
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2021

Scalable verification of quantized neural networks Scalable verification of quantized neural networks

Thomas A. HENZINGER

Mathias LECHNER

Dorde ZIKELIC
Singapore Management University, dzikelic@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the OS and Networks Commons

Citation Citation
HENZINGER, Thomas A.; LECHNER, Mathias; and ZIKELIC, Dorde. Scalable verification of quantized neural
networks. (2021). Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21),
Virtual Conference, February 2-9. 35, (5), 3787-3795.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9074

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Scalable Verification of Quantized Neural Networks

Thomas A. Henzinger, Mathias Lechner, Ðord̄e Žikelić
IST Austria

Klosterneuburg, Austria
{tah,mlechner, dzikelic}@ist.ac.at

Abstract

Formal verification of neural networks is an active topic of re-
search, and recent advances have significantly increased the
size of the networks that verification tools can handle. How-
ever, most methods are designed for verification of an ideal-
ized model of the actual network which works over real arith-
metic and ignores rounding imprecisions. This idealization is
in stark contrast to network quantization, which is a technique
that trades numerical precision for computational efficiency
and is, therefore, often applied in practice. Neglecting round-
ing errors of such low-bit quantized neural networks has been
shown to lead to wrong conclusions about the network’s cor-
rectness. Thus, the desired approach for verifying quantized
neural networks would be one that takes these rounding errors
into account. In this paper, we show that verifying the bit-
exact implementation of quantized neural networks with bit-
vector specifications is PSPACE-hard, even though verifying
idealized real-valued networks and satisfiability of bit-vector
specifications alone are each in NP. Furthermore, we explore
several practical heuristics toward closing the complexity gap
between idealized and bit-exact verification. In particular, we
propose three techniques for making SMT-based verification
of quantized neural networks more scalable. Our experiments
demonstrate that our proposed methods allow a speedup of
up to three orders of magnitude over existing approaches.

Introduction
Deep neural networks for image classification typically con-
sist of a large number of sequentially composed layers.
Computing the output of such a network for a single input
sample may require more than a billion floating-point oper-
ations (Tan and Le 2019). Consequently, deploying a trained
deep neural network imposes demanding requirements on
the computational resources available at the computing de-
vice that runs the network. Quantization of neural networks
is a technique that reduces the computational cost of run-
ning a neural network by reducing the arithmetic precision
of computations inside the network (Jacob et al. 2018). As a
result, quantization has been widely adapted in industry for
deploying neural networks in a resource-friendly way. For
instance, Tesla’s Autopilot Hardware 3.0 is designed for pri-
marily running 8-bit quantized neural networks 1.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The verification problem for neural networks consists of
checking validity of some input-output relation. More pre-
cisely, given two conditions over inputs and outputs of the
network, the goal is to check if for every input sample which
satisfies the input condition, the corresponding output of the
neural network satisfies the output condition. Verification of
neural networks has many important practical applications
such as checking robustness to adversarial attacks (Szegedy
et al. 2013; Tjeng, Xiao, and Tedrake 2019), proving safety
in safety-critical applications (Huang et al. 2017) or output
range analysis (Dutta, Chen, and Sankaranarayanan 2019),
to name a few. There are many efficient methods for ver-
ification of neural networks (e.g. (Katz et al. 2017; Tjeng,
Xiao, and Tedrake 2019; Bunel et al. 2018)), however most
of them ignore rounding errors in computations. The few
approaches that can handle the semantics of rounding op-
erations are overapproximation-based methods, i.e., incom-
plete verification (Singh et al. 2018, 2019). The impreci-
sion introduced by quantization stands in stark contrast with
the idealization made by verification methods for standard
neural networks, which disregards rounding errors that ap-
pear due to the network’s semantics. Consequently, veri-
fication methods developed for standard networks are not
sound for and cannot be applied to quantized neural net-
works. Indeed, recently it has been shown that specifica-
tions that hold for a floating-point representation of a net-
work need not necessarily hold after quantizing the net-
work (Giacobbe, Henzinger, and Lechner 2020). As a re-
sult, specialized verification methods that take quantization
into account need to be developed, due to more complex se-
mantics of quantized neural networks. Groundwork on such
methods demonstrated that special encodings of networks
in terms of Satisfiability Modulo Theories (SMT) (Clark
and Cesare 2018) with bit-vector (Giacobbe, Henzinger, and
Lechner 2020) or fixed-point (Baranowski et al. 2020) the-
ories present a promising approach towards the verification
of quantized networks. However, the size of networks that
these tools can handle and runtimes of these approaches do
not match the efficiency of advanced verification methods
developed for standard networks like Reluplex(Katz et al.
2017) and Neurify (Wang et al. 2018a).

In this paper, we provide first evidence that the verifica-

1https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3787

tion problem for quantized neural networks is harder com-
pared to verification of their idealized counterparts, thus ex-
plaining the scalability-gap between existing methods for
standard and quantized network verification. In particular,
we show that verifying quantized neural networks with bit-
vector specifications is PSPACE-hard, despite the satisfia-
bility problem of formulas in the given specification logic
being in NP. As verification of neural networks without
quantization is known to be NP-complete (Katz et al. 2017),
this implies that the verification of quantized neural net-
works is a harder problem.

