPL’17, January 15-21, 2017, Paris, France

(© 2017 ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009873

Petr Novotny

IST Austria, Klosterneuburg, Austria
petr.novotny@ist.ac.at

145

Porde Zikeli¢

University of Cambridge, UK
dz277@cam.ac.uk

Categories and Subject Descriptors FE.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification

Keywords
centration

Probabilistic Programs, Termination, Martingales, Con-

1. Introduction

Probabilistic programs. There is a huge recent interest in the for-
mal analysis of probabilistic programs, since they provide a rich
framework to model a wide variety of applications ranging from ran-
domized algorithms [28, 58], to stochastic network protocols [5, 52],
robot planning [44, 51], or modelling problems in machine learn-
ing [37], to name a few. The extension of the classical imperative
programs with random value generators, that produce random val-
ues according to some desired probability distribution, gives rise
to probabilistic programs. The formal analysis of such programs,
and probabilistic systems in general, gives rise to a wealth of re-
search questions, which have been studied across diverse fields,
such as probability theory and statistics [29, 42, 48, 59, 62], formal
methods [5, 52], artificial intelligence [43, 44], and programming
languages [15, 19, 30, 34, 66].

Termination problem. Termination is one of the most basic liveness
properties for programs. For non-probabilistic programs the proof
for termination coincides with the construction of a ranking func-
tion [35], and many different approaches exist for construction of
ranking functions for non-probabilistic programs [11, 22, 60, 68].
For probabilistic programs there are many natural extensions of the
termination problem. The two most natural questions related to the
probability of termination of an input program are the qualitative
and quantitative problems which are as follows:

1. Qualitative problem: almost-sure termination. The basic qualita-
tive question is the almost-sure termination problem that asks
whether the program terminates with probability 1 [9, 34].

2. Quantitative problem: probabilistic termination. The natural
generalization of the qualitative question is the quantitative
question of probabilistic termination that asks for a lower bound
on the probability of termination of the program.

The above questions are the basic and fundamental questions for the
static analysis of probabilistic programs.

Nondeterminism in probabilistic programs. The role of nondeter-
minism is also quite fundamental in probabilistic programs. The
nondeterminism is necessary in many cases such as for abstraction.
For efficient static analysis of large programs, it is infeasible to track
all the variables. Abstraction allows to ignore some variables, and
for the sake of analysis the worst-case behaviour must be considered

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3009837.3009873&domain=pdf&date_stamp=2017-01-01

for them, which is modelled as nondeterminism. Besides the mod-
elling aspects, the presence of nondeterminism significantly changes
the landscape of theoretical results, which we discuss below.

Previous results: almost-sure termination. Given the importance of
the termination problem for probabilistic programs, the problem has
been studied in great depth. However, much of the previous research
focused on the qualitative problem. The details are as follows:

e Discrete probabilistic choices. First [55, 56] presented tech-
niques for termination of probabilistic programs with nondeter-
minism, but restricted only to discrete probabilistic choices.
Infinite probabilistic choices without nondeterminism. The ap-
proach of [55, 56] was extended in [15] to ranking martin-
gales and supermartingales. The approach of [15] presents a
sound (but not complete) approach for almost-sure termination
of infinite-state probabilistic programs (without nondetermin-
ism) with integer and real-valued random variables drawn from
distributions including uniform, Gaussian, and Poison. The con-
nection of termination of probabilistic programs without nonde-
terminism to Lyapunov ranking functions was established in [9].
For probabilistic programs with countable state space and with-
out nondeterminism, the Lyapunov ranking functions provide a
sound and complete method to prove termination in finite time,
which implies almost-sure termination [9, 36]. Another sound
approach [57] for almost-sure termination is to explore the ex-
ponential decrease of probabilities upon bounded-termination
through abstract interpretation [26].

Infinite probabilistic choices with nondeterminism. For proba-
bilistic programs with nondeterminism the theoretical results
change significantly. The Lyapunov ranking function method
as well as the ranking martingale method are sound but not
complete in the presence of nondeterminism [34]. Finally, for
probabilistic programs with nondeterminism, a sound and com-
plete (for a well-defined class of probabilistic programs) char-
acterization for almost-sure termination is obtained in [34], by
generalizing the ranking supermartingale approach of [15]. The
question of algorithmic synthesis of ranking supermartingales
has also been considered, for probabilistic programs with linear
arithmetic, and special classes of ranking supermartingales (such
as linear and polynomial ranking supermartingales [18, 19]).

In all the existing approaches above for infinite-state probabilistic
programs with non-determinism, the key technique for almost-sure
termination is the notion of a ranking supermartingale (RSM). Intu-
itively, a ranking supermartingale is a function assigning numbers
to program configurations (where each configuration consists of the
current control location and current valuation of program variables)
with the following property: in each reachable configuration, the ex-
pected value of the RSM in the next execution step is strictly smaller
than its current value. Thus, RSMs form a probabilistic counterpart
of classical ranking functions.

RSMs with respect to invariants. Since precisely characterizing the
set of reachable configurations is infeasible in practice, the previous
works for almost-sure termination of infinite-state probabilistic pro-
grams consider the existence of ranking supermartingales (RSMs)
with respect to invariants. An invariant is a set of constraints on
the variables of the program, one for each program location, such
that along all executions of the program, if a program location is
visited, then the program variables must satisfy the constraints of
the respective program location. Hence, each invariant represents
an over-approximation of the set of reachable configurations. The
computational problem for almost-sure termination is to decide the
existence of a RSM for a probabilistic program w.r.t. an input invari-
ant, i.e. a function assigning numbers to configurations such that for

146

z:=10
while z >0 do
if £ <100 then z:= z+sample(Uniform[—2,1])
else z:=z+sample(Uniform[—1,2])
fi
od

Figure 1. A probabilistic program modeling a generalization of an
asymmetric one-dimensional random walk.

each configuration in the invariant, the expected value of the RSM
in the next step is smaller than the current one.

RSMs and probabilistic termination. In the probabilistic termination
problem we are interested in computing termination probabilities
when the program does not terminate almost-surely. While reason-
ing about termination probabilities of probabilistic programs was
considered before (at least on a theoretical level, see also Related
Work section), approaches based on RSMs were not yet considered
for this purpose. A fundamental and conceptual problem here is
that while RSMs take into account the probabilistic behaviour of
the program, the invariants completely ignore the probabilistic as-
pect as they must hold along all executions (i.e., the invariants are
obtained considering all behaviours without any information about
the probability). Since all previous works on RSMs consider RSMs
w.r.t. invariants, this implies a fundamental limitation of this tool to
address probabilistic termination. We illustrate this with an example
below.

Motivating example. Consider the probabilistic program shown in
Figure 1, which is an asymmetric one-dimensional random walk.
The random walk is denoted by value z. If x is smaller than 100,
then its value is incremented by a number uniformly chosen between
[—2,1], otherwise the increment is uniform in [—1,2]. In this
random walk, = can have any value above 0. But once the value
reaches 100, with high probability the value drifts away, and the
program does not terminate. In this example, there is no effective
invariant, as x can have any value. However, the assertion x < 100
is violated only with very small probability, and as long as x < 100
holds, the value of x tends to decrease on average.

Our contributions. In this work we consider the probabilistic termi-
nation problem for linear-arithmetic probabilistic programs with
nondeterminism. Our contributions are manifold, ranging from
(a) definition of stochastic invariants for probabilistic termination; to
(b) introduction of repulsing supermartingales (RepSMs) and their
effectiveness; to (c) computational results; and (d) experimental
results. We describe each of them in details below.

Stochastic invariants. We formally define the notion of stochastic
invariants for the probabilistic termination problem. A stochastic
invariant consists of a constraint on the program variables for each
program location (as for invariants), and a threshold value p, such
that the constraint is violated at the location with probability at most
p. For example, in the probabilistic program of Figure 1 we can
consider a stochastic invariant with constraint x < 100 at location
corresponding to the if z < 100 test, with the threshold value being
very small (less than 10~°), since the probability that x exceeds 100
is very low due to asymmetry.

Repulsing supermartingales. We introduce a concept of repulsing
supermartingales (RepSMs), which are in some sense dual to RSMs.
A RepSM for a set of program configurations C' has non-negative
value inside C' and decreases on average outside C'. Intuitively, while
RSMs show that a program execution cannot avoid some set C' of

configurations indefinitely, RepSMs show that program executions
that start outside of C' tend to avoid C, and that they actually tend
to “run away” from C in some well defined sense. The RepSMs
are inspired by martingale methods used for analysing so-called
one-counter MDPs [12, 13], but they are more general and apply
to vastly larger class of systems. Our results for RepSMs are as
follows:

1. Stochastic invariants. We show that RepSMs can be used to
obtain bounds on the probability threshold of the stochastic
invariants.

2. Effectiveness. We show the effectiveness of RepSMs in the
following three ways:

e First, with a combination of RSMs and RepSMs we show

how to obtain lower bounds on the probability of termination
(i.e., sound bounds for probabilistic termination). Hence for
programs that do not terminate almost-surely, but with high
probability, our method can obtain such bounds.

e Second, in program analysis, refuting a property is as impor-
tant as proving, as refutation is important in bug-hunting. We
show that RepSMs can provide witnesses for refuting almost-
sure termination. Moreover, even for programs that terminate
almost-surely, but have infinite expected termination time,
RepSMs can serve as witnesses for infinite expected termi-
nation time.

Finally, we show the effectiveness of RepSMs beyond the

termination problem. For reactive systems that are non-

terminating a very basic property is persistence, which
requires that the execution eventually stays in a desired set
of configurations. We show that a combination of RSMs and

RepSMs can establish persistence properties of probabilistic

programs.

Computational results. We present two computational results.

1. Repulsing supermartingales w.r.t. stochastic invariants. First,
we consider the problem of efficient algorithms for deciding the
existence of RepSMs w.r.t. to stochastic invariants. Since our
goal is to obtain efficient algorithms, we consider the simplest
class of RepSMs, namely, linear repulsing supermartingales
(LRepSMs). We show that given a program with “strict" invari-
ants” (e.g., obtained via abstract interpretation) and a stochastic
invariant, the existence of a LRepSM w.r.t. the stochastic in-
variant can be decided in polynomial time (via reduction to
LP) provided that the stochastic invariant uses only polyhedral
constraints (i.e. conjunctions of inequalities).

. Synthesis. Second, we consider the problem of synthesis of a
stochastic invariant which supports some RSM and at the same
time admits a RepSM. We show that the synthesis problem can
be achieved via reduction to the existential first-order theory
of reals. This result generalizes existing results from the non-
probabilistic setting, and even in the non-probabilistic setting
the best-known computational methods require the existential
theory of reals.

Experimental results. We present a basic implementation of our
approach, and present experimental results on academic examples.
Our main contributions are conceptual and algorithmic, and the
experiments serve as a validation of the new concepts.

Due to space constraints, some technical details are omitted. They
can be found in the full version of this paper [20].

