
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2021

On lexicographic proof rules for probabilistic termination On lexicographic proof rules for probabilistic termination

Krishnendu CHATTERJEE

Ehsan Kafshdar GOHARSHADY

Petr NOVOTNÝ

Jiří ZÁREVUCKÝ

Dorde ZIKELIC
Singapore Management University, dzikelic@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
CHATTERJEE, Krishnendu; GOHARSHADY, Ehsan Kafshdar; NOVOTNÝ, Petr; ZÁREVUCKÝ, Jiří; and
ZIKELIC, Dorde. On lexicographic proof rules for probabilistic termination. (2021). Proceedings of the 24th
International Symposium, FM 2021 Virtual Conference, November 20-26. 619-639.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9070

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

On Lexicographic Proof Rules
for Probabilistic Termination

Krishnendu Chatterjee1, Ehsan Kafshdar Goharshady2, Petr Novotný3,
Jiří Zárevúcky3, and Ðorđe Žikelić1(B)

1 IST Austria, Klosterneuburg, Austria
{krishnendu.chatterjee,djordje.zikelic}@ist.ac.at

2 Ferdowsi University of Mashhad, Mashhad, Iran
e.kafshdargoharshady@mail.um.ac.ir

3 Masaryk University, Brno, Czech Republic
{petr.novotny,xzarevuc}@fi.muni.cz

Abstract. We consider the almost-sure (a.s.) termination problem for
probabilistic programs, which are a stochastic extension of classical
imperative programs. Lexicographic ranking functions provide a sound
and practical approach for termination of non-probabilistic programs,
and their extension to probabilistic programs is achieved via lexico-
graphic ranking supermartingales (LexRSMs). However, LexRSMs intro-
duced in the previous work have a limitation that impedes their automa-
tion: all of their components have to be non-negative in all reachable
states. This might result in LexRSM not existing even for simple ter-
minating programs. Our contributions are twofold: First, we introduce
a generalization of LexRSMs which allows for some components to be
negative. This standard feature of non-probabilistic termination proofs
was hitherto not known to be sound in the probabilistic setting, as the
soundness proof requires a careful analysis of the underlying stochas-
tic process. Second, we present polynomial-time algorithms using our
generalized LexRSMs for proving a.s. termination in broad classes of
linear-arithmetic programs.

Keywords: Probabilistic programs · Termination · Martingales

1 Introduction

The extension of classical imperative programs with randomization gives rise
to probabilistic programs (PPs) [45], which are used in multitude of appli-
cations, including stochastic network protocols [7,39,56,75], randomized algo-
rithms [32,66], security [9,10], machine learning, and planning [25,41,44,50,
73,74,77]. The analysis of PPs is an active research area in formal meth-
ods [1,18,20,21,33,51,52,69,70,78]. PPs can be extended with nondetermin-
ism to allow over-approximating program parts that are too complex for static
analysis [30,59].

c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 619–639, 2021.
https://doi.org/10.1007/978-3-030-90870-6_33

620 K. Chatterjee et al.

For non-probabilistic programs, the termination problem asks whether a
given program always terminates. While the problem is well-known to be unde-
cidable over Turing-complete programs, many sound automated techniques that
work well for practical programs have been developed [27,28]. Such techniques
typically seek a suitable certificate of termination. Particularly relevant certifi-
cates are ranking functions (RFs) [15,26,37,71,72,76] mapping program states
into a well-founded domain, forcing a strict decrease of the function value in every
step. The basic ranking functions are 1-dimensional, which is often insufficient
for complex control-flow structures. Lexicographic ranking functions (LexRFs)
are multi-dimensional extensions of RFs that provide an effective approach to
termination analysis [2,15–17,29,43]. The literature typically restricts to linear
LexRFs for linear-arithmetic (LA) programs, as LA reasoning can be more effi-
ciently automated compared to non-linear arithmetic.

For probabilistic programs, the termination problem considers aspects of the
probabilistic behaviors as well. The most fundamental is the almost-sure (a.s.)
termination problem, which asks whether a given PP terminates with proba-
bility 1. One way of proving a.s. termination is via ranking supermartingales
(RSMs), a probabilistic analogue of ranking functions named so due to the con-
nection with (super)martingale stochastic processes [80]. There is a rich body of
work on 1-dimensional RSMs, while the work [1] introduces lexicographic RSMs.
In probabilistic programs, a transition τ available in some state s yields a prob-
ability distribution over the successor states. The conditions defining RSMs are
formulated in terms of the expectation operator E

τ of this distribution. In par-
ticular, lexicographic ranking supermartingales (LexRSMs) of [1] are functions
f mapping program states to R

d, such that for each transition τ there exists a
component 1 ≤ i ≤ d, satisfying, for any reachable state s at which τ is enabled,
the following conditions P-RANK and S-NNEG (with fi the i-component of f
and s |= G(τ) denoting the fact that s satisfies the guard of τ):

1. P-RANK(f, τ) ≡ s |= G(τ) ⇒
(
E

τ [fi(s′)] ≤ fi(s) − 1 and E
τ [fj(s′)] ≤ fj(s)

for all 1 ≤ j < i
)
.

2. S-NNEG(f, τ) ≡ s |= G(τ) ⇒
(
fj(s) ≥ 0 for all 1 ≤ j ≤ d

)
.

(We use the standard primed notation from program analysis, i.e. s′ is the prob-
abilistically chosen successor of s when performing τ .) The P-RANK condition
enforces an expected decrease in lexicographic ordering, while S-NNEG stands
for “strong non-negativity”. Proving the soundness of LexRSMs for proving a.s.
termination is highly non-trivial and requires reasoning about complex stochas-
tic processes [1]. Apart from the soundness proof, [1] also presents an algorithm
for the synthesis of linear LexRSMs.

While LexRSMs improved the applicability of a.s. termination proving, their
usage is impeded by the restrictiveness of strong non-negativity due to which
a linear LexRSM might not exist even for simple a.s. terminating programs.
This is a serious drawback from the automation perspective, since even if such
a program admits a non-linear LexRSM, efficient automated tools that restrict
to linear-arithmetic reasoning would not be able to find it.

On Lexicographic Proof Rules for Probabilistic Termination 621

Fig. 1. Motivating examples. Norm(μ, σ) samples from the normal distribution with
mean μ and std. deviation σ. Uni [a, b] samples uniformly from the interval [a, b]. Loca-
tion labels are the “�i”: one location per loop head and one additional location in (b) so
as to have one assignment per transition (a technical requirement for our approach). A
formal representation of the programs via probabilistic control flow graphs is presented
later, in Sect. 4.

Consider the program in Fig. 1a. By employing simple random-walk argu-
ments, we can manually prove that the program terminates a.s. A linear LexRSM
proving this needs to have a component containing a positive multiple of x at
the head of the inner while-loop (�1). However, due to the sampling from the
normal distribution, which has unbounded support, the value of x inside the
inner loop cannot be bounded from below. Hence, the program does not admit a
linear LexRSM. In general, LexRSMs with strong non-negativity do not handle
well programs with unbounded-support distributions.