We then address the scalability limitation of SMT-based
methods for verification of quantized neural networks, and
propose three techniques for their more efficient SMT en-
coding. First, we introduce a technique for identifying those
variables and constraints whose value can be determined in
advance, thus decreasing the size of SMT-encodings of net-
works. Second, we show how to encode variables as bit-
vectors of minimal necessary bit-width. This significantly
reduces the size of bit-vector encoding of networks in (Gi-
acobbe, Henzinger, and Lechner 2020). Third, we propose
a redundancy elimination heuristic which exploits bit-level
redundancies occurring in the semantics of the network.

Finally, we propose a new method for the analysis of the
quantized network’s reachable value range, which is based
on abstract interpretation and assists our new techniques for
SMT-encoding of quantized networks. We evaluate our ap-
proach on two well-studied adversarial robustness verifica-
tion benchmarks. Our evaluation demonstrates that the com-
bined effect of our techniques is a speed-up of over three
orders of magnitude compared to the existing tools.

The rest of this work is organized as follows: First, we
provide background and discuss related works on the veri-
fication of neural networks and quantized neural networks.
We then start with our contribution by showing that the ver-
ification problem for quantized neural networks with bit-
vector specifications is PSPACE-hard. In the following sec-
tion, we propose several improvements to the existing SMT-
encodings of quantized neural networks. Finally, we present
our experimental evaluation to assess the performance im-
pacts of our techniques.

Background and Related Work
A neural network is a function f : Rn → Rm that consists
of several layers f = l1 ◦ l2 ◦ · · · ◦ lk that are sequentially
composed, with each layer parameterized by learned weight
values. Commonly found types of layers are linear

l(x) =Wx+ b,W ∈ Rno×ni , b ∈ Rno , (1)

ReLU l(x) = max{x, 0}, and convolutional layers (LeCun
et al. 1998).

In practice, the function f is implemented by floating-
point arithmetic instead of real-valued computations. To dis-
tinguish a neural network from its approximation, we define
an interpretation JfK as a map which assigns a new function
to each network, i.e.

JK : (Rn → Rm)→ (D → Rm), (2)

where D ⊂ Rn is the admissible input domain. For in-
stance, we denote by JfKR : f 7→ f the idealized real-valued
abstraction of a network f , whereas JfKfloat32 denotes its
floating-point implementation, i.e. the realization of f us-
ing 32-bit IEEE floating-point (Kahan 1996) instead of real
arithmetic. Evaluating f , even under floating-point interpre-
tation, can be costly in terms of computations and memory
resources. In order to reduce these resource requirements,
networks are usually quantized before being deployed to end
devices (Jacob et al. 2018).

Formally, quantization is an interpretation JfKint-k that
evaluates a network f which uses k-bit fixed-point arith-
metic (Smith et al. 1997), e.g. 4 to 8 bits. Let [Z]k = {0, 1}k
denote the set of all bit-vectors of bit-width k. For each layer
l : [Z]ni

k → [Z]n0

k in JfKint-k, we define its semantics by
defining l(x1, . . . , xni

) = (y1, . . . , yn0
) as follows:

x′i =

ni∑
j=1

wijxj + bi, (3)

x′′i = round(x′i, ki) = bx′i · 2−kic, and (4)

yi = max{0,min{2Ni − 1, x′′i }}, (5)

Here, wi,j and bi for each 1 ≤ j ≤ ni and 1 ≤ i ≤ n0
denote the learned weights and biases of f , and ki and Ni

denote the bit-shift and the cut-off value associated to each
variable yi, respectively. Eq. (3) multiplies the inputs xj with
the weight values wij and adds the bias bi, eq. (4) rounds the
result to the nearest valid k-bit fixed-point value, and eq. (5)
is a non-linear ReLU-N activation function 2.

An illustration of how the computations inside a network
differ based on the used interpretation is shown in Fig. 1.

Verification of Neural Networks
The verification problem for a neural network and its given
interpretation consists of verifying some input-output rela-
tion. More formally, given a neural network f , its interpre-
tation JfK and two predicates ϕ and ψ over the input domain
D and output domain Rm of JfK, we want to check valid-
ity of the following formula (i.e. whether it holds for each
x ∈ D)

ϕ(x) ∧ JfK(x) = y =⇒ ψ(y). (6)

We refer to the formula in eq. (6) as the formal specifica-
tion that needs to be proved. In order to formally verify a
neural network, it is insufficient to just specify the network
without also providing a particular interpretation. A property
that holds with respect to one interpretation need not neces-
sarily remain true if we consider a different interpretation.
For example, robustness of the real-valued abstraction does
not imply robustness of the floating-point implementation of
a network (Jia and Rinard 2020).

Ideally, we would like to verify neural networks under the
exact semantics that are used for running networks on the
end device, i.e., JfKfloat32 most of the time. However, as
verification methods for IEEE floating-point arithmetic are

2Note that for quanitzed neural networks, the double-side
bounded ReLU-N activation is preferred over the standard ReLU
activation function (Jacob et al. 2018)

3788

A) Idealized real-valued network JfKR

0.94374 . . .

1.382723 . . .

2.57799431 . . .+
1.75

0.67

B) Floating-point network JfKfloat32

0.94374

1.3827

J2.577954Kfloat32
= 2.5780

+
1.75

0.67

C) Quantized (fixed-point) network JfKint-8

0.94

1.38

J2.5696Kint-8
= 2.57

+
1.75

0.67

Figure 1: Illustration of how different interpretations of the
same network run with different numerical precision. A)
JfKR assumes infinite precision. B) JfKfloat32 rounds the
mantissa according on the IEEE 754 standard. C) JfKint-8
rounds to a fixed number of digits before and after the
comma. (Note that this figure serves as a hypothetical ex-
ample in decimal format.)

extremely inefficient, research has focused on verifying the
idealized real-valued abstraction JfKR of f . In particular, ef-
ficient methods have been developed for a popular type or
networks that only consist of linear and ReLU operations
(Figure 2 a) (Katz et al. 2017; Ehlers 2017; Tjeng, Xiao, and
Tedrake 2019; Bunel et al. 2018). The piecewise linearity of
such ReLU networks allows the use of Linear Programming
(LP) techniques, which make the verification methods more
efficient. The underlying verification problem of ReLU net-
works with linear inequality specifications was shown to be
NP-complete in the number of ReLU operations (Katz et al.
2017), however advanced tools scale beyond toy networks.

