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Abstract

We present a new approach to proving non-termination of
non-deterministic integer programs. Our technique is rather
simple but efficient. It relies on a purely syntactic reversal
of the program’s transition system followed by a constraint-
based invariant synthesis with constraints coming from both
the original and the reversed transition system. The latter
task is performed by a simple call to an off-the-shelf SMT-
solver, which allows us to leverage the latest advances in
SMT-solving. Moreover, our method offers a combination
of features not present (as a whole) in previous approaches:
it handles programs with non-determinism, provides rela-
tive completeness guarantees and supports programs with
polynomial arithmetic. The experiments performed with
our prototype tool RevTerm show that our approach, de-
spite its simplicity and stronger theoretical guarantees, is at
least on par with the state-of-the-art tools, often achieving a
non-trivial improvement under a proper configuration of its
parameters.

CCS Concepts: · Software and its engineering→ Auto-

mated static analysis; Software verification.
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1 Introduction

Program analysis. There are two relevant directions in pro-
gram analysis: to prove program correctness and to find bugs.
While a correctness proof is obtained once, the procedure of
bug finding is more relevant during software development
and is repeatedly applied, even for incomplete or partial pro-
grams. In terms of specifications, the most basic properties
in program analysis are safety and liveness.

Program analysis for safety and termination. The analysis of
programs with respect to safety properties has received a lot
of attention [2, 27, 28, 33], and for safety properties to report
errors the witnesses are finite traces violating the safety prop-
erty. The most basic liveness property is termination. There
is a huge body of work for proving correctness with respect
to the termination property [7, 17, 21, 23], e.g. sound and
complete methods based on ranking functions have been de-
veloped [16, 40, 41], and efficient computational approaches
based on lexicographic ranking functions have also been
considered [7, 8, 20].

Proving non-termination. The bug finding problem for the ter-
mination property, or proving non-termination, is a challeng-
ing problem. Conceptually, while for a safety property the
violating witness is a finite trace, for a termination property
the violating witnesses are infinite traces. There are several
approaches for proving non-termination; here we discuss
some key ones, which are most related in spirit to our new
method (for a detailed discussion of related work, see Sec-
tion 7). For the purpose of this overview, we (rather broadly
and with a certain grain of salt) classify the approaches into
two categories: trace-based approaches, which look for a non-
terminating trace (e.g. [24, 30, 39]), and set-based approaches,
which look for a set of non-terminal program configura-
tions (states) in which the program can stay indefinitely
(e.g. [12, 25, 37]). For instance, the work of [30] considers
computing "lassos" (where a lasso is a finite prefix followed
by a finite cycle infinitely repeated) as counter-examples
for termination and presents a trace-based approach based
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on lassos to prove non-termination of deterministic pro-
grams. In general, finite lassos are not sufficient to witness
non-termination. While lassos are periodic, proving non-
termination for programs with aperiodic infinite traces via
set-based methods has been considered in [12, 37] for pro-
grams with non-determinism. In [12], a method is proposed
where "closed recurrence sets" of configurations are used
to prove non-termination. Intuitively, a closed recurrence
set must contain some initial configuration, must contain
no terminal configurations, and cannot be escaped once en-
tered. In [12], closed recurrence sets are defined with respect
to under-approximations of the transition relation, and an
under-approximation search guided by several calls to a
safety prover is used to compute a closed recurrence set.
In [37], a constraint solving-based method is proposed to
search for žquasi-invariantsž (sets of configurations which
cannot be left once entered) exhaustively in all strongly-
connected subgraphs. A safety prover is used to check reach-
ability for every obtained quasi-invariant. For constraint
solving, Max-SMT is used in [37].

Limitations of previous approaches.While the previous works
represent significant advancement for proving non-termina-
tion, each of them has, to our best knowledge, at least one
of the following limitations:
a) They do not support non-determinism, e.g. [29, 46].
b) They only work for lassos (i.e. periodic non-terminating

traces), e.g. [30].
c) Theoretical limitation of not providing any (relative) com-

pleteness guarantees. Clearly, a non-termination proving
algorithm cannot be both sound and complete, since non-
termination is well-known to be undecidable. However, as
in the case of termination proving, it can be beneficial to
provide relative completeness guarantees, i.e. conditions
on the input program under which the algorithm is guar-
anteed to prove non-termination. To our best knowledge,
the only approaches with such guarantees are [29, 39];
however, both of them only provide guarantees for a cer-
tain class of deterministic programs.

d) Most of the previous approaches do not support programs
with polynomial arithmetic (with an exception of [18, 24]).

Our contributions. In this work we propose a new set-based
approach to non-termination proving in integer programs.
Intuitively, it searches for a diverging program configuration,
i.e. a configuration that is reachable but from which no pro-
gram run is terminating (after resolving non-determinism
using symbolic polynomial assignments). Our approach is
based on a simple technique of program reversal, which re-
verses each transition in the program’s transition system to
produce the reversed transition system. The key property
of this construction is that, given a program configuration,
there is a terminating run starting in it if and only if it is reach-
able from the terminal location in the reversed transition

system. This allows over-approximating the set of all pro-
gram configurations from which termination can be reached
by computing an invariant in the program’s reversed transi-
tion system. We refer to the invariants in reversed transition
systems as backward invariants. To generate the backward
invariant, we may employ state-of-the-art polynomial invari-
ant generation techniques to the reversed transition system
as a single-shot procedure which is the main practical benefit
of the program reversal. Our method proves non-termination
by generating a backward invariant whose complement is
reachable. Hence, our new method adapts the classical and
well-studied techniques for inductive invariant generation in
order to find non-termination proofs by combining forward
and backward analysis of a program. While such a combined
analysis is common in safety analysis where the goal is to
show that no program run reaches some annotated set of
configurations [6], to our best knowledge it has never been
considered for proving non-termination in programs with
non-determinism, where we need to find a single program
run that does not terminate. The key features of our method
are as follows:
a) Our approach supports programs with non-determinism.
b) Our approach is also applicable to programs where all

non-terminating traces are aperiodic.
c) Relative completeness guarantee: The work of [12] estab-

lishes that closed recurrence sets with respect to under-
approximations are a sound and complete certificate of
non-termination, yet the algorithm based on these cer-
tificates does not in itself provide any relative complete-
ness guarantee (in the above sense). For our approach we
show the following: If there is an under-approximation of
the transition relation where non-determinism can be re-
solved by polynomial assignments such that the resolved
program contains a closed recurrence set representable
as a propositional predicate map, then our approach is
guaranteed to prove non-termination. We obtain such
guarantee by employing relatively complete methods for
inductive invariant synthesis, which is another key advan-
tage of adapting invariant generation techniques to non-
termination proving. Moreover, we provide even stronger
relative completeness guarantees for programs in which
non-determinism appears only in branching (but not in
variable assignments).

d) Our approach supports programs with polynomial arith-
metic.

We developed a prototype tool RevTerm which implements
our approach. We experimentally compared our tool with
state-of-the-art non-termination provers on standard bench-
marks from the Termination and Complexity Competition
(TermComp‘19 [26]). Our tool demonstrates performance
on par with the most efficient of the competing provers,
while providing additional guarantees. In particular, with a
proper configuration, our tool achieved the largest number
of benchmarks proved non-terminating.
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Outline.After presenting the necessary definitions (Section 2),
we present our approach and its novel aspects in the fol-
lowing order: first we introduce the technique of program
reversal (Section 3); then we present a new certificate for
non-termination (Section 4) based on so-called backward in-

variants, as well as an invariant generation-based automated
approach for this certificate (Section 5); finally we prove
relative completeness guarantees (Section 5.4). We conclude
with the presentation of our experiments and discussion of
related work.

2 Preliminaries

Syntax of programs. In this work we consider simple impera-
tive arithmetic programs with polynomial integer arithmetic
and with non-determinism. They consist of standard pro-
gramming constructs such as conditional branching, while-
loops and (deterministic) variable assignments. In addition,
we allow constructs for non-deterministic assignments of
the form x := ndet(), which assign any integral value to x .
The adjective polynomial refers to the fact that all arithmetic
expressions are polynomials in program variables.