Now consider the program in Fig. 1b. It can be again shown that this PP
terminates a.s.; however, this cannot be witnessed by a linear LexRSM: to rank
the “if-branch” transition, there must be a component with a positive multiple
of y in �0. But y can become arbitrarily negative within the else branch, and
cannot be bounded from below by a linear function of x.
Contribution: Generalized Lexicographic RSMs. In the non-probabilistic setting,
strong non-negativity can be relaxed to partial non-negativity (P-NNEG), where
only the components which are to the left of the “ranking component” i (inclu-
sive) need to be non-negative (Ben-Amram–Genaim RFs [12]). We show that
in the probabilistic setting, the same relaxation is possible under additional
expected leftward non-negativity constraint EXP-NNEG. Formally, we say that
f is a generalized lexicographic ranking supermartingale (GLexRSM) if for any
transition τ there is 1 ≤ i ≤ d such that for any reachable state s at which τ is
enabled we have P-RANK(f, τ) ∧ P-NNEG(f, τ) ∧ EXP-NNEG(f, τ), where

P-NNEG(f, τ) ≡ s |= G(τ) ⇒
(
fj(s) ≥ 0 for all 1 ≤ j ≤ i

)

EXP-NNEG(f, τ) ≡ s |= G(τ) ⇒
(
E

τ [fj(s′) · I<j(s′)] ≥ 0 for all 1 ≤ j ≤ i
)
,

with I<j being the indicator function of the set of all states in which a transition
ranked by a component < j is enabled.

We first formulate GLexRSMs as an abstract proof rule for general stochastic
processes. We then instantiate them into the setting of probabilistic programs

622 K. Chatterjee et al.

and define GLexRSM maps, which we prove to be sound for proving a.s. termi-
nation. These results are general and not specific to linear-arithmetic programs.
Contribution: Polynomial Algorithms for Linear GLexRSMs.

1. For linear arithmetic PPs in which sampling instructions use bounded-support
distributions we show that the problem LinGLexPP of deciding whether a
given PP with a given set of linear invariants admits a linear GLexRSM is
decidable in polynomial time. Also, our algorithm computes the witnessing
linear GLexRSM whenever it exists. In particular, our approach proves the
a.s. termination of the program in Fig. 1b.

2. Building on results of item 1, we construct a sound polynomial-time algorithm
for a.s. termination proving in PPs that do perform sampling from unbounded-
support distributions. In particular, the algorithm proves a.s. termination for
our motivating example in Fig. 1a.

Related Work. Martingale-based termination literature mostly focused on
1-dimensional RSMs [18,20,21,23,36,40,42,48,60,61,63]. RSMs themselves can
be seen as generalizations of Lyapunov ranking functions from control the-
ory [14,38]. Recently, the work [49] pointed out the unsoundess of the
1-dimensional RSM-based proof rule in [36] due to insufficient lower bound con-
ditions and provided a corrected version. On the multi-dimensional front, it was
shown in [36] that requiring components of (lexicographic) RSMs to be nonnega-
tive only at points where they are used to rank some enabled transition (analogue
of Bradley-Manna-Sipma LexRFs [15]) is unsound for proving a.s. termination.
This illustrates the intricacies of dealing with lower bounds in the design of a.s.
termination certificates. Lexicographic RSMs with strong non-negativity were
introduced in [1]. The work [24] produces an ω-regular decomposition of pro-
gram’s control-flow graph, with each program component ranked by a different
RSM. This approach does not require a lexicographic ordering of RSMs, but
each component in the decomposition must be ranked by a single-dimensional
non-negative RSM. RSM approaches were also used for cost analysis [6,69,79]
and additional liveness and safety properties [8,19,23].

Logical calculi for reasoning about properties of probabilistic programs
(including termination) were studied in [34,35,54,55] and extended to pro-
grams with non-determinism in [46,52,58,59,70]. In particular [58,59,61] for-
malize RSM-like proof certificates within the weakest pre-expectation (WPE)
calculus [64,65]. The power of this calculus allows for reasoning about complex
programs [61, Sect. 5], but the proofs typically require a human input. The-
oretical connections between martingales and the WPE calculus were recently
explored in [47]. There is also a rich body of work on analysis of probabilis-
tic functional programs, where the aim is typically to obtain a general type
system [4,31,53,57] for reasoning about termination properties (automation for
discrete probabilistic term rewrite systems was shown in [5]).

As for other approaches to a.s. termination, for finite-state programs with
nondeterminism a sound and complete method was given in [33], while [62]
considers a.s. termination proving through abstract interpretation. The work [51]

On Lexicographic Proof Rules for Probabilistic Termination 623

shows that proving a.s. termination is harder (in terms of arithmetical hierarchy)
than proving termination of non-probabilistic programs.

The computational complexity of the construction of lexicographic ranking
functions in non-probabilistic programs was studied in [11,12].
Paper Organization. The paper is split in two parts: the first one is “abstract”,
with mathematical preliminaries (Sect. 2) and definition and soundness proof
of abstract GLexRSMs (Sect. 3). We also present an example showing that
“GLexRSMs” without the expected leftward non-negativity constraint are not
sound. The second part covers application to probabilistic programs: prelimi-
naries on the program syntax and semantics (Sect. 4), a GLexRSM-based proof
rule for a.s. termination (Sect. 5), and the outline of our algorithms (Sect. 6).

2 Mathematical Preliminaries

We use boldface notation for vectors, e.g. x, y, etc., and we denote an i-th
component of a vector x by x[i]. For an n-dimensional vector x, index 1 ≤ i ≤ n,
and number a we denote by x(i ← a) a vector y such that y[i] = a and y[j] = x[j]
for all 1 ≤ j ≤ n, j �= i. For two real numbers a and b, we use a · b to denote
their product.

We assume familiarity with basics of probability theory [80]. A probability
space is a triple (Ω,F ,P), where Ω is a sample space, F is a sigma-algebra of
measurable sets over Ω, and P is a probability measure on F . A random variable
(r.v.) R : Ω → R ∪ {±∞} is an F-measurable real-valued function (i.e. {ω |
R(ω) ≤ x} ∈ F for all x ∈ R) and we denote by E[R] its expected value. A random
vector is a vector whose every component is a random variable. We denote by
X[j] the j-component of a random vector X. A (discrete time) stochastic process
in a probability space (Ω,F ,P) is an infinite sequence of random vectors in this
space. We will also use random variables of the form R : Ω → A for some finite
or countable set A, which easily translates to the real-valued variables.

Let (Ω,F ,P) be a probability space and let X be a random variable. A
conditional expectation of X given a sub-sigma algebra F ′ ⊆ F is any real-
valued random variable Y s.t.: i) Y is F ′-measurable; and ii) for each set A ∈ F ′

it holds that E[X · I(A)] = E[Y · I(A)]. Here, I(A) : Ω → {0, 1} is an indicator
function of A, i.e. function returning 1 for each ω ∈ A and 0 for each ω ∈ Ω \A.

It is known [3] that a random variable satisfying the properties of conditional
expectation exists whenever a) E[|X|] < ∞, i.e. X is integrable, or b) X is
real-valued and nonnegative (though these two conditions are not necessary).
Moreover, whenever the conditional expectation exists it is also known to be a.s.
unique. We denote this a.s. unique conditional expectation by E[X|F ′]. It holds
that for any F ′-measurable bounded r.v. Z, we have E[X · Z|F ′] = E[X|F ′] · Z,
whenever the former conditional expectation exists [80, Theorem 9.7(j)].