Although these methods can handle networks of large
size, they are building on the assumption that

JfKfloat32 ≈ JfKR, (7)

i.e. that the rounding errors introduced by the IEEE floating-
point arithmetic of both the network and the verification al-
gorithm can be neglected. It has been recently shown that
this need not always be true. For example, Jia and Rinard (Jia
and Rinard 2020) crafted adversarial counterexamples to the
floating-point implementation of a neural network whose
idealized interpretation was verified to be robust against
such attacks, by exploiting subtle numerical differences be-
tween JfKfloat32 and JfKR.

a)

x

y

y = JReLU(x)KR

b)

x

y

y = JReLU-N(x)Kint-k

Figure 2: Illustration of a) the ReLU activation function un-
der real-valued semantics, and b) ReLU-N activation under
fixed-point semantics (right).

Verification of Quantized Neural Networks

The low numerical precision of few-bit fixed-point arith-
metic implies that JfKint-k 6= JfKR. Indeed, (Giacobbe,
Henzinger, and Lechner 2020) constructed a prototypical
network that either satisfies or violates a formal specifica-
tion, depending on the numerical precision used to evaluate
the network. Moreover, they observed such discrepancy in
networks found in practice. Thus, no formal guarantee on
JfKint-k can be obtained by verifying JfKR or JfKfloat32.
In order to verify fixed-point implementations of (i.e. quan-
tized) neural networks, new approaches are required.

Fig. 2 depicts the ReLU activation function for ideal-
ized real-valued ReLU networks and for quantized ReLU
networks, respectively. The activation function under fixed-
point semantics consists of an exponential number of piece-
wise constant intervals thus making the LP-based tech-
niques, which otherwise work well for real-valued networks,
extremely inefficient. So the approaches developed for ide-
alized real-valued ReLU networks cannot be efficiently ap-
plied to quantized networks. Existing verification meth-
ods for quantized neural networks are based on bit-exact
Boolean Satisfiability (SAT) and SMT encodings. For 1-bit
networks, i.e., binarized neural networks, Narodytska et al.
(Narodytska et al. 2018) and (Cheng et al. 2018) proposed
to encode the network semantics and the formal specifica-
tion into an SAT formula, which is then checked by an off-
the-shelf SAT solver. While their approach could handle net-
works of decent size, the use of SAT-solving is limited to
binarized networks, which are not very common in practice.

(Giacobbe, Henzinger, and Lechner 2020) proposed to
verify many-bit quantized neural network by encoding their
semantics and specifications into quantifier-free bit-vector
SMT (QF_BV) formulas. The authors showed that, by re-
ordering linear summations inside the network, such mono-
lithic bit-vector SMT encodings could scale to the verifica-
tion of small but interestingly sized networks.

(Baranowski et al. 2020) introduced an SMT theory for
fixed-point arithmetic and showed that the semantics of
quantized neural networks could be encoded in this theory
very naturally. However, as the authors only proposed pro-
totype solvers for reference purposes, the size of the verified
networks was limited.

3789

Limitations of Neural Network Verification
The existing techniques for verification of idealized real-
valued abstractions of neural networks have significantly
increased the size of networks that can be verified (Ehlers
2017; Katz et al. 2017; Bunel et al. 2018; Tjeng, Xiao, and
Tedrake 2019). However, scalability remains the key chal-
lenge hindering formal verification of neural networks in
practice. For instance, even the largest networks verified
by the existing methods (Ruan, Huang, and Kwiatkowska
2018) are tiny compared to the network architectures used
for object detection and image classification (He et al. 2016).

Regarding the verification of quantized neural networks,
no advanced techniques aiming at performance improve-
ments have been studied so far. In this paper, we address the
scalability of quantized neural network verification methods
that rely on SMT-solving.

Hardness of Verification of Quantized Neural
Networks

The size of quantized neural networks that existing verifica-
tion methods can handle is significantly smaller compared
to the real arithmetic networks that can be verified by the
state-of-the-art tools like (Katz et al. 2017; Tjeng, Xiao, and
Tedrake 2019; Bunel et al. 2018). Thus, a natural question
is whether this gap in scalability is only because existing
methods for quantized neural networks are less efficient, or
if the verification problem for quantized neural networks is
computationally harder.

In this section, we study the computational complexity of
the verification problem for quantized neural networks. For
idealized real arithmetic interpretation of neural networks, it
was shown in (Katz et al. 2017) that, if predicates on inputs
and outputs are given as conjunctions of linear inequalities,
then the problem is NP-complete. The fact that the prob-
lem is NP-hard is established by reduction from 3-SAT, and
the same argument can be used to show that the verification
problem for quantized neural networks is also NP-hard. In
this work, we argue that the verification problem for quan-
tized neural networks with bit-vector specifications is in fact
PSPACE-hard, and thus harder then verifying real arithmetic
neural networks. Moreover, we show that this holds even for
the special case when there are no constraints on the inputs
of the network, i.e. when the predicate on inputs is assumed
to be a tautology. The verification problem for a quantized
neural network f that we consider consists of checking va-
lidity of a given input-output relation formula

JfKint-k(x) = y =⇒ ψ(y).