Example 2.1 (Running example). Fig. 1 left shows a pro-
gram which will serve as our running example. The second
line contains a non-deterministic assignment, in which any
integral value can be assigned to the variable x .

Removing non-deterministic branching.We may without loss

of generality assume that non-determinism does not appear
in branching: for the purpose of termination analysis, one
can replace each non-deterministic branching with a non-
deterministic assignment. Indeed, non-deterministic branch-
ing in programs is given by a command if ∗ then, meaning
that the control-flow can follow any of the two subsequent
branches. By introducing an auxiliary program variable xndet
and replacing each command if ∗ thenwith two commands

xndet := ndet()

if xndet ≥ 0 then

we obtain a program which terminates on every input if and
only if the original program does. This removal is done for
the sake of easier presentation and neater definition of the
resolution of non-determinism, see Section 5.1.

Predicate, assertion, propositional predicate. We use the fol-
lowing terminology:

• Predicate, which is a set of program variable valuations.
• Assertion, which is a finite conjunction of polynomial
inequalities over program variables. We need not dif-
ferentiate between non-strict and strict inequalities
since we work over integer arithmetic.

• Propositional predicate (PP), which is a finite disjunc-
tion of assertions.

We write x |= ϕ to denote that the predicate ϕ given by a
formula over program variables is satisfied by substituting

values in x for corresponding variables in ϕ. For a predicate
ϕ, we define ¬ϕ = Z |V |\ϕ.

Transition system. We model programs using transition sys-
tems [15].

Definition 2.2 (Transition system). A transition system is

a tuple T = (L,V, ℓinit ,Θinit , 7→), where L is a finite set of

locations; V is a finite set of program variables; ℓinit is the
initial location; Θinit is the set of initial variable valuations;
and 7→ ⊆ L × L × P(Z |V | × Z |V |) is a finite set of transitions.
Each transition is defined as an ordered triple τ = (l , l ′, ρτ ),

with l its source and l ′ the target location, and the transition
relation ρτ ⊆ Z |V | × Z |V | . The transition relation is usually

given by an assertion over V and V ′, where V represents the

source-state variables and V ′ the target-state variables.

Each program P naturally defines a transition systemT , with
each transition relation given by an assertion over program
variables. Its construction is standard and we omit it. The
only difference is that here ℓinit will correspond to the first
non-assignment command in the program code, whereas
the sequence of assignments preceding ℓinit specifies Θinit

(unspecified variables may take any value). Hence Θinit will
also be an assertion. For transition systems derived from
programs, we assume the existence of a special terminal

location ℓout , which represents a žfinalž line of the program
code. It has a single outgoing transition which is a self-loop
with a transition relation ρ = {(x, x) | x ∈ Z |V |}.
A configuration (or state) of a transition system T is an or-
dered pair (l , x) where l is a location and x is a vector of
variable valuations. A configuration (l ′, x′) is a successor of a
configuration (l , x) if there is a transition τ = (l , l ′, ρτ ) with
(x, x′) ∈ ρτ . The self-loop at ℓout allows us to without loss of
generality assume that each configuration has at least one
successor in a transition system T derived from a program.
Given a configuration c, a finite path from c in T is a finite
sequence of configurations c = (l0, x0), . . . , (lk , xk ) where
for each 0 ≤ i < k we have that (li+1, xi+1) is a successor
of (li , xi ). A run (or execution) from c in T is an infinite se-
quence of configurations whose every finite prefix is a finite
path from c. A configuration is said to be initial if it belongs
to the set {(ℓinit , x) | x |= Θinit }. A configuration (l , x) is
reachable from c if there is a finite path from c with the last
configuration (l , x). When we omit specifying the configura-
tion c, we refer to a finite path, execution and reachability
from some initial configuration. A configuration (l , x) is said
to be terminal if l = ℓout .

Example 2.3. The transition system for our running ex-
ample is presented in Fig. 1 center. It contains 6 locations
L = {l0, l1, l2, l3, l4, ℓout} with ℓinit = l0, and two program vari-
ablesV = {x ,y}. Since there are no assignments preceding
the initial program location, we have Θinit = Z

2. Locations
are depicted by labeled circles, transitions by directed arrows
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between program locations and their transition relations are
given in the associated rectangular boxes.

Invariants and inductive predicate maps. Given a transition
system T , a predicate map is a map I assigning to each loca-
tion in T a predicate over the program variables. A predicate
map naturally defines a set of configurations in T and we
will freely interchange between the two notions. A predicate
map is of type-(c,d) if it assigns to each program location a
propositional predicate which is a disjunction of d assertions,
each being a conjunction of c polynomial inequalities. For a
predicate map I , we define the complement predicate map
¬I as (¬I )(l) = ¬I (l) for each location l .
A predicate map I is said to be an invariant if for every reach-
able configuration (l , x) in T , we have x |= I (l). Intuitively,
invariants are over-approximations of the set of reachable
configurations in the transition system. A predicate map is
inductive if it is inductive with respect to every transition
τ = (l , l ′, ρτ ), i.e. if for any pair of configurations (l , x) and
(l ′, x′)with x |= I (l) and (x, x′) ∈ ρτ , we also have x′ |= I (l ′).

Termination problem. Given a program and its transition sys-
tem T , we say that a run reaching ℓout is terminating. The
program is said to be terminating if every run in T is ter-
minating. Otherwise it is said to be non-terminating. One
witness to non-termination can be a configuration that is
reachable but from which there are no terminating execu-
tions. We call such configuration diverging.

Example 2.4. Consider again the running example in Fig. 1.
For any initial configuration with x ≥ 9, executions that
always assign x := 9 when passing the non-deterministic
assignment are non-terminating. On the other hand, the ex-
ecution that assigns x := 0 in the non-deterministic assign-
ment enters the outer loop only once and then terminates.
Thus, no initial configuration is diverging. One can similarly
check that other configurations are also not diverging.

3 Transition System Reversal

We now show that it is possible to žreversež a transition sys-
tem by reversing each of its transitions. This construction is
the core concept of our approach to proving non-termination,
since configurations in the program from which ℓout is reach-
able will be precisely those configurations which can be
reached from ℓout in the reversed transition system. We then
present a sound and complete certificate for non-termination
based on this construction.

Definition 3.1 (Reversed transition system). Given a tran-
sition system T = (L,V, ℓinit ,Θinit , 7→) and a transition
τ = (l , l ′, ρτ ) ∈ 7→, let

ρ ′τ = {(x′, x) | (x, x′) ∈ ρτ }.

If ρτ is given by an assertion over V ∪V ′, ρ ′τ is obtained
from ρτ by replacing each unprimed variable in the defining
assertion for ρτ with its primed counterpart, and vice-versa.

Then for an assertion Θ, we define the reversed transition sys-
tem of T with initial variable valuations Θ as a tuple T r,Θ

=

(L,V, ℓout ,Θ, 7→
r ), where 7→r

= {(l ′, l , ρ ′τ ) | (l , l
′, ρτ ) ∈ 7→}.

Note that this construction satisfies Definition 2.2 and thus
yields another transition system. All notions that were de-
fined before (e.g. configuration, finite path, etc.) are defined
analogously for the reversed transition systems.

Example 3.2. Fig. 1 right shows the reversed transition
system T r,Θ of the program in Fig. 1. Note that for every
transition τ in T for which ρτ is given by a conjunction of an
assertion over unprimed program variables and x ′

= x∧y ′
=

y, after reversing we obtain the conjunction of the same
assertion just now over primed variables and x ′

= x ∧y ′
= y.

Hence, for such τ the transition relation is invariant under
reversing. For example, a transition from l0 to l1 in T has
transition relation x ≥ 9 ∧ x ′

= x ∧ y ′
= y so the reversed

transition has transition relation x ′ ≥ 9 ∧ x = x ′ ∧ y = y ′.
As x ′

= x , this is the same relation as prior to reversal.