147

2. Preliminaries
2.1 Basic Notions, Linear Predicates, Valuations

For a set A we denote by |A| the cardinality of A. We denote
by N, Ny, Z, and R the sets of all positive integers, non-negative
integers, integers, and real numbers, respectively. We assume basic
knowledge of matrix calculus. We use boldface notation for vectors,
e.g. X, y, etc., and we denote an ¢-th component of a vector x
by x[i]. For the purpose of matrix calculations we assume that
(non-transposed) vectors are row vectors. If v, v’ are n and m
dimensional vectors, respectively, then (v,v’) is an (n + m)-
dimensional vector obtained by “concatenation” of v and v’. We
identify 1-dimensional vectors with numbers. For an n-dimensional
vector x, index 1 < ¢ < n, and number a we denote by x(i < a)
a vector y such that y[i] = a and y[j] = x[j] forall 1 < j < m,
j # 1. For comparison of vectors (e.g. as in x < y), we consider
componentwise comparison. For comparing functions f, g with the
same domains, we write f < g if f(x) < g(x) for all z in the
domain.

Variables and valuations. Throughout the paper we fix a countable
set of variables V. We consider some arbitrary but fixed linear order
on the set of all variables. Hence, given some set of variables V'
we can enumerate its members in ascending order (w.r.t. the fixed
ordering) and write V = {z1,z2,z3,... }.

Affine expressions. An affine expression over the set of variables
{x1,...,zn} is an expression of the form d + > " | a;xi, where
d,ai,...,a, are real-valued constants. Each affine expression
E over {z1,...,zn} determines a function which for each m-
dimensional vector x, where m > n, returns a number resulting
from substituting each x; in F by x[¢]. Slightly abusing our notation,
we denote this function also by E and the value of this function on
argument x by E(x). A function of the form E(x) for some affine
expression F is called affine.

Linear constraint, assertion, predicates. We use the following
nomenclature:

e Linear Constraint. A linear constraint is a formula of the form
1 or =), where 1) is a non-strict inequality between affine
expressions.

e Linear Assertion. A linear assertion is a finite conjunction of
linear constraints.

e Propositionally Linear Predicate. A propositionally linear pred-
icate (PLP) is a finite disjunction of linear assertions.

Arity and satisfaction of PLP. For a PLP ¢ we denote by V() the
set of all variables that appear in ¢. As noted above, we stipulate
that V(@) = {x1,..., Tn(p) } for some n(yp) € N. A vector x of
dimension m > n(¢p) satisfies ¢, we write x |= ¢, if the arithmetic
formula obtained by substituting each occurrence of a variable x; in
¢ by x[i] is valid. We denote] = {x € R™ | m > n(p) Ax =
¢} and []° = [¢] NR™.

2.2 Syntax of Affine Probabilistic Programs (APps)

The Syntax. We consider the standard syntax for affine probabilistic
programs, which encompasses basic programming mechanisms
such as assignment statement (indicated by “:=’), while-loop, if-
branch. We also consider basic probabilistic mechanisms such as
probabilistic branch (indicated by ‘prob’) and random sampling
(e.g. x := sample(Uniform[—2, 1]) assigns to 2 a random number
uniformly sampled from interval [—2, 1]). We also allow constructs
for (demonic) non-determinism, in particular non-deterministic

branching indicated by ‘if x then...” construct and non-deterministic
assignment. Variables (or identifiers) of a probabilistic program
are of real type, i.e., values of the variables are real numbers. We
allow only affine expressions in test statements and in the right-
hand sides of assignments. We also assume that assume that each
APP P is preceded by an initialization preamble in which each
variable appearing in P is assigned some concrete number. Due to
space restrictions, details (such as grammar) are relegated to the
Appendix. For an example see Figure 2. We refer to this class of
affine probabilistic programs as APPs.

2.3 Semantics of Affine Probabilistic Programs

We now formally define the semantics of APP’s. In order to do this,
we first recall some fundamental concepts from probability theory.

Basics of Probability Theory. The crucial notion is the one of a
probability space. A probability space is a triple (2, F, P), where
is a non-empty set (so called sample space), F is a sigma-algebra
over), i.e. a collection of subsets of € that contains the empty set
(), and that is closed under complementation and countable unions,
and P is a probability measure on F, i.e., a function P: F — [0, 1]
such that

e P(0) =0,
e forall A € Fitholds P(2\ A) =1—P(A), and
e for all pairwise disjoint countable set sequences Ay, Az, - €

F (e, AiNAj = 0foralli # j) wehave Y~ P(A;) =
P(U;Z, Ai).

Random variables and filtrations. A random variable in a probability
space (€2, F,P) is an F-measurable function R: 2 — R U {00},
i.e., a function such that for every a € R U {0} the set {w € |
R(w) < a} belongs to F. We denote by E[R] the expected value
of a random variable X (see [8, Chapter 5] for a formal definition).
A random vector in (2, F,P) is a vector whose every component
is a random variable in this probability space. A stochastic process
in a probability space (2, F,P) is an infinite sequence of random
vectors in this space. We will also use random variables of the form
R: Q — S for some finite set S, which is easily translated to the
variables above. A filtration of a sigma-algebra F is a sequence
{Fi}$2y of o-algebras such that Fo C F; C --- C F, C--- C
F.

Distributions. We assume the standard definition of a probability
distribution specified by a cumulative distribution function [8]. We
denote by D be a set of probability distributions on real numbers,
both discrete and continuous.

Probabilistic Control Flow Graphs. The semantics can be defined
as the semantics of an uncountable state-space Markov decision
process (MDP) (uncountable due to real-valued variables). We take
an operational approach to define the semantics, and associate to
each program a certain stochastic process [15, 34, 49]. To define
this process, we first define so called probabilistic control flow
graphs [18].

Definition 1. A probabilistic control flow graph (pCFG) is a tuple
C = (L, V, Linity Xinit, —, Pr, G), where

e [is a finite set of locations partitioned into three pairwise dis-
Jjoint subsets L, Lp, and Lp of non-deterministic, probabilistic,
and deterministic locations;

o V = {x1,...,xv|} is a finite set of program variables (note
that VCV);

® Uinit is an initial location and Xini is an initial assignment
vector;

148

® — is a transition relation, whose members are tuples of the
form (£,4,u, L"), where £ and {' are source and target program
locations, respectively, 1 < i < |V| is a target variable index,
and u is an update element, which can be one of the following
mathematical objects: (a) an affine function w: RV 5 R; (b)a
distribution d € D; or (¢) a set R C R.

e Pr = {Pry}icr, is a collection of probability distributions,
where each Pry is a discrete probability distribution on the set
of all transitions outgoing from .

e (G is a function assigning a propositionally linear predicate (a
guard) over V' to each transition outgoing from a deterministic
location.

We assume that each location has at least one outgoing transition.
Also, for every deterministic location £ we assume the following: if
Ti,..., Tk are all transitions outgoing from ¢, then G(T1) V - -- V
G(1k) = true and G(1:) NG(75) = falseforeachl <i < j <k.
Moreover, for each distribution d appearing in the pCFG we assume
the following features are known: expected value E[d] of d and a
single-variable PLP 4 such that the support of d (i.e. the smallest
closed set of real numbers whose complement has probability zero
under d)' satisfies supp(d) C [pa]. Finally, we assume that for
each transition (€, j,u,l") such that u is a set the location £ is
deterministic. This is just a technical assumption yielding no loss of
generality, and it somewhat simplifies notation.

Configurations. A configuration of a pCFG C is a tuple (¢,x),
where ¢ is a location of C and x is an |V|-dimensional vec-
tor. We say that a transition 7 is enabled in a configura-
tion (¢,x) if £ is the source location of 7 and in addition,
x | G(7) provided that ¢ is deterministic. A configuration
(¢,x) is non-deterministic/probabilistic/deterministic if ¢ is non-
deterministic/probabilistic/deterministic, respectively.

Executions and reachable configurations. A finite path (or ex-
ecution fragment) in C is a finite sequence of configurations
(€0,%0) - - - (€, x) such that for each 0 < ¢ < k there is a transi-
tion (45, 7, u, £;+1) enabled in (¢;,x;) such that X;41 = x;(j < a)
where a satisfies one of the following:

e wisafunction f: RI¥! - Rand a = f(x;);
e w is an integrable? distribution d and a € supp(d); or
e yisasetand a € u.

A run (or execution) in C is an infinite sequence of configurations
whose every finite prefix is a finite path. A configuration (¢, x) is
reachable from the initial configuration ({snit, Xinit) if there is a
finite path starting in (€, Xinit) that ends in (¢, x).

Schedulers. Due to the presence of non-determinism and proba-
bilistic choices, a pCFG C may represent a multitude of possible
behaviours. The probabilistic behaviour of C can be captured by
constructing a suitable probability measure over the set of all its
runs. Before this can be done, non-determinism in C needs to be
resolved. This is done using the standard notion of a scheduler.

Definition 2 (Schedulers). A scheduler in an pCFG C is a tuple
o = (0,04), where

® gy (here ’t’ stands for ’transition’) is a function assigning to
every finite path that ends in a non-deterministic configuration

n particular, a support of a discrete probability distribution d is simply the
at most countable set of all points on a real line that have positive probability
under d.

2 A distribution on some numerical domain is integrable if its expected value
exists and is finite. In particular, each Dirac distribution is integrable.

(¢,x) a probability distribution on transitions outgoing from {;
and

® g, (here ’a’ stands for ’assignment’) is a function which takes as
an argument a finite path ending in a deterministic configuration
in which some transition (£, j, u, ") with u being a set is enabled,
and for such a path it returns a probability distribution on u.

Stochastic process. A pCFG C together with a scheduler o can
be seen as a stochastic process which produces a random run
(£0,%0)(¢1,%1)(¢2,x2) - - -. The evolution of this process can be
informally described as follows: we start in the initial configura-
tion, i.e. (€o,%0) = (Linit, Xinit). Now assume that ¢ steps have
elapsed, i.e. a finite path (4o, %0)(¢1,%1) - (s, x;) has already
been produced. Then

e A transition 7 = (¢, 7,u,£’) enabled in (¢;,x;) is chosen as
follows:

» If ¢; is non-deterministic then 7 is chosen randomly accord-
ing to the distribution specified by scheduler o, i.e. according
to the distribution o ((4o, x0) (€1, %1) -+ - (£i, X3)).

= If ¢; is probabilistic, then 7 is chosen randomly according to
the distribution Pry,.

= If ¢; is deterministic, then by the definition of a pCFG there
is exactly one enabled transition outgoing from ¢;, and this
transition is chosen as 7.

e Once T is chosen as above, we put £;11 = £'. Next, we put
Xi+1 = X;(j ¢ a), where a chosen as follows:

* If u is a function u: RV — R, then a = f(x;).

= If w is a distribution d, then a is sampled from d.

" If u is a set, then a is sampled from a distribution
Ta((Co, X0)(E1,x1) - - - (€5, %7)).