Here, JfKint-k is the k-bit fixed point arithmetic interpreta-
tion of f , and ψ is a predicate in some specification logic
over the outputs of JfKint-k. Equivalently, we may also
check satisfiability of the dual formula

JfKint-k(x) = y ∧ ¬ψ(y). (8)

In order to study complexity of the verification prob-
lem, we also need to specify the specification logic to
which formula ψ belongs. In this work, we study hardness
with respect to the fragment QF_BV2bw of the fixed-size

bit-vector logic QF_BV2 (Kovásznai, Fröhlich, and Biere
2016). The fragment QF_BV2bw allows bit-wise logical op-
erations (such as bit-wise conjunction, disjunction and nega-
tion) and the equality operator. The index 2 in QF_BV2bw is
used to denote that the constants and bit-widths are given in
binary representation. It was shown in (Kovásznai, Fröhlich,
and Biere 2016) that the satisfiability problem for formulas
in QF_BV2bw is NP-complete.

Even though QF_BV2bw itself allows only bit-vector op-
erations and not linear integer arithmetic, we show that by
introducing dummy output variables in JfKint-k we may still
encode formal specifications on outputs that are boolean
combinations of linear inequalities over network’s outputs.
Thus, this specification logic is sufficiently expressive to en-
code formal specifications most often seen in practice. Let
y1, . . . , ym denote output variables of JfKint-k. In order to
encode an inequality of the form a1y1+ · · ·+amym+b ≥ 0
into the output specification, we do the following:

• Introduce an additional output neuron ỹ and a directed
edge from each output neuron yi to ỹ. Let ai be the weight
of an edge from yi to ỹ, b be the bias term of ỹ, k − 1 be
the bit-shift value of ỹ, and N = k be the number of bits
defining the cut-off value of ỹ. Then

ỹ = ReLU-N(round(2−(k−1)(a1y1 + · · ·+ amym + b))).

Thus, as we work with bit-vectors of bit-width k, ỹ is just
the sign bit of a1y1 + · · ·+ asys + b preceded by zeros.

• As a1y1 + · · · + asys + b ≥ 0 holds if and only if the
sign bit of a1y1 + · · · + asys + b is 0, in order to en-
code the inequality into the output specification it suffices
to encode that ỹ = 0, which is a formula expressible in
QF_BV2bw.

By doing this for each linear inequality in the specification
and since the logical operations are allowed by QF_BV2bw,
it follows that we may use QF_BV2bw to encode boolean
combinations of linear inequalities over outputs as formal
specifications that are to be verified.

Our main result in this section is that, if ψ in eq. (8) is
assumed to be a formula in QF_BV2bw, then the verifi-
cation problem for quantized neural networks is PSPACE-
hard. Since checking satisfiability of ψ can be done in non-
deterministic polynomial time, this means that the additional
hardness really comes from the quantized neural networks.

Theorem 1 (Complexity of verification of QNNs). If
the predicate on outputs is assumed to be a formula in
QF_BV2bw, the verification problem for quantized neural
networks is PSPACE-hard.

Proof sketch. Here we summarize the key ideas of our
proof. For the complete proof, see the technical report.

To prove PSPACE-hardness, we exhibit a reduction from
TQBF which is known to be PSPACE-complete (Arora
and Barak 2009). TQBF is the problem of deciding
whether a quantified boolean formula (QBF) of the form
Q1x1. Q2x2. . . . Qnxn. φ(x1, x2, . . . , xn) is true, where
eachQi ∈ {∃, ∀} and φ is a quantifier-free formula in propo-
sitional logic over the variables x1, . . . , xn. A QBF formula

3790

is true if it admits a truth table for each existentially quanti-
fied variable xi, where the truth table for xi specifies a value
in {0, 1} for each valuation of those universally quantified
variables xj on which xi depends (i.e. xj with j < i). Thus,
the size of each truth table is at most 2k, where k is the total
number of universally quantified variables in the formula.

In our reduction, given an instance of the TQBF problem
Q1x1. Q2x2. . . . Qnxn. φ(x1, x2, . . . , xn) we map it to the
corresponding verification problem as follows. The interpre-
tation JfKint-k of the neural network f consists of n+1 dis-
joint gadgets f1, . . . , fn, g, each having a single input and a
single output neuron of bit-width 2k. Note that bit-widths are
given in binary representation, thus this is still polynomial in
the size of the problem. We use these gadgets to encode all
possible inputs to the QBF formula, whereas the postcondi-
tion in the verification problem encodes the quantifier-free
formula itself. For a universally quantified variable xi, the
output of fi is always a constant vector encoding the values
of xi in each of the 2k valuations of universally quantified
variables (for a fixed ordering of the valuations). For existen-
tially quantified xi, we use fi and its input neuron to encode
2k possible choices for the value of xi, one for each valua-
tion of universally quantified variables, and thus to encode
the truth table for xi. Finally, the gadget g is used to return a
constant bit-vector 1 of bit-width 2k on any possible input.
The predicate ψ on the outputs is then defined as

ψ := (φbw(y1, . . . , yn) = 1),

where φbw is the quantifier-free formula in QF_BV2bw

identical to φ, with only difference being that the inputs
of φbw are bit-vectors of bit-width 2k instead of boolean
variables, and logical operations are also defined over bit-
vectors (again, since bit-widths are encoded in binary rep-
resentation, this is of polynomial size). The output of φbw
is thus tested if it equals 1 for each valuation of universally
quantified variables and the corresponding values of exis-
tentially quantified variables defined by the truth tables. Our
construction ensures that any satisfying input for the neural
networks induces satisfying truth tables for the TQBF in-
stance and vice-versa, which completes the reduction.