The following lemma is the key property of this construction.

Lemma 3.3 (Key property of reversed transition systems).
Let T be a transition system, Θ an assertion and T r,Θ the

reversed transition system of T with initial variable valuations

Θ. Let c and c′ be two configurations. Then c′ is reachable from

c in T if and only if c is reachable from c
′ in T r,Θ.

Proof. We prove that if c′ is reachable from c in T then c

is reachable from c
′ in T r,Θ, the other direction follows

analogously. Suppose that c = (l0, x0), (l1, x1), . . . , (lk , xk ) =

c
′ is a path from c to c

′ in T . Then for each 0 ≤ i <

k there is a transition τi = (li , li+1, ρτi ) in T for which
(xi , xi+1) ∈ ρτi . But then (xi+1, xi ) ∈ ρ ′τi and τ

r
i = (l ′, l , ρ ′τi ),

hence (li , xi ) is a successor of (li+1, xi+1) in T r,Θ. Thus c′ =
(lk , xk ), (lk−1, xk−1), . . . , (l0, x0) = c is a finite path in T r,Θ,
proving the claim. □

Backward Invariants. Lemma 3.3 implies that generating in-
variants for the reversed transition system T r,Θ provides a
way to over-approximate the set of configurations in T from
which some configuration in the set {(ℓout , x) | x |= Θ} is
reachable. This motivates the notion of a backward invariant,
which will be important in what follows.

Definition 3.4 (Backward invariant). For a transition sys-
tem T and an assertion Θ, we say that the predicate map
BI is a backward invariant in T r,Θ if it is an invariant in
T r,Θ. The word backward is used to emphasize that we are
working in the reversed transition system.

We conclude this section with a theorem illustrating the be-
havior of inductive predicate maps under program reversal.

Theorem 3.5. Let T be a transition system, Θ an assertion, I

a predicate map and T r,Θ the reversed transition system. Then

I is inductive in T if and only if ¬I is inductive in T r,Θ.
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l0 : while x ≥ 9 do

l1 : x := ndet()

l2 : y := 10 · x
l3 : while x ≤ y do

l4 : x := x + 1
od

od

ℓ0 ℓout

ℓ1

ℓ2

ℓ3

ℓ4

x < 9 ∧ Ix,y

x ≥ 9 ∧ Ix,y

y′
= y

y′
= 10x ∧ x ′

= x

x ≤ y ∧ Ix,yx ′
= x + 1 ∧ y′

= y

x > y ∧ Ix,y

ℓ0 ℓout

ℓ1

ℓ2

ℓ3

ℓ4

x < 9 ∧ Ix,y

x ≥ 9 ∧ Ix,y

y = y′

y = 10x ′ ∧ x = x ′

x ≤ y ∧ Ix,yx = x ′
+ 1 ∧ y = y′

x > y ∧ Ix,y

Figure 1. Running example, its associated transition system, and its reversed transition system. Ix,y denotes x ′
= x ∧ y ′

= y

and is used for readability.

Proof. We show that I being inductive in T implies that ¬I is
inductive in T r,Θ. The other direction of the lemma follows
analogously.
Let τ r = (l ′, l , ρ ′τ ) be a transition in T r,Θ obtained by revers-
ing τ = (l , l ′, ρτ ) in T . Assume that x′ ∈ ¬I (l ′). To show
inductiveness of ¬I in the reversed transition system, we
take a successor (l , x) of (l ′, x′) in the reversed transition
system with (x′, x) ∈ ρ ′τ , and we need to show that x ∈ ¬I (l).
By definition of the reversed transition we have (x, x′) ∈ ρτ .
So, if on the contrary we had x ∈ I (l), inductiveness of I in
T would imply that x′ ∈ I (l ′). This would contradict the
assumption that x′ ∈ ¬I (l ′). Thus, we must have x ∈ ¬I (l),
and ¬I is inductive in T r,Θ. □

4 Sound and Complete Certificate for
Non-termination

Lemma 3.3 indicates that reversed transition systems are
relevant for the termination problem, as they provide means
to describe configurations from which the terminal location
can be reached. We now introduce the BI-certificate for non-
termination, based on the reversed transition systems and
backward invariants. We show that it is both sound and com-

plete for proving non-termination and hence characterizes
it (i.e. a program is non-terminating if and only if it admits
the certificate). This is done by establishing a connection to
recurrence sets [12, 30], a notion which provides a necessary
and sufficient condition for a program to be non-terminating.

Recurrence set. A recurrence set [30] in a transition system T

is a non-empty set of configurations G which (1) contains
some configuration reachable in T , (2) every configuration
in G has at least one successor in G, and (3) contains no
terminal configurations. The last condition was not present

in [30] and we add it to account for the terminal location
and the self-loop at it, but the definitions are easily seen to
be equivalent. In [30], it is shown that a program is non-
terminating if and only if its transition system contains a
recurrence set. The work in [12] notes that one may without
loss of generality restrict attention to recurrence sets which
contain some initial configuration (which they call open re-

currence sets). Indeed, to every recurrence set one can add
configurations from some finite path reaching it to obtain an
open recurrence set, and there is at least one such path since
each recurrence set contains a reachable configuration.

Closed recurrence set. A closed recurrence set [12] is an open
recurrence set C with the additional property of being in-
ductive, i.e. for every configuration in C each of its suc-
cessors is also contained in C. The work [12, Theorems 1
and 2] shows that closed recurrence sets can be used to de-
fine a sound and complete certificate for non-termination,
which we describe next. Call U = (L,V, ℓinit ,Θinit , 7→U ) an
under-approximation of T = (L,V, ℓinit ,Θinit , 7→) if for ev-
ery (l , l ′, ρuτ ) ∈ 7→U there exists (l , l ′, ρτ ) ∈ 7→ with ρuτ ⊆ ρτ .
Then T contains an open recurrence set if and only if there
is an under-approximationU of T and a closed recurrence
set inU .

Proper under-approximations.We introduce a notion of proper
under-approximation. An under-approximation U of T is
proper if every configuration which has a successor in T

also has at least one successor in U . This is a new concept
and restricts general under-approximations, but it will be
relevant in defining the BI -certificate for non-termination
and establishing its soundness and completeness. The next
lemma is technical and shows that closed recurrence sets
in proper under-approximations are sound and complete
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for proving non-termination, its proof can be found in the
extended version of the paper [11].

Lemma 4.1. Let P be a non-terminating program and T its

transition system. Then there exist a proper under-approximation

U of T and a closed recurrence set C inU .

BI -certificate for non-termination. We introduce and explain
how backward invariants in combination with proper under-
approximations can be used to characterize non-termination.
Suppose P is a program we want to show is non-terminating,
and T is its transition system. Let ReachT(ℓout) be the set of
variable valuations of all reachable terminal configurations
in T . A BI-certificate for non-termination will consist of an
ordered triple (U ,BI ,Θ) of a proper under-approximation U
of T , a predicate map BI and an assertion Θ such that

• Θ ⊇ ReachT(ℓout);
• BI is an inductive backward invariant inU r,Θ;
• BI is not an invariant in T .

Theorem 4.2 (Soundness of our certificate). Let P be a pro-

gram and T its transition system. If there exists a BI -certificate

(U ,BI ,Θ) in T , then P is non-terminating.