The above intuitive explanation can be formalized by showing that
each pCFG C together with a scheduler o uniquely determines a
certain probabilistic space (2, R, P”) in which 2 is a set of all runs
in C, and a stochastic process C° = {C7 };2, in this space such
that for each ¢ € Q we have that C{ (p) is the i-th configuration on
run g (i.e., CY is a random vector (¢7,x7) with £ taking values
in L and x{ being a random vector of dimension |V| consisting of
real-valued random variables). The sigma-algebra R is the smallest
(w.r.t. inclusion) sigma algebra under which all the functions C7,
for all # > 0 and all schedulers o, are R-measurable (a function
f returning vectors is R-measurable if for all real-valued vectors
y of appropriate dimension the set {w € Q | f(w) < y} belongs
to R). The probability measure P is such that for each 4, the
distribution of C{ reflects the aforementioned way in which runs
are randomly generated. The formal construction of R and P? is
standard [8] and somewhat technical, hence we omit it. We denote
by E? the expectation operator in probability space (2, R,P?).
The translation from probabilistic programs to the corresponding
PCFG is standard [19], and the details are presented in [20]. We
point out that the construction produces pCFGs with a property
that only transitions outgoing from a deterministic state can update
program variables. All other transitions are assumed to be of the
form (4,1, idq,£") for some locations £, ¢', where id1(x) = x[1]
for all x. We use this to simplify notation. An illustration of a pCFG
is given in Figure 2.

2.4 Almost-Sure and Probabilistic Termination

We consider computational problems related to the basic liveness
properties of APPs, namely fermination and its generalization,
reachability.

Termination, reachability, and termination time. In the following,
consider an APP P and its associated pCFG Cp. We say that a

149

x:= 10

while z>1 do
if prob(0.75) then z:=z—1else z:=x+1
fi

od

%} <1

Figure 2. An ApP modelling an asymmetric 1-D random walk and
the associated pCFG. Probabilistic locations are depicted by circles,
with probabilities given on outgoing transitions. Transitions are
labelled by their effects. Location £ is initial and #3 is terminal.

run ¢ of Cp reaches a set of configurations C' if it contains a
configuration from C'. A run ferminates if it reaches a configuration
whose first component (i.e. a location of Cp) is the location £%*
corresponding to the value of the program counter after executing
P. To each set of configurations C' we can assign a random variable
T such that for each run g the value T () represents the first
point in time when the current configuration on g is in C. If a
run o does not reach a set C, then T (p) = oc. We call T¢
the reachability time of C. In particular, if C' is the set of all
configurations (¢, x) such that £ = £%" (the terminal location of
Cp), then T is called a termination time, as it returns the number
of steps after which p terminates. Since termination time is an
important concept on its own, we use a special notation Term for it.
Since a probabilistic program may exhibit more than one run, we
are interested in probabilities of runs that terminate or reach some
set of configurations. This gives rise to the following fundamental
computational problems regarding termination:

1. Almost-sure termination: A probabilistic program P is almost-
surely (a.s.) terminating if under each scheduler o it holds that
P?({o | oterminates}) = 1, or equivalently, if for each o it
holds P?(Term < oo) = 1. In almost-sure termination ques-
tion for P we aim to prove that P is almost-surely terminating.

. Probabilistic termination: In probabilistic termination question
for P we aim to compute a lower bound on the probability of
termination, i.e. a bound b € [0, 1] such that for each sched-
uler o it holds P?({p | o terminates}) > b (or equivalently
P?(Term < o0) > b).

We also define corresponding questions for the more general reacha-
bility concept.

1. Almost-sure reachability: For a set C' of configurations of a
probabilistic program P, prove (if possible) that under each
scheduler o it holds that P? (T€ < oo) = 1.

2. Probabilistic reachability: For a set C' of configurations of a
probabilistic program P, compute a bound b € [0, 1] such that
for each scheduler o it holds P° (7€ < oo) > b.

Since termination is a special case of reachability, each solution
to the almost-sure or probabilistic reachability questions provides
solution for the corresponding termination questions.

3. Invariants and Ranking Supermartingales

In this section we recall known methods and constructs for solv-
ing the qualitative termination and reachability questions for APPs,
namely linear invariants and ranking supermartingales. We also
demonstrate that these methods are not sufficient to address the

quantitative variants of these questions (i.e., probabilistic termi-
nation). In order to discuss the necessary concepts, we recall the
basics of martingales, which is relevant for both this and subsequent
sections.

3.1 Pure Invariants

Invariants are a vital element of many program analysis techniques.
Intuitively, invariants are maps assigning to each program location
¢ of some pCFG a predicate which is guaranteed to hold whenever
¢ is entered. To avoid confusion with stochastic invariants, that we
introduce later, we call these standard invariants pure invariants.

Definition 3 (Linear Predicate Map (LPM) and Pure Invariant). We
define the following:

1. A linear predicate map (LPM) for an APP P is a function I
assigning to each location { of the pCFG Cp a propositionally
linear predicate 1(£) over the set of program variables of P.

2. A pure linear invariant (or just a pure invariant) for an APP P is
a linear predicate map I for P with the following property: for
each location £ of Cp and each finite path (€0, %X0), -+ , (€n,Xn)
such that (€o,%0) = (Linit, Xinit) and £y, = £ it holds x,, =
1(0).

3.2 Supermartingales

(Super)martingales, are a standard tool of probability theory apt for
analyzing probabilistic objects arising in computer science, from
automata-based models [14] to general probabilistic programs [6,
15, 18, 19, 34].

Let us first recall basic definitions and results related to supermartin-
gales, which we need in our analysis.

Conditional Expectation. Let (2, F,P) be a probability space,
X: Q — R an F-measurable function, and 7' C F sub-sigma-
algebra of F. The conditional expectation of X given F' is an F'-
measurable random variable denoted by E[X | F’] which satisfies,
for each set A € F', the following:

E[X -14] = E[E[X|F] - 14], (1)

where 14: Q — {0, 1} is an indicator function of A, i.e. function
returning 1 for each w € A and 0 for each w € Q \ A. Note that
the left hand-side of (1) intuitively represents the expected value of
X (w) with domain restricted to A.

Recall that in context of probabilistic programs we work with
probability spaces of the form (€2, R, P?), where 2 is a set of runs
in some C and F is (the smallest) sigma-algebra such that all the
functions C{, where i € Ny and o is a scheduler, are R-measurable.
In such a setting we can also consider sub-sigma-algebras R;,
i € Np, of R, where R; is the smallest sub-sigma-algebra of R such
that all the functions C7, 0 < j < i, are R;-measurable. Intuitively,
each set A belonging to such an R; consists of runs whose first ¢
steps satisfy some property, and the probability space (2, R;, P?)
allows us to reason about probabilities of certain events happening
in the first ¢ steps of program execution. Then, for each A € R,
the value E[E[X|R;] - 14] represents the expected value of X (o)
for the randomly generated run g provided that we restrict to runs
whose prefix of length ¢ satisfies the property given by A. Note that
the sequence Ro, R1,R2, ... forms a filtration of R, which we
call a canonical filtration.

Definition 4 (Supermartingale). Let (2, F,P) be a probability
space and {F; }q a filtration of F. A sequence of random vari-
ables {X;}72 is a supermartingale w.r.t. filtration {F;}72, if it
satisfies these conditions:

150

1. The process {X; }{< is adapted to {F;}2,, i.e. for all i € Ng
it holds that X; is F;-measurable.

2. Foralli € Ny it holds E[| X;|] < oc.

3. Forall i € Ny it holds

E[Xi41]F] < Xi.)

A supermartingale { X;}{2 has c-bounded differences, where
c>0,if | Xix1 — Xi| < cforalli € Ny

Intuitively, a supermartingale is a stochastic process whose average
value is guaranteed not to rise as time evolves, even if some
information on the past evolution of the process is revealed. We often
need to work with supermartingales whose value is guaranteed to
decrease on average, until a certain condition is satisfied. The point
in time in which such a condition is satisfied is called a stopping
time.

Definition 5 (Stopping time). Let (2, F,P) be a probability space
and {F;}2o a filtration. A random variable T: Q — Ng is
called a stopping time w.r.t. {F;}i2q if for all j € Ng the set
{w e Q| T(w) < j} belongs to F;.

In particular, for each set of configurations C' the reachability time
T of C is a stopping time w.r.t. the canonical filtration, since at
each time j we can decide whether 7C > j or not by looking at the
prefix of a run of length j. Finally, we recall the fundamental notion
of a ranking supermartingale.

Definition 6 (Ranking supermartingale). Let (2, F,P) be a proba-
bility space, { Fi}i2q a filtration of F, T a stopping time w.r.t. that
filtration, and € > 0. A supermartingale { X; }72¢ (w.rt. {F; }52¢) is
e-decreasing until T' if it satisfies the following additional condition:
forall i € Ny it holds

E[Xit1]|F] < Xi —e- 17>, 3)
Further, { X;}i2 is an e-ranking supermartingale (e-RSM) for T
if it is e-decreasing until T' and for each w €), j € Ny it holds
T(w)>j7= X;w)>0.

Intuitively, if T is the reachability time 7°C of some set C, then
the previous definition requires that an e-ranking supermartingale
must decrease by at least € on average up to the point when C' is
reached for a first time. After that, it must not increase (on average).
The above definition is a bit more general than the standard one in
the literature as we also consider reachability as opposed to only
termination.

Martingales in Program Analysis. In the context of APP analysis,
we consider a special type of supermartingales given as functions of
the current values of program variables. In this paper we focus on
the case when these functions are linear.

Definition 7 (Linear Expression Map). A linear expression map
(LEM) for an APP P is a function n assigning to each program lo-
cation £ of Cp an affine expression 1(£) over the program variables
of P.

Each LEM 7 and location £ determines an affine function n(¢) which
takes as an argument an n-dimensional vector, where n is the number
of distinct variables in P. We use 7(¢, x) as a shorthand notation
for (¢)(x). Martingales for APP analysis are defined via a standard
notion of pre-expectation [15]. Intuitively, a pre-expectation of 7 is
a function which for each configuration (¢, x) returns the maximal
expected value of 7 after one step is made from this configuration,
where the maximum is taken over all possible non-deterministic
choices.

Definition 8 (Pre-Expectation). Let P be an APP such that Cp =
(L, V, linit, Xinit, —, Pr,G) and let n a linear expression map

for P. The pre-expectation of is a function pre, : L x RV 5 R
defined as follows:

e if ¢ is a probabilistic location, then

S Pre((1idi,) - n(t,x);

(e,1,idy 0")€

pre, (£,x) =

e if ¢ is a non-deterministic location, then

max

0, x);
(€,1,idy,£")Ers (€, x);

pre, (£, x) =
e if { is a deterministic location, then for each x the value
pre, (£,x) is determined as follows: there is exactly one transi-
tion T = (€, §,u, ") such that x |= G(7). We distinguish three
cases:
“Ifu: RV = Ris a function, then

pre, (£,x) = N, x(j < u(x))).
v [fw is a distribution d, then
pre, (£, x) = (', x(j + E[d])),

where E[d] is the expected value of the distribution d.
v [fu is a set, then

pre, (4,x) i= max (¢, x(j + a)).