Theorem 1 is to our best knowledge the first theoretical
result which indicates that the verification problem for quan-
tized neural networks is harder than verifying their idealized
real arithmetic counterparts. It sheds some light on the scal-
ability gap of existing SMT-based methods for their veri-
fication, and shows that this gap is not solely due to prac-
tical inefficiency of existing methods for quantized neural
networks, but also due to the fact that the problem is com-
putationally harder. While Theorem 1 gives a lower bound
on the hardness of verifying quantized neural networks, it is
easy to see that an upper bound on the complexity of this
problem is NEXP since the inputs to the verification prob-
lem are of size that is exponential in the size of the problem.
Closing the gap and identifying tight complexity bounds is
an interesting direction of future work.

Note though that the specification logic QF_BV2bw used
to encode predicates over outputs is strictly more expres-
sive than what we need to express boolean combinations of

linear integer inequalities, which is the most common form
of formal specifications seen in practice. This is because
QF_BV2bw also allows logical operations over bit vectors,
and not just over single bits. Nevertheless, our result presents
the first step towards understanding computational hardness
of the quantized neural network verification problem.

Improvements to Bit-Vector SMT-Encodings
In this section, we study efficient SMT-encodings of quan-
tized neural networks that would improve scalability of ver-
ification methods for them. In particular, we propose three
simplifications to the monolithic SMT encoding of eq. (3),
(4), and (5) introduced in (Giacobbe, Henzinger, and Lech-
ner 2020), which encodes quantized neural networks and
formal specifications as formulas in the QF_BV2 logic : I)
Remove dead branches of the If-Then-Else encoding of the
activation function in eq. (5), i.e., branches that are guaran-
teed to never be taken; II) Allocate only the minimal number
of bits for each bit-vector variable in the formula; and III)
Eliminate sub-expressions from the summation in eq. (3).
To obtain the information needed by the techniques I and II
we further propose an abstract interpretation framework for
quantized neural networks.

Abstract Interpretation Analysis
Abstract interpretation (Cousot and Cousot 1977) is a tech-
nique for constructing over-approximations to the behavior
of a system. Initially developed for software verification, the
method has recently been adapted to robustness verification
of neural networks and is used to over-approximate the out-
put range of variables in the network. Instead of consider-
ing all possible subsets of real numbers, it only considers an
abstract domain which consists of subsets of suitable form
(e.g. intervals, boxes or polyhedra). This allows modeling
each operation in the network in terms of operations over the
elements of the abstract domain, thus over-approximating
the semantics of the network. While it leads to some im-
preision, abstract interpretation allows more efficient output
range analysis for variables. Due to its over-approximating
nature, it remains sound for verifying neural networks.

Interval (Wang et al. 2018b; Tjeng, Xiao, and Tedrake
2019), zonotope (Mirman, Gehr, and Vechev 2018; Singh
et al. 2018), and convex polytope (Katz et al. 2017; Ehlers
2017; Bunel et al. 2018; Wang et al. 2018a) abstractions
have emerged in literature as efficient and yet precise
choices for the abstract domains of real-valued neural net-
works. The obtained abstract domains have been used for
output range analysis (Wang et al. 2018b), as well as remov-
ing decision points from the search process of complete ver-
ification algorithms (Tjeng, Xiao, and Tedrake 2019; Katz
et al. 2017). One important difference between standard and
quantized networks is the use of double-sided bounded acti-
vation functions in quantized neural networks, i.e., ReLU-
N instead of ReLU (Jacob et al. 2018). This additional
non-linear transition, on one hand, renders linear abstrac-
tions less effective, while on the other hand it provides
hard upper bounds to each neuron, which bounds the over-
approximation error. Consequently, we adopt interval ab-
stractions (IA) on the quantized interpretation of a network

3791

to obtain reachability sets for each neuron in the network. As
discussed in (Tjeng, Xiao, and Tedrake 2019), using a tighter
abstract interpretation poses a tradeoff between verification
and pre-processing complexity.

Dead Branch Removal
Suppose that through our abstract interpretation we obtained
an interval [lb, ub] for the input x of a ReLU-N operation
y = ReLU-N(x). Then, we substitute the function by

0, if ub ≤ 0

2N − 1, if lb ≥ 2N − 1

x, if ub ≥ 0 and lb ≤ 2N − 1

max{0, x}, if 0 < ub ≤ 2N − 1.

min{2N − 1, x}, if 0 ≤ lb < 2N − 1.

max{0,min{2N − 1, x}}, otherwise,

which reduces the number of decision points in the SMT
formula.

Minimum Bit Allocation
A k-bit quantized neural network represents each neuron
and weight variable by a k-bit integer. However, when com-
puting the values of certain types of layers, such as the lin-
ear layer in eq. (1), a wider register is necessary. The binary
multiplication of a k-bit weight and a k-bit neuron value re-
sults in a number that is represented by 2k-bits. Furthermore,
summing up n such 2k-bit integer requires

bnaive = 2k + log2(n) + 1 (9)

bits to be safely represented without resulting in an overflow.
QF_BV2 reasons over fixed-size bit-vectors, i.e. the bit

width of each variable must be fixed in the formula regard-
less of the variable’s value. (Giacobbe, Henzinger, and Lech-
ner 2020) showed that the number of bits used for all weight
and neuron variables in the formal affects the runtime of
the SMT-solver significantly. For example, omitting the least
significant bit of each variable cuts the runtime on average
by half. However, the SMT encoding of (Giacobbe, Hen-
zinger, and Lechner 2020) allocates bnaive bits according to
eq. (9) for each accumulation variable of a linear layer.