Proof sketch. As BI is not an invariant in T , its complement
¬BI contains a reachable configuration c. On the other hand,
BI is inductive inU r,Θ so by Theorem 3.5 ¬BI is inductive in
U . SinceU is proper (and since in transition systems induced
by programs every configuration has a successor), one may
take a finite path reaching c and inductively keep picking
successors inU from c, obtaining an execution whose all but
finitely many configurations are in ¬BI . By the definition
of Θ and since BI is an invariant forU r,Θ, ¬BI contains no
reachable terminal configuration hence this execution is non-
terminating. Details can be found in the extended version of
the paper [11]. □

Example 4.3. Consider again the running example and its
transition system T presented in Fig. 1. Let U be the under-
approximation of T defined by restricting the transition
relation of the non-deterministic assignment x := ndet()

as ρUτ = {(x ,y,x ′,y ′) | x ′
= 9,y ′

= y}. Intuitively, U is a
transition system of the program obtained by replacing the
non-deterministic assignment in P with x := 9. Define a
predicate map BI as

BI (l) =





(1 ≥ 0) if l = ℓout
(x ≤ 8) if l ∈ {l0, l2, l3, l4}

(−1 ≥ 0) if l = l1,

i.e. BI (l1) is empty, and let Θ = Z2. U r,Θ can be obtained
from T r,Θ by replacing the transition relation from l2 to l1
with x = 9∧y = y ′ in Fig. 1 right. ThenU is proper, and BI is
an inductive backward invariant forU r,Θ since no transition
can increase x . On the other hand, (l0, 9, 0) is reachable in
T but not contained in BI , thus BI is not an invariant in T .

Hence (U ,BI ,Θ) is a BI -certificate for non-termination and
the program is non-terminating.

By making a connection to closed recurrence sets, the follow-
ing theorem shows that backward invariants in combination
with proper under-approximations of T also provide a com-

plete characterization of non-termination.

Theorem 4.4 (Complete characterization of non-termina-
tion). Let P be a non-terminating program with transition

system T . Then T admits a proper under-approximation U

and a predicate map BI such that BI is an inductive backward

invariant in the reversed transition system U r,Z|V|
, but not an

invariant in T .

Proof sketch. Since P is non-terminating, from Lemma 4.1
we know that T admits a proper under-approximation U

and a closed recurrence set C inU . For each location l in T ,
let C(l) = {x | (l , x) ∈ C}. Define the predicate map BI as
BI (l) = ¬C(l) for each l . Then, using Theorem 3.5 one can
show that U and BI satisfy the conditions of the theorem.
For details, see the extended version of the paper [11]. □

Remark 1 (Connection to the pre-operator). There is a certain
similarity between reversal of an individual transition and
application of the pre-operator, the latter being a well known
concept in program analysis. However, in our approach we
introduce reversed transition systems which are obtained by
reversing all transitions (hence the name łprogram reversalž).
This allows us using black-box invariant generation tech-
niques as a one-shot method of computing sets from which
a terminal location can be reached, as presented in the next
section. This is in contrast to approaches which rely on an
iterative application of the pre-operator.

5 Algorithm for Proving Non-termination

We now present our algorithm for proving non-termination
based on program reversing and BI -certificates introduced in
Section 4. It uses a black box constraint solving-basedmethod
for generating (possibly disjunctive) inductive invariants, as
in [10, 15, 29, 34ś36, 42, 43]. This is a classical approach to
invariant generation and it fixes a template for the invariant
(i.e. a type-(c,d) propositional predicate map as well as an
upper bound D on the degree of polynomials, where c , d and
D are provided by the user), introduces a fresh variable for
each template coefficient, and encodes invariance and induc-
tiveness conditions as existentially quantified constraints
on template coefficient variables. The obtained system is
then solved and any solution yields an inductive invariant.
Moreover, the method is relatively complete [10, 42, 43] in
the sense that every inductive invariant of the fixed tem-
plate and maximal polynomial degree is a solution to the
system of constraints. Efficient practical approaches to poly-
nomial inductive invariant generation have been presented
in [35, 36].
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We first introduce resolution of non-determinism which
induces a type of proper under-approximations of the pro-
gram’s transition system of the form that allows searching
for them via constraint solving. We then proceed to our main
algorithm. In what follows, P will denote a program with
polynomial arithmetic and T = (L,V, ℓinit ,Θinit , 7→)will be
its transition system.

5.1 Resolution of Non-determinism

Aswe saw in Example 2.4, there may exist non-diverging pro-
gram configurations which become diverging when supports
of non-deterministic assignments are restricted to suitably
chosen subsets. Here we define one such class of restric-
tions which žresolvesž each non-deterministic assignment
by replacing it with a polynomial expression over program
variables. Such resolution ensures that the resulting under-
approximation of the program’s transition relation is proper.
Let TNA ⊆ 7→ be the set of transitions corresponding to non-
deterministic assignments in P .

Definition 5.1 (Resolution of non-determinism). A resolu-

tion of non-determinism for T is a map RNA which to each
τ ∈ TNA assigns a polynomial expression RNA(τ ) over pro-
gram variables. It naturally defines a restricted transition

system TRNA which is obtained from T by letting the tran-
sition relation of τ ∈ TNA corresponding to an assignment
x := ndet() be

ρR
NA

τ (x, x′) := (x ′
= RNA(τ )(x)) ∧

∧

y∈V\{x }

y ′
= y.

Note that TRNA is a proper under-approximation of T . If there
exists a resolution of non-determinism RNA and a configura-
tion cwhich is reachable inT but fromwhich no execution in
TRNA terminates, then any such execution is non-terminating
in T as well. We say that any such configuration c is diverg-
ing with respect to (w.r.t.) RNA.

Example 5.2. Looking back at the program in Figure 1,
define a resolution of non-determinism RNA to assign con-
stant expression 9 to the non-deterministic assignment x :=
ndet(). Then every initial configuration with x ≥ 9 becomes
diverging w.r.t. RNA.

5.2 Algorithm

Main idea. To prove non-termination, our algorithm uses a
constraint solving approach to find aBI -certificate. It searches
for a resolution of non-determinism RNA, a propositional
predicate map BI and an assertion Θ such that:

1. Θ ⊇ ReachT(ℓout) (recall that ReachT(ℓout) is the set of
variable valuations of all reachable terminal configu-
rations in T );

2. BI is an inductive backward invariant for the reversed
transition system T r,Θ

RNA ;
3. BI is not an invariant for T .

Need for inductive invariants and safety checking. Using the
aforementioned black box invariant generation, our algo-
rithm encodes the conditions on RNA, BI , and Θ as polyno-
mial constraints and then solves them. However, the method
is only able to generate inductive invariants, which is to say
that encoding žBI is not an invariant for T ž is not possible.
Instead, we modify the third requirement on BI above to get:

1. Θ ⊇ ReachT(ℓout);
2. BI is an inductive backward invariant for T r,Θ

RNA ;
3. BI is not an inductive invariant for T .

The third requirement does not guarantee that we get a
proper BI -certificate. However it guides invariant generation
to search for BI which is less likely to be an invariant for T .
It follows that the algorithm needs to do additional work to
ensure that the triple (RNA,BI ,Θ) is a BI -certificate.

Splitting the algorithm into two checks. The predicate map
BI is not an inductive invariant for T if and only if it has
one of the following properties: either it does not contain
some initial configuration or is not inductive with respect to
some transition in T . For each of these two properties, we
can separately compute BI satisfying it and the properties (1)
and (2) above, followed by a check whether the computed
BI indeed proves non-termination. We refer to these two
independent computations as two checks of our algorithm:

• Check 1 - the algorithm checks if there exist RNA, BI
andΘ as above so that BI does not contain some initial
configuration and conditions (1) and (2) are satisfied.
By Theorem 3.5, BI is inductive for T r,Θ

RNA if and only if
the complement ¬BI is an inductive predicate map for
TRNA . Moreover, since ¬BI contains an initial configu-
ration there is no need for an additional reachability
check to conclude that BI is not an invariant for T .
Hence by fixing Θ = Z

|V | , to prove non-termination
it suffices to check if there exist a resolution of non-
determinism RNA, a predicate map I and an initial con-
figuration c in T such that I contains c, I is inductive
for TRNA and I (ℓout) = ∅.

• Check 2 - the algorithm checks if there exist RNA, Θ
and BI as above so that BI is not inductive in T and
conditions (1) and (2) are satisfied. If a solution is found,
the algorithm still needs to find a configuration in ¬BI

which is reachable in T , via a call to a safety prover.

