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Abstract. Markov decision processes can be viewed as transformers
of probability distributions. While this view is useful from a practical
standpoint to reason about trajectories of distributions, basic reacha-
bility and safety problems are known to be computationally intractable
(i.e., Skolem-hard) to solve in such models. Further, we show that even
for simple examples of MDPs, strategies for safety objectives over distri-
butions can require infinite memory and randomization.

In light of this, we present a novel overapproximation approach to
synthesize strategies in an MDP, such that a safety objective over the
distributions is met. More precisely, we develop a new framework for
template-based synthesis of certificates as affine distributional and induc-
tive invariants for safety objectives in MDPs. We provide two algorithms
within this framework. One can only synthesize memoryless strategies,
but has relative completeness guarantees, while the other can synthe-
size general strategies. The runtime complexity of both algorithms is in
PSPACE. We implement these algorithms and show that they can solve
several non-trivial examples.

Keywords: Markov decision processes · invariant synthesis ·
distribution transformers · Skolem hardness

1 Introduction

Markov decision processes (MDPs) are a classical model for probabilistic decision
making systems. They extend the basic probabilistic model of Markov chains with
non-determinism and are widely used across different domains and contexts. In the
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verification community, MDPs are often viewed through an automata-theoretic
lens, as state transformers, with runs being sequences of states with certain prob-
ability for taking each run (see e.g., [9]). With this view, reachability probabili-
ties can be computed using simple fixed point equations and model checking can
be done over appropriately defined logics such as PCTL*. However, in several
contexts such as modelling biochemical networks, queueing theory or probabilis-
tic dynamical systems, it is more convenient to view MDPs as transformers of
probability distributions over the states, and define objectives over these distri-
butions [1,5,12,17,44,47]. In this framework, we can, for instance, easily reason
about properties such as the probability in a set of states always being above a
given threshold or comparing the probability in two states at some future time
point. More concretely, in a chemical reaction network, we may require that the
concentration of a particular complex is never above 10%. Such distribution-based
properties cannot be expressed in PCTL* [12], and thus several orthogonal logics
have been defined [1,12,44] that reason about distributions.

Unfortunately, and perhaps surprisingly, when we view them as distribution
transformers even the simplest reachability and safety problems with respect to
probability distributions over states remain unsolved. The reason for this is a
number-theoretical hardness result that lies at the core of these questions. In [3],
it is shown that even with just Markov chains, reachability is as hard as the so-
called Skolem problem, and safety is as hard as the Positivity problem [55,
56], the decidability of both of which are long-standing open problems in linear
recurrence sequences. Moreover, synthesizing strategies that resolve the non-
determinism in MDPs to achieve an objective (whether reachability or safety)
is further complicated by the issue of how much memory can be allowed for the
strategy. As we show in Sect. 3, even for very simple examples, strategies for
safety can require infinite memory as well as randomization.

In light of these difficulties, what can one do to tackle these problems in
theory and in practice? In this paper, we take an over-approximation route to
approach these questions, not only to check existence of strategies for safety but
also synthesize them. Inspired by the success of invariant synthesis in program
verification, our goal is to develop a novel invariant-synthesis based approach
towards strategy synthesis in MDPs, viewed as transformers of distributions. In
this paper, we restrict our attention to a class of safety objectives on MDPs,
which are already general enough to capture several interesting and natural
problems on MDPs. Our contributions are the following:

1. We define the notion of inductive distributional invariants for safety in MDPs.
These are sets of probability distributions over states of the MDP, that (i)
contain all possible distributions reachable from the initial distribution, under
all strategies of an MDP, and (ii) are closed under taking the next step.

2. We show that such invariants provide sound and complete certificates for
proving safety objectives in MDPs. In doing so, we formalize the link between
strategies and distributional invariants in MDPs. This by itself does not help
us get effective algorithms in light of the hardness results above. Hence we
then focus on synthesizing invariants of a particular shape.
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3. We develop two algorithms for automated synthesis of affine inductive distri-
butional invariants that prove safety in MDPs, and at the same time, synthe-
size the associated strategies.

– The first algorithm is restricted to synthesizing memoryless strategies
but is relatively complete, i.e., whenever a memoryless strategy and an
affine inductive distributional invariant that witness safety exist, we are
guaranteed to find them.

– The second algorithm can synthesize general strategies as well as memo-
ryless strategies, but is incomplete in general.

In both cases, we employ a template-based synthesis approach and reduce
synthesis to the existential first-order theory of reals, which gives a PSPACE
complexity upper bound. In the first case, this reduction depends on Farkas’
lemma. In the second case, we need to use Handelman’s theorem, a specialized
result for strictly positive polynomials.

4. We implement our approaches and show that for several practical and non-
trivial examples, affine invariants suffice. Further, we demonstrate that our
prototype tool can synthesize these invariants and associated strategies.

Finally, we discuss the generalization of our approach from affine to polynomial
invariants and some variants that our approach can handle.

1.1 Related Work

Distribution-based Safety Analysis in MDPs. The problem of checking
distribution-based safety objectives for MDPs was defined in [5] but a solution
was provided only in the uninitialized setting, where the initial distribution is not
given and also under the assumption that the target set is closed and bounded.
In contrast, we tackle both initialized and uninitialized settings, our target sets
are general affine sets and we focus on actually synthesizing strategies not just
proving existence.

Template-based Program Analysis. Template-based synthesis via the means of
linear/polynomial constraint solving is a standard approach in program analy-
sis to synthesizing certificates for proving properties of programs. Many of these
methods utilize Farkas’ lemma or Handelman’s theorem to automate the synthe-
sis of program invariants [20,27], termination proofs [6,14,23,28,57], reachabil-
ity proofs [8] or cost bounds [16,39,64]. The works [2,18,19,21,22,24,25,62,63]
utilize Farkas’ lemma or Handelman’s theorem to synthesize certificates for
these properties in probabilistic programs. While our algorithms build on the
ideas from the works on template-based inductive invariant synthesis in pro-
grams [20,27], the key novelty of our algorithms is that they synthesize a fun-
damentally different kind of invariants, i.e. distributional invariants in MDPs.
In contrast, the existing works on (probabilistic) program analysis synthesize
state invariants. Furthermore, our algorithms synthesize distributional invari-
ants together with MDP strategies. While it is common in controller synthesis
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to synthesize an MDP strategy for a state invariant, we are not aware of any
previous work that uses template-based synthesis methods to compute MDP
strategies for a distributional invariant.

Other Approaches to Invariant Synthesis in Programs. Alternative approaches
to invariant synthesis in programs have also been considered, for instance via
abstract interpretation [29,30,33,60], counterexample guided invariant synthe-
sis (CEGIS) [7,10,34], recurrence analysis [32,42,43] or learning [35,61]. While
some of these approaches can be more scalable than constraint solving-based
methods, they typically do not provide relative completeness guarantees. An
interesting direction of future work would be to explore whether these alterna-
tive approaches could be used for synthesizing distributional invariants together
with MDP strategies more efficiently.