Our approach uses the interval [lb, ub] obtained for each
variable by abstract interpretation to compute the minimal
number of bits necessary to express any value in the inter-
val. As the signed bit-vector variables are represented in the
two’s complement format, we can compute the bit width b
of variable x with computed interval [lb, ub] by

bminimal = 1 + log2(max{|lb|, |ub|}+ 1). (10)

Trivially, one can show that bminimal < bnaive, as |ub|≤ 22kn
and |lb|≤ 22kn.

Redundant Multiplication Elimination
Another difference between quantized and standard neural
networks is the rounding of the weight values to the near-
est representable value of the employed fixed-point format.
Consequently, there is a considerable chance that two con-
nections outgoing from the same source neuron will have

the same weight value. For instance, assuming an 8-bit net-
work and a uniform weight distribution, the chance of two
connections having the same weight value is around 0.4%
compared to the much lower 4 · 10−8% of the same scenario
happening in a floating-point network.

Moreover, many weight values express some subtle form
of redundancy on a bit-level. For instance, both multiplica-
tion by 2 and multiplication by 6 contain a shift operations
by 1 digit in their binary representation. Thus, computations

y1 = 3 · x1 y2 = 6 · x1 (11)

can be rewritten as

y1 = 3 · x1 y2 = y1 << 1, (12)

where << is a binary shift to the left by 1 digit. As a result,
a multiplication by 6 is replaced by a much simpler shift op-
eration. Based on this motivation, we propose a redundancy
elimination heuristic to remove redundant and partially re-
dundant multiplications from the SMT formula. Our heuris-
tic first orders all outgoing weights of a neuron in ascending
order and then sequentially applies a rule-matching for each
weight value. The rules try to find a simpler way to com-
pute the multiplication of the weight and the neuron value
by using already performed multiplications. The algorithm
and the rules in full are provided in the technical report.

Note that a similar idea was introduced by (Cheng et al.
2018) in the form of a neuron factoring algorithm for the en-
coding of binarized (1-bit) neural networks into SAT formu-
las. However, the heuristic of (Cheng et al. 2018) removes
redundant additions, whereas we consider bit-level redun-
dancies in multiplications. For many-bit quantization, the
probability of two neurons sharing more than one incom-
ing weight is negligible, thus making such neuron factoring
proposed in (Cheng et al. 2018) less effective.

Experimental Evaluation
We create an experimental setup to evaluate how much the
proposed techniques affect the runtime and efficiency of the
SMT-solver. Our reference baseline is the approach of (Gi-
acobbe, Henzinger, and Lechner 2020), which consists of
a monolithic and "balanced" bit-vector formulation for the
Boolector SMT-solver. We implement our techniques on top
of this baseline. We limited our evaluation to Boolector, as
other SMT-solvers supporting bit-vector theories, such as Z3
(De Moura and Bjørner 2008), CVC4 (Barrett et al. 2011),
and Yices (Dutertre 2014), performed much worse in the
evaluation of (Giacobbe, Henzinger, and Lechner 2020).

Our evaluation comprises of two benchmarks. Our first
evaluation considers the adversarial robustness verification
of image classifier trained on the MNIST dataset (LeCun
et al. 1998). In particular, we check the l∞ robustness of
networks against adversarial attacks (Szegedy et al. 2013).
Other norms, such as l1 and l2, can be expressed in bit-vector
SMT constraints as well, although with potentially negative
effects on the solver runtime. In the second evaluation, we
repeat the experiment on the slightly more complex Fashion-
MNIST dataset (Xiao, Rasul, and Vollgraf 2017) .

All experiments are run on a 14-core Intel W-2175
CPU with 64GB of memory. We used the boolector

3792

Attack Baseline Baseline Ours
radius (+ Lingeling) (+ CaDiCal)
ε = 1 63 (63.6%) 92 (92.9%) 99 (100.0%)
ε = 2 0 (0.0%) 20 (20.2%) 94 (94.9%)
ε = 3 0 (0.0%) 2 (2.1%) 71 (74.0%)
ε = 4 0 (0.0%) 1 (1.0%) 54 (55.7%)

Table 1: Number of solved instances of adversarial robust-
ness verification on the MNIST dataset. Absolute numbers
and in percentages of checked instances in parenthesis.

Dataset Baseline Baseline Ours
(+ Lingeling) (+ CaDiCal)

MNIST 8803 |8789 2798 |3931 5 |90
Fashion-MNIST 6927 |6927 3105 |3474 4 |49

Table 2: Median |mean runtime of adversarial robustness
verification process per sample. The reported values only ac-
count for non-timed-out samples.

(Niemetz, Preiner, and Biere 2015) with the SAT-solvers
Lingeling(Biere 2017) (only baseline) and CaDiCal (Biere
2019) (baseline + our improvements) as SAT-backend.