Algorithm summary. As noted at the beginning of Section 5,
the invariant generation method first needs to fix a template
for the propositional predicate map and the maximal poly-
nomial degree. Thus our algorithm is parametrized by c and
d which are bounds on the template size of propositional
predicate maps (d being the maximal number of disjunctive
clauses and c being the maximal number of conjunctions
in each clause), and by an upper bound D on polynomial
degrees. The algorithm consists of two checks, which can be
executed either sequentially or in parallel:
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Algorithm 1: Proving non-termination

input :A program P , its transition system T ,
predicate map template size (c,d), maximal
polynomial degree D.

output :Proof of non-termination if found, otherwise
žUnknownž

1 set a template for each polynomial defined by
resolution of non-determinism RNA

2 construct restricted transition system TRNA

3 set templates for configuration c and for an invariant
I of type-(c,d)

4 encode Φ1 = ϕc ∧ ϕI,RNA

5 if Φ1 feasible then return Non-termination
6 else

7 set templates for invariant Ĩ of type-(c, 1) and for
a backward invariant BI of type-(c,d)

8 construct reversed transition system T
r, Ĩ (ℓout )

RNA

9 foreach τ ∈ 7→ do set templates for xτ , x′τ
10 encode Φ2 = ϕ Ĩ ∧ ϕBI,RNA ∧

∨
τ ∈ 7→ ϕτ

11 if Φ2 feasible then

12 if ∃ (l , x) Reachable in T with x |= ¬BI (l)

then return Non-termination
13 else return Unknown

14 else return Unknown

Check 1 - the algorithm checks if there exist a resolution
of non-determinism RNA, a predicate map I and an initial
configuration c such that (1) I is an inductive invariant in
TRNA for the single initial configuration c, and (2) I (ℓout) = ∅.
To do this, we fix a template for each of RNA, I and c, and
encode these properties as polynomial constraints:

• For each transition τ inTNA, fix a template for a polyno-
mial RNA(τ ) over program variables of degree at most
D. That is, introduce a fresh template variable for each
coefficient of such a polynomial.

• Introduce fresh variables c1, c2, . . . , c |V | defining the
variable valuation of c. Then substitute these variables
into the assertion Θinit specifying initial configura-
tions in T to obtain the constraint ϕc for c being an
initial configuration.

• Fix a template for the propositional predicate map I of
type-(c,d) and maximal polynomial degreeD. The fact
that I is an inductive invariant for TRNA with the single
initial configuration c and I (ℓout) = ∅ is encoded by
the invariant generation method (e.g. [15, 42]) into a
constraint ϕI,RNA .

The algorithm then tries to solve Φ1 = ϕc ∧ ϕI,RNA using an
off-the-shelf SMT solver. If a solution is found, c is an initial
diverging configuration w.r.t. TRNA , so the algorithm reports
non-termination.

Check 2 - the algorithm checks if there exist a resolution
of non-determinism RNA, an assertion Θ, a predicate map
BI and a transition τ ∈ TNA such that (1) Θ ⊇ ReachT(ℓout),
(2) BI is an inductive backward invariant for T r,Θ

RNA , and (3) BI
is not inductive w.r.t. τ in T . To encode Θ ⊇ ReachT(ℓout),
we introduce another propositional predicate map Ĩ (purely
conjunctive for the sake of efficiency), and impose a require-
ment on it to be an inductive invariant for T . We may then
define the initial variable valuations for T r,Θ

RNA as Θ = Ĩ (ℓout).

The algorithm introduces fresh template variables for RNA,
Ĩ and BI , as well as for a pair of variable valuations xτ and
x
′
τ for each transition τ = (l , l ′, ρτ ) in T and imposes the
following constraints:

• For each transition τ in TNA, fix a template for a poly-
nomial expression RNA(τ ) of degree at most D over
program variables.

• Fix a template for the propositional predicate map Ĩ of
type-(c, 1) (as explained above, for efficiency reasons
we make Ĩ conjunctive) and impose a constraint ϕ Ĩ
that Ĩ is an inductive invariant for T .

• Fix a template for the propositional predicate map BI

of type-(c,d) and impose a constraint ϕBI,RNA that BI

is an inductive backward invariant for T r, Ĩ (ℓout )

RNA .
• For each transition τ in T , the constraint ϕτ encodes
non-inductiveness of BI with respect to τ in T :

x, x
′ |= BI (l) ∧ ρτ ∧ ¬BI (l ′).

The algorithm then solves Φ2 = ϕ Ĩ ∧ ϕBI,RNA ∧
∨

τ ∈ 7→ ϕτ by
using an SMT-solver. If a solution is found, the algorithm
uses an off-the-shelf safety prover to check if there exists a
configuration in ¬BI reachable in T . Such configuration is
then diverging w.r.t. TRNA , so we report non-termination.

The pseudocode for our algorithm is shown in Algorithm 1.
The following theorem proves soundness of our algorithm,
and its proof can be found in the extended version of the
paper [11].

Theorem 5.3 (Soundness). If Algorithm 1 outputs žNon-

terminationž for some program P , then P is non-terminating.

Remark 2 (Algorithm termination). Our algorithm might not
always terminate because either the employed SMT-solver or
the safety prover might diverge. Thus, in practice one needs
to impose a timeout in order to ensure algorithm termination.

5.3 Demonstration on Examples

We demonstrate our algorithm on two examples illustrating
the key aspects. In the extended version [11], we present
an example demonstrating an application of our method on
program whose all non-terminating traces are aperiodic.

Example 5.4. Consider again our running example in Fig. 1.
We demonstrate that Check 1 of our algorithm can prove
that it is non-terminating. Define the resolution of non-
determinism RNA to assign a constant expression 9 to the
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n := 0, b := 0, u := 0
l0 : while b == 0 and n ≤ 99 do

l1 : u := ndet()

l2 : i f u ≤ −1 then

l3 : b := −1
e l se i f u == 0 then

l4 : b := 0
l5 : e l se b := 1 f i

l6 : n := n + 1
l7 : i f n ≥ 100 and b ≥ 1 then

l8 : while true do

l9 : skip

od f i od

Figure 2. An example of a program without an initial di-
verging configuration with respect to any resolution of non-
determinism that uses polynomials of degree less than 100,
but for which Check 2 proves non-termination.

non-deterministic assignment, an initial configuration c =

(ℓinit , 9, 0), and a propositional predicate map I as I (ℓ) = (x ≥

9) for ℓ , ℓout and I (ℓout) = ∅. Then I is an inductive invari-
ant for TRNA with the initial configuration c. Thus the system
of polynomial constraints constructed by Check 1 is feasible,
proving that this program is non-terminating.

Example 5.5. Consider the program in Fig. 2. Its initial vari-
able valuation is given by the assertion (n = 0∧b = 0∧u = 0),
and a program execution is terminating so long as it does
not assign 0 to u in the first 99 iterations of the outer loop,
and then at least 1 in the 100-th iteration. Thus, if the ini-
tial configuration was diverging with respect to a resolution
of non-determinism which resolves the non-deterministic
assignment of u by a polynomial p(n,b,u), this polynomial
would need to satisfy p(n, 0, 0) = 0 for n = 0, 1, . . . , 98 and
p(99, 0, 0) ≥ 1. Hence, the degree of p would have to be at
least 100, and this program has no initial diverging configura-
tion with respect to any resolution of non-determinism that
is feasible to compute by using the Check 1 of our algorithm.