A filtration in (Ω,F ,P) is an increasing (w.r.t. set inclusion) sequence
{Ft}∞

t=0 of sub-sigma-algebras of F . A stopping time w.r.t. a filtration {Ft}∞
t=0

is a random variable T taking values in N ∪ {∞} s.t. for every t the set
{T = t} = {ω ∈ Ω | T (ω) = t} belongs to Ft. Intuitively, T returns a time

624 K. Chatterjee et al.

step in which some process should be “stopped”, and the decision to stop is
made solely on the information available at the current step.

3 Generalized Lexicographic Ranking Supermartingales

In this section, we introduce generalized lexicographic ranking supermartingales
(GLexRSMs): an abstract concept that is not necessarily connected to PPs, but
which is crucial for the soundness of our new proof rule for a.s. termination.

Definition 1 (Generalized Lexicographic Ranking Supermartingale).
Let (Ω,F ,P) be a probability space and let (Ft)∞t=0 be a filtration of F . Sup-
pose that T is a stopping time w.r.t. F . An n-dimensional real valued stochastic
process (Xt)∞t=0 is a generalized lexicographic ranking supermartingale for T
(GLexRSM) if:

1. For each t ∈ N0 and 1 ≤ j ≤ n, the random variable Xt[j] is Ft-measurable.
2. For each t ∈ N0, 1 ≤ j ≤ n, and A ∈ Ft+1, the conditional expectation

E[Xt+1[j] · I(A) | Ft] exists.
3. For each t ∈ N0, there exists a partition of the set {T > t} into n subsets

Lt
1, . . . , L

t
n, all of them Ft-measurable (i.e., belonging to Ft), such that for

each 1 ≤ j ≤ n
– E[Xt+1[j] | Ft](ω) ≤ Xt[j](ω) for each ω ∈ ∪n

j′=jL
t
j′ ,

– E[Xt+1[j] | Ft](ω) ≤ Xt[j](ω) − 1 for each ω ∈ Lt
j,

– Xt[j](ω) ≥ 0 for each ω ∈ ∪n
j′=jL

t
j′ ,

– E[Xt+1[j] · I(∪j−1
j′=0L

t+1
j′) | Fi](ω) ≥ 0 for each ω ∈ ∪n

j′=jL
t
j′ , with Lt+1

0 =
{T ≤ t + 1}.

Intuitively, we may think of each ω ∈ Ω as a trajectory of process that evolves
over time (in the second part of our paper, this will be a probabilistic program
run). Then, Xt is a vector function depending on the first t time steps (each
Xt[j] is Ft-measurable), while T is the time at which the trajectory is stopped.
Then in point 3 of the definition, the first two items encode the expected (con-
ditional) lexicographic decrease of Xt, the third item encodes non-negativity of
components to the left (inclusive) of the one which “ranks” ω in step t, and the
last item encodes the expected leftward non-negativity (sketched in Sect. 1). For
each 1 ≤ j ≤ n and time step t ≥ 0, the set Lt

j contains all ω ∈ {T > t} which
are “ranked” by the component j at time t. An instance of an n-dimensional
GLexRSM {Xt}∞

t=0 is a tuple (X∞
t=0, {Lt

1, . . . , L
t
n}∞

t=0), where the second com-
ponent is a sequence of partitions of Ω satisfying the condition in Definition 1.
We say that ω ∈ Ω has level j in step t of the instance ((Xt)∞t=0, (L

t
1, . . . , L

t
n)

∞
t=0)

if T (ω) > t and ω ∈ Lt
j . If T (ω) ≤ t, we say that the level of ω at step t is 0.

We now state the main theorem of this section, which underlies the soundness
of our new method for proving almost-sure termination.

Theorem 1. Let (Ω,F ,P) be a probability space, (Ft)∞t=0 a filtration of F and
T a stopping time w.r.t. F . If there is an instance ((Xt)∞t=0, (L

t
1, . . . , L

t
n)

∞
t=0) of

a GLexRSM over (Ω,F ,P) for T , then P[T < ∞] = 1.

On Lexicographic Proof Rules for Probabilistic Termination 625

In [1], a mathematical notion of LexRSMs is defined and a result for LexRSMs
analogous to our Theorem 1 is established. Thus, the first part of our proof
mostly resembles the proof of Theorem 3.3. in [1], up to the point of defining the
stochastic process (Yt)∞t=0 in Eq. (1). After that, the proof of [1] crucially relies
on nonnegativity of each Xt[j] and Yt at every ω ∈ Ω that is guaranteed by
LexRSMs, and it cannot be adapted to the case of GLexRSMs. Below we first
show that, for GLexRSMs, E[Yt] ≥ 0 for each t ≥ 0, and then we present a very
elegant argument via the Borel-Cantelli lemma [80, Theorem 2.7] which shows
that this boundedness of expectation is sufficient for the theorem claim to hold.

Proof (Sketch of Proof of Theorem 1). We proceed by contradiction. Suppose
that there exists an instance of a GLexRSM but that P[T = ∞] > 0. First,
we claim that there exists 1 ≤ k ≤ n and s,M ∈ N0 such that the set B of all
ω ∈ Ω for which the following properties hold has positive measure, i.e. P[B] > 0:
(1) T (ω) = ∞, (2) Xs[k](ω) ≤ M , (3) for each t ≥ s, the level of ω at step t
is at least k, and (4) the level of ω equals k infinitely many times. The claim is
proved by several applications of the union bound, see the extended version of
the paper [22].

Since B is defined in terms of tail properties of ω (“level is at least k infinitely
many times”) it is not necessarily Ft-measurable for any t. Hence, we define a
stochastic process (Yt)∞t=0 such that each Yt is Ft-measurable, and which satisfies
the desirable properties of (Xt[k])∞t=0 on B.

Let D = {ω ∈ Ω | Xs[k](ω) ≤ M ∧ ω ∈ ∪n
j=kLs

j}. Note that D is Ft-
measurable for t ≥ s. We define a stopping time F w.r.t. (Ft)∞t=0 via F (ω) =
inf{t ≥ s | ω �∈ ∪n

j′=kLt
j′}; then a stochastic process (Yt)∞t=0 via

Yt(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if ω �∈ D,

M, if ω ∈ D, and t < s,

Xt[k](ω), if ω ∈ D, t ≥ s and F (ω) > t,

XF (ω)[k](ω), else.

(1)

A straightforward argument (presented in the extended version of the paper [22])
shows that for each t ≥ s we have E[Yt+1] ≤ E[Yt] − P[Lt

k ∩ D ∩ {F > t}]. By a
simple induction we obtain:

E[Ys] ≥ E[Yt] +
t−1∑

r=s

P[Lr
k ∩ D ∩ {F > r}]. (2)

626 K. Chatterjee et al.

Now, we show that E[Yt] ≥ 0 for each t ∈ N0. The claim is clearly true for t < s,
so suppose that t ≥ s. We can then expand E[Yt] as follows

E[Yt] = E[Yt · I(F = s)] +
t∑

r=s+1

E[Yt · I(F = r)] + E[Yt · I(F > t)]

(Ys ≥ 0 as D ⊆ ∪n
j=kLs

j and Yt(ω) ≥ 0 whenever F (ω) > t)

≥
t∑

r=s+1

E[Yt · I(F = r)] =
t∑

r=s+1

E[Yt · I({F = r} ∩ D)]

(Yt(ω) = XF (ω)[k](ω) whenever ω ∈ D, t ≥ s and F (ω) ≤ t)

=
t∑

r=s+1

E[Xr[k] · I(∪k−1
j=0Lr

j) · I({F > r − 1} ∩ D)]

(properties of cond. exp. & I({F > r − 1} ∩ D) is Fr−1-measurable)

=
t∑

r=s+1

E

[
E[Xr[k] · I(∪k−1

j=0Lr
j) | Fr−1] · I({F > r − 1} ∩ D)

]
≥ 0

(E[Xr[k] · I(∪k−1
j=0Lr

j) | Fr−1](ω) ≥ 0 for ω ∈ {F > r − 1} ⊆ ∪n
j=kLr−1

j).