Adversarial robustness specification can be expressed as

|x− xi|∞≤ ε ∧ y = JfKint-k(x) =⇒ y = yi, (13)

where (xi, yi) is a human labeled test sample and ε is a fixed
attack radius. As shown in eq. (13), the space of possible at-
tacks increases with ε. Consequently, we evaluate with dif-
ferent attack radii ε and study the runtimes individually. In
particular, for MNIST we check the first 100 test samples
with an attack radius of ε = 1, the next 100 test samples
with ε = 2, and the next 200 test samples with ε = 3 and
ε = 4 respectively. For our Fashion-MNIST evaluation, we
reduce the number of samples to 50 per attack radius value
for ε > 2 due to time and compute limitations.

The network studied in our benchmark consists of four
fully-connected layers (784,64,32,10), resulting in 52,650
parameters in total. It was trained using a quantization-aware
training scheme with a 6-bit quantization.

The results for the MNIST evaluation in terms of solved
instances and median solver runtime are shown in Table 1
and Table 2 respectively. Table 3 and Table 2 show the re-
sults for the Fashion-MNIST benchmark. Both benchmark
networks are publicly available 3

Ablation Analysis
We perform an ablation analysis where we re-run our ro-
bustness evaluation with one of our proposed techniques dis-
abled. The objective of our ablation analysis is to understand
how the individual techniques affect the observed efficiency
gains. Due to time and computational limitations we focus
our ablation experiments to MNIST exclusively.

The results in Table 4 show the highest number of solved
instances were achieved when all our techniques were en-
abled. Nonetheless, Table 4 demonstrate these gains are not

3https://github.com/mlech26l/qnn_robustness_benchmarks

Attack Baseline Baseline Ours
radius (+ Lingeling) (+ CaDiCal)
ε = 1 2 (2.3%) 44 (50.6%) 76 (87.4%)
ε = 2 0 (0.0%) 7 (7.8%) 73 (81.1%)
ε = 3 0 (0.0%) 1 (2.3%) 27 (62.8%)
ε = 4 0 (0.0%) 0 (0.0%) 18 (40.9%)

Table 3: Number of solved instances of adversarial robust-
ness verification on the Fashion-MNIST dataset.

Method Total solved Cumulative
instances runtime

No redundancy elim. 316 (80.8%) 7.7 h
No minimum bitwidth 315 (80.6%) 5.1 h
No ReLU simplify 88 (22.5%) 83.2 h
No Abstract interpret. 107 (27.4%) 126.0 h
All enabled 318 (81.3%) 7.9 h

Table 4: Ablation analysis on the MNIST dataset. The cu-
mulative runtime corresponds to non-timed-out samples.

equally distributed across the three techniques. In particular,
the ReLU simplification has a much higher contribution for
explaining the gains compared to the redundancy elimina-
tion and minimum bitwidth methods. The limited benefits
observed for these two techniques may be explain by the in-
ner workings of the Boolector SMT-solver.

The Boolector SMT-solver (Niemetz, Preiner, and Biere
2015) is based on a portfolio approach which sequentially
applies several different heuristics to find a satisfying as-
signment of the input formula (Wintersteiger, Hamadi, and
De Moura 2009). In particular, Boolector starts with fast but
incomplete local search heuristics and falls back to slower
but complete bit-blasting (Clark and Cesare 2018) in case
the incomplete search is unsuccessful (Niemetz, Preiner, and
Biere 2019). Although our redundancy elimination and min-
imum bitwidth techniques simplify the bit-blasted represen-
tation of the encoding, it introduces additional dependencies
between different bit-vector variables. As a result, we be-
lieve these extra dependencies make the local search heuris-
tics of Boolector less effective and thus enabling only lim-
ited performance improvements.

Conclusion
We show that the problem of verifying quantized neural net-
works with bit-vector specifications on the inputs and out-
puts of the network is PSPACE-hard. We tackle this chal-
lenging problem by proposing three techniques to make the
SMT-based verification of quantized networks more effi-
cient. Our experiments show that our method outperforms
existing tools by several orders of magnitude on adversar-
ial robustness verification instances. Future work is neces-
sary to explore quantized neural network verification’s com-
plexity with respect to different specification logics. On the
practical side, our methods point to limitations of mono-
lithic SMT-encodings for quantized neural network verifica-
tion and suggest that future improvements may be obtained
by integrating the encoding and the solver steps more tightly.

3793

Acknowledgments
This research was supported in part by the Austrian Sci-
ence Fund (FWF) under grant Z211-N23 (Wittgenstein
Award), ERC CoG 863818 (FoRM-SMArt), and the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie Grant Agree-
ment No. 665385.