We now show that Check 2 can prove non-termination of
this program using only polynomials of degree 0, i.e. constant
polynomials. Define RNA, Θ, BI and τ as follows:

• RNA assigns constant expression 1 to the assignment
of u at ℓ1;

• Ĩ (ℓ) = (0 ≤ n ≤ 100) for each location ℓ;

• BI is a propositional predicate map defined via

BI (ℓ) =





(0 ≤ n ≤ 100) if ℓ = ℓout
(n ≤ 100) if ℓ = ℓ0
(n ≤ 99) ∨ (n = 100 ∧ b ≤ 0) if ℓ = ℓ7
(n ≤ 98) ∨ (n = 99 ∧ b ≤ 0) if ℓ = ℓ6
(n ≤ 98) if ℓ ∈ {ℓ1, ℓ5}

(n ≤ 99) if ℓ ∈ {ℓ3, ℓ4}

(n ≤ 98) ∨ (n = 99 ∧ u ≤ 0) if ℓ = ℓ2
(1 ≤ 0) if ℓ ∈ {l8, l9};

• τ is the transition from ℓ0 to ℓ1.
To show that these RNA, Ĩ , BI and τ satisfy each condition in
Check 2, we note that:
(1) The set of variable valuations reachable in the program

upon termination is (n,b) ∈ {(n,b) | 1 ≤ n ≤ 99 ∧ b! =
0} ∪ {(100,b) | b ≤ 0}, thus Θ = Ĩ (ℓout) contains it;

(2) BI is an inductive backward invariant forT r, Ĩ (ℓout )

RNA (which
can be checked by inspection of the reversed transition
system in the extended version of the paper [11]);

(3) BI is not inductive w.r.t. τ in T , since (99, 0, 0) ∈ BI (ℓ0)

but the variable valuation (99, 0, 0) obtained by executing
τ in T is not contained in BI (ℓ1).

Thus, these RNA, Ĩ , BI and τ present a solution to the sys-
tem of constraints defined by Check 2. Since the configu-
ration (ℓ1, 99, 0, 0) is reachable in this program by assign-
ing u := 0 in the first 99 iterations of the outer loop, but
(99, 0, 0) < BI (ℓ1), the safety prover will be able to show that
a configuration in ¬BI is reachable. Hence our algorithm is
able to prove non-termination.

5.4 Relative Completeness

At the beginning of Section 5we noted that constraint solving-
based inductive invariant generation is relatively complete [10,
15, 29, 42, 43], in the sense that whenever there is an induc-
tive invariant representable using the given template, the
algorithm will find such an invariant. This means that our
algorithm is also relatively complete in checking whether
the program satisfies properties encoded as polynomial con-
straints in Check 1 and Check 2. Since successful Check 1
does not require a subsequent call to a safety prover, it pro-
vides to the best of our knowledge the first relatively com-

plete algorithm for proving non-termination of programs
with polynomial integer arithmetic and non-determinism.

Theorem 5.6 (Relative completeness). Let P be a program

with polynomial integer arithmetic and T its transition system.

Suppose that T admits a proper under-approximationU which

restricts each non-deterministic assignment to a polynomial

assignment, and a propositional predicate map C which is a

closed recurrence set inU . Then for sufficiently high values of

parameters c ,d andD bounding the template size for invariants
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and the maximal polynomial degree, our algorithm proves non-

termination of the program P .

While relative completeness guarantees in Theorem 5.6 are
the first such guarantees for programswith non-determinism,
they only apply to non-terminating programs that contain
an initial diverging configuration w.r.t. some resolution of
non-determinism. However, Example 5.5 shows that finding
such a configuration might require using very high degree
polynomials to resolve non-determinism, and in general such
a configuration need not exist at all in non-terminating pro-
grams. In order to ensure catching non-termination bugs
in such examples, an algorithm with stronger guarantees
is needed. To that end, we propose a modification of our
algorithm for programs in which non-determinism appears
only in branching. The new algorithm provides stronger rela-
tive completeness guarantees that can detect non-terminating
behavior in programs with no initial diverging configura-
tions or for which Check 1 is not practical, including the
program in Example 5.5 (that is, its equivalent version in
which non-determinism appears only in branching as we
demonstrate in Example 5.8).

To motivate this modification, let us look back at the con-
ditions imposed on the predicate map BI by our algorithm.
BI is required not to be an invariant, so that ¬BI contains
a reachable configuration. However, this reachability con-
dition cannot be encoded using polynomial constraints, so
instead we require that ¬BI is not an inductive invariant,
and then employ a safety prover which does not provide
any guarantees. Our modification is based on the recent
work of [1], which presents a relatively complete method
for reachability analysis in polynomial programs with non-
determinism appearing only in branching.

Relatively complete reachability analysis.We give a high level
description of the method in [1]. Let P be a program with
non-determinism appearing only in branching, T its tran-
sition system, and C a set of configurations defined by a
propositional predicate map. The goal of the analysis is to
check whether some configuration in C is reachable in T .
The witness for the reachability of C in [1] consists of

(1) an initial configuration c, (2) a propositional predicate
mapC⋄ that contains c, and (3) a polynomial ranking function
f C for C⋄ with respect to C . A polynomial ranking function

for C⋄ with respect to C is a map f C that to each location
ℓ ∈ L assigns a polynomial expression f C (l) over program
variables, such that each configuration (l , x) ∈ C⋄\C has a
successor (l ′, x′) ∈ C⋄ with

f C (l)(x) ≥ f C (l ′)(x′) + 1 ∧ f C (l)(x) ≥ 0,

where C⋄ and C are treated as sets of configurations. Intu-
itively, this means that for each configuration (l , x) ∈ C⋄\C ,
the value of f C at this configuration is non-negative and
there is a successor of this configuration in C⋄ at which the
value of f C decreases by at least 1. If the program admits

such a witness, then we may exhibit a path from c to a con-
figuration in C by inductively picking either a successor in
C (and thus proving reachability), or a successor in C⋄\C

along which f C decreases by 1. As the value of f C in c is
finite and f C is non-negative on C⋄\C , decrease can happen
only only finitely many times and eventually we will have to
pick a configuration in C . It is further shown in [1] that any
reachable C admits a witness in the form of an initial config-
uration, a predicate map and a (not necessarily polynomial)
ranking function.
For programs with non-determinism appearing only in

branching, it is shown in [1] that all the defining properties
of c,C⋄ and f C can be encoded using polynomial constraints.
Thus [1] searches for a reachability witness by introducing
template variables for c, C⋄ and f C , encoding the defining
properties using polynomial constraints and then reducing
to constraint solving. The obtained constraints are at most
quadratic in the template variables, as was the case in our
algorithm for proving non-termination. Moreover, their anal-
ysis is relatively complete - if a witness of reachability in the
form of an initial configuration c, a propositional predicate
map C⋄ and a polynomial ranking function f C exists, the
method of [1] will find it.

Modification of our algorithm. The modified algorithm is sim-
ilar to Check 2, with only difference being that we encode
reachability of ¬BI using polynomial constraints instead of
requiring it not to be inductive in T . The algorithm intro-
duces a template of fresh variables determining RNA, Ĩ and BI .
In addition, it introduces a template of fresh variables deter-
mining an initial configuration c, a propositional predicate
map C⋄ and a polynomial ranking function f ¬BI . The algo-
rithm then imposes the following polynomial constraints:

• Encode the same conditions on RNA, Ĩ and BI as in
Check 2 to obtain Φbackward.

• Introduce fresh variables c1, c2, . . . , c |V | defining the
variable valuation of c. Then substitute these variables
into the assertion Θinit specifying initial configura-
tions in T to obtain the constraint ϕc for c being an
initial configuration.

• Fix a template for the propositional predicate map
C⋄ of type-(c,d) and maximal polynomial degree D.
Encode that C⋄ contains c into the constraint ϕc,C⋄ .

• For each location ℓ in T , fix a template for a polyno-
mial f ¬BI (ℓ) over program variables of degree at most
D. That is, introduce a fresh template variable for each
coefficient of such a polynomial.

• Using the method of [1], for each locaiton ℓ encode
the following condition

∀x.x |= C⋄(ℓ) ⇒ x ∈ ¬BI (ℓ) ∨
(( ∨

τ=(ℓ,ℓ′,ρτ )

x
′ |= C⋄(ℓ′)∧

ρτ (x, x
′) ∧ f ¬BI (ℓ)(x) ≥ f ¬BI (ℓ′)(x′) + 1

)
∧ f ¬BI (ℓ)(x) ≥ 0

)
,
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as a polynomial constraint ϕℓ,reach. Note that, since we
assume that non-determinism appears only in branch-
ing and not in variable assignments, for any x there
is at most one variable valuation x

′ such that ρτ (x, x′)
is satisfied. Thus, the above condition indeed encodes
the condition that, if (ℓ, x) < ¬BI , then at least one
successor configuration satisfies the ranking function
property. It is shown in [1] that this condition can be
encoded into existentially quantified polynomial con-
straints over template variables, by using analogous
semi-algebraic techniques that are used for inductive
invariant generation in [10, 15] and which we use for
invariant synthesis. We then take Φreach = ∧ℓ ϕℓ,reach.