Definition 9. (Linear Ranking Supermartingale) Let P be an ApP
such that Cp = (L, V, Linit, Xinit, —, Pr,G), let I be a linear
predicate map and let C' C L X R be some set of configurations.
A linear e-ranking supermartingale (e-LRSM) for C' supported by 1
is a linear expression map m for P such that for all configurations
(¢,x) of Cp with (£,x) ¢ C and x = I({) the following two
conditions hold:

*n(f,x) >0
* pre, (£,x) <n(f,x) — ¢

A linear e-ranking supermartingale supported by I has c-bounded
differences if for each (£,x) such that x = I1({) and each con-
figuration (¢, x') such that (£,x)(¢',x") is a path in Cp it holds
|77(£7 X) - 7)(5/>X/)| <c

The relationship between e-LRSM in APPs, (pure) invariants, and
almost-sure termination is summarized in the following theorem.

Theorem 1 ([19, Theorem 1]). Let P be an APP, o a scheduler,
and (2, R, P7) the corresponding probability space. Further, let C
be the set of terminating configurations of Cp (i.e., the termination
location is reached), such that there exist an € > 0 and an e-linear
ranking supermartingale n supported by a pure invariant 1. Then

1. P?(Term < oo) = 1, i.e. termination is ensured almost-surely.
2. E?[Term] < n(€nit, Xinit) /€

The previous result shows that if there exists an e-LRSM supported
by a pure invariant I, for ¢ > 0, then under each scheduler
termination is ensured almost-surely. We now demonstrate that
pure invariants, though effective for almost-sure termination, are
ineffective to answer probabilistic termination questions.

Example 1. Consider the program in Figure 3. In each iteration
of the outer loop each of the variables is randomly modified by
adding a number drawn from some uniform distribution. Average
increase of x in each iteration is %, while average decrease of y
is — %. It is easy to see that a program does not terminate almost-
surely: there is for instance a tiny but non-zero probability of x being
decremented by at least é in each of the first 240 loop iterations,
after which we are stuck in the infinite inner loop. On the other hand,
the expectations above show that there is a “trend” of y decreasing
and x increasing, and executions that follow this trend eventually

151

z =30,y :=20

while y >0 do
x := z+sample(Uniform[—1, 1])
y := y+sample(Uniform[—1, 1])
while z <0 do skip od

od

[
() Xi=...

B

Figure 3. A program with infinitely many reachable configurations
which terminates with high probability, but not almost surely,
together with a sketch of its pCFG.

%]
yi=...
z <0

decrement y below 0 without entering the inner loop. Hence, the
probabilistic intuition tells us that the program terminates with a
high probability. However, the techniques of this section cannot
prove this high-probability termination, since existence of an e-
LRSM (with € > 0) supported by a pure invariant already implies
a.s. termination, and so no such e-LRSM can exist for the program.

In the next section we generalize the notion of pure invariants to
stochastic invariants for probabilistic termination to resolve issues
like Example 1.

4. Stochastic Invariants and Probabilistic
Termination

In this section we introduce stochastic invariants. Intuitively,
stochastic invariants are linear predicate maps extended with an
upper bound on the probability of their violation.

Definition 10 (Stochastic Linear Predicate Maps and Invariants).
Stochastic linear predicate maps and stochastic invariants are
defined as follows:

e A stochastic linear predicate map (SLPM) for an APP P is a
pair (P1,p) where PI is a linear predicate map and p € [0, 1]
is a probability.

e A stochastic linear invariant (or just a stochastic invariant)
for an APP P is an SLPM (PI,p) for P with the following
property: if we denote by Fail(PI) the set of all runs initiated
in (Uinit, Xinit) that reach a configuration of the form (£, x) with
x & PI({), then for all schedulers o it holds P° (Fail(PI)) <
P.

Example 2. Consider the APP consisting of a single statement
x :=sample(Uniform[0, 2]). Denoting £™,£°"" the initial and
terminal location of this program, respectively, the stochastic LPM
(PI, %), where PI is such that PI(¢**") = z > 1 and PI = true
is a stochastic invariant for the program.

Example 3. Consider the example in Figure 3 and a stochastic LPM
(PI,p) for the program such that PI({2) = x > 1, PI({) = true
for all the other locations, and p = 1075, Then it is possible to
prove that (P, p) is a stochastic invariant for the program.

Before presenting our result related to stochastic invariants, we first
present a technical result. Intuitively, the result states that if we have
an e-LRSM for some set of configurations C' supported by some
linear predicate map I, then we can use it to obtain a supermartingale
which decreases by at least € (on average) in each step until we reach
either a configuration in C' or a configuration that does not satisfy /.
In particular, if] is a pure invariant, the resulting supermartingale

decreases until we reach C'. This is a result about pure invariants,
which we will extend to stochastic invariants.

Lemma 1. Let P be an APP and n) a linear e-ranking supermartin-
gale for some set C' of configurations of Cp supported by I. Let =1
be the set of all configurations (¢,x) such that x [~ 1({). Finally,
let {X;}52 be a stochastic process defined by

_ Jn(C7(0)
Xi(o) = {Xi—l(g)

Then under each scheduler o the stochastic process {X;}i2, is
an e-ranking supermartingale for TV~ Moreover, if n has c-
bounded differences, then so has {X;};<o. In particular, if I is a
pure invariant of P, then {X;}2 is an e-ranking supermartingale
for TC.

l:fTCU—J > i
otherwise.

We now establish a crucial connection between stochastic invariants,
linear ranking supermartingales, and quantitative reachability (and
thus quantitative termination).

Theorem 2. Let {(PI1,p1),...,(PIn,pn)} be a set of stochastic
linear invariants for APP P, and let I be a linear predicate map for
P such that for each location £ of Cp the formula 1(£) is entailed
by the formula PI,(£) A --- A PI,(£). If there exists a linear
e-ranking supermartingale n for a set of configurations C' such
that n is supported by I, then under each scheduler o it holds

P7(T9 < 00) > 1 — ;.l:lpj.

Proof. From Lemma 1 it follows that there is an e-ranking super-
martingale { X;}52 for T°“ ™7, We can prove a generalization of
Theorem 1 for other stopping times apart from 7erm, which gives
us that under each scheduler o the set of configurations C' U —I is
reached with probability 1, where —1 is the set of all (¢, x) such that
x £ I(¢). But since each (PI;, p;) is a stochastic invariant, the
probability that —P1I; is reached is at most p; under each scheduler.
Using union bound the probability of reaching U?:1 —-PI; is at

most Y °_, p;, from which the result follows. O

Example 4. Let (PI,107°) be the stochastic invariant from Ex-
ample 3 (concerning Figure 3). For the corresponding program we
can easily infer a pure invariant I' such that I'(¢1) = y > 0,
I'(¢2) I'(bh) = y > —1land I'(ls) = I'(¢s) = true
(actually, standard methods would likely infer stronger pure in-
variants, but I' is sufficient for the sake of example). Consider
a LEM n) defined as follows n(fy) = 8y + 9, n(¢1) = 8y + &,
n(l2) = 8y + 10, n(¢3) = 8y + 11 and n(¢s) = —1. Then n
is a 1-LRSM for the set of terminal configurations supported by
LPM I = I' A PI (where the conjunction is locationwise). Now
consider a set {(I',0), (PI,107°)}. From Example 3 and from the
fact that I' is a pure invariant it follows that both members of the
set are stochastic invariants, and clearly I' N\ PI entails I. From
Theorem 2 it follows that the program terminates with probability at
least 0.99999.

Theorem 2 shows a way in which probabilistic reachability and
termination properties of APPs can be proved by use of ranking
supermartingales and stochastic invariants. As highlighted in Exam-
ple 3, the crucial question now is proving the existence of suitable
stochastic invariants for APP. While there are various methods of
obtaining pure linear invariants [23], e.g. those based on abstract
interpretation [26], constraint solving [11] etc., these methods do
not support reasoning about probabilities of a given assertion being
satisfied, and thus they are not sufficient for obtaining stochastic
invariants. In the next section we propose a framework for reasoning
about stochastic invariants using repulsing supermartingales.

152

5. Proving Stochastic Invariance with Repulsing
Supermartingales

Consider that we want to use stochastic invariants to prove that some
APP P terminates with a high probability, by using Theorem 2. We
need to achieve two things:

a. obtain a linear predicate map PI which supports some linear
ranking supermartingale for the termination time Term of P;
and

b. obtain an upper bound p on the probability that P is violated.

The part a. is not in any way related to the probability of p being
satisfied, and hence we can aspire to adapt some of the techniques
for generation of pure invariants. The part b. is substantially trickier,
since it requires quantitative reasoning about the highly complex
stochastic process {CY }i2. To achieve this task, we introduce a
notion of e-repulsing supermartingale.

Intuitive idea of repulsing supermartingales. Intuitively, e-repulsing
supermartingales are again required to decrease by at least € on
average in every step until some stopping time, e.g. until reaching
some set C' of configurations. But now, instead of requiring the
value of the process to be non-negative until C' reached, we require
it to be non-negative upon reaching C'. This is because we typically
work with repulsing supermartingales whose initial value is non-
positive. Then, intuitively an e-repulsing supermartingale is driven
away from non-negative values by at least € per step, which provides
a probabilistic argument for showing that the C' is reached with
small probability.

Definition 11 (Repulsing supermartingale). Let (0, F,P) be a
probability space, {F;}i2q a filtration of F, T a stopping time
w.r.t. that filtration, and € > 0. A supermartingale {X;}$2 (w.rt.
{Fi}i2o) is e-repulsing for T if it is e-decreasing until T and for
eachw € Q,j € Ny it holds T(w) = 7 = X,;(w) > 0.

To apply repulsing supermartingales to concrete programs, we again
define the important special case of linear repulsing supermartin-
gales.

Definition 12 (Linear repulsing supermartingale). Let P be an
APP such that Cp = (L, V, linit, Xinit, —, Pr,G), let I be a linear
predicate map and let C C L X R be some set of configurations.
A linear e-repulsing supermartingale (e-LRepSM) for a set C
supported by I is an LEM n for P such that for all configurations
(¢,x) of Cp such that x |= I(£) the following holds

e if (¢,x) € C, thenn(£,x) >0
* if (¢,x) & C and L is not a terminal location, then pre, (£,x) <
n¢,x) — ¢

An e-LRepSM supported by I has c-bounded differences if for
each pair of locations £, (', each transition T from {,{', and each
pair of configurations (£,x), (¢',x") such that x |= 1(£) A G(T)
and (¢',x") can be produced by performing T in (£,x) it holds
In(6,%) = n(¢',x)| < c.

Example 5 (Illustration of LRepSM). Consider the program shown
in Figure 4, with initial value x := 10. Consider a linear predicate
map PI such that PI(¢y) = x < 500 and PI(¢,) = PI({2) =
true. Consider an LEM 1) that assigns to each pair ({;,x) a value
7 - x + di, where d; is the i-th component of the ordered tuple
(—3499, —3500, —3500). 1t is straightforward to verify that 1 is a
1-LRepSM for =PI supported by a trivial pure invariant assigning
true to each location.