Weakest Pre-expectation Calculus. Expectation transformers and the weakest
pre-expectation calculus generalize Dijkstra’s weakest precondition calculus to
the setting of probabilistic programs. Expectation transformers were introduced
in the seminal work on probabilistic propositional dynamic logic (PPDL) [45]
and were extended to the setting of probabilistic programs with non-determinism
in [48,52]. Weakest pre-expectation calculus for reasoning about expected run-
time of probabilistic programs was presented in [40]. Intuitively, given a function
over probabilistic program outputs, the weakest pre-expectation calculus can be
used to reason about the supremum or the infimum expected value of the func-
tion upon executing the probabilistic program, where the supremum and the
infimum are taken over the set of all possible schedulers (i.e. strategies) used to
resolve non-determinism. When the function is the indicator function of some
output set of states, this yields the method for reasoning about the probability of
reaching the set of states. Thus, weakest pre-expectation calculus allows reason-
ing about safety with respect to sets of states. In contrast, we are interested in
reasoning about safety with respect to sets of probability distribution over states.
Moreover, while the expressiveness of this calculus allows reasoning about very
complex programs, its automation typically requires user input. In this work, we
aim for a fully automated approach to checking distribution-based safety.

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up our notation.
We assume familiarity with the central ideas of measure and probability theory,
see [13] for a comprehensive overview. We write [n] := {1, . . . , n} to denote the
set of all natural numbers from 1 to n. For any set S, we use S to denote its
complement. A probability distribution on a countable set X is a mapping μ :
X → [0, 1], such that

∑
x∈X μ(x) = 1. Its support is denoted by supp(μ) = {x ∈

X | μ(x) > 0}. We write Δ(X) to denote the set of all probability distributions
on X. An event happens almost surely (a.s.) if it happens with probability 1.
We assume that countable sets of states S are equipped with an arbitrary but
fixed numbering.
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Fig. 1. Our running example MDP. It comprises three states S = {A, B, C}, depicted
by rounded rectangles. In state A, there are two actions available, namely a and b. We
have δ(A, a, A) = 1 and δ(A, b, B) = 1, indicated by arrows. States B and C have only
one available action each, thus we omit explicitly labelling them.

2.1 Markov Systems

A (discrete time) Markov chain (MC) is a tuple M = (S, δ), where S is a finite
set of states and δ : S → Δ(S) a transition function, assigning to each state a
probability distribution over successor states. A Markov decision process (MDP)
is a tuple M = (S,Act , δ), where S is a finite set of states, Act is a finite
set of actions, overloaded to yield for each state s the set of available actions
Act(s) ⊆ Act , and δ : S × Act → Δ(S) is a transition function that for each
state s and (available) action a ∈ Act(s) yields a probability distribution over
successor states. For readability, we write δ(s, s′) and δ(s, a, s′) instead of δ(s)(s′)
and δ(s, a)(s′), respectively. By abuse of notation, we redefine S×Act := {(s, a) |
s ∈ S ∧ a ∈ Act(s)} to refer to the set of state-action pairs. See Fig. 1 for an
example MDP. This MDP is our running example and we refer to it throughout
this work to point out some of the peculiarities.

An infinite path in an MC is an infinite sequence ρ = s1s2 · · · ∈ Sω, such
that for every i ∈ N we have δ(si, si+1) > 0. A finite path � is a finite prefix
of an infinite path. Analogously, infinite paths in MDP are infinite sequences
ρ = s1a1s2a2 · · · ∈ (S × Act)ω such that ai ∈ Act(si) and δ(si, ai, si+1) > 0 for
every i ∈ N, and finite paths are finite prefixes thereof. We use ρi and �i to refer
to the i-th state in the given (in)finite path, and IPathsM and FPathsM for the
set of all (in)finite paths of a system M .

Semantics. A Markov chain evolves by repeatedly applying the probabilistic
transition function in each step. For example, if we start in state s1, we obtain the
next state s2 by drawing a random state according to the probability distribution
δ(s1). Repeating this ad infinitum produces a random infinite path. Indeed,
together with an initial state s, a Markov chain M induces a unique probability
measure PrM,s over the (uncountable) set of infinite paths [9].

This reasoning can be lifted to distributions over states, as follows. Suppose
we begin in μ0 = {s1 �→ 0.5, s2 �→ 0.5}, meaning that initially we are in state s1
or s2 with probability 0.5 each. Then, μ1(s′) = μ0(s1) ·δ(s1, s′)+μ0(s2) ·δ(s2, s′),
i.e. the probability to be in a state s′ in the next step is 0.5 times the prob-
ability of moving from s1 and s2 there, respectively. For an initial distribu-
tion, we likewise obtain a probability distribution over infinite paths by setting
PrM,μ0 [S] :=

∑
s∈S μ0(s) · PrM,s[S] for measurable S ⊆ IPathsM.

In contrast to Markov chains, MDPs also feature non-determinism, which
needs be resolved in order to obtain probabilistic behaviour. This is achieved
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by (path) strategies, recipes to resolve non-determinism. Formally, a strategy
on an MDP classically is defined as a function π : FPathsM → Δ(Act),
which given a finite path � = s0a0s1a1 . . . sn yields a probability distribu-
tion π(�) ∈ Δ(Act(sn)) on the actions to be taken next. We write Π to
denote the set of all strategies. Fixing any strategy π induces a Markov chain
Mπ = (FPathsM, δπ), where for a state � = s0a0 . . . sn ∈ FPathsM the succes-
sor distribution is defined as δπ(�, �an+1sn+1) = π(�, an+1) · δ(sn, an+1, sn+1).
(Note that the state space of this Markov chain in general is countably infinite.)
Consequently, for each strategy π and initial distribution μ0 we also obtain a
unique probability measure PrMπ,μ0 on the infinite paths of M. (Technically,
the MC Mπ induces a probability measure over paths in Mπ, i.e. paths where
each element is a finite path of M, however this can be directly projected to a
measure over IPathsM.)

A one-step strategy (also known as memoryless or positional strategy) corre-
sponds to a fixed choice in each state, independent of the history, i.e. a mapping
π : S → Δ(Act). Fixing such a strategy induces a finite state Markov chain
Mπ = (S, δπ), where δπ(s, s′) =

∑
a∈Act(s) π(s)(a) · δ(s, a, s′). We write Π1 for

the set of all one-step strategies.
A sequence of one-step strategies (πi) ∈ Πω

1 induces a general strategy which
in each step i and state s chooses πi(s). Observe that aside from the state, such
a strategy only depends on the current step, also called Markov strategy.

2.2 MDPs as Distribution Transformers

Probabilistic systems typically are viewed as “random generators” for paths, and
we consequently investigate the (expected) behaviour of a generated path, i.e.
path properties. However, in this work we follow a different view, and treat
systems as transformers of distributions. Formally, fix a Markov chain M. For a
given initial distribution μ0, we can define the distribution at step i by μi(s) =
Prμ0 [{ρ ∈ IPathsM | ρi = s}]. We write μi = M(μ0, i) for the i-th distribution and
μ1 = M(μ0) for the “one-step” application of this transformation. Likewise, we
obtain the same notion for an MDP M combined with a strategy π, and write
μi = Mπ(μ0, i), μ1 = Mπ(μ0). In summary, for a given initial distribution, a
Markov chain induces a unique stream of distributions, and an MDP provides
one for each strategy.