Plugging into Eq. (2) that E[Yt] ≥ 0, we get E[Ys] ≥
∑t−1

r=s P[L
r
k ∩ D ∩ {F > r}]

for each t ≥ s. By letting t → ∞, we conclude E[Ys] ≥
∑∞

r=s P[L
r
k∩D∩{F > r}].

As Ys ≤ M and Ys = 0 outside D, we know that E[Ys] ≤ M · P[D]. We get

∞∑

r=s

P[Lr
k ∩ D ∩ {F = ∞}] ≤

∞∑

r=s

P[Lr
k ∩ D ∩ {F > r}] ≤ M · P[D] < ∞.

By the Borel-Cantelli lemma, P[Lr
k ∩ D ∩ {F = ∞} for infinitely many r] = 0.

But the event {Lr
k ∩ D ∩ {F = ∞} for infinitely many r} is precisely the set of

all runs ω ∈ Ω for which (1) T (ω) = ∞ (as ω never has level zero by ω ∈ Lr
k

for inf. many k), (2) Xs[k](ω) ≤ M , (3) for each r ≥ s the level of ω at step
t is at least k, and (4) the level of ω is k infinitely many times. Hence, B =
{Lr

k ∩ D ∩ {F = ∞} for infinitely many r} and P[B] = 0, a contradiction. ��

GLexRSMs would be unsound without the expected leftward nonnegativity.

Example 1. Consider a one-dimensional stochastic process (Yt)∞t=0 s.t. Y0 = 1
with probability 1 and then the process evolves as follows: in every step t, if
Yt ≥ 0, then with probability pt = 1

4 · 1
2t we put Yt+1 = Yt − 2

pt
and with

probability 1 − pt we put Yt+1 = Yt + 1
1−pt

. If Yt < 0, we put Yt+1 = Yt. The
underlying probability space can be constructed by standard techniques and we
consider the filtration (Ft)∞t=0 s.t. Ft is the smallest sub-sigma-algebra making
Yt measurable. Finally, consider the stopping time T returning the first point
in time when Yt < 0. Then T < ∞ if and only if the process ever performs the

On Lexicographic Proof Rules for Probabilistic Termination 627

Fig. 2. The pCFGs of the programs presented in Fig. 1. Guards are shown in the
rounded boxes, (absence of a box = guard is true). The update tuples are shown
using variable aliases instead of indexes for better readability. On the left, we have
u1 = y, u2 = x − 1 + Norm(0, 1), and u3 = y − 1. On the right, we have u1 =
y +Uni [−7, 1], u2 = x +Uni [−7, 1], and u3 = y +Uni [−7, 1]

update Yt+1 = Yt − 2
pt

, but the probability that this happens is bounded by
1
4 + 3

4 · 1
8 + 3

4 · 7
8 · 1

16 + · · · < 1
4

∑∞
t=0

1
2t = 1

2 < 1. At the same time, putting
Lt
1 = {Yt ≥ 0} we get that the tuple ((Yt)∞t=0, (L

t
1)

∞
t=0) satisfies all conditions of

Definition 1 apart from the last bullet of point 3.

4 Program-Specific Preliminaries

Arithmetic expressions in our programs are built from constants, program vari-
ables and standard Borel-measurable [13] arithmetic operators. We also allow
sampling instructions to appear on right-hand sides of variable assignments as
linear terms. An expression with no such terms is called sampling-free. We allow
sampling from both discrete and continuous distributions. We denote by D the
set of distributions appearing in the program with each d ∈ D assumed to be
integrable, i.e. EX∼d[|X|] < ∞. This is to ensure that expected value of each d
over any measurable set is well-defined and finite.

A predicate over a set of variables V is a Boolean combination of atomic
predicates of the form E ≤ E′, where E, E′ are sampling-free expressions whose
all variables are from V . We denote by x |= Ψ the fact that the predicate Ψ is
satisfied by substituting values of x for the corresponding variables in Ψ .

We represent probabilistic programs (PPs) via the standard concept of prob-
abilistic control flow graphs (pCFGs) [1,21,23]. Formally, a (pCFG) is a tuple
C = (L, V,Δ,Up, G) where L is a finite set of locations; V = {x1, . . . , x|V |} is
a finite set of program variables; Δ is a finite set of transitions, i.e. tuples of
the form τ = (�, δ), where � is a location and δ is a distribution over successor
locations. Δ is partitioned into two disjoint sets: ΔPB of probabilistic branch-
ing transitions for which |supp(δ)| = 2, and ΔNPB of remaining transitions for
which |supp(δ)| = 1. Next, Up is a function assigning to each transition in
ΔNPB either the element ⊥ (representing no variable update) or a tuple (i, u),
where 1 ≤ i ≤ |V | is a target variable index and u is an update element, which
can be either an expression (possibly involving a single sampling instruction), or
a bounded interval R ⊆ R representing a nondeterministic update. Finally, G is

628 K. Chatterjee et al.

a function assigning a predicate (a guard) over V to each transition in ΔNPB .
Figure 2 presents the pCFGs of our two motivating examples in Fig. 1.

Transitions in ΔPB correspond to the “probabilistic branching” specified by
the if prob(p) then . . . else . . . construct in imperative-style source code [1]. A
program (pCFG) is linear (or affine) if all its expressions are linear, i.e. of the
form b+

∑n
i=1 ai · Zi for constants a1, . . . , an, b and program variables/sampling

instructions Zi. we assume that parameters of distributions are constants, so they
do not depend on program variable values, a common assumption in martingale-
based automated approaches to a.s. termination proving [1,18,21,24,49].

A state of a pCFG C is a tuple (�,x), where � is a location of C and x is a
|V |-dimensional vector of variable valuations. A transition τ is enabled in (�,x)
if τ is outgoing from � and x |= G(τ). A state c′ = (�′,x′) is a successor of a
state c = (�,x) if it can result from c by performing a transition τ enabled in c
(see the extended version of the paper [22] for a formal definition).

A finite path of length k in C is a finite sequence (�0,x0) · · · (�k,xk) of states
such that �0 = �init and for each 0 ≤ i < k the state (�i+1,xi+1) is a successor of
(�i,xi). A run in C is an infinite sequence of states whose every finite prefix is a
finite path. We denote by FpathC and RunC the sets of all finite paths and runs
in C, respectively. A state (�,x) is reachable if there is, for some xinit , a finite
path starting in (�init ,xinit) and ending in (�,x).

The nondeterminism is resolved via schedulers. A scheduler is a function σ
assigning: i) to every finite path ending in a state s, a probability distribution
over transitions enabled in s; and ii) to every finite path that ends in a state in
which a transition τ with a nondeterministic update Up(τ) = (i, R) is enabled,
an integrable probability distribution over R. To make the program dynamics
under a given scheduler well-defined, we restrict to measurable schedulers. This is
standard in probabilistic settings [67,68] and hence we omit the formal definition.