The connection between e-LRepSMs and general e-repulsing su-
permartingales is similar as for their ranking variants (Lemma 1).

x:=10
while >0 do
if prob(0.5) then z:=z+1
else z:=x2—2
fi
od

X:=Xx-2

x>0

X:=x+1

%} z <0 &J

Figure 4. A probabilistic program example, with the accompanying
pCFG.

That is, from e-LRepSMs we can obtain a stochastic process which
is a supermartingale w.r.t. the canonical filtration, which decreases
at least by € on average until the some set C' is reached, and upon
reaching C its value is non-negative.

Lemma 2. Let P be an APP and 1) an e-LRepSM for some set C
of configurations of Cp supported by some linear predicate map I.
Let —I be the set of all configurations (£,x) such that vk = 1(£).
Finally, let { X;}72 be a stochastic process defined by

oy n(Cie) T >
Xi(e) = {Xil(g) otherwise.

Then under each scheduler o the stochastic process {X;};2, is
an e-repulsing supermartingale for T°V™L. Moreover, if 1) has c-
bounded differences, then so has {X;};<o. In particular, if I is a
pure invariant of P, then { X;}2 is an e-repulsing supermartingale
for TC.

We now show how to obtain an upper bound on the probability of
an invariant failure via repulsing supermartingales. Techniques used
within the proof of Theorem 1 (which are similar to the proof of
Lemma 5.5 in [34]) are not applicable, as they crucially rely on
the fact that the supermartingale is non-negative before reaching C.
Instead, we use a powerful tool of Martingale theory called Azuma’s
inequality.

Theorem 3 (Azuma’s inequality [4]). Let (2, F,P) be a probability
space and {X;}2o a supermartingale w.rt. F with c-bounded
differences. Then for each n € No and each X\ > 0 it holds

A2

]P)(Xn — Xo >)\) <e 2ncZ,

Intuitively, Azuma’s inequality provides exponentially decreasing
tail bound on the probability that a supermartingale exhibits a large
deviation from its expected value. In the following lemma (inspired
by martingale use in [12]) the Azuma’s inequality is used to obtain
exponentially decreasing bound on probability that the set C' is
reached in exactly n steps.

Lemma 3. Let C be a set of configurations of an APP P. Denote
by F,, the set of all runs o such that TC(Q) = n. Suppose that there
exist e > 0, ¢ > 0 and a linear e-repulsing supermartingale n for
C supported by some pure invariant I such that n has c-bounded
differences and 1(€init, Xinit) < 0. Then under each scheduler o it
holds

P (F,) < a-4",
2 como
where y = e 2(c+9% o = e(+9% and mo = n(Linit, Xinit)-

Key proof idea. We use 7 to obtain a supermartingale {X;}2%,
with c-bounded differences such that for for each run o € F,

153

it holds X, (0) — Xo(0) > n - € — mo. We then apply the Azuma’s
inequality on {X;}52, to get the desired bound on the probability
of X,,(0) — Xo(0) > n - € — mo and thus also on the probability
of Fy,. O

Proof. Using Lemma 2 we get from 7 a stochastic process { X; }$2,
which is, for each scheduler o, an e-repulsing supermartingale for
the stopping time Tc~with c-bounded differences. Now we define a
stochastic process { X; } 52 by putting

Xilo) = {)fi(@)+i~e if T (0) > i

Xi—1(0)

Since {X;}%2, is e-decreasing until 7C, the process {X;}22, is
a supermartingale. Moreover, it is easy to check that {f(i}fio has
(¢ + €)-bounded differences. Now for each o we have Xo(0) =
N(Linit, Xinit) < 0. Moreover, from the definitions of { X}, and
{X;}22, we get that o € F, implies X,,(0) = Xn(0) +n-€ =
n(C5(0)) + n - € > n - e (since n assigns non-negative value
to configurations in C' and ¢ € F) is within C in step n), and
adding — X (p) to both sides yields p € F,, = X, (0) — Xo(0) >
n - € — mo; recall mo = 7(Linit, Xinit) = Xo(0). Hence, for each
scheduler o we have

otherwise.

P (F,) §IP’G()~(n—)~(O >n-€—mo).)
Applying the Azuma’s inequality for { X;}7_, on (4) we get
P (F,) < P(X, — Xo > n-€—mp)
<o TET — g,
where o = ¢ ro? . O

Using the above lemma we can bound the probability of reaching C'
by a geometric series which can be easily evaluated.

Theorem 4. Let C be a set of configurations of an APP P. Suppose
that there exist € > 0, ¢ > 0 and a linear e-repulsing supermartin-
gale n for C supported by some pure invariant I such that n has
c-bounded differences and 1(Linit, Xinit) < 0. Then under each
scheduler o it holds

[(€initsxinat) |/ €]

2 : ®)

P?(TC < o0) < o -
1—v
€2 e-mg
where v = ¢ 2(c+t92 and a = e(+92 and mo = N (Cinit, Xinit)
is the initial value.

Proof. For each n let F,, be as in Lemma 3. Denote by A the number
[1n(€init, Xinit)|/c]. Observe that F;, = @ for each n < A. Indeed,
we need at least A steps to reach C' from the initial configuration,
because 7(Linit, Xinit) < 0 (by the definition of a linear ranking
supermartingale), the value of 7 can increase by at most ¢ in each
step, and reaching C' entails that the value of 7 becomes non-
negative. Hence, for each scheduler o we get
(oo} oo oo
P19 < 00)=) P7(Fu)=) P(F)<Y a-y"
n=0 n=A n=A

,YA

g >
as required (the inequality at the end of the first line comes from
Lemma 3). O

Example 6 (Illustration of Theorem 4). Looking back at Example 5,
the absolute value of the change in m at each step is bounded from
above by 12. Since the initial value of n is —3429, we use Azuma’s
inequality and Theorem 4 to get the probability bound 5.06 - 107°
on the violation of PI.

We now present the corollary that establishes the effectiveness of
LRepSM for stochastic invariants.

Corollary 1. Let PI be a linear predicate map. Denote by =PI
the set of all configurations (£,x) such that x £~ PI({). Assume
that there exist € > 0, ¢ > 0, and an e-LRepSM n for =PI with c-
bounded differences such that n(€init, Xinit) < 0. Then (P1,p) with
=0 A1 Einit >init) 1/ €]
e

a stochastic invariant.

p=elta? . (v and mq are as in Theorem 4) is

We note that the bound obtained from (5) is sound, but not necessar-
ily tight. The magnitude of this bound crucially depends on 7 and
on initial valuation of variables. In Section 8 we discuss how to find
a LRepSM 1) providing good bounds in practice (as also illustrated
in Example 6).

6. Effectiveness of Repulsing Supermartingales

In this section we discuss the effectiveness of repulsing supermartin-
gales in several problems in analysis of probabilistic programs.

6.1 Probabilistic Termination

In Section 5 we establish the effectiveness of repulsing supermartin-
gales for stochastic invariants. Theorem 2 shows that stochastic
invariants along with ranking supermartingales can obtain bounds
for the probabilistic termination problem. Hence the combination of
repulsing and ranking supermartingales can answer the probabilistic
termination problem.

6.2 Refuting Almost-Sure and Finite Termination

While a significant effort in analysis of non-probabilistic programs
is devoted to proving termination, for bug-hunting purposes the
analysis is often complemented by methods that aim to prove that
a given program does not terminate [3, 21, 39, 53, 69]. Similarly
for probabilistic programs we can ask for refutation of almost-sure
termination of a given program. We show how RepSMs can be used
to this end.

If we have an e-LRepSM 7 for the set of terminal configurations
and the bound obtained from Theorem 4 is smaller than 1, then
7 in particular proves that the program does not terminate almost
surely (from the given initial configuration). However repulsing
supermartingales can refute a.s. termination even for programs
where the bound obtained by using Theorem 4 is > 1. To show
this we use another powerful tool of martingale theory: the optional
stopping theorem.

Theorem 5 (Optional Stopping, [70, Theorem 10.10]). Let
(2, F,P) be a probability space, { X; }{2, a supermartingale w.r..
some filtration {F; }2, and T a stopping time w.r.t the same fil-
tration. Assume that E[T'] < oo and {X;}{2 has c-bounded differ-
ences for some c € R. Then

E[Xo] > E[Xr].

The optional stopping theorem guarantees that under given assump-
tions, the expected value of the supermartingale at the time of stop-
ping (which can be, e.g. the time of program termination) is bounded

154

from above by the expected initial value of the supermartingale. We
can use the theorem to obtain the following.

Theorem 6. Let C be a set of configurations of an APP P. Suppose
that there exist € > 0, ¢ > 0 and a linear e-repulsing supermartin-
gale n for C supported by some pure invariant I such that n has
c-bounded differences. If n({init, Xinit) < 0, then under each sched-
uler o it holds

P7 (T < o0) < 1.

Key proof idea. Theorem 4 shows that the existence of 7 implies the
following: if a program execution reaches with positive probability
a configuration (¢, x) such that n(¢, x) is below some sufficiently
small negative number A (whose magnitude depends only on 7
and c), then the program does not terminate almost-surely. It thus
suffices to prove that the program reaches such a configuration with
positive probability under each scheduler o. We define a stopping
time 7" that returns a first point in time in which we reach either C
or a configuration (¢, x) with (¢, x) < 2A and apply the optional
stopping theorem on the e-RepSM obtained from . It can be proved
that expectation of 7" is finite, so optional stopping theorem applies
to 7. Now to get a contradiction we assume that a configuration
with n-value smaller than 2A is reached with probability 0. Then
at time 7" the current configuration is almost-surely in C' so the
expected value of the supermartingale at time 7" is non-negative. But
the optional stopping theorem forces this expectation to be bounded
from above by the initial value of the RepSM, i.e. by 7(init, Xinst),
which is negative, a contradiction. O

Another important concept in the analysis of probabilistic programs
is finite termination [19], sometimes also called positive termina-
tion [34]. A program is said to terminate finitely if its expected
termination time is finite. Of course, when a program terminates
with probability less than 1 it is not finitely terminating. However,
there are programs that terminate almost-surely but the expected
termination time is infinite. Indeed, consider a program modelling a
symmetric 1-dimensional random walk with a boundary:

while z > 0 do if prob(0.5) then z := z+1else z := z—1 fiod

From the theory of random walks it follows that for each positive
initial value of x the program terminates almost-surely but its
expected termination time is infinite. Even for such programs the
positive termination can be refuted, this time by using O-repulsing
supermartingales.

Theorem 7. Let C be a set of configurations of an APP P. Suppose
that there exist € > 0, ¢ > 0 and a linear e-repulsing supermartin-
gale n for C supported by some pure invariant I such that n has
c-bounded differences. If n(Linit, Xinit) < 0, then under each sched-
uler o it holds

E°(T°) = oo. (6)
Proof. Let {X;}i2, be the e-repulsing supermartingale obtained
from 7 using Lemma 2. Assume, for the sake of contradiction, that
there exists a scheduler o such that E° (T') < oo. Since {X;}2,
has c-bounded differences, using the optional stopping theorem
we get E7[Xo] > E?[Xc]. But from the definition of we get
E?[Xo] = n(init, Xinit) < 0 and E7[Xc]| > 0, since 7 attains
non-negative values inside C. Hence, we derived a contradiction
0>0. O

Example 7. For the I-dimensional symmetric RW program pictured
above (counter-example for finite-termination) it is easy to find a
0-LRepSM n for the set of terminal configurations supported by a
pure invariant : say that 1 is equal to —x — 1 in all locations but

the terminal one, where it is equal to 0. The supporting invariant is,
e.g. x > —1 for all locations.