This naturally invites questions related to this induced stream of distribu-
tions. In their path interpretation, queries such as reachability or safety, i.e.
asking the probability of reaching or avoiding a set of states, allow for simple,
polynomial time solutions [9,58]. However, the corresponding notions already
are surprisingly difficult in the space of distributions. Thus, we restrict to the
safety problem, which we introduce in the following. Intuitively, given a safe set
of distributions over states H ⊆ Δ(S), we are interested in deciding whether
the MDP can be controlled such that the stream of distributions always remains
inside H.
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3 Problem Statement and Examples

Let M = (S,Act , δ) be an MDP and H ⊆ Δ(S) be a safe set. A distribution
μ0 is called H-safe under π if Mπ(μ0, i) ∈ H for all i ≥ 0, and H-safe if there
exists a strategy under which μ0 is safe. We mention two variants of the resulting
decision problem as defined in [5]:

– Initialized safety: Given an initial probability distribution μ0 and safe set H,
decide whether μ0 is H-safe.

– Uninitialized safety: Given a safe set H, decide whether there exists a distri-
bution μ which is H-safe.

Note that we have discussed neither the shape nor the representation of H, which
naturally plays an important role for decidability and complexity.

One may be tempted to think that the initialized variant is simpler, as more
input is given. However, this problem is known to be Positivity-hard1 already
for simple cases and already when H is defined in terms of rational constants!

Theorem 1 ([3]). The initialized safety problem for Markov chains and H
given as linear inequality constraint (H = {μ | μ(s) ≤ r, s ∈ S, r ∈ Q ∩ [0, 1]}),
is Positivity-hard.

Proof. In [3, Corollary 4], the authors show that the inequality version of the
Markov reachability problem, i.e. deciding whether there exists an i such that
μi(s) > r for a given rational r, is Positivity-hard. The result follows by
observing that safety is the negation of reachability. 
�

Thus, finding a decision procedure for this problem is unlikely, since it would
answer several fundamental questions of number theory, see e.g. [41,55,56]. In
contrast, the uninitialized problem is known to be decidable for safe sets H given
as closed, convex polytopes (see [5] for details and [1] for a different approach
specific to Markov chains). In a nutshell, we can restrict to the potential fixpoints
of M, i.e. all distributions μ such that μ = Mπ(μ, i) for some strategy π. It
turns out that this set of distributions is a polytope and the problem – glossing
over subtleties – reduces to checking whether the intersection of H with this
polytope is non-empty. However, we note that the solution of [5] does not yield
the witness strategy. In the following, we thus primarily focus on the initialized
question. In Sect. 6, we then show how our approach, which also synthesizes a
witness strategy, is directly applicable to the uninitialized case.

In light of the daunting hardness results for the general initialized problem,
we restrict to affine linear safe sets, i.e. H which are specified by a finite set of
affine linear inequalities. Formally, these sets are of the form H = {μ ∈ Δ(S) |
∧N

j=1(c
j
0 +

∑n
i=1 cj

i · μ(si)) ≥ 0}, where S = {s1, . . . , sn}, cj
i are real-valued

1 Intuitively, the Positivity problem asks for a given rational (or integer or real)
matrix M , whether (Mn)1,1 > 0 for all n [54]. This problem (and its many variants)
has been the subject of intense research over the last 10–15 years, see e.g. [55]. Yet,
quite surprisingly, it still remains open in its full generality.
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constants and N is the number of affine linear inequalities that define H. Our
problem formally is given by the following query.

Problem Statement Given an MDP M, initial distribution μ0, and affine
linear safe set H, (i) decide whether μ0 is H-safe, and (ii) if yes, then syn-
thesize a strategy for M which ensures safety.

Note that the problem strictly subsumes the special case when H is defined in
terms of rational constants, and our approach aims to solve both problems. Also,
note that Theorem 1 still applies, i.e. this “simplified” problem is Positivity-
hard, too. We thus aim for a sound and relatively complete approach. Intuitively,
this means that we restrict our search to a sub-space of possible solutions and
within this space provide a complete answer. To give an intuition for the required
reasoning, we provide an example safety query together with a manual proof.

Example 1. Consider our running example from Fig. 1. Suppose the initial distri-
bution is μ0 = {A �→ 1

3 , B �→ 1
3 , C �→ 1

3} and (affine linear) H = {μ | μ(C) ≥ 1
4}.

This safety query is satisfiable, by, e.g., choosing action b, as we show in the
following. First, observe that the i + 1-th distribution is μi+1(A) = 1

2 · μi(C),
μi+1(B) = μi(A), and μi+1(C) = μi(B) + 1

2μi(C). Thus, we cannot directly
prove by induction that μi(C) ≥ 1

4 , we also need some information about μi(B)
or μi(A) to exclude, e.g., μi = {A �→ 3

4 , C �→ 1
4}, where μi+1 would violate

the safety constraint. We invite the interested reader to try to prove that μ0 is
indeed H-safe under the given strategy to appreciate the subtleties.

We proceed by proving that μi(C) ≥ 1
4 and additionally μi(A) ≤ μi(C)

by induction. The base case follows immediately, thus suppose that μi satis-
fies these constraints. For μi+1(A) ≤ μi+1(C) observe that μi+1(A) = 1

2μi(C)
and μi+1(C) = 1

2μi(C) + μi(B). Since μi(B) ≥ 0, the claim follows. To prove
μi+1(C) ≥ 1

4 observe that μi(A) ≤ 1
2 since μi(A) ≤ μi(C) by induction hypoth-

esis and distributions sum up to 1. Moreover, μi+1(C) = μi(B) + 1
2μi(C) =

1
2μi(B) + 1

2 − 1
2μi(A) by again inserting the fact that distributions sum up to 1.

Then, μi+1(C) = 1
2 − 1

2μi(A) + 1
2μi(B) ≥ 1

2 − 1
2μi(A) ≥ 1

2 − 1
4 ≥ 1

4 . �

Thus, already for rather simple examples the reasoning is non-trivial. To further
complicate things, the structure of strategies can also be surprisingly complex:

Example 2. Again consider our running example from Fig. 1 with initial dis-
tribution μ0 = {A �→ 3

4 , B �→ 1
4} and safe set H = {μ | μ(B) = 1

4}. This
safety condition is indeed satisfiable, however the (unique) optimal strategy
requires both infinite memory as well as randomization with arbitrarily small
fractions! In step 1, we require choosing a with 2

3 and b with 1
3 to satisfy the

safety constraint in the second step, getting μ1 = {A �→ 1
2 , B �→ 1

4 , C �→ 1
4}.

