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Abstract. We consider the problem of learning control policies in
discrete-time stochastic systems which guarantee that the system sta-
bilizes within some specified stabilization region with probability 1. Our
approach is based on the novel notion of stabilizing ranking supermartin-
gales (sRSMs) that we introduce in this work. Our sRSMs overcome the
limitation of methods proposed in previous works whose applicability is
restricted to systems in which the stabilizing region cannot be left once
entered under any control policy. We present a learning procedure that
learns a control policy together with an sRSM that formally certifies
probability 1 stability, both learned as neural networks. We show that
this procedure can also be adapted to formally verifying that, under a
given Lipschitz continuous control policy, the stochastic system stabilizes
within some stabilizing region with probability 1. Our experimental eval-
uation shows that our learning procedure can successfully learn provably
stabilizing policies in practice.

Keywords: Learning-based control · Stochastic systems ·
Martingales · Formal verification · Stabilization

1 Introduction

Machine learning based methods and in particular reinforcement learning (RL)
present a promising approach to solving highly non-linear control problems. This
has sparked interest in the deployment of learning-based control methods in
safety-critical autonomous systems such as self-driving cars or healthcare devices.
However, the key challenge for their deployment in real-world scenarios is that
they do not consider hard safety constraints. For instance, the main objective
of RL is to maximize expected reward [46], but doing so provides no guarantees
of the system’s safety. A more recent paradigm in safe RL considers constrained
Markov decision processes (cMDPs) [3,4,21,26,50], which are equiped with both
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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a reward function and an auxiliary cost function. The goal of these works is then
to maximize expected reward while keeping expected cost below some tolerable
threshold. While these methods do enhance safety, they only ensure empirically
that the expected cost function is below the threshold and do not provide any
formal guarantees on constraint satisfaction.

This is particularly concerning for safety-critical applications, in which unsafe
behavior of the system might have fatal consequences. Thus, a fundamental
challenge for deploying learning-based methods in safety-critical autonomous
systems applications is formally certifying safety of learned control policies [5,25].

Stability is a fundamental safety constraint in control theory, which requires
the system to converge to and eventually stay within some specified stabilizing
region with probability 1, a.k.a. almost-sure (a.s.) asymptotic stability [31,33].
Most existing research on learning policies for a control system with formal
guarantees on stability considers deterministic systems and employs Lyapunov
functions [31] for certifying the system’s stability. In particular, a Lyapunov
function is learned jointly with the control policy [1,8,15,42]. Informally, a Lya-
punov function is a function that maps system states to nonnegative real num-
bers whose value decreases after every one-step evolution of the system until the
stabilizing region is reached. Recently, [37] proposed a learning procedure for
learning ranking supermartingales (RSMs) [11] for certifying a.s. asymptotic sta-
bility in discrete-time stochastic systems. RSMs generalize Lyapunov functions
to supermartingale processes in probability theory [54] and decrease in value in
expectation upon every one-step evolution of the system.

While these works present significant advances in learning control policies
with formal stability guarantees as well as formal stability verification, they are
either only applicable to deterministic systems or assume that the stabilizing set
is closed under system dynamics, i.e., the agent cannot leave it once entered. In
particular, the work of [37] reduces stability in stochastic systems to an a.s. reach-
ability condition by assuming that the agent cannot leave the stabilization set.
However, this assumption may not hold in real-world settings because the agent
may be able to leave the stabilizing set with some positive probability due to
the existence of stochastic disturbances, see Fig. 1. We illustrate the importance
of relaxing this assumption on the classical example of balancing a pendulum in
the upright position, which we also study in our experimental evaluation. The
closedness under system dynamics assumption implies that, once the pendulum
is in an upright position, it is ensured to stay upright and not move away. How-
ever, this is not a very realistic assumption due to possible existence of minor
disturbances which the controller needs to balance out. The closedness under
system dynamics assumption essentially assumes the existence of a balancing
control policy which takes care of this problem. In contrast, our method does
not assume such a balancing policy and learns a control policy which ensures that
both (1) the pendulum reaches the upright position and (2) that the pendulum
eventually stays upright with probability 1.

While the removal of the assumption that a stabilizing region cannot be left
may appear to be a small improvement, in formal methods this is well-understood
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to be a significant and difficult step. With the assumption, the desired controller
has an a.s. reachability objective. Without the assumption, the desired controller
has an a.s. persistence (or co-Büchi) objective, namely, to reach and stay in the
stabilizing region with probability 1. Verification or synthesis for reachability con-
ditions allow in general much simpler techniques than verification or synthesis for
persistence conditions. For example, in non-stochastic systems, reachability can
be expressed in alternation-free μ-calculus (i.e., fixpoint computation), whereas
persistence requires alternation (i.e., nested fixpoint computation). Technically,
reachability conditions are found on the first level of the Borel hierarchy, while
persistence conditions are found on the second level [13]. It is, therefore, not
surprising that also over continuous and stochastic state spaces, reachability
techniques are insufficient for solving persistence problems.