We use the standard Markov Decision Process (MDP) semantics of pCFGs
[1,21,52]. Each pCFG C induces a sample space ΩC = RunC and the standard
Borel sigma-algebra FC over ΩC . Moreover, a pCFG C together with a scheduler
σ, initial location �init , and initial variable valuation xinit uniquely determine a
probability measure P

σ
�init ,xinit

in the probability space (ΩC ,FC ,Pσ
�init ,xinit

) captur-
ing the rather intuitive dynamics of the programs execution: we start in state
(�init ,xinit) and in each step, a transition τ enabled in the current state is selected
(using σ if multiple transitions are enabled). If Up(τ) = (i, u), then the value of
variable xi is changed according to u. The formal construction of Pσ

�init ,xinit
pro-

ceeds via the standard cylinder construction [3, Theorem 2.7.2]. We denote by
E

σ
�init ,xinit

the expectation operator in the probability space (ΩC ,FC ,Pσ
�init ,xinit

).
We stipulate that each pCFG has a special terminal location �out whose

all outgoing transitions must be self-loops. We say that a run
 terminates if it
contains a configuration whose first component is �out . We denote by Terminates
the set of all terminating runs in ΩC . We say that a program represented by a
pCFG C terminates almost-surely (a.s.) if for each measurable scheduler σ and
each initial variable valuation xinit it holds that P

σ
�init ,xinit

[Terminates] = 1.

On Lexicographic Proof Rules for Probabilistic Termination 629

5 GLexRSMs for Probabilistic Programs

In this section, we define a syntactic proof rule for a.s. termination of PPs,
showing its soundness via Theorem 1. In what follows, let C be a pCFG.

Definition 2 (Measurable Map). An n-dimensional measurable map (MM)
is a vector η = (η1, . . . , ηn), where each ηi is a function mapping each location �
to a real-valued Borel-measurable function ηi(�) over program variables. We say
that η is a linear expression map (LEM) if each ηi is representable by a linear
expression over program variables.

The notion of pre-expectation was introduced in [55], was made syntactic in
the Dijkstra wp-style in [64], and was extended to programs with continuous
distributions in [18]. It formalizes the “one-step” expectation operator E

τ we
used on an intuitive level in the introduction. In the extended version of the
paper [22], we generalize the definition of pre-expectation presented in [18] in
order to allow taking expectation over subsets of successor states C (a necessity
for handling the EXP-NNEG constraint). We say that a set S of states in C
is measurable, if for each location � in C we have that {x ∈ R

|V | | (�,x) ∈
S} ∈ B(R|V |), i.e. it is in the Borel sigma-algebra of R|V |. Furthermore, we also
differentiate between the maximal and minimal pre-expectation, which may differ
in the case of non-deterministic assignments in programs and intuitively are equal
to the maximal resp. minimal value of the next-step expectation over all non-
deterministic choices. Let η be a 1-dimensional MM, τ = (�, δ) a transition and S
be a measurable set of states in C. We denote by max-preτ

η,S(s) the maximal pre-
expectation of η in τ given S (i.e. the maximal expected value of η after making
a step from s computed over successor states belonging to S), and similarly we
denote by min-preτ

η,S the minimal pre-expectation of η in τ given S.
As in the case of non-probabilistic programs, termination certificates are

supported by program invariants over-approximating the set of reachable states.
An invariant in C is a function I which to each location � of C assigns a Borel-
measurable set I(�) ⊆ R

|V | such that for any state (�,x) reachable in C it holds
that x ∈ I(�). If each I(�) is given by a conjunction of linear inequalities over
program variables, we say that I is a linear invariant.

GLexRSM-Based Proof Rule for Almost-Sure Termination. Given n ∈ N, we call
a map lev : Δ → {0, 1, . . . , n} a level map. For τ ∈ Δ we say that lev(τ) is its
level. The level of a state is the largest level of any transition enabled at that
state. We denote by S≤j

lev the set of states with level ≤ j.

Definition 3 (GLexRSM Map). Let η be an n-dimensional MM and I an
invariant in C. We say that η is a generalized lexicographic ranking super-
martingale map (GLexRSM map) supported by I, if there is a level map
lev : Δ → {0, 1, . . . , n} such that lev(τ) = 0 iff τ is a self-loop transition at
�out , and for any transition τ = (�, δ) with � �= �out the following conditions
hold:

630 K. Chatterjee et al.

1. P-RANK(η, τ) ≡ x ∈ I(�) ∩ G(τ) ⇒
(
max-preτ

ηlev(τ)
(�,x) ≤ ηlev(τ)(�,x) − 1 ∧

max-preτ
ηj
(�,x) ≤ ηj(�,x) for all 1 ≤ j < lev(τ)

)
;

2. P-NNEG(η, τ) ≡ x ∈ I(�) ∩ G(τ) ⇒
(
ηj(�,x) ≥ 0 for all 1 ≤ j ≤ lev(τ)

)
;

3. EXP-NNEG(η, τ) ≡ x ∈ I(�) ∩ G(τ) ⇒ min-preτ
ηj ,S

≤j−1
lev

(�,x) ≥ 0 for all
1 ≤ j ≤ lev(τ).

A GLexRSM map η is linear (or LinGLexRSM map) if it is also an LEM.

Theorem 2 (Soundness of GLexRSM-maps for a.s. Termination). Let
C be a pCFG and I an invariant in C. Suppose that C admits an n-dimensional
GLexRSM map η supported by I, for some n ∈ N. Then C terminates a.s.

The previous theorem, proved in the extended version of the paper [22],
instantiates Theorem 1 to probability spaces of pCFGs. The instantiation is not
straightforward. To ensure that a scheduler cannot “escape” ranking by intricate
probabilistic mixing of transitions, we prove that it is sufficient to consider deter-
ministic schedulers, which do not randomization among transitions. Also, pre-
vious martingale-based certificates of a.s. termination [1,21,36,40] often impose
either nonnegativity or integrability of random variables defined by measurable
maps in programs to ensure that their conditional expectations exist. We show
that these conditional expectations exist even without such assumptions and in
the presence of nondeterminism. This generalizes the result of [18] to PPs with
nondeterminism.

Remark 1 (Comparison to [49]). The work [49] considers a modular approach.
Given a loop whose body has already been proved a.s. terminating, they show
that the loop terminates a.s. if it admits a 1-dimensional MM satisfying P-RANK
for each transition in the loop, P-NNEG for the transition entering the loop,
and the “bounded expected difference” property for all transitions. Hence, their
approach is suited mainly for programs with incremental variable updates.

Modularity is also a feature of the approaches based on the weakest pre-
expectation calculus [58,59,61].

6 Algorithm for Linear Probabilistic Programs

We now present two algorithms for proving a.s. termination in linear proba-
bilistic programs (LinPPs). The first algorithm considers LinPPs with sampling
from bounded-support distributions, and we show that the problem of deciding
the existence of LinGLexRSM maps for such LinPPs is decidable. Our second
algorithm extends the first algorithm into a sound a.s. termination prover for
general LinPPs. In what follows, let C be a LinPP and I a linear invariant in C.