For step 2, we require choosing both a and b with probability 1
2 each, yielding

μ2 = {A �→ 3
8 , B �→ 1

4 , C �→ 3
8}. Continuing this strategy, we obtain at step i

that μi = {A �→ 1
4 + 1

2i+1 , B �→ 1
4 , C �→ 1

2 − 1
2i+1 } and action a is chosen with

probability 1/(2i−1 + 1), converging to 1. �
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In the following, we provide two algorithms that handle both examples. Our first
algorithm focusses on memoryless strategies, the second considers a certain type
of infinite memory strategies. Essentially, the underlying idea is to automatically
synthesize a strategy together with such inductive proofs of safety.

4 Proving Safety by Invariants

We now discuss our principled idea of proving safety by means of (inductive)
invariants, taking inspiration from research on safety analysis in programs [20,
27]. We first show that considering strategies which are purely based on the
current distribution over states are sufficient. Then, we show that inductive
invariants are a sound and complete certificate for safety. Together, we obtain
that an initial distribution is H-safe if and only if there exists an invariant set
I and distribution strategy π such that (i) the initial distribution is contained
in I, (ii) I is a subset of the safe set H, and (iii) I is inductive under π, i.e. if
μ ∈ I then Mπ(μ) ∈ I. In the following section, we then show how we search
for invariants and distribution strategies of a particular shape.

4.1 Distribution Strategies

We show that distribution strategies π : Δ(S) → Π1, yielding for each distribu-
tion over states a one-step strategy to take next, are sufficient for the problem
at hand. More formally, we want to show that an H-safe distribution strategy
exists if and only if there exists any H-safe strategy.

First, observe that distribution strategies are a special case of regular path
strategies. In particular, for any given initial distribution, we obtain a uniquely
determined stream of distributions as μi+1 = Mπ(μi)(μi), i.e. the distribution
μi+1 is obtained by applying the one-step strategy π(μi) to μi. In turn, this
lets us define the Markov strategy π̂i(s) = π(μi)(s). For simplicity, we identify
distribution strategies with their induced path strategy.

Next, we argue that restricting to distribution strategies is sufficient.

Theorem 2. An initial distribution μ0 is H-safe if and only if there exists a
distribution strategy π such that μ0 is H-safe under π.

Proof (Sketch). The full proof can be found in [4, Sec. 4.1]. Intuitively, only the
“distribution” behaviour of a strategy is relevant and we can sufficiently replicate
the behaviour of any safe strategy by a distribution strategy. 
�

In this way, each MDP corresponds to a (uncountably infinite) transition
system TM = (Δ(S), T ) where (μ, μ′) ∈ T if there exists a one-step strategy
π such that μ′ = Mπ(μ). Note that TM is a purely non-deterministic system,
without any probabilistic behaviour. So, our decision problem is equivalent to
asking whether the induced transition system TM can be controlled in a safe
way. Note that TM is uncountably large and uncountably branching.
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4.2 Distributional Invariants for MDP Safety

We now define distributional invariants in MDPs and show that they provide
sound and complete certificates for proving initialized (and uninitialized) safety.

Distributional Invariants in MDPs. Intuitively, a distributional invariant is a
set of probability distributions over MDP states that contains all probability
distributions that can arise from applying a strategy to an initial probability
distribution, i.e. the complete stream μi. Hence, similar to the safe set H, dis-
tributional invariants are also defined to be subsets of Δ(S).

Definition 1 (Distributional Invariants). Let μ0 ∈ Δ(S) be a probability
distribution over S and π be a strategy in M. A set I ⊆ Δ(S) is said to be a
distributional invariant for μ0 under π if the sequence of probability distributions
induced by applying the strategy π to the initial probability distribution μ0 is
contained in I, i.e. if Mπ(μ0, i) ∈ I for each i ≥ 0.

A distributional invariant I is said to be inductive under π, if we furthermore
have that Mπ(μ) ∈ I holds for any μ ∈ I, i.e. if I is “closed” under application
of Mπ to any probability distribution contained in I.

Soundness and Completeness for MDP Safety. The following theorem shows
that, in order to solve the initialized (and uninitialized) safety problem, one can
equivalently search for a distributional invariant that is fully contained in H.
Furthermore, it shows that one can without loss of generality restrict the search
to inductive distributional invariants.

Theorem 3 (Sound and Complete Certificate). Let μ0 ∈ Δ(S) be a prob-
ability distribution over S, π be a strategy in M, and H ⊆ Δ(S) be a safe set.
Then μ0 is H-safe under π if and only if there exists an inductive distributional
invariant I for μ0 and π such that I ⊆ H.

The proof can be found in [4, Sec. 4.2].
Thus, in order to solve the initialized safety problem for μ0, it suffices to

search for (i) a strategy π and (ii) an inductive distributional invariant I for μ0

and π such that I ⊆ H. On the other hand, in order to solve the uninitialized
safety problem, it suffices to search for (i) an initial probability distribution μ0,
(ii) strategy π, and (iii) an inductive distributional invariant I for μ0 and π such
that I ⊆ H. In the following, we provide a fully automated, sound and relatively
complete method of deciding the existence of such an invariant and strategy.

5 Algorithms for Distributional Invariant Synthesis

We now present two algorithms for automated synthesis of strategies and induc-
tive distributional invariants towards solving distribution safety problems in
MDPs. The two algorithms differ in the kind of strategies they consider and,
as a consequence of differences in the involved expressions, also in their com-
pleteness guarantees. For readability, we describe the algorithms in their basic
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form applied to the initialized variant of the safety problem and discuss further
extensions in Sect. 6. In particular, our approach is also directly applicable to
the uninitialized variant, as we describe there.

We say that an inductive distributional invariant is affine if it can be speci-
fied in terms of (non-strict) affine inequalities, which we formalize below. Both
algorithms jointly synthesize a strategy and an affine inductive distributional
invariant by employing a template-based synthesis approach. In particular, they
fix symbolic templates for each object that needs to be synthesized, encode
the defining properties of each object as constraints over unknown template
variables, and solve the system of constraints by reduction to the existential
first-order theory of the reals.

For example, a template for an affine linear constraint on distributions Δ(S)
is given by aff(μ) = (c0 + c1 · μ(s1) + · · ·+ cn · μ(sn) ≥ 0). Here, the variables c0
to cn, written in grey for emphasis, are the template variables. For fixed values
of these variables the expression aff is a concrete affine linear predicate over
distributions. Thus, we can ask questions like “Do there exist values for ci such
that for all distributions μ we have that aff(μ) implies aff(Mπ(μ))?”. This is
a sentence in the theory of reals – however with quantifier alternation. As a
next step, template-based synthesis approaches then employ various quantifier
elimination techniques to convert such expressions into equisatisfiable sentences
in, e.g., the existential theory of reals, which is decidable in PSPACE [15].

Difference between the Algorithms. Our two algorithms differ in their appli-
cability and the kind of completeness guarantees that they provide. In terms
of applicability, the first algorithm only considers memoryless strategies, while
the second algorithm searches for distribution strategies specified as fractions
of affine linear expressions. (We discuss an extension to rational functions in
Sect. 6.) In terms of completeness guarantees, the first algorithm is (relatively)
complete in the sense that it is guaranteed to compute a memoryless strategy
and an affine inductive distributional invariant that prove safety whenever they
exist. In contrast, the second algorithm does not provide the same level of com-
pleteness.