In this work, we present the following three contributions.

1. Theoretical Contributions. In this work, we introduce stabilizing ranking
supermartingales (sRSMs) and prove that they certify a.s. asymptotic stabil-
ity in discrete-time stochastic systems even when the stabilizing set is not
assumed to be closed under system dynamics. The key novelty of our sRSMs
compared to RSMs is that they also impose an expected decrease condition
within a part of the stabilizing region. The additional condition ensures that,
once entered, the agent leaves the stabilizing region with probability at most
p < 1. Thus, we show that the probability of the agent entering and leaving
the stabilizing region N times is at most pN , which by letting N → ∞ implies
that the agent eventually stabilizes within the region with probability 1. The
key conceptual novelty is that we combine the convergence results of RSMs
which were also exploited in [37] with a concentration bound on the supre-
mum value of a supermartingale process. This combined reasoning allows us
to formally guarantee a.s. asymptotic stability even for systems in which the
stabilizing region is not closed under system dynamics. We remark that our
proof that sRSMs certify a.s. asymptotic stability is not an immediate applica-
tion of results from martingale theory, but that it introduces a novel method
to reason about eventual stabilization within a set. We present this novel
method in the proof of Theorem 1. Finally, we show that sRSMs not only
present qualitative results to certify a.s. asymptotic stability but also present
quantitative upper bounds on the number of time steps that the system may
spend outside of the stabilization set prior to stabilization.

2. Algorithmic Contributions. Following our theoretical results on sRSMs,
we present an algorithm for learning a control policy jointly with an sRSM
that certifies a.s. asymptotic stability. The method parametrizes both the pol-
icy and the sRSM as neural networks and draws insight from established pro-
cedures for learning neural network Lyapunov functions [15] and RSMs [37].
It loops between a learner module that jointly trains a policy and an sRSM
candidate and a verifier module that certifies the learned sRSM candidate
by formally checking whether all sRSM conditions are satisfied. If the sRSM
candidate violates some sRSM conditions, the verifier module produces coun-
terexamples that are added to the learner module’s training set to guide the
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learner in the next loop iteration. Otherwise, if the verification is successful
and the algorithm outputs a policy, then the policy guarantees a.s. asymp-
totic stability. By fixing the control policy and only learning and verifying the
sRSM, our algorithm can also be used to verify that a given control policy
guarantees a.s. asymptotic stability. This verification procedure only requires
that the control policy is a Lipschitz continuous function.

3. Experimental Contributions. We experimentally evaluate our learning
procedure on 2 stochastic RL tasks in which the stabilizing region is not closed
under system dynamics and show that our learning procedure successfully
learns control policies with a.s. asymptotic stability guarantees for both tasks.

Organization. The rest of this work is organized as follows. Section 2 contains
preliminaries. In Sect. 3, we introduce our novel notion of stabilizing ranking
supermartingales and prove that they provide a sound certificate for a.s. asymp-
totic stability, which is the main theoretical contribution of our work. In Sect. 4,
we present the learner-verifier procedure for jointly learning a control policy
together with an sRSM that formally certifies a.s. asymptotic stability. In Sect. 5,
we experimentally evaluate our approach. We survey related work in Sect. 6.
Finally, we conclude in Sect. 7.

2 Preliminaries

We consider a discrete-time stochastic dynamical system of the form

xt+1 = f(xt, π(xt), ωt),

where f : X × U × N → X is a dynamics function, π : X → U is a control
policy and ωt ∈ N is a stochastic disturbance vector. Here, we use X ⊆ R

n to
denote the state space, U ⊆ R

m the action space and N ⊆ R
p the stochastic

disturbance space of the system. In each time step, ωt is sampled according to
a probability distribution d over N , independently from the previous samples.

A sequence (xt,ut, ωt)t∈N0 of state-action-disturbance triples is a trajectory
of the system, if ut = π(xt), ωt ∈ support(d) and xt+1 = f(xt,ut, ωt) hold for
each t ∈ N0. For each state x0 ∈ X , the system induces a Markov process and
defines a probability space over the set of all trajectories that start in x0 [41],
with the probability measure and the expectation operators Px0 and Ex0 .