6.1 Linear Programs with Distributions of Bounded Support

Restricting to linear arithmetic is standard in automated a.s. termination prov-
ing, allowing to encode the existence of the termination certificate into systems of

On Lexicographic Proof Rules for Probabilistic Termination 631

linear constraints [1,18,21,24]. In the case of LinGLexRSM maps, the difficulty
lies in encoding the EXP-NNEG condition, as it involves integrating distribu-
tions in variable updates which cannot always be done analytically. We show,
however, that for LinPPs with bounded-support sampling, we can define another
condition which is easier to encode and which can replace EXP-NNEG. Formally,
we say that a distribution d ∈ D has a bounded support, if there exists N(d) ≥ 0
such that PX∼d[|X| > N(d)] = 0. Here, we use PX∼d to denote the probability
measure induced by a random variable X with the probability distribution d.
We say that a LinPP has the bounded support property (BSP) if all distributions
in the program have bounded support. For instance, the program in Fig. 1b has
the BSP, whereas the program in Fig. 1a does not. Using the same notation as
in Definition 3, we put:

W-EXP-NNEG(η, τ) ≡ x ∈ I(�) ∩ G(τ) ⇒ ∀1 ≤ j ≤ lev(τ) min-preτ
ηj
(�,x) ≥ 0.

(The ‘W’ stands for “weak.”) Intuitively, EXP-NNEG requires nonnegativity of
the expected value of ηj when integrated over successor states of level smaller
than j, whereas the condition W-EXP-NNEG requires nonnegativity of the
expected value of ηj when integrated over all successor states. Since ηj is non-
negative at successor states of level at least j, this new condition is weaker
than EXP-NNEG. Nevertheless, the following lemma shows that in order to
decide existence of LinGLexRSM maps for programs with the BSP, we may
w.l.o.g. replace EXP-NNEG by W-EXP-NNEG for all transitions but for those
of probabilistic branching. The proof of the lemma can be found in the extended
version of the paper [22].

Lemma 1. Let C be a LinPP with the BSP and I be a linear invariant in
C. If a LEM η satisfies conditions P-RANK and P-NNEG for all transitions,
EXP-NNEG for all transitions in ΔPB and W-EXP-NNEG for all other transi-
tions, then η may be increased pointwise by a constant value in order to obtain
a LinGLexRSM map.

Algorithmic Results. Let LinGLexPPbounded be the set of pairs (C, I) of a pCFG
C representing a LinPP with the BSP and a linear invariant I in C, such that C
admits a LinGLexRSM map supported by I.

Theorem 3. There is a polynomial-time algorithm deciding if a tuple (C, I)
belongs to LinGLexPPbounded. Moreover, if the answer is yes, the algorithm
outputs a witness in the form of a LinGLexRSM map of minimal dimension.

The algorithm behind Theorem 3 is a generalization of algorithms in [1,2]
finding LinLexRFs in non-probabilistic programs and LinLexRSM maps in PPs,
respectively. Suppose that we are given a LinPP C = (L, V,Δ,Up, G) with the
BSP and a linear invariant I. Our algorithm stores a set T initialized to all
transitions in C. It then proceeds in iterations to compute new components of
the witness. In each iteration it searches for a LEM η which is required to

1. be nonnegative on each τ = (�, δ) ∈ T , i.e. ∀x.x ∈ I(�)∩ G(τ) ⇒ η(�,x) ≥ 0;

632 K. Chatterjee et al.

2. be unaffecting on each τ = (�, δ) ∈ T , i.e. ∀x.x ∈ I(�) ∩ G(τ) ⇒
max-preτ

η(�,x) ≤ η(�,x);
3. have nonnegative minimal pre-expectation for each τ = (�, δ) ∈ T \ΔPB , i.e.

∀x.x ∈ I(�) ∩ G(τ) ⇒ min-preτ
η(�,x) ≥ 0;

4. if S is the set of states in C whose all enabled transitions have been removed
from T in the previous algorithm iterations, ∀τ = (�, δ) ∈ T ∩ ΔPB , ∀x.x ∈
I(�) ∩ G(τ) ⇒ preτ

η,S(�,x) ≥ 0; and
5. 1-rank the maximal number of transitions in τ ∈ T , i.e. ∀x.x ∈ I(�)∩G(τ) ⇒

max-preτ
η(�,x) ≤ η(�,x) − 1 for as many τ = (�, δ) as possible.

This is done by fixing an LEM template for each location � in C, and converting
the above constraints to an equivalent linear program LPT in template variables
via Farkas’ lemma (FL). The FL conversion (and its extension to strict inequal-
ities [21]) is standard in termination proving and encoding conditions 1–3 and 5
above is analogous to [1,2], hence we omit the details. We show how condition 4
can be encoded via linear constraints in the extended version of the paper [22],
along with the algorithm pseudocode and the proof of its correctness. In each
algorithm iteration, all transitions that have been 1-ranked are removed from T
and the algorithm proceeds to the next iteration. If all transitions are removed
from T , the algorithm concludes that the program admits a LinGLexRSM map
(obtained by increasing the constructed LEM by a constant defined in the proof
of Lemma 1). If in some iteration a new component which 1-ranks at least 1
transition in T cannot be found, the program does not admit a LinGLexRSM
map.

We conclude by showing that our motivating example in Fig. 1b admits a
LinGLexRSM map supported by a very simple linear invariant. Thus, by com-
pleteness, our algorithm is able to prove its a.s. termination.

Example 2. Consider the program in Fig. 1b with a linear invariant I(�0) = true,
I(�1) = x ≥ −7. Its a.s. termination is witnessed by a LEM η(�0, (x, y)) =
(1, x+7, y+7), η(�1, (x, y)) = (1, x+8, y+7) and η(�out , (x, y)) = (0, x+7, y+7).
Since ΔPB = ∅ here, and since P-RANK, P-NNEG and W-EXP-NNEG are
satisfied by η, by Lemma 1, C admits a LinGLexRSM map supported by I.

6.2 Algorithm for General LinPPs

While imposing W-EXP-NNEG lets us avoid integration in LinPPs with the
BSP, this is no longer the case if we discard the BSP.

Intuitively, the problem in imposing the condition W-EXP-NNEG instead of
EXP-NNEG for LinPPs without the BSP, is that the set of states of smaller level
over which EXP-NNEG performs integration might have a very small probability,
however the value of the LinGLexRSM component on that set is negative and
arbitrarily large in absolute value. Thus, a naive solution for general LinPPs
would be to “cut off” the tail events where the LinGLexRSM component can
become arbitrarily negative and over-approximate them by a constant value in
order to obtain a piecewise linear GLexRSM map. However, this might lead to
the jump in maximal pre-expectation and could violate P-RANK.