The algorithm then tries to solve Φmodified = Φbackward ∧ ϕc ∧

ϕc,C⋄ ∧ Φreach.
Soundness of the modified algorithm follows the same

argument as the proof of Theorem 5.3. The following theo-
rem presents the stronger relative completeness guarantees
provided by the modified algorithm.

Theorem 5.7 (Stronger relative completeness). Let P be a

program with polynomial integer arithmetic, in which non-

determinism appears only in branching. Let T be its transition

system. Suppose that T admits

1. a proper under-approximation U restricting each non-

deterministic assignment to a polynomial assignment,

2. a propositional predicate map Ĩ which is an inductive

invariant in T ,

3. a propositional predicate map BI which is an inductive

backward invariant in T
r, Ĩ (ℓout )
U

, and

4. a witness of reachability of ¬BI as in [1].

Then for high enough values of c , d and D bounding the tem-

plate size for invariants and the polynomial degree, our algo-

rithm proves non-termination of the program P .

Remark 3. The method of [1] encodes constraints for pro-
grams in which non-determinism appears only in branching,
whereas in this work we talked about constraint encoding for
programs in which non-determinism appears only in assign-
ments. This is not an issue in the modified algorithm - we
can always start with a program in which non-determinism
appears only in branching to encode the reachability wit-
ness constraints, and then apply the trick from Section 2 to
replace each non-deterministic branching by an assignment.

Example 5.8. We show that the relative completeness guar-
antees of the modified algorithm apply to the program ob-
tained from Fig. 2 by replacing the non-deterministic assign-
ment of u and the subsequent conditional branching with
the non-deterministic branching given by if ∗ then. Specif-
ically, the new program is obtained by removing the non-
deterministic assignment of u from the program, merging
ℓ1 and ℓ2 in Fig. 5.5 into the new location ℓ1,2 and replac-
ing the conditional by the non-deterministic branching. The
reachability constraints for the modified algorithm are then

encoded with respect to this new program. On the other
hand, to encode the constraints as in Check 2, we consider
the original program in Fig. 2.
To see that this program satisfies the conditions of The-

orem 5.7, we define RNA, Ĩ and BI as in Example 5.5. Then,
one witness of reachability of ¬BI (where we identify ℓ1,2
with ℓ1) is defined by c = (ℓinit , 0, 0, 0),

C⋄(ℓ) =




(0 ≤ n ≤ 99 ∧ b = 0 ∧ u = 0) if ℓ ∈ {ℓ0, ℓ1,2}

(0 ≤ n ≤ 98 ∧ b = 0 ∧ u = 0) if ℓ ∈ {ℓ4, ℓ6}

(1 ≤ n ≤ 99 ∧ b = 0 ∧ u = 0) if ℓ = ℓ7
(1 ≤ 0) otherwise;

and

f ¬BI (ℓ,n,b,u) =





5 · (100 − n) + 3 if ℓ = ℓ0
5 · (100 − n) + 2 if ℓ = ℓ1,2
5 · (100 − n) + 1 if ℓ = ℓ4
5 · (100 − n) + 0 if ℓ = ℓ6
5 · (100 − n) + 4 if ℓ = ℓ7
0 otherwise;

To see that this is indeed the witness of reachability of ¬BI ,
observe C⋄ contains precisely the set of all configurations
along the path from c = (ℓinit , 0, 0, 0) to the configuration
(ℓ1, 99, 0, 0) in ¬BI that we described in Example 5.5 (recall,
for reachability analysis we identify ℓ1 with ℓ1,2 in the mod-
ified program in which non-determinism appears only in
branching), and that f ¬BI is non-negative along this path
and decreases by exactly 1 in each step along the path.

6 Experiments

We present a prototype implementation of our algorithm
in our tool RevTerm. Our implementation is available at
https://github.com/ekgma/RevTerm.git. We follow a stan-
dard approach to invariant generation [10, 15, 29] which
only fixes predicate map templates at cutpoint locations.
For safety prover we use CPAchecker [3] and for constraint
solving we use three SMT-solvers: Barcelogic 1.2 [4], Math-
SAT5 [14] and Z3 [22].

Since non-determinism in all our benchmarks appears in
variable assignments only, we implemented only our main
algorithm and not themodified algorithmwith stronger guar-
antees for programs with branching-only non-determinism.

Benchmarks. We evaluated our approach on benchmarks
from the category Termination of C-Integer Programs of the
Termination and Complexity Competition (TermComp‘19
[26]). The benchmark suite consists of 335 programs with
non-determinism: 111 non-terminating, 223 terminating, and
the Collatz conjecture for which termination is unknown.We
comparedRevTerm against the best state-of-the-art tools that
participated in this category, namely AProVE [25], Ultimate
[13], VeryMax [5], and also LoAT [24].
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Table 1. Experimental results with evaluation performed
on the first platform. The NO/YES/MAYBE rows contain
the total number of benchmarks which were proved non-
terminating, terminating, or for which the tool proved nei-
ther, respectively. The next row contains the number of
benchmarks proved to be non-terminating only by the re-
spective tool. We also report the average and standard devia-
tion (std. dev.) of runtimes. The last two rows show the run-
time statistics limited to successful non-termination proofs.

RevTerm Ultimate VeryMax

NO 107 97 103
YES 0 209 213

MAYBE 228 29 19
Unique NO 3 1 0
Avg. time 1.2s 5.0s 3.7s
Std. dev. 3.0s 3.7s 7.3s

Avg. time for NO 1.2s 4.4s 10.6s
Std. dev. for NO 3.0s 3.8s 9.4s

Configurations of our tool. Recall that our algorithm is pa-
rameterized by the template size for propositional predicate
maps and the maximal polynomial degree. Also, it performs
two checks which can be run sequentially or in parallel.
Thus a configuration of RevTerm is defined by (a) the choice
of whether we are running Check 1 or Check 2, (b) the tem-
plate size (c,d) for propositional predicate maps and the
maximal polynomial degree D, and (c) the choice of an SMT-
solver. Our aim is to compare our algorithm to other existing
approaches to non-termination proving and demonstrate
generality of its relative completeness guarantees, rather
than develop an optimized tool. Hence we test each configu-
ration separately and count the total number of benchmarks
that were proved to be non-terminating by at least one of the
configurations. We consider configurations for both checks,
each of the three SMT-solvers, and all template sizes in the
set {(c,d,D) | 1 ≤ c ≤ 5, 1 ≤ d ≤ 5, 1 ≤ D ≤ 2}.

Experimental results. Our experiments were run on two plat-
forms, and we include the results for each of them in separate
tables. The first platform is Debian, 128 GB RAM, Intel(R)
Xeon(R) CPU E5-1650 v3 @ 3.50GHz, 12 Threads. The exper-
imental results are presented in Table 1 and the timeout for
each experiment was 60s.

We could not install the dependencies for AProVE on the
first platform and LoAT does not support the input format of
benchmarks, so we also evaluate all tools except for LoAT on
StarExec [44] which is a platform on which TermComp‘19
was run. We take the results of the evaluation of LoAT on
StarExec from [24] which coupled it with AProVE for con-
version of benchmarks to the right input format. Note how-
ever that the solver Barcelogic 1.2 is not compatible with
StarExec so the number of non-terminationsRevTerm proves

is smaller compared to Table 1. The experimental results
are presented in Table 2, and the timeout for each exper-
iment was 60s. The timeout in both cases is on wallclock
time and was chosen to match that in [24]. We note that
in TermComp‘19 the timeout was 300s and Ultimate proved
100 non-terminations, whereasAProVE andVeryMax proved
the same number of non-terminations as in Table 2.
From Tables 1 and 2 we can see that RevTerm outper-

forms other tools in terms of the number of proved non-
terminations. The average time for RevTerm is computed by
taking the fastest successful configuration on each bench-
mark, so the times indicate that running multiple config-
urations in parallel would outperform the state-of-the-art.
Since AProVE, Ultimate and VeryMax attempt to prove ei-
ther termination or non-termination of programs, we include
both their average times for all solved benchmarks and for
non-termination proofs only.