Notation. In what follows, we write ≡ to denote (syntactic) equivalence of expres-
sions, to distinguish from relational symbols used inside these expressions, such
as “=”. For example Φ(x) ≡ x = 0 means that Φ(x) is the predicate x = 0.
Moreover, (x1, . . . , xn) denotes a symbolic probability distribution over the state
space S = (s1, . . . , sn), where xi is a symbolic variable that encodes the prob-
ability of the system being in si. We use boldface notation x = (x1, . . . , xn)
to denote the vector of symbolic variables. Thus, the above example would be
written aff(x) ≡ c0 + c1 · x1 + · · · + cn · xn ≥ 0. Since we often require vectors
to represent a distribution, we write x ∈ Δ(S) as abbreviation for the predicate∧n

i=1(0 ≤ xi ≤ 1) ∧ (
∑n

i=1xi = 1).

Algorithm Input and Assumptions. Both algorithms take as input an MDP M =
(S,Act , δ) with S = {s1, . . . , sn}. They also take as input a safe set H ⊆ Δ(S).
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We assume that H is specified by a boolean predicate over n variables as a logical
conjunction of NH ∈ N0 affine inequalities, and that it has the form

H(x) ≡ (x ∈ Δ(S)) ∧
∧NH

i=1
(hi(x) ≥ 0),

where the first term imposes that x is a probability distribution over S and
hi(x) = hi

0 + hi
1 · x1 + · · · + hi

n · xn is an affine expression over x with real-
valued coefficients hi

j for each i ∈ [NH ] and j ∈ {0, . . . , n}. (Note that hi
j are not

template variables but fixed values, given as input.) Next, the algorithms take
as input an initial probability distribution μ0 ∈ Δ(S). Finally, the algorithms
also take as input technical parameters. Intuitively, these describe the size of
used symbolic templates, explained later. For the remainder of the section, fix
an initialized safety problem, i.e. an M, safe set H of the required form, and an
initial distribution μ0.

5.1 Synthesis of Affine Invariants and Memoryless Strategies

We start by presenting our first algorithm, which synthesizes memoryless strate-
gies and affine inductive distributional invariants. We refer to this algorithm as
AlgMemLess. The algorithm proceeds in the following four steps:

1. Setting up Templates. The algorithm fixes symbolic templates for the memo-
ryless strategy π and the affine inductive distributional invariant I. Note that
the values of the symbolic template variables at this step are unknown and
are to be computed in subsequent steps.

2. Constraint Collection. The algorithm collects the constraints which encode
that π is a (memoryless) strategy, that I contains the initial probability dis-
tribution μ0, that I is an inductive distributional invariant with respect to
π and μ0, and that I is contained within H. This step yields a system of
affine constraints over symbolic template variables that contain universal and
existential quantifiers.

3. Quantifier Elimination. The algorithm eliminates universal quantifiers from
the above constraints to reduce it to a system of purely existentially quanti-
fied system of polynomial constraints over the symbolic template variables.
Concretely, the first algorithm achieves this by application of Farkas’ lemma.

4. Constraint Solving. The algorithm solves the resulting system of constraints
by using an off-the-shelf solver to compute concrete values for symbolic tem-
plate variables specifying the strategy π and invariant I.

We now describe each step in detail.

Step 1: Setting up Templates. The algorithm sets templates for π and I as
follows:

– Since this algorithm searches for memoryless strategies, the probability of
taking an action aj in state si is always the same, independent of the current
distribution. Hence, our template for π consists of a symbolic template vari-
able psi,aj

for each si ∈ S, aj ∈ Act(si). We write psi,◦ = (psi,a1 , . . . , psi,am
)

to refer to the corresponding distribution in state si.
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– The template of I is given by a boolean predicate specified by a conjunction
of NI affine inequalities, where NI is the template size and is an algorithm
parameter. In particular, the template of I looks as follows:

I(x) ≡ (x ∈ Δ(S)) ∧
∧NI

i=1
(ai

0 + ai
1 · x1 + · · · + ai

n · xn ≥ 0).

The first predicate enforces that I only contains vectors that define probability
distributions over S.

Step 2: Constraint Collection. We now collect the constraints over symbolic
template variables which encode that π is a memoryless strategy, that I contains
the initial distribution μ0, that I is an inductive distributional invariant under
π, and that I is contained in H.

– For π to be a strategy, we only need to ensure that each psi,◦ is a probability
distribution over the set of available actions at every state si. Thus, we set

Φstrat ≡
∧n

i=1
(psi,◦ ∈ Δ(Act(si))) .

– For I to be a distributional invariant for π and μ0 as well as to be inductive,
it suffices to enforce that I contains μ0 and that I is closed under application
of π. Thus, we collect two constraints:

Φinitial ≡ I(μ0) ≡
∧NI

i=1
(ai

0 + ai
1 · μ1

0 + . . . ai
n · μn

0 ≥ 0), and

Φinductive ≡ (∀x ∈ R
n. I(x) =⇒ I(step(x))) ,

where step(x)(xi) =
∑

sk∈S,aj∈Act(sk)
psk,aj

· δ(sk, aj , si) ·xj yields the distri-
bution after applying one step of the strategy induced by Φstrat to x.

– For I to be contained in H, we enforce the constraint:

Φsafe ≡ (∀x ∈ R
n. I(x) =⇒ H(x)) .

Step 3: Quantifier Elimination. Constraints Φstrat and Φinitial are purely exis-
tentially quantified over symbolic template variables, thus we can solve them
directly. However, Φinductive and Φsafe contain both universal and existential
quantifiers, which are difficult to handle. In what follows, we show how the
algorithm translates these constraints into equisatisfiable purely existentially
quantified constraints. In particular, our translation exploits the fact that both
Φinductive and Φsafe can, upon splitting the conjunctions on the right-hand side
of implications into conjunctions of implications, be expressed as conjunctions
of constraints of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (affexp(x) ≥ 0).

Here, each affexpi(x) and affexp(x) is an affine expression over x whose affine
coefficients are either concrete real values or symbolic template variables.
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In particular, we use Farkas’ lemma [31] to remove universal quantification
and translate the constraint into an equisatisfiable existentially quantified system
of constraints over the symbolic template variables, as well as fresh auxiliary
variables that are introduced by the translation. For completeness, we briefly
recall (a strengthened and adapted version of) Farkas’ lemma.

Lemma 1 ([31,37]). Let X = {x1, . . . , xn} be a finite set of real-valued vari-
ables, and consider the following system of N ∈ N affine inequalities over X :

Φ :

⎧
⎪⎪⎨

⎪⎪⎩

c10 + c11 · x1 + · · · + c1n · xn ≥ 0
...

cN
0 + cN

1 · x1 + · · · + cN
n · xn ≥ 0

.

Suppose that Φ is satisfiable. Then Φ entails an affine inequality φ ≡ c0+c1 ·x1+
· · ·+cn ·xn, i.e. Φ =⇒ φ, if and only if φ can be written as a non-negative linear
combination of affine inequalities in Φ, i.e. if and only if there exist y1, . . . , yn ≥ 0
such that c1 =

∑N
j=1 yj · cj

1, . . . , cn =
∑N

j=1 yj · cj
n.