On Lexicographic Proof Rules for Probabilistic Termination 633

Algorithm 1: Algorithm for proving a.s. termination in LinPP∗.
input : A LinPP∗ C, linear invariant I.
output: An LEM satisfying the conditions of Lemma 2, if it exists

1 T ←− all transitions in C; d ←− 0
2 while T is non-empty do
3 construct LPunb

T
4 if LPunb

T is feasible then
5 d ←− d + 1; ηd ←− LEM defined by the optimal solution of LPunb

T
6 T ←− T \{τ ∈ T | τ is 1-ranked by ηd}
7 else
8 found ←− false
9 for τ0 ∈�→unb ∩ T do

10 construct LPτ0,unb
T

11 if LPτ0,unb
T is feasible then

12 d ←− d + 1; found ←− true
13 ηd ←− LEM defined by the optimal solution of LPτ0,unb

T
14 T ←− T \{τ ∈ T | τ is 1-ranked by ηd}

15 if not found then return No LEM as in Lemma 2

16 return (η1, . . . , ηd)

In what follows, we consider a slight restriction on the syntax of LinPPs
that we consider, and introduce a new condition on LEMs that allows the over-
approximation trick mentioned above while ensuring that the P-RANK condition
is not violated. We consider the subclass LinPP∗ of LinPPs in which no transition
of probabilistic branching and a transition with a sampling instruction share a
target location. This is a very mild restriction (satisfied, e.g. by our motivating
example in Fig. 1b) which is enforced for technical reasons arising in the proof
of Lemma 2. Each LinPP can be converted to satisfy this property by adding
a skip instruction in the program’s source code where necessary. Second, using
the notation of Definition 3, we define the new condition UNBOUND as follows:

UNBOUND(η, τ) ≡ if Up(τ) = (i, u) with u containing a sampling from a dis-
tribution of unbounded support, and �′ is the target location of τ , then the
coefficient of the variable with index i in ηj(�′) is 0 for all 1 ≤ j < lev(τ) .

The following technical lemma is an essential ingredient in the soundness proof
of our algorithm for programs in LinPP∗. Its proof can be found in the extended
version of the paper [22].

Lemma 2. Let C be a LinPP∗ and I be a linear invariant in C. If a LEM η
satisfies P-RANK and P-NNEG for all transitions, EXP-NNEG for all transi-
tions of probabilistic branching, W-EXP-NNEG for all other transitions, as well
as UNBOUND, then C admits a piecewise linear GLexRSM map supported by I.

634 K. Chatterjee et al.

Algorithm. The new algorithm shares an overall structure with the algorithm
from Sect. 6.1. Thus, we only give a high level overview and focus on novel
aspects. The algorithm pseudocode is presented in Algorithm 1.

The condition UNBOUND is encoded by modifying the templates for the new
LEM components. Let �→unb be the set of transitions in C containing sampling
from unbounded support distributions, and for any such transition τ let �′

τ be
its target location. Then for any set of transitions T , construct a linear program
LPunb

T analogously to LPT in Sect. 6.1, additionally enforcing that for each
τ ∈ �→unb ∩ T , the coefficient of the variable updated by τ in the LEM template
at �′

τ is 0. Algorithm 1 first tries to prune as many transitions as possible by
repeatedly solving LPunb

T and removing ranked transitions from T , see lines
3–6. Once no more transitions can be ranked, the algorithm tries to rank new
transitions by allowing non-zero template coefficients previously required to be 0,
while still enforcing UNBOUND. For a set of transitions T and for τ0 ∈ �→unb∩ T ,
we construct a linear program LPτ0,unb

T analogously to LPunb
T but allowing a non-

zero coefficient of the variable updated by τ0 at �′
τ0 . However, we further impose

that the new component 1-ranks any other transition in �→unb ∩ T with the
target location �′

τ0 . This new linear program is solved for all τ0 ∈ �→unb ∩ T and
all 1-ranked transitions are removed from T , as in Algorithm 1, lines 7–15. The
process continues until all transitions are pruned from T or until no remaining
transition can be 1-ranked, in which case no LEM as in Lemma 2 exists.

Theorem 4. Algorithm 1 decides in polynomial time if a LinPP∗ C admits an
LEM which satisfies all conditions of Lemma 2 and which is supported by I.
Thus, if the algorithm outputs an LEM, then C is a.s. terminating and admits a
piecewise linear GLexRSM map supported by I.

The proof of Theorem 4 can be found in the extended version of the paper
[22]. We conclude by showing that Algorithm 1 can prove a.s. termination of our
motivating example in Fig. 1a.

Example 3. Consider the program in Fig. 1a with a linear invariant I(�0) =
true, I(�1) = y ≥ 0. The LEM defined via η(�0, (x, y)) = (1, 2y + 2, x + 1),
η(�1, (x, y)) = (1, 2y + 1, x + 1) and η(�out , (x, y)) = (0, 2y + 2, x + 1) satisfies
P-RANK, P-NNEG and W-EXP-NNEG, which is easy to check. Furthermore,
the only transition containing a sampling instruction is the self-loop at �1 which
is ranked by the third component of η. As the coefficients of x of the first two
components at �1 are equal to 0, η also satisfies UNBOUND. Hence, η satisfies
all conditions of Lemma 2 and Algorithm 1 proves a.s. termination.

7 Conclusion

In this work we present new lexicographic termination certificates for probabilis-
tic programs. We also show how to automate the search for the new certificate
within a wide class of probabilistic programs. An interesting direction of future
work would be automation beyond linear arithmetic programs.

On Lexicographic Proof Rules for Probabilistic Termination 635

Acknowledgements. This research was partially supported by the ERC CoG 863818
(ForM-SMArt), the Czech Science Foundation grant No. GJ19-15134Y, and the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 665385.

References

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. PACMPL 2(POPL),
34:1–34:32 (2018)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1_8

3. Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Harcourt/Academic
Press, Boston (2000)

4. Avanzini, M., Dal Lago, U., Ghyselen, A.: Type-based complexity analysis of prob-
abilistic functional programs. In: 2019 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pp. 1–13 (2019). https://doi.org/10.1109/LICS.
2019.8785725

5. Avanzini, M., Lago, U.D., Yamada, A.: On probabilistic term rewriting. Sci. Com-
put. Program. 185, 102338 (2020). https://doi.org/10.1016/j.scico.2019.102338

6. Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for probabilistic
programs. In: Proceedings of the ACM on Programming Languages, vol. 4 ((Pro-
ceedings of OOPSLA 2020)), pp. 1–30 (2020)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

8. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_3

9. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pp. 749–758, LICS 2016. ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2933575.2934554

10. Barthe, G., Gaboardi, M., Hsu, J., Pierce, B.: Programming language techniques
for differential privacy. ACM SIGLOG News 3(1), 34–53 (2016)

11. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 51–62, POPL 2013.
ACM, New York, NY, USA (2013). https://doi.org/10.1145/2429069.2429078

12. Ben-Amram, A.M., Genaim, S.: Complexity of Bradley-Manna-Sipma lexico-
graphic ranking functions. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 304–321. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21668-3_18

13. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)
14. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: RTA, pp.