Performance by configuration. We now discuss the perfor-
mance of each configuration based on whether it runs Check
1 or Check 2 and based on which SMT-solver it uses. For
the purpose of this comparison we only consider evaluation
on the first platform which supports Barcelogic 1.2. Com-
parison of configurations in terms of the total number of
solved benchmarks is presented in Table 3. We make two
observations:

• Configurations using Check 1 prove 103 out of 112 non-
terminations, which matches the performance of all
other tools. This means that the relative completeness
guarantees provided by our approach are quite general.

• Even though some SMT-solvers performwell and solve
many benchmarks, none of them reaches the number
107. This means that our performance is dependent
on the solver choice and designing a successful tool
would possibly require multiple solvers. For example,
from our results we observed that MathSAT5 performs
particularly well for Check 1 with templates of small
size (c,d ∈ {1, 2}), while Barcelogic 1.2 is best suited
for templates of larger size (with c ≥ 3) and for Check 2.
While this could be seen as a limitation of our approach,
it also implies that our algorithm would become even
more effective with the improvement of SMT-solvers.

Finally, in the extended version [11] we present a comparison
of configurations based on the template sizes for proposi-
tional predicate maps. A key observation there is that for
any benchmark that RevTerm proved to be non-terminating,
it was sufficient to use a template for predicate maps with
c ≤ 3, d ≤ 2 andD ≤ 2. This implies that with a smart choice
of configurations, it suffices to run a relatively small number
of configurations which if run in parallel would result in a
tool highly competitive with the state-of-the-art.
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Table 2. Experimental results with evaluation performed on
StarExec [44]. The meaning of data is the same as in Table 1.

RevTerm LoAT AProVE Ultimate VeryMax

NO 103 96 99 97 102
YES 0 0 216 209 212

MAYBE 232 239 20 29 21
Unique NO 2 1 0 0 0
Avg. time 1.8s 2.6s 4.2s 7.4s 3.8s
Std. dev. 6.6s 0.9s 4.1s 4.9s 7.4s

Avg. time NO 1.8s 2.6s 5.0s 7.0s 10.8s
Std. dev. NO 6.6s 0.9s 3.9s 7.1s 9.5s

Table 3.Comparison of configurations based on which
check they run and the SMT-solver used.

Barcelogic MathSAT5 Z3 Total
1.2

Check 1 84 98 80 103
Check 2 69 54 63 74
Total 96 98 82 107

7 Related Work

Non-termination proving. A large number of techniques for
proving non-termination consider lasso-shaped programs,
which consist of a finite prefix (or stem) followed by a single
loop without branching [30, 39]. Such techniques are suit-
able for being combined with termination provers [31]. Many
modern termination provers repeatedly generate traceswhich
are then used to refine the termination argument in the form
of a ranking function, either by employing safety provers [19]
or by checking emptiness of automata [32].When refinement
is not possible, a trace is treated like a lasso program and
the prover would try to prove non-termination. However,
lassos are not sufficient to detect aperiodic non-termination,
whereas our approach handles it. Moreover, programs with
nested loops typically contain infinitely many lassos which
may lead to divergence, and such methods do not provide
relative completeness guarantees.

TNT [30] proves non-termination by exhaustively search-
ing for candidate lassos. For each lasso, it searches for a recur-
rence set (see Section 4) and this search is done via constraint
solving. The method does not support non-determinism.

Closed recurrence sets (see Section 4) are a stronger notion
than the recurrence sets, suited for proving non-termination
of non-deterministic programs. The method for computing
closed recurrent sets in [12] was implemented in T2 and it
uses a safety prover to eliminate terminating paths iteratively
until it finds a program under-approximation and a closed
recurrence set in it. The method can detect aperiodic non-
termination. However it is likely to diverge in the presence
of many loops, as noted in [37].

The method in [37] was implemented in VeryMax [5] and
it searches for witnesses to non-termination in the form of
quasi-invariants, which are sets of configurations that can-
not be left once they are entered. Their method searches for
a quasi-invariant in each strongly-connected subgraph of
the program by using Max-SMT solving. Whenever a quasi-
invariant is found, safety prover is used to check its reacha-
bility. The method relies on multiple calls to a safety prover
and does not provide relative completeness guarantees.

AProVE [25] proves non-termination of Java programs [9]
with non-determinism. It uses constraint solving to find a
recurrence set in a given loop, upon which it checks reacha-
bility of the loop. The key limitation of this approach is that
for programs with nested loops for which the loop condition
is not a loop invariant, it can only detect recurrence sets with
a single variable valuation at the loop head.

An orthogonal approach to recurrence sets was presented
in [39]. It considers lasso-shaped programs with linear arith-
metic and represents infinite runs as geometric series. Their
method provides relative completeness guarantees for the
case of deterministic lasso-shaped programs. It also supports
non-determinism, but does not provide relative complete-
ness guarantees. The method has been implemented as a
non-termination prover for lasso traces in Ultimate [13].
The method in [45] tries to prove either termination or

non-termination of programs with non-determinism by mak-
ing multiple calls to a safety prover. For each loop, a termi-
nation argument is incrementally refined by using a safety
prover to sample a terminating trace that violates the ar-
gument. Once such terminating traces cannot be found, a
safety prover is again used to check the existence of non-
terminating traces in the loop.
The work of [29] considers deterministic programs with

linear integer arithmetic. They present a constraint solving-
based method for finding the weakest liberal precondition

(w.l.p.) of a fixed propositional predicate map template. They
then propose a method for proving non-termination which
computes the w.l.p. for the postcondition "false", and then
checks if it contains some initial configuration. While this
approach is somewhat similar to Check 1, encoding and
solving the weakest precondition constraints of a given tem-
plate is computationally expensive and unnecessary for the
purpose of proving non-termination. In Check 1, we do not
impose such a strict condition. Moreover, initial diverging
configurations are not sufficient to prove non-termination of
non-deterministic programs. It is not immediately clear how
one could use w.l.p. calculus to find a diverging configuration
within a loop, like in Example 5.5.
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The tool Invel [46] proves non-termination of Java pro-
grams using constraint solving and heuristics to search for
recurrence sets. It only supports deterministic programs.
In [38] a Hoare-style approach is developed to infer sufficient
preconditions for terminating and non-terminating behavior
of programs. As the paper itself mentions, the approach is
not suitable for programs with non-determinism.

While all of the methods discussed above are restricted to
programs with linear arithmetic, the following two methods
also consider non-linear programs.

The tool Anant [18] proves non-termination of programs
with non-linear arithmetic and heap-based operations. They
define live abstractions, which over-approximate a program’s
transition relation while keeping it sound for proving non-
termination. Their method then over-approximates non-
linear assignments and heap-based commands with non-
deterministic linear assignments using heuristics to obtain
a live abstraction with only linear arithmetic. An approach
similar to [30] but supporting non-determinism is then used,
to exhaustively search for lasso traces and check if they
are non-terminating. The over-approximation heuristic they
present is compatible with our approach and could be used
to extend our method to support operations on the heap.
LoAT [24] proves non-termination of integer programs

by using loop acceleration. If a loop cannot be proved to be
non-terminating, the method tries to accelerate it in order
to find paths to other potentially non-terminating loops.

8 Conclusion and Future Work

We present a new approach for proving non-termination
of polynomial programs with a relative completeness guar-
antee. For programs that do not satisfy this guarantee, our
approach requires safety provers. An interesting direction
of future work would be to consider approaches that can
present stronger completeness guarantees. Another interest-
ing direction would be to consider usefulness of the program
reversal technique to studying other properties in programs.
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