Note that, for any implication appearing in Φinductive and Φsafe, the system
of constraints on the left-hand side is simply I(x), and the satisfiability of I(x)
is enforced by Φinitial. Hence, we may apply Farkas lemma to translate each
constraint with universal quantification into an equivalent purely existentially
quantified constraint. In particular, for any constraint of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (affexp(x) ≥ 0),

we introduce fresh template variables y1, . . . , yN and translate it into the system
of purely existentially quantified constraints

(y1 ≥ 0)∧ · · · ∧ (yN ≥ 0)∧ (affexp(x) ≡F y1 · affexp1(x)+ · · ·+ yN · affexpN (x)).

Here, we use affexp(x) ≡F y1 · affexp1(x) + · · · + yN · affexpN (x) to denote
the set of n + 1 equalities over the symbolic template variable and y1, . . . , yN

which equate the constant coefficients as well as the linear coefficients of each
xi on two sides of the equivalence, i.e. exactly those equalities which we obtain
from applying Farkas’ lemma. We highlight that the expressions affexp are only
affine linear for fixed existentially quantified variables, i.e. they are in general
quadratic.

Step 4: Constraint Solving. Finally, we feed the resulting system of existentially
quantified polynomial constraints over the symbolic template variables as well as
the auxiliary variables introduced by applying Farkas’ lemma to an off-the-shelf
constraint solver. If the solver outputs a solution, we conclude that the computed
invariant I is an inductive distributional invariant for the strategy π and initial
distribution μ0, and that I is contained in H. Therefore, by Theorem 3, we
conclude that μ0 is H-safe under π.
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Fig. 2. List of constraints generated in Step 2 for Example 1 with NI = 1. The
uppercase letters correspond to variables indicating the distribution in these states,
i.e. A refers to μ(A). These also are the universally quantified variables, which will be
handled by the quantifier elimination in Step 3. The template variables are written in
grey. For readability, we omit the constraints required for state distributions μ ∈ Δ(S),
i.e. A ≥ 0 etc. The actual query sent to the solver in Step 4 after quantifier elimination
comprises 27 constraints with 21 variables.

Theorem 4. Soundness: Suppose AlgMemLess returns a memoryless strategy π
and an affine inductive distributional invariant I. Then, μ0 is H-safe under π.

Completeness: If there exist a memoryless strategy π and an affine inductive
distributional invariant I such that I ⊆ H and μ0 is H-safe under π, then there
exists a minimal value of the template size NI ∈ N such that π and I are produced
by AlgMemLess.

Complexity: The runtime of AlgMemLess is in PSPACE in the size of the
MDP, the encoding of the safe set H and the template size parameter NI ∈ N.

The proof can be found in [4, Sec. 5.1]. We comment on the PSPACE upper
bound on the complexity of AlgMemLess. The upper bound holds since the appli-
cation of Farkas’ lemma reduces synthesis to solving a sentence in the existential
first-order theory of the reals and since the size of the sentence is polynomial in
the sizes of the MDP, the encoding of the safe set H and the invariant template
size Ni. However, it is unclear whether the resulting constraints could be solved
more efficiently, and the best known upper bound on the time complexity of
algorithms for template-based affine inductive invariant synthesis in programs is
also PSPACE [8,27]. Designing more efficient algorithms for solving constraints
of this form would lead to better algorithms both for the safety problem stud-
ied in this work and for template-based affine inductive invariant synthesis in
programs.

Example 3. For completeness, we provide the constraints generated in Step 2
for Example 1 with NI = 1 for readability, i.e. our running example Fig. 1 with
μ0 = {A �→ 1

3 , B �→ 1
3 , C �→ 1

3} and H = {μ | μ(C) ≥ 1
4}, in Fig. 2.

To conclude this section, we emphasize that our algorithm simultaneously
synthesizes both the invariant and the witnessing strategy, which is the key
component to achieve relative completeness.
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5.2 Synthesis of Affine Invariants and General Strategies

We now present our second algorithm, which additionally synthesizes distribution
strategies (of a particular shape) together with an affine inductive distributional
invariant. We refer to it as AlgDist. The second algorithm proceeds in the anal-
ogous four steps as the first algorithm, AlgMemLess. Hence, in the interest of
space, we only discuss the differences compared to AlgMemLess.

Step 1: Setting up Templates. The algorithm sets up templates for π and I. The
template for I is defined analogously as in Sect. 5.1. However, as we now want
to search for a strategy π that need not be memoryless but instead may depend
on the current distribution, we need to consider a more general template. In
particular, the template for the probability psi,aj

of taking an action aj in state
si is no longer a constant value. Instead, psi,aj

(x) is a function of the probability
distribution x of the current state of the MDP, and we define its template to be
a quotient of two affine expressions for each si ∈ S and aj ∈ Act(si):

psi,aj
(x) ≡ num(si, aj)(x)

den(si)(x)
≡ ri,j

0 + ri,j
1 · x1 + · · · + ri,j

n · xn

si
0 + si

1 · x1 + · · · + si
n · xn

.

(In Sect. 6, we discuss how to extend our approach to polynomial expressions for
numerator and denominator, i.e. rational functions.) Note that the coefficients
in the numerator depend both on the state si and the action aj , whereas the
coefficients in the denominator depend only on the state si. This is because we
only use the affine expression in the denominator as a normalization factor to
ensure that psi,ai

indeed defines a probability.

Step 2: Constraint Collection. As before, the algorithm now collects the con-
straints over symbolic template variables which encode that π is a strategy, that
I is an inductive distributional invariant, and that I is contained in H. The
constraints Φinitial, Φinductive, and Φsafe are defined analogously as in Sect. 5.1,
with the necessary adaptation to step(x). For the strategy constraint Φstrat we
now need to take additional care to ensure that each quotient template defined
above does not induce division by 0 and that these values indeed correspond
to a distribution over the available actions. We ensure this by the following
constraint:

Φstrat ≡ ∀x ∈ R
n. I(x) =⇒

∧n

i=1

⎛

⎜
⎜
⎜
⎝

∧

aj∈Act(si)
num(si, aj)(x) ≥ 0 ∧

den(si)(x) ≥ 1 ∧
∑

aj∈Act(si)
num(si, aj)(x) = den(si)(x).

⎞

⎟
⎟
⎟
⎠

.

The first two constraints ensure that all quantities are positive and we never
divide by 0. The third means that the numerators sum up to the denominator.
Together, this ensures the desired result, i.e. psi,◦(x) ∈ Δ(Act(si)) whenever
x ∈ Δ(S). Note that the ≥ 1 constraint for the denominator can be replaced by
an arbitrary constant > 0, since we can always rescale all involved coefficients.
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Step 3: Quantifier Elimination. The constraints Φstrat, Φinitial, and Φsafe can be
handled analogously to Sect. 5.1. In particular, by applying Farkas’ lemma these
can be translated into an equisatisfiable purely existentially quantified system
of polynomial constraints, and our algorithm applies this translation.