References
Arora, S.; and Barak, B. 2009. Computational Complex-
ity - A Modern Approach. Cambridge University Press.
ISBN 978-0-521-42426-4. URL http://www.cambridge.org/
catalogue/catalogue.asp?isbn=9780521424264.
Baranowski, M.; He, S.; Lechner, M.; Nguyen, T. S.; and
Rakamaric, Z. 2020. An SMT Theory of Fixed-Point Arith-
metic. In International Joint Conference on Automated Rea-
soning (IJCAR), 13–31.
Barrett, C.; Conway, C. L.; Deters, M.; Hadarean, L.; Jo-
vanović, D.; King, T.; Reynolds, A.; and Tinelli, C. 2011.
CVC4. In International Conference on Computer Aided Ver-
ification (CAV), 171–177. Springer.
Biere, A. 2017. CaDiCaL, Lingeling, Plingeling, Treen-
geling, YalSAT Entering the SAT Competition 2017. In
Balyo, T.; Heule, M.; and Järvisalo, M., eds., Proc. of SAT
Competition 2017 – Solver and Benchmark Descriptions,
volume B-2017-1 of Department of Computer Science Se-
ries of Publications B, 14–15. University of Helsinki.
Biere, A. 2019. CaDiCaL at the SAT Race 2019. In Heule,
M.; Järvisalo, M.; and Suda, M., eds., Proc. of SAT Race
2019 – Solver and Benchmark Descriptions, volume B-
2019-1 of Department of Computer Science Series of Publi-
cations B, 8–9. University of Helsinki.
Bunel, R. R.; Turkaslan, I.; Torr, P.; Kohli, P.; and
Mudigonda, P. K. 2018. A unified view of piecewise lin-
ear neural network verification. In Conference on Neural
Information Processing Systems (NeurIPS), 4795–4804.
Cheng, C.-H.; Nührenberg, G.; Huang, C.-H.; and Ruess, H.
2018. Verification of Binarized Neural Networks via Inter-
Neuron Factoring. In Working Conference on Verified Soft-
ware: Theories, Tools, and Experiments (VSTTE), 279–290.
Clark, B.; and Cesare, T. 2018. Satisfiability Modulo The-
ories. In Clarke, E. M.; Henzinger, T. A.; Veith, H.; and
Bloem, R., eds., Handbook of model checking, volume 10,
chapter 11. Springer.
Cousot, P.; and Cousot, R. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In ACM SIGACT-
SIGPLAN symposium on Principles of programming lan-
guages (POPL), 238–252.
De Moura, L.; and Bjørner, N. 2008. Z3: An efficient
SMT solver. In International conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 337–
340. Springer.
Dutertre, B. 2014. Yices 2.2. In International Conference
on Computer Aided Verification (CAV), 737–744. Springer.

Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In International Conference on
Hybrid Systems: Computation and Control (HSCC), 157–
168.

Ehlers, R. 2017. Formal verification of piece-wise lin-
ear feed-forward neural networks. In International Sympo-
sium on Automated Technology for Verification and Analysis
(ATVA), 269–286.

Giacobbe, M.; Henzinger, T. A.; and Lechner, M. 2020. How
Many Bits Does it Take to Quantize Your Neural Network?
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 79–97.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778.

Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety verification of deep neural networks. In International
Conference on Computer Aided Verification (CAV), 3–29.
Springer.

Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2704–2713.

Jia, K.; and Rinard, M. 2020. Exploiting Verified Neural
Networks via Floating Point Numerical Error. arXiv preprint
arXiv:2003.03021 .

Kahan, W. 1996. IEEE standard 754 for binary floating-
point arithmetic. Lecture Notes on the Status of IEEE
754(94720-1776): 11.

Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochender-
fer, M. J. 2017. Reluplex: An efficient SMT solver for veri-
fying deep neural networks. In International Conference on
Computer Aided Verification (CAV), 97–117.

Kovásznai, G.; Fröhlich, A.; and Biere, A. 2016. Complexity
of fixed-size bit-vector logics. Theory of Computing Systems
59(2): 323–376.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11): 2278–2324.

Mirman, M.; Gehr, T.; and Vechev, M. 2018. Differentiable
abstract interpretation for provably robust neural networks.
In International Conference on Machine Learning (ICML),
3575–3583.

Narodytska, N.; Kasiviswanathan, S.; Ryzhyk, L.; Sagiv, M.;
and Walsh, T. 2018. Verifying properties of binarized deep
neural networks. In AAAI Conference on Artificial Intelli-
gence (AAAI), 6615–6624.

Niemetz, A.; Preiner, M.; and Biere, A. 2015. Boolector
2.0 system description. Journal on Satisfiability, Boolean
Modeling and Computation 9: 53–58.

3794

Niemetz, A.; Preiner, M.; and Biere, A. 2019. Boolector
at the SMT Competition 2019. Technical report, Stanford
University and JKU Linz.
Ruan, W.; Huang, X.; and Kwiatkowska, M. 2018. Reacha-
bility analysis of deep neural networks with provable guar-
antees. In International Joint Conference on Artificial Intel-
ligence (IJCAI), 2651–2659.
Singh, G.; Gehr, T.; Mirman, M.; Püschel, M.; and Vechev,
M. 2018. Fast and effective robustness certification.
In Conference on Neural Information Processing Systems
(NeurIPS), 10825–10836.
Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. 2019. An
abstract domain for certifying neural networks. Proceedings
of the ACM on Programming Languages 3(POPL): 1–30.
Smith, S. W.; et al. 1997. The scientist and engineer’s guide
to digital signal processing, volume 14. California Technical
Pub. San Diego.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing prop-
erties of neural networks. arXiv preprint arXiv:1312.6199
.
Tan, M.; and Le, Q. V. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning (ICML), 6105–6114.
Tjeng, V.; Xiao, K. Y.; and Tedrake, R. 2019. Evaluating
robustness of neural networks with mixed integer program-
ming. In International Conference on Learning Representa-
tions (ICLR).
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient formal safety analysis of neural networks.
In Conference on Neural Information Processing Systems
(NeurIPS), 6369–6379.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal security analysis of neural networks using
symbolic intervals. In 27th {USENIX} Security Symposium
({USENIX} Security 18), 1599–1614.
Wintersteiger, C. M.; Hamadi, Y.; and De Moura, L. 2009.
A concurrent portfolio approach to SMT solving. In Inter-
national Conference on Computer Aided Verification (CAV),
715–720. Springer.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747 .

3795

	Scalable verification of quantized neural networks
	Citation

	Scalable Verification of Quantized Neural Networks