6.3 Proving Almost-Sure Persistence

The applicability of repulsing submartingales extends beyond reach-
ability properties. In some applications of probabilistic programs,
such as modelling of complex reactive systems [17], it is customary
to consider programs that are not terminating but continue to execute
forever, e.g. because they model a system which should continuously
respond to inputs from the environment (e.g. a thermostat [2]). One
of the basic properties of such programs is persistence [17]. A set of
configurations C'is said to be almost-surely persistent if under each
scheduler o it holds with probability 1 that all but finitely many con-
figurations along a run belong to C' (or in other words, that we will
eventually see only configurations from C'). In [17] they presented a
method of proving almost-sure persistence via so called geometric
supermartingales. We present an alternative proof technique based
on combination of ranking and repulsing supermartingales.

Theorem 8. Ler C' be be a set of configurations of some APP P.
Denote by —C the set of all configurations of C' that do not belong
to C. Assume that there exist the following:

1. Ane > 0, ¢ > 0, and an e-LRepSM 1 with c-bounded differences
for the set —~C supported by some pure invariant I.

2. Ane > 0, K < 0, and an e-LRSM for the set D = {({,x) |
nl,x) < Kandx = I1(0)}.

Then the set C' is almost-surely persistent.

Key proof idea. Item 2. ensures that from any reachable configura-
tion we eventually reach the set D with probability 1 (Theorem 1).
Item 1. ensures, that each time we enter D the probability that we
never return back to —C' is positive (Theorem 6). As a matter of fact,
it can be shown that this probability is bounded away from zero by
a number p > 0 which depends only on ¢, K and 7, but not on a
concrete configuration in which we enter D. Hence, the probability
that we enter D and after that reach —C' again at least n times is at
most p". For n going to oo this converges to 0, showing that the
probability of infinitely often seeing a configuration from —C' is
0. O

Example 8. As a simple example, consider the program
while true do x := sample(Uniform(—2,1)) od.

For any n € 7 let C,, be the set of configurations in which the
value of x is at most n. For each such n we have, inside the loop, a
i-repulsing supermartingale x — n for =C,, and we also have a i-
ranking supermartingale x —n+1 for the set { (£, x) | x—n < —1}
(both supported by invariants that are true everywhere). Since both
supermartingales have bounded differences, we get that each set C,
is persistent.

7. Computational Results

In this section we discuss computational aspects of our framework.
Since synthesis of e-ranking supermartingales supported by a linear
predicate map was already addressed in the previous work [15, 19],
we focus on algorithms related to those aspects of probabilistic
reachability which are new, i.e. those related to stochastic invariants
and repulsing supermartingales. Since our techniques are extensions
of already known techniques for ranking supermartingales and
invariant synthesis, we present only a high-level description.

155

The two main algorithmic problems that we consider are the
following:

1. For a given ApP P with a given pure invariant / and a linear
predicate map PI compute a number p such that (PI,p) is a
stochastic invariant.

2. For a given APP P and a set C' of configurations, compute a
linear predicate map PI and a number p such that (PI,p) is a
stochastic invariant supporting some ¢-LRSM for the set C'.

We assume that the set C' in item 2 above is given by some linear
predicate map IC, i.e. it is a set of all (¢, x) such that x = IC({).
This ensures that all the objects we work with are linear, which
allows for a more efficient solution. In particular, the set of all
terminal configurations can be easily given in this way, so point 2
also concerns obtaining stochastic invariants for proving high-
probability termination.

We start with presenting an algorithm for item 1 above, and then
show how an algorithm for item 2 can be obtained as a straightfor-
ward generalization of 1.

We aim to compute the bound p using Corollary 1, i.e. we want to
compute an e-LRepSM for the set P with c-bounded-differences
supported by /. Note that =PI can also be expressed by a linear
predicate map, and this LPM can be computed in polynomial time
provided that PI is polyhedral, i.e. that each PI({) is a linear
assertion (a conjunction of linear inequalities). We call a set of
configurations polyhedral if it can be defined by a polyhedral LPM.

We adapt a well known constrained-based method for generating
linear ranking functions and (non-stochastic) invariants in non-
probabilistic programs [22, 24, 60], which was adapted for syn-
thesizing e-LRSMs in probabilistic programs [15, 19]. We briefly
recall this approach and explain its adaptation. So suppose that
we are given a program P, a polyhedral set C, and an LPM I,
and we want to compute numbers ¢ > 0, ¢ > 0, and, for each
location £ of Cp, coefficients b*, af, . . ., a|[v| such that the LEM

n given by n(¢) = b* + ZLZ‘I af - z; is an e-LRSM for C with
c-bounded differences supported by I. Since LRSMs can be re-
scaled by an arbitrary positive constant, we can assume that € > 1
and ¢ > 1 (it always holds that ¢ > €). We denote by U the set
{b%,at, .. .,afv‘ | £ € L} U{c,¢€}. The algorithm of [19] con-
structs a system of linear inequalities y - Z > d (here Z is a matrix)
that is adjusted to P, C, and I, which means that each term in each
inequality of the system has one of the following forms:

e It is a variable with a name corresponding to some element of
U.

e It is a term of the form y - z, where y is a variable and z is a
coefficient (i.e. a number) appearing in I (i.e. some inequality
of I contains a term of the form z - x; for some 7).

e [t is a term of the form y - z, where y is a variable and z is a
coefficient (i.e. a number) appearing in the LPM describing C'.

Moreover, any solution of the system yields an e-LRSM for C'
with c-bounded differences (by substituting the solution values for
variables in U). If the system is unsolvable, then no such LRSM
exists.

Intuitively, the construction of y - Z > d proceeds as follows:
the algorithm first translates the conditions in Definition 9 into a
conjunction of formulas of the form

Eul...ﬂumVxl...VxW”oéz/), (7)

where u1,...,un, are all the elements of U, ¢ is a linear asser-
tion over variables {x1,..., x|} whose coefficients are num-
bers that appear as coefficients in I or in description of C, and

9 is an arithmetic expression involving numbers and elements
of U U {z1,..., 2|} which is linear if the elements of the set
{c,€e,21,..., 2|y} are taken as variables (in particular, its coef-
ficients are independent of I and C). The algorithm then utilizes
Farkas’s lemma [31] to convert each such formula into an equiva-
lent existentially quantified linear assertion, i.e. a system of linear
inequalities adjusted to P, C', and I.

To obtain the required €, ¢ and LEM 1) it thus suffices to solve the
linear system y - Z > d. The construction of the system can be
done in polynomial time provided that C' is polyhedral. Note that in
particular, the set of terminal configurations is polyhedral.

Now assume that instead of synthesizing an e-LRSM for some set
C we want to synthesize an e-LRepSM for C' = -~ P1. The point is
that - P is again expressed by a linear predicate map and all the
formulas arising from conditions in the definition of an e-LRepSM
again have the form (7). This is easy to see as almost all conditions
in the definition of a LRepSM are the same as for LRSM. The only
difference is in the non-negativity condition, where in LRSMs we
require non-negativity outside C, while in LRepSMs inside C'. But
for all locations ¢ both these constraints are of the form “for all x
satisfying a given linear predicate, b° 4 ZLZ‘I af-x; > 07, and thus
can be transformed into a conjunction of formulae of the form (7).
Hence, we can again reduce computing an e-LRepSM for =P with
c-bounded differences to solving a system of linear constraints, and
the resulting system of linear constraints is again adjusted to P, C,
and /. The method is complete in the sense that an e-LRepSM for C
with c-bounded differences exists if and only if the system of linear
inequalities y - Z > d has a solution. This is proved in the same
way as for LRSMs in [19].

As shown in Section 5, different LRepSMs can produce different
upper bounds on the probability of reaching = PI. Theorem 4 shows
that in order to get good bounds, it is vital that the computed
LRepSM maximizes |1(£init, Xinit)|/c. Since this function is not
linear in ¢ and coefficients of 7, we do not look for optimal 7 and ¢
directly but instead we compute optimal LRepSMs 7 for multiple
heuristically chosen values of ¢ and then pick the one giving the
best result.

The algorithm can be summarized as follows:

1. We fix e = 1 (this is w.l.o.g. as LRepSMs can be rescaled
arbitrarily).

Using the constrained based-approach described above, we
compute the minimal c such that there exists a 1-LRepSM for
—PI with c-bounded differences. We do this by constructing
the system of linear inequalities y - Z > d and use linear
programming to minimize c under the constraints given by the
system. Denote by cmin the optimal c.

. For some fixed number of iterations N we do the following: for

each0 < j < N we:

e Compute a 1-LRepSM 7; for =PI such that n; has (¢min +
j)-bounded differences and minimizes 1; (¢init, Xinit) (i-€.
maximizes |1; ({init, Xinst)|). We do this again by construct-
ing the system y - Z > d (we need to change just the terms
referring to difference bound) and minimizing the objective
function 77; (Linit, Xinit) using LP subject to the constraints
of the system (since (£init, Xinst) is given, the objective func-
tion is linear).

e Apply Theorem 4 on 7, to get a bound p; on reaching —P1I.

4. We put p = ming_, <j<emint+n~ Pj and output (PI,p) as a
stochastic invariant.

2.

In our experiments we used N = 1000.

156

Now we turn to problem 2, i.e. computation of a stochastic invariant
(PI,p) such that PI supports a linear ranking supermartingale for
some set C'. Since PI might have in principle unbounded size, we
first have to fix a template for it, i.e. specify how many conjuncts and
disjuncts can each PI(¢) consist of. This amounts to specifying a
symbolic linear predicate map SI, where coefficients in each linear
inequality of ST are not concrete numbers but abstract symbols.
Note that symbolic LPMs can be also used to describe unknown sets
of configurations.

Now take a look back on the above algorithms for computing e-
LRSM or e-LRepSM for a given set C' supported by a given LPM 1.
Previously, we used LPMs with concrete coefficients to encode both
C and I on input, but we can supplant these with symbolic LPMs,
effectively parametrizing the inputs C and /. Since the original
algorithms produce systems adjusted to P, C' and I, when the
algorithms are run with a symbolic LPM instead of a concrete LPM
on input, they produce a system of quadratic inequalities (as the
coefficients in C' and I are now unknown). It can be easily shown
that there is a one-to-one correspondence between solutions of such
a quadratic system and tuples (1, C, I, €, ¢), where 7 is an e-LRSM
(or e-LRepSM, depending on which of the two algorithms we use)
with c-bounded differences for a set C' supported by an LPM I such
that C' and I can be formed by instantiating the unknown parameters
with concrete numbers.