However, the constraint Φinductive now involves quotients of affine expres-
sions: Upon splitting the conjunction on the right-hand side of the implication
in Φinductive into a conjunction of implications, the inequalities on the right-hand
side of these implications contain templates for strategy probabilities psi,aj

(x).
The algorithm removes the quotients by multiplying both sides of the inequal-
ity by denominators of each quotient. (Recall that each denominator is positive
by the constraint Φstrat.) This results in the multiplication of symbolic affine
expressions, hence Φinductive becomes a conjunction of implications of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (polyexp(x) ≥ 0).

Here, each affexpi(x) is an affine expression over x, but polyexp(x) is now a
polynomial expression over x. Hence we cannot apply a Farkas’ lemma-style
result to remove universal quantifiers.

Instead, we motivate our translation by recalling Handelman’s theorem [38],
which characterizes strictly positive polynomials over a set of affine inequalities.
It will allow us to soundly translate Φinductive into an existentially quantified sys-
tem of constraints over the symbolic template variables, as well as fresh auxiliary
variables that are introduced by the translation.

Theorem 5 ([38]). Let X = {x1, . . . , xn} be a finite set of real-valued variables,
and consider the following system of N ∈ N non-strict affine inequalities over
X :

Φ :

⎧
⎪⎪⎨

⎪⎪⎩

c10 + c11 · x1 + · · · + c1n · xn ≥ 0
...

cN
0 + cN

1 · x1 + · · · + cN
n · xn ≥ 0

.

Let Prod(Φ) = {
∏t

i=1 φi | t ∈ N0, φi ∈ Φ} be the set of all products of finitely
many affine expressions in Φ, where the product of 0 affine expressions is a
constant expression 1. Suppose that Φ is satisfiable and that {y | y |= Φ}, the
set of values satisfying Φ, is topologically compact, i.e. closed and bounded. Then
Φ entails a polynomial inequality φ(x) > 0 if and only if φ can be written as
a non-negative linear combination of finitely many products in Prod(Φ), i.e. if
and only if there exist y1, . . . , yn ≥ 0 and φ1, . . . , φn ∈ Prod(Φ) such that φ =
y1 · φ1 + · · · + yn · φn.

Notice that we cannot directly apply Handelman’s theorem to a constraint

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (polyexp(x) ≥ 0),

since the polynomial inequality on the right-hand-side of the implication is non-
strict whereas the polynomial inequality in Handelman’s theorem is strict. How-
ever, the direction needed for the soundness of translation holds even with the
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non-strict polynomial inequality on the right-hand side. In particular, it clearly
holds that if polyexp can be written as a non-negative linear combination of
finitely many products of affine inequalities, then polyexp is non-negative when-
ever all affine inequalities are non-negative. Hence, we may use the translation
in Handelman’s theorem to translate each implication in Φinductive into a system
of purely existentially quantified constraints.

As Handelman’s theorem does not impose a bound on the number of products
of affine expressions that might appear in the translation, we parametrize the
algorithm with an upper bound K on the maximal number of affine inequalities
appearing in each product. To that end, we define ProdK(Φ) = {

∏t
i=1 φi | 0 ≤

t ≤ K, φi ∈ Φ}. Let MK = |ProdK(Φ)| be the total number of such products
and ProdK(Φ) = {φ1, . . . , φMK

}. Then, for any constraint of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (polyexp(x) ≥ 0),

we introduce fresh template variables y1, . . . , yMK
and translate it into the sys-

tem of purely existentially quantified constraints

(y1 ≥ 0) ∧ · · · ∧ (yN ≥ 0) ∧ (polyexp(x) ≡H y1 · φ1(x) + · · · + yMK
· φMK

(x)).

Here, polyexp(x) ≡H y1 ·φ1(x)+ · · ·+yMK
·φMK

(x) denotes the set of equalities
over template variables and y1, . . . , yMK

which equate the constant coefficients
as well as the coefficients of each monomial over {x1, . . . , xk} of degree at most
K on two sides of the equivalence, as specified by Handelman’s theorem.

While our translation into a purely existentially quantified constraints is not
complete due to the non-strict polynomial inequality and due to the parametriza-
tion by K, Handelman’s theorem justifies the translation as it indicates that the
translation is “close to complete” for sufficiently large values of K.

Step 4: Constraint Solving. This step is analogous to Sect. 5.1 and we use an off-
the-shelf polynomial constraint solver to handle the resulting system of purely
existentially quantified polynomial constraints. If the solver outputs a solution,
we conclude that the computed I is an inductive distributional invariant for the
computed strategy π and initial distribution μ0, and that I is contained in H.
Therefore, by Theorem 3, we conclude that μ0 is H-safe under π.

Theorem 6. Soundness: Suppose AlgDist returns a strategy π and an affine
inductive distributional invariant I. Then, π is H-safe for μ0.

Complexity: For any fixed parameter K ∈ N, the runtime of AlgDist is in
PSPACE in the size of the MDP and the template size parameter NI ∈ N.

The proof can be found in [4, Sec. 5.2].

6 Discussion, Extensions, and Variants

With our two algorithms in place, we remark on several interesting details and
possibilities for extensions.



104 S. Akshay et al.

Polynomial Expressions. Our second algorithm can also be extended to synthe-
sizing polynomial inductive distributional invariants, i.e. instead of defining the
invariant I through a conjunction of affine linear expressions we could synthesize
polynomial expressions such as x2

1+x2 ·x3 ≤ 0.5. This can be achieved by using
Putinar’s Positivstellensatz [59] instead of Handelman’s theorem in Step 3. This
technique has recently been used for generating polynomial inductive invariants
in programs in [20], and our translation in Step 3 can be analogously adapted to
synthesize polynomial inductive distributional invariants up to a specified degree.
In the same way, instead of requiring that H is given as a conjunction of affine
linear constraints, we can also handle the case of polynomial constraints. The
same holds true for the probabilities of choosing certain actions psi,aj

(x). While
we have defined these as fractions of affine linear expressions, we could replace
them with rational functions, which we chose to exclude for sake of readability.

Uninitialized and Restricted Initial Case. We remark that we can directly incor-
porate the uninitialized case in our algorithm. In particular, instead of requiring
that I(μ0) holds for the concretely given initial values, we can instead exis-
tentially quantify over the values of μ0(si) and add the constraint that μ0 is
a distribution, i.e. μ0(si) ∈ Δ(S). This does not add universal quantification,
thus we do not need to apply any quantifier elimination for these variables. This
also subsumes and generalizes the ideas of [5], which observes that checking
whether a fixpoint of the transition dynamics lies within H is sufficient. Choos-
ing I = {μ∗} where μ∗ is such a fixpoint satisfies all of our constraints. See [4,
Sec. 6] for details.

Our algorithm is also able to handle the “intermediate” case, as follows. The
uninitialized case leaves absolute freedom in the choice of initial distribution,
while the initialized case concretely specifies one initial distribution. Here, we
could as well impose some constraints on the initial distribution without fixing it
completely, i.e. ask whether there exists an H-safe initial distribution μ0 which
satisfies a predicate Φinit. If Φinit is a conjunction of affine linear constraints, we
can directly handle this query, too. Note that both initialized and uninitialized
are special cases thereof.