323–337 (2005)

636 K. Chatterjee et al.

15. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Com-
puter Aided Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, 6–10 July 2005, Proceedings, pp. 491–504 (2005). https://doi.org/
10.1007/11513988_48

16. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through coop-
eration. In: Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13–19, 2013, Proceedings, pp. 413–429 (2013).
https://doi.org/10.1007/978-3-642-39799-8_28

17. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9_22

18. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: CAV 2013, pp. 511–526 (2013)

19. Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9_15

20. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: CAV, pp. 3–22 (2016)

21. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018). https://doi.org/10.1145/
3174800

22. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Žikelić, D.: On lex-
icographic proof rules for probabilistic termination (2021). https://arxiv.org/abs/
2108.02188

23. Chatterjee, K., Novotný, P., Žikelić, D.: Stochastic invariants for probabilistic ter-
mination. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, pp. 145–160, POPL 2017. ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3009837.3009873

24. Chen, J., He, F.: Proving almost-sure termination by omega-regular decomposition.
In: Proceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK, June 15–20,
2020, pp. 869–882 (2020). https://doi.org/10.1145/3385412.3386002

25. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian
inference using data flow analysis. In: Joint Meeting on Foundations of Software
Engineering, pp. 92–102. ACM (2013)

26. Colón, M., Sipma, H.: Synthesis of linear ranking functions. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 7th International Confer-
ence, TACAS 2001 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2–6, 2001, Proceedings, pp.
67–81 (2001). https://doi.org/10.1007/3-540-45319-9_6

27. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code.
SIGPLAN Not. 41(6), 415–426 (2006)

28. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

29. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_4

On Lexicographic Proof Rules for Probabilistic Termination 637

30. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, pp. 238–252 (1977). https://doi.org/
10.1145/512950.512973

31. Dal Lago, U., Faggian, C., Rocca, S.R.D.: Intersection types and (positive) almost-
sure termination. Proc. ACM Program. Lang. 5(POPL), 1–32 (2021). https://doi.
org/10.1145/3434313

32. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms, 1st edn. Cambridge University Press, New York (2009)

33. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: CAV 2012, pp. 123–138 (2012)

34. Feldman, Y.A.: A decidable propositional dynamic logic with explicit probabilities.
Inf. Control 63(1), 11–38 (1984)

35. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, pp. 181–195. ACM
(1982)

36. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mum-
bai, India, January 15–17, 2015, pp. 489–501 (2015). https://doi.org/10.1145/
2676726.2677001

37. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19,
19–33 (1967)

38. Foster, F.G.: On the stochastic matrices associated with certain queuing processes.
Ann. Math. Stat. 24(3), 355–360 (1953)

39. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 282–309.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_12

40. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 468–490. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_22

41. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature
521(7553), 452–459 (2015)

42. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant probability
programs. In: Fontaine, P. (ed.) Automated Deduction - CADE 27, pp. 269–286.
Springer, Cham (2019)

43. Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using
extremal counterexamples. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 608–618, PLDI 2015.
ACM, New York, NY, USA (2015). https://doi.org/10.1145/2737924.2737976

44. Gordon, A.D., Aizatulin, M., Borgstrom, J., Claret, G., Graepel, T., Nori, A.V.,
Rajamani, S.K., Russo, C.: A model-learner pattern for Bayesian reasoning. ACM
SIGPLAN Not. 48(1), 403–416 (2013)

45. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of the on Future of Software Engineering, pp. 167–181.
ACM (2014)

46. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

638 K. Chatterjee et al.

47. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.: Aiming low is harder: induction
for lower bounds in probabilistic program verification. Proc. ACM Program. Lang.
4(POPL), 37:1–37:28 (2020). https://doi.org/10.1145/3371105

48. Huang, M., Fu, H., Chatterjee, K.: New approaches for almost-sure termination
of probabilistic programs. In: Ryu, S. (ed.) Programming Languages and Systems,
pp. 181–201. Springer, Cham (2018)

49. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(OOPSLA), 129:1–129:29 (2019). https://doi.org/10.1145/3360555

50. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey.
JAIR 4, 237–285 (1996)

51. Kaminski, B.L., Katoen, J.P., Matheja, C.: On the hardness of analyzing proba-
bilistic programs. Acta Informatica 56(3), 1–31 (2018)

52. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68
(2018). https://doi.org/10.1145/3208102

53. Kobayashi, N., Lago, U.D., Grellois, C.: On the termination problem for probabilis-
tic higher-order recursive programs. Log. Methods Comput. Sci. 16(4), 2:1–2:57
(2020). https://lmcs.episciences.org/6817

54. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981). https://doi.org/10.1016/0022-0000(81)90036-2

55. Kozen, D.: A probabilistic PDL. In: Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, pp. 291–297, STOC 1983. ACM, New York,
NY, USA (1983). https://doi.org/10.1145/800061.808758

56. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

57. Lago, U.D., Grellois, C.: Probabilistic termination by monadic affine sized typing.
ACM Trans. Program. Lang. Syst. 41(2), 10:1–10:65 (2019). https://doi.org/10.
1145/3293605

58. McIver, A., Morgan, C.: Developing and reasoning about probabilistic programs
in pGCL. In: PSSE, pp. 123–155 (2004)

59. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005). https://doi.
org/10.1007/b138392

60. McIver, A., Morgan, C.: A new rule for almost-certain termination of probabilistic
and demonic programs. CoRR abs/1612.01091 (2016). http://arxiv.org/abs/1612.
01091

61. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. PACMPL 2(POPL), 33:1–33:28 (2018). https://doi.org/10.1145/
3158121

62. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0_7

63. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: Automated termina-
tion analysis of polynomial probabilistic programs. In: ESOP 2021. LNCS, vol.
12648, pp. 491–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72019-3_18

64. Morgan, C., McIver, A.: pGCL: formal reasoning for random algorithms (1999)

On Lexicographic Proof Rules for Probabilistic Termination 639

65. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. (TOPLAS) 18(3), 325–353 (1996)

66. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

67. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for
continuous-time Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 412–427. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74407-8_28

68. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov Decision Processes. In: de Alfaro, L. (ed.) FoSSaCS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00596-1_26

69. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: PLDI 2018, pp. 496–512 (2018)

70. Olmedo, F., Kaminski, B.L., Katoen, J.P., Matheja, C.: Reasoning about recursive
probabilistic programs. In: Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, pp. 672–681, LICS 2016. ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2933575.2935317

71. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: 5th International Conference on Verification, Model Checking,
and Abstract Interpretation, VMCAI 2004, Venice, January 11–13, 2004, Proceed-
ings, pp. 239–251 (2004). https://doi.org/10.1007/978-3-540-24622-0_20

72. Podelski, A., Rybalchenko, A.: Transition invariants. In: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science, pp. 32–41, LICS 2004.
IEEE Computer Society, Washington, DC, USA (2004). https://doi.org/10.1109/
LICS.2004.50

73. Roy, D., Mansinghka, V., Goodman, N., Tenenbaum, J.: A stochastic program-
ming perspective on nonparametric Bayes. In: Nonparametric Bayesian Workshop,
International Conference on Machine Learning, vol. 22, p. 26 (2008)

74. Ścibior, A., Ghahramani, Z., Gordon, A.D.: Practical probabilistic programming
with monads. ACM SIGPLAN Not. 50(12), 165–176 (2015)

75. Smolka, S., Kumar, P., Foster, N., Kozen, D., Silva, A.: Cantor meets Scott: seman-
tic foundations for probabilistic networks. In: POPL 2017, pp. 557–571 (2017)

76. Sohn, K., Gelder, A.V.: Termination detection in logic programs using argument
sizes. In: Proceedings of the Tenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 29–31, 1991, Denver, Colorado, USA, pp.
216–226 (1991). https://doi.org/10.1145/113413.113433

77. Thrun, S.: Probabilistic robotics. Commun. ACM 45(3), 52–57 (2002)
78. Wang, D., Hoffmann, J., Reps, T.W.: PMAF: an algebraic framework for static

analysis of probabilistic programs. In: PLDI 2018, pp. 513–528 (2018)
79. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis

of nondeterministic probabilistic programs. In: PLDI 2019, pp. 204–220 (2019)
80. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks,

Cambridge University Press, Cambridge (1991)

	On lexicographic proof rules for probabilistic termination
	Citation

	tmp.1722525876.pdf.df9n2