We now construct two quadratic systems of inequalities: system
S1, produced by the LRSM algorithm on input P, C (here C'is a
given set of configurations, i.e. a concrete set), and SI (which is
a symbolic LPM encoding a template for the stochastic invariant
we seek), and system Sa, produced by the LRepSM algorithm on
input P, =S (a set encoded by a symbolic LPM; a locationwise
negation of the aforementioned template), and True, where True
is a (concrete) trivial invariant true in every location. Note that in
the first system we treat ST as a symbolic representation of an LPM,
while in the second one we treat it as a symbolic representation
of a set of configurations to avoid. We then identify the variables
in S; and S referring to the same unknown coefficients in SI.
Simultaneously solving both systems yields triples (1, C, PI, ¢, c)
and (n', =PI, True, €', c"), where 7 is an e-LRSM with c-bounded
differences for C supported by PI, and i’ is an ¢’-LRepSM with
c’-bounded references for =PI that can be used to bound the
probability of violating P1. We note that checking the solvability
of a quadratic systems of inequalities can be done in PSPACE by
reduction to existential first-order theory of reals. Also note that
instead of True we can use any other pure invariant.

Theorem 9. Existence of a LRepSM for a given set C' can be
decided in polynomial time provided that C' is polyhedral. Existence
of an LPM P1I such that PI supports some LRSM for a given
polyhedral set and at the same time =P 1 admits an LRepSM can be
reduced to existential first-order theory of reals and thus decided in
PSPACE.

8. Experimental Results

In this section we present some basic experimental results for our
methods. The experimental results are basic and to verify that
the new concepts we introduce are relevant. We consider three
simple academic examples described below. In the corresponding
pseudocode, we present invariants in square brackets.

1. Example 1: The first example is a one-dimensional random
walk which initially moves with higher probability to the left as
compared to the right. However, if z is incremented above 1000,
the process starts drifting away from zero, so the program does

P1I Violation Probability Bound

Initial Configuration
Example 1 | (i) x := 10, (ii) z := 50, (iii) := 100
Example 2 | (i) z,y := 1000, 10, (ii) , y := 500, 40, (iii) =, y := 400, 50
Example 3

(i) z,y, z := 100, 100, 100, (i) z, y, z := 100, 150, 200, (iii) z, y, z := 300,100,150 | (i) 4.4 - 10~17, (i) 2.9 - 10~9, (iii) 1.3 - 10—~

(i) 5.1-1077, (i) 1.0 - 10~ 4, (iii) 2.5 - 10— %
(i) 2.4-107 (i) 5.5 - 104, (iii) 1.9 - 102

Table 1. Experimental results

while =z >0 do
if £ <1000 then
if prob(0.5) then

[z > —2]
[z >0]
[x>0 and z < 1000]

rTi=x—2 [t>0 and x < 998]
else
r:=x+1 [r>0 and x < 1001]
fi
else
if prob(0.5) then [z > 1001]
r:=x—1 [z > 1000]
else
r:=x+2 [z > 1002]
fi

fi
od

PIl: [x<1000] at location 2
(first ’if’—branching),
"true’ elsewhere.

Figure 5. Example 1.

not terminate almost-surely. The details of the example along
with invariants is given in Figure 5.

2. Example 2: In the second example, we have two variables x
and y, and the program models a generalized 2-dimensional
random walk. Variable x tends to drift away from zero while y
tends to drift towards zero and thus towards satisfaction of the
termination condition. However, if z hits zero, the program gets
stuck in an infinite loop, so we want to show that the probability
of this happening is small. The details of the example along with
invariants is given in Figure 6.

3. Example 3: In the third example (Figure 7), we have three vari-
ables x, y, z. For various combinations, with high probability we
either decrease both x and y, or z, and with low probability we
either increase both = and y, or z. But the increments and decre-
ments are not proportional, and this is indeed a 3-dimensional
example. We note that the program in this example terminates
almost-surely, but this does not simplify the computation of the
probability bound for the given LPM P1I.

We consider various initial configurations of the examples. For each
example we obtain a probability threshold for a given LPM Pl
(and thus obtain a stochastic invariant). Our experimental results
are shown in Table 1. In all the cases, our method creates a linear
program which can be efficiently solved using any standard solver
(such as Ipsolve [7], CPlex [1]).

9. Related Work

Probabilistic programs. In the 70’s and 80’s, several semantic
approaches for reasoning about probabilistic programs (including
termination probabilities) were considered, most of them being
based on probabilistic extensions of dynamic logic [61]. In [63],
one such extension, PROB-DL, is applied to a restricted class of
programs where there are no if-then-else branchings and no variable

while 1<y do [y >0]
if prob(0.5) then [y >1]
if prob(0.75) then [y >1]
r:=x+1 [y >1]
else
r:=xz—1 [y >1]
fi
else
if prob(0.75) then [y >1]
y:=y—1 [y >0]
else
yi=y+1 [y >2]
fi
fi [y=>0]
while z <0 do
z:=0 [x<0 and y > 0]
od
od

PI: [z>1] at location 9
(entry of inner while—loop),
’true’ elsewhere.

Figure 6. Example 2.

tests in loop guards (instead, loops are terminated according to
a geometric distribution). A powerful probabilistic logic called
PrDl was introduced in [33], allowing for first-order reasoning
about events in the domain of computation and their effects on
probabilities of assertions. The authors present an axiom system for
PrDl that is complete relatively to the underlying domain-specific
logic (which might be undecidable in general), which allows one to
check the validity of program properties "directly, (though,..., in
general, not effectively)" [33]. Decidable propositional fragments
of probabilistic dynamic logic were studied in [32, 50], although as
noted in [50], for practical verification purposes these would need to
be extended with logic for reasoning about the computation domain.
Moreover, none of the above approaches consider programs with
non-determinism.

In the realm of probabilistic programs with non-determinism, the ter-
mination problems for probabilistic programs with discrete choices
have been considered in [55, 56], but for probabilistic programs with
infinite-state space and choices, only the qualitative problem has
been studied. The qualitative problem of almost-sure termination
has been considered in several works such as [9, 15, 18, 19, 34]. The
termination for concurrent probabilistic programs under fairness
was considered in [67]. A sound and complete characterization of
almost-sure termination for countable state space was given in [40].
A sound and complete method for proving termination of finite-state
programs was given in [30]. All previous works either consider
discrete probabilistic choices or finite-state space, or for general
probabilistic programs consider the qualitative problem of almost-
sure termination. All works for almost-sure termination consider
RSMs w.r.t. a given invariant. In contrast, in this work we consider
stochastic invariants and the probabilistic termination problem, and

while >0 and y >0 and 2z >0 do
[t>—-1 and y > —1 and 2z > —1]
if prob(0.9) then
[x*>0 and y >0 and z > 0]
if prob(0.5) then
[x*>0 and y >0 and z > 0]
r,y:=r—1l,y—1
[tr>—-1 and y > —1 and 2z > 0]
else z:=2—-1
[tr>0 and y >0 and z > —1]
fi
else
if prob(0.5) then
[x*>0 and y >0 and z > 0]
z,y:=x+0.1,y+0.2
[xr>0 and y >0 and z > 0]
else z:=2+4+0.1
[x*>0 and y >0 and z > 0]
fi
fi
od

PI: [zx4+y+2z<1000] at location 1
(entry of outer loop),
“true’ elsewhere.

Figure 7. Example 3.

our results are applicable to probabilistic programs with infinite-state
space.

The use of martingales in probabilistic program analysis extends
beyond termination properties. In [27] martingales are used to de-
rive bounds on expected termination time of randomized algorithms.
In [16] they introduce expectation invariants for single-loop prob-
abilistic programs, which are statements about expected value of
program expressions whose validity is invariant during the program
execution. In contrast, our stochastic invariant approach reasons
about the probability of a given assertion’s validity.

There is also work on establishing a probability that a certain
assertion holds. In [64] they consider approximating the probability
of assertions using optimized simulation, under semantics assuming
terminating while loops. A method for approximating a probability
of assertion based on symbolic execution was given in [65], where
they also assume almost-surely terminating programs. Several works
considered approximating the behaviour of probabilistic programs
by abstracting them into finite Markov chains or MDPs [41, 47].
On the other hand, our repulsing supermartingales do not need
any abstraction or simulation techniques to work, although we
conjecture that they could be fruitfully combined with abstraction
approaches to “cut away” configurations that are unlikely to be
reached and thus reduce the size of the abstractions. In [46], a
Hoare-style calculus based on weakest pre-expectations is used to
reason about probabilistic effects of terminating programs, with a
practical application presented in [38]. The weakest pre-condition
style of reasoning was also adapted for reasoning about expected
running times of probabilistic programs [45].

Non-probabilistic programs. Termination analysis of non-
probabilistic programs has received a lot of attention over the last
decade, such as [10, 11, 22, 25, 54, 60, 68]. Most of these works
consider various notions of ranking functions for termination.
RSMs are a generalization of ranking functions, which has been
studied for almost-sure termination. The extension of almost-sure

termination to probabilistic termination needs new conceptual ideas
and methods which we present in this work.

10. Conclusion and Future Work

We considered the basic quantitative question of probabilistic termi-
nation for probabilistic programs. We introduced stochastic invari-
ants for probabilistic termination, and repulsing supermartingales as
the new concept that allows us to analyse the problem of probabilis-
tic termination. There are several directions for future work. The
first one is to consider special cases of non-linear repulsing super-
martingales (such as polynomial repulsing supermartingales), and
study whether efficient algorithmic approaches can be developed
for them as well. The second interesting direction is to consider
practical approaches for the synthesis of stochastic invariants, as the
theoretical results use the existential first order theory of the reals.

Acknowledgements

This research was partially supported by Austrian Science Fund
(FWF) NFN Grant No S11407-N23 (RiSE/SHiINE), ERC Start grant
(279307: Graph Games), and Vienna Science and Technology Fund
(WWTF) through project ICT15-003. The research leading to these
results has received funding from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under REA grant agreement no [291734].
Porde Zikeli¢ participated in this research during a research visit
at IST Austria, funded by the OeAD Sonderstipendien, IST AUS-
TRIA programme awarded by the Austrian Agency for International
Cooperation in Education and Research.

References

[1] IBM ILOG CPLEX Optimizer.
http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/, 2010.

[2] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate
Model Checking of Stochastic Hybrid Systems. European Journal of
Control, 16(6):624-641, 2010. ISSN 0947-3580.

[3] M. F. Atig, A. Bouajjani, M. Emmi, and A. Lal. Detecting Fair Non-
termination in Multithreaded Programs, pages 210-226. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-31424-
7.

[4] K. Azuma. Weighted sums of certain dependent random variables.
Tohoku Mathematical Journal, Second Series, 19(3):357-367, 1967.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press,
2008. ISBN 978-0-262-02649-9.

[6] G. Barthe, T. Espitau, L. M. F. Fioriti, and J. Hsu. Synthesizing
Probabilistic Invariants via Doob’s Decomposition. In Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part I, pages 43-61, 2016.