Non-Inductive Initial Steps. Instead of requiring to synthesize an invariant which
contains the initial distribution, we can explicitly write down the first k dis-
tributions and only then require an invariant and strategy to be found. More
concretely, the set of distributions that can be achieved in a given step k while
remaining in H can be explicitly computed, denote this set as Δk. For a different
perspective, this describes the set of states reachable in TM within k steps and
corresponds to “unrolling” the MDP for a fixed number of steps. This then goes
hand in hand with the above “restricted initial case”, where we ask whether there
exists an H-safe distribution in Δk. We conjecture that this could simplify the
search for distributional invariants for systems which have a lot of “transient”
behaviour, as observed in searching for invariants for state reachability [11].
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Fig. 3. Our Split toy example. The MDP comprises two disconnected parts. Probability
mass flows from A to B and from C to D under all strategies.

7 Implementation and Evaluation

While the main focus of our contribution lies on the theory, we validate the appli-
cability through an unoptimized prototype implementation. We implemented
our approach in Python 3.10, using SymPy 1.11 [50] to handle and simplify sym-
bolic expressions, and PySMT 0.9 [36] to abstract communication with constraint
solvers. We use z3 4.8 [53] and mathsat 5.6 [26] as back-ends. Our experiments
were executed on consumer hardware (AMD Ryzen 3600 CPU with 16 GB
RAM).

Caveats. While the existential (non-linear) theory of the reals is known to be
decidable, practical algorithms are less explored than, for example, SAT solving.
In particular, runtimes are quite sensitive to minor changes in the input struc-
ture and initial randomization (many solvers apply randomized algorithms). We
observed differences of several orders of magnitude (going from seconds to hours)
simply due to restarting the computation (leading to different initial seeds). Sim-
ilarly, by strengthening the antecedents of implications by known facts, we also
observed significant improvements. Concretely, given that we have constraints of
the form I(x) =⇒ H(x) and I(x) =⇒ Φ(x), we observed that changing the sec-
ond constraint to I(x) ∧ H(x) =⇒ Φ(x) would drastically improve the runtime
even though the two are semantically equivalent.

This suggests that both improvements of our implementation as well as fur-
ther work on constraint solvers are likely to have a significant impact on the
runtime.

Models. Aside from our running example of Fig. 1, which we refer to as Running
here, we consider two further toy examples.

The first model, called Chain, is a Markov chain defined as follows: We con-
sider the states S = {s1, . . . , s10} and set δ(si) = {si+1 �→ 1} for all i < 10 and
δ(s10) = {s9 �→ 1

2 , s10 �→ 1
2}. The initial distribution is given as μ0(si) = 1

10 for
all si ∈ SS and the safe set by H = {μ(s10) ≥ 1

10}. We are mainly interested in
this model to investigate demonstrate applicability to “larger” systems.

The second model, called Split, is an MDP which actually comprises two
independent subsystems. We depict the model in Fig. 3. The initial distribution
is μ0 = {A �→ 1

2 , C �→ 1
2} and the safe set H = {μ(A)+μ(D) ≥ 1

2}. This aims to
explore both disconnected models as well as a safe set which imposes a constraint
on multiple states at once. In particular, observe that initially μ0(D) = 0 but
μi(D) converges to 1 while μi(A) converges to 0, even if choosing action a1.
Thus, the invariant needs to identify the simultaneous flow from A to B and C
to D.
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Table 1. Overview of our results for the five considered models. From left to right,
we list the name of the model, the runtime, and size of the invariant, followed by the
number of variables, constraints, and total size of the query passed to the constraint
solvers. For Running, we provided additional hints to the solver to achieve a more
consistent runtime, indicated by the dagger symbol.

Model Runtime NI #Var. #Constr. Size.

Running 3s† 3 92 123 849
Chain 10s 2 69 82 666
Split 3s 3 60 69 571
PageRank 3s 2 44 52 536
Insulin-131I 2s 2 44 52 476

Table 2. The invariants and strategies computed for our models. We omit the invari-
ants for the two real-world scenarios since they are too large to fit.

Model Computed Invariant and Strategy

Running {A ≥ 1
4
, B = 1

4
} π(μ) = {a1 �→ 1

4·µ(A)
, a2 �→ 4·µ(A)−1

4·µ(A)
}

Chain {s9 + s10 ≥ 1
5
, s10 ≥ 1

10
} π = ∅ (Markov chain)

Split {B ≤ D, A + B ≥ C + D, 3 · (C + D) − (A + B) ≥ 1} π = {a �→ 1}

We additionally consider two examples from the literature, namely the
PageRank example from [1, Fig. 3], based on [51], and Insulin-131I, a pharma-
cokinetics system [1, Example 2], based on [17]. Both are Markov chains.

Results. We summarize our findings briefly in Table 1. We again underline that
not too much attention should be put on runtimes, since they are very sensitive
to minimal changes in the model. The evaluation is mainly intended to demon-
strate that our methods are actually able to provide results. For completeness,
we report the size of the invariant NI and the size of the constraint problem
in terms of number of variables, constraints, and operations inside these con-
straints. We also provide the invariants and strategy identified by our method
in Table 2. Note that for Running we used AlgDist, while the other two examples
are handled by AlgMemLess. For Running, we observed a significant dependence
on the initialization of the solvers. Thus we added several “hints”, i.e. known
correct values for some variables. (To be precise, we set the value for eight of the
92 variables.)

Discussion. We remark two related points: Firstly, we observe that very often
most of the involved auxiliary variables introduced by the quantifier elimination
have a value of zero. Thus, a potential optimization is to explicitly set most such
variables to zero, check whether the formula is satisfiable, and, if not, gradually
remove these constraints either at random or guided by unsat-cores if available
(i.e. clauses which are the “reason” for unsatisfiability). Moreover, we observed
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significant differences between the solvers: While z3 seems to be much quicker
to identify unsatisfiability, mathsat usually is better at finding satisfying assign-
ments. Hence, using both solvers in tandem seems to be very beneficial.

8 Conclusion

We developed a framework for defining certificates for safety objectives in
MDPs as distributional inductive invariants. Using this, we came up with two
algorithms that synthesize linear/affine invariants and corresponding memory-
less/general strategies for safety in MDPs. To the best of our knowledge this is
the first time the template-based invariant approach, already known to be suc-
cessful for programs, has been applied to synthesis strategies in MDPs for distri-
butional safety properties. Our experimental results show that affine invariants
are sufficient for many interesting examples. However, the second approach can
be lifted to synthesize polynomial invariants, and hence potentially, a large set of
MDPs. Exploring this could be a future line of work. It would also be interesting
to explore how one can automate distributional invariant synthesis if the safe set
H is specified in terms of both strict and non-strict inequalities. Finally, in terms
of applicability, we would like to apply this approach to solve more benchmarks
and problems, e.g., to synthesize risk-aware strategies for MDPs [46,49].
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