[71 M. Berkelaar, K. Eikland, and P. Notebaert. Ip_solve: Open
source (Mixed-Integer) Linear Programming system. URL http:
//sourceforge.net/projects/lpsolve/.

[8] P. Billingsley. Probability and Measure. 1995.

[9] O. Bournez and F. Garnier. Proving Positive Almost-Sure Termination.
In RTA, pages 323-337, 2005.

[10] A.R. Bradley, Z. Manna, and H. B. Sipma. The Polyranking Principle.
In ICALP, pages 1349-1361, 2005.

[11] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear Ranking with
Reachability. In K. Etessami and S. K. Rajamani, editors, Computer
Aided Verification, 17th International Conference, CAV 2005, Edin-
burgh, Scotland, UK, July 6-10, 2005, Proceedings, volume 3576 of

Lecture Notes in Computer Science, pages 491-504. Springer, 2005.
ISBN 3-540-27231-3.

T. Brazdil, V. Brozek, K. Etessami, and A. KuCera. Approximating
the termination value of one-counter MDPs and stochastic games. Inf.
Comput., 222:121-138, 2013.

T. Brézdil, S. Kiefer, and A. Kucera. Efficient Analysis of Probabilistic
Programs with an Unbounded Counter. J. ACM, 61(6):41:1-41:35,
Dec. 2014. ISSN 0004-5411.

T. Bréazdil, S. Kiefer, A. Kucera, P. Novotny, and J.-P. Katoen. Zero-
Reachability in Probabilistic Multi-Counter Automata. In Proceedings
of LICS 2014, 2014.

A. Chakarov and S. Sankaranarayanan. Probabilistic Program Analysis
with Martingales. In N. Sharygina and H. Veith, editors, Computer
Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 511-526. Springer, 2013.
ISBN 978-3-642-39798-1.

A. Chakarov and S. Sankaranarayanan. Expectation Invariants for
Probabilistic Program Loops as Fixed Points, pages 85-100. Springer
International Publishing, 2014. ISBN 978-3-319-10936-7.

A. Chakarov, Y.-L. Voronin, and S. Sankaranarayanan. Deductive
Proofs of Almost Sure Persistence and Recurrence Properties, pages
260-279. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN
978-3-662-49674-9.

K. Chatterjee, H. Fu, and A. K. Goharshady. Termination Anal-
ysis of Probabilistic Programs through Positivstellensatz’s. CoRR,
abs/1604.07169, 2016.

K. Chatterjee, H. Fu, P. Novotny, and R. Hasheminezhad. Algorith-
mic analysis of qualitative and quantitative termination problems for
affine probabilistic programs. In R. Bodik and R. Majumdar, editors,
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 327-342. ACM, 2016. ISBN
978-1-4503-3549-2.

K. Chatterjee, P. Novotny, and D. Zikelié. Stochastic Invariants for
Probabilistic Termination. CoRR, abs/1611.01063, 2016.

[21] H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. O’Hearn. Proving
Nontermination via Safety, pages 156—171. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. ISBN 978-3-642-54862-8.

M. Colén and H. Sipma. Synthesis of Linear Ranking Functions.
In T. Margaria and W. Yi, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 7th International Conference,
TACAS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings, volume 2031 of Lecture Notes in Computer Science, pages
67-81. Springer, 2001. ISBN 3-540-41865-2.

M. A. Colén and H. B. Sipma. Practical Methods for Proving Program
Termination, pages 442—-454. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002. ISBN 978-3-540-45657-5.

M. A. Colén, S. Sankaranarayanan, and H. B. Sipma. Linear invari-
ant generation using non-linear constraint solving. In International
Conference on Computer Aided Verification, pages 420-432. Springer,
2003.

B. Cook, A. See, and F. Zuleger. Ramsey vs. Lexicographic Termination
Proving. In TACAS, pages 47-61, 2013.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In R. M. Graham, M. A. Harrison, and R. Sethi, edi-
tors, Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, California, USA, January
1977, pages 238-252. ACM, 1977.

[27] D. Dubhashi and A. Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. 2009.

[28] D. Dubhashi and A. Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, New
York, NY, USA, Ist edition, 2009. ISBN 0521884276, 9780521884273.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

159

[29] R. Durrett. Probability: Theory and Examples (Second Edition).
Duxbury Press, 1996.

[30] J. Esparza, A. Gaiser, and S. Kiefer. Proving Termination of Probabilis-
tic Programs Using Patterns. In CAV, pages 123-138, 2012.

[31] J. Farkas. A Fourier-féle mechanikai elv alkalmazasai (Hungarian).
Mathematikaiés Természettudomdnyi Ertesito, 12:457-472, 1894.

[32] Y. A. Feldman. A decidable propositional dynamic logic with explicit
probabilities. Information and Control, 63(1):11-38, 1984. ISSN
0019-9958.

Y. A. Feldman and D. Harel. A probabilistic dynamic logic. In
Proceedings of the fourteenth annual ACM Symposium on Theory
of computing, pages 181-195. ACM, 1982.

L. M. F. Fioriti and H. Hermanns. Probabilistic Termination: Soundness,
Completeness, and Compositionality. In S. K. Rajamani and D. Walker,
editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 489-501. ACM, 2015.
ISBN 978-1-4503-3300-9.

R. W. Floyd. Assigning meanings to programs. Mathematical Aspects
of Computer Science, 19:19-33, 1967.

[36] F. G. Foster. On the Stochastic Matrices Associated with Certain
Queuing Processes. The Annals of Mathematical Statistics, 24(3):pp.
355-360, 1953.

[37] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani.
Probabilistic programming. In Proceedings of the on Future of Software
Engineering, pages 167-181. ACM, 2014.

[38] F. Gretz, J.-P. Katoen, and A. Mclver. Prinsys - On a Quest for
Probabilistic Loop Invariants. In Quantitative Evaluation of Systems -
10th International Conference, QEST 2013, Buenos Aires, Argentina,
August 27-30, 2013. Proceedings, pages 193-208, 2013.

[39] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving Non-termination. SIGPLAN Not., 43(1):147-158, Jan.
2008. ISSN 0362-1340.

[40] S. Hart and M. Sharir. Concurrent Probabilistic Programs, Or: How to
Schedule if You Must. SIAM J. Comput., 14(4):991-1012, 1985.

[41] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In
CAV, LNCS 5123, pages 162—175. Springer, 2008.

[42] H. Howard. Dynamic Programming and Markov Processes. MIT Press,
1960.

[43] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237—
285, 1996.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence,
101(1):99-134, 1998.

B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest
Precondition Reasoning for Expected Run—Times of Probabilistic Pro-
grams, pages 364-389. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016. ISBN 978-3-662-49498-1.

J.-P. Katoen, A. Mclver, L. Meinicke, and C. C. Morgan. Linear-
Invariant Generation for Probabilistic Programs: - Automated Support
for Proof-Based Methods. In SAS, volume LNCS 6337, Springer, pages
390-406, 2010.

M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstrac-
tion refinement for probabilistic software. In International Workshop
on Verification, Model Checking, and Abstract Interpretation, pages
182-197. Springer, 2009.

J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. D.
Van Nostrand Company, 1966.

[33]

[34]

(35]

[44]

[45]

[46]

[47]

(48]

[49] D. Kozen. Semantics of Probabilistic Programs. Journal of Computer
and System Sciences, 22(3):328-350, 1981. ISSN 0022-0000.

[50] D. Kozen. A Probabilistic PDL. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, STOC ’83, pages 291-297,
New York, NY, USA, 1983. ACM. ISBN 0-89791-099-0.

[51] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-Logic-
Based Reactive Mission and Motion Planning. /IEEE Transactions on
Robotics, 25(6):1370-1381, 2009.

[52] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verifica-
tion of Probabilistic Real-Time Systems. In CAV, LNCS 6806, pages
585-591, 2011.

[53] D. Larraz, K. Nimkar, A. Oliveras, E. Rodriguez-Carbonell, and
A. Rubio. Proving Non-termination Using Max-SMT, pages 779-796.
Springer International Publishing, Cham, 2014. ISBN 978-3-319-
08867-9.

[54] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. In POPL, pages 81-92, 2001.

[55] A. Mclver and C. Morgan. Developing and Reasoning About Proba-
bilistic Programs in pGCL. In PSSE, pages 123-155, 2004.

[56] A. Mclver and C. Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer,
2005.

D. Monniaux. An Abstract Analysis of the Probabilistic Termination
of Programs. In P. Cousot, editor, Static Analysis, 8th International
Symposium, SAS 2001, Paris, France, July 16-18, 2001, Proceedings,
volume 2126 of Lecture Notes in Computer Science, pages 111-126.
Springer, 2001. ISBN 3-540-42314-1.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, New York, NY, USA, 1995. ISBN 0-521-47465-5,
9780521474658.

[59] A. Paz. Introduction to probabilistic automata (Computer science and
applied mathematics). Academic Press, 1971.

[60] A. Podelski and A. Rybalchenko. A Complete Method for the
Synthesis of Linear Ranking Functions. In B. Steffen and G. Levi,
editors, Verification, Model Checking, and Abstract Interpretation, 5th
International Conference, VM CAI 2004, Venice, January 11-13, 2004,
Proceedings, volume 2937 of Lecture Notes in Computer Science, pages
239-251. Springer, 2004. ISBN 3-540-20803-8.

[61] V. R. Pratt. Semantical consideration on floyo-hoare logic. In
Foundations of Computer Science, 1976., 17th Annual Symposium

(571

(58]

160

on, pages 109-121, Oct 1976.

[62] M. Rabin. Probabilistic automata. Information and Control, 6:230-245,
1963.

[63] J. H. Reif. Logics for Probabilistic Programming (Extended Abstract).
In Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, STOC 80, pages 8—13, New York, NY, USA, 1980. ACM.
ISBN 0-89791-017-6.

[64] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze. Expressing and verifying probabilistic assertions. In
M. E. P. O’Boyle and K. Pingali, editors, ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014, page 14. ACM, 2014.

ISBN 978-1-4503-2784-8.

[65] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static Analysis
for Probabilistic Programs: Inferring Whole Program Properties from
Finitely Many Paths. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI *13, pages 447-458, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-2014-6.

[66] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis
for probabilistic programs: inferring whole program properties from

finitely many paths. In PLDI, pages 447-458, 2013.

[67] M. Sharir, A. Pnueli, and S. Hart. Verification of Probabilistic Programs.
SIAM J. Comput., 13(2):292-314, 1984.

[68] K. Sohn and A. V. Gelder. Termination Detection in Logic Programs
using Argument Sizes. In D. J. Rosenkrantz, editor, Proceedings of the
Tenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 29-31, 1991, Denver, Colorado, USA, pages
216-226. ACM Press, 1991. ISBN 0-89791-430-9.

[69] H. Velroyen and P. Riimmer. Non-termination Checking for Impera-
tive Programs, pages 154—170. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. ISBN 978-3-540-79124-9.

[70] D. Williams. Probability with Martingales. 1991.

	Stochastic invariants for probabilistic termination
	Citation

	Stochastic Invariants for Probabilistic Termination