Assumptions. The state space X ⊆ R
n, the action space U ⊆ R

m and the
stochastic disturbance space N ⊆ R

p are all assumed to be Borel-measurable.
Furthermore, we assume that the system has a bounded maximal step size under
any policy π, i.e. that there exists Δ > 0 such that for every x ∈ X , ω ∈ N
and policy π we have ||x − f(x, π(x), ω)||1 ≤ Δ. Note that this is a realistic
assumption that is satisfied in many real-world scenarios, e.g. a self-driving car
can only traverse a certain maximal distance within each time step whose bounds
depend on the maximal speed that the car can develop.



Learning Provably Stabilizing Neural Controllers 361

For our learning procedure in Sect. 4, we assume that X ⊆ R
n is compact

and that f is Lipschitz continuous, which are common assumptions in control
theory. Given two metric spaces (X, dX) and (Y, dY ), a function g : X → Y
is said to be Lipschitz continuous if there exists a constant L > 0 such that
for every x1, x2 ∈ X we have dY (g(x1), g(x2)) ≤ L · dX(x1, x2). We say that
L is a Lipschitz constant of g. For the verification procedure when the control
policy π is given, we also assume that π is Lipschitz continuous. This is also
a common assumption in control theory and RL that allows for a rich class of
policies including neural network policies, as all standard activation functions
such as ReLU, sigmoid or tanh are Lipschitz continuous [47]. Finally, in Sect. 4
we assume that the stochastic disturbance space N is bounded or that d is a
product of independent univariate distributions, which is needed for efficient
sampling and expected value computation.

Almost-Sure Asymptotic Stability. There are several notions of stability in
stochastic systems. In this work, we consider the notion of almost-sure asymp-
totic stability [33], which requires the system to eventually converge and stay
within the stabilizing set. In order to define this formally, for each x ∈ X let
d(x,Xs) = infxs∈Xs

||x − xs||1, where || · ||1 is the l1-norm on R
m.

Definition 1. A Borel-measurable set Xs ⊆ X is almost-surely (a.s.) asymptot-
ically stable, if for each initial state x0 ∈ X we have

Px0

[
lim

t→∞ d(xt,Xs) = 0
]

= 1.

The above definition slightly differs from that of [33] which considers the
special case of a singleton Xs = {0}. The reason for this difference is that,
analogously to [37] and to the existing works on learning stabilizing policies in
deterministic systems [8,15,42], we need to consider stability with respect to an
open neighborhood of the origin for learning to be numerically stable.

3 Theoretical Results

We now introduce our novel notion of stabilizing ranking supermartingales
(sRSMs). We then show that sRSMs can be used to formally certify a.s. asymptotic
stability with respect to a fixed policy π without requiring that the stabilizing set
is closed under system dynamics. To that end, in this section we assume that the
policy π is fixed. In the next section, we will then present our learning procedure.

Prior Work – Ranking Supermartingales (RSMs). In order to motivate our
sRSMs and to explain their novelty, we first recall ranking supermartingales
(RSMs) [11] that were used in [37] for certifying a.s. asymptotic stability under
a given policy π, when the stabilizing set is assumed to be closed under system
dynamics. If the stabilizing set is assumed to be closed under system dynamics,
then a.s. asymptotic stability of Xs is equivalent to a.s. reachability since the
agent cannot leave Xs once entered.
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Intuitively, an RSM is a non-negative continuous function V : X → R whose
value at each state in X\Xs strictly decreases in expected value by some ε > 0
upon every one-step evolution of the system under the policy π.

Definition 2 (Ranking supermartingales [11,37]). A continuous function
V : X → R is a ranking supermartingale (RSM) for Xs if V (x) ≥ 0 for each
x ∈ X and if there exists ε > 0 such that for each x ∈ X\Xs we have

Eω∼d

[
V (f(x, π(x), ω))

]
≤ V (x) − ε.

It was shown that, if a system under policy π admits an RSM and the
stabilizing set Xs is assumed to be closed under system dynamics, then Xs is
a.s. asymptotically stable. The intuition behind this result is that V needs to
strictly decrease in expected value until Xs is reached while remaining bounded
from below by 0. Results from martingale theory can then be used to prove
that the agent must eventually converge and reach Xs with probability 1, due
to a strict decrease in expected value by ε > 0 outside of Xs which prevents
convergence to any other state. However, apart from nonnegativity, the defining
conditions on RSMs do not impose any conditions on the RSM once the agent
reaches Xs. In particular, if the stabilizing set Xs is not closed under system
dynamics, then the defining conditions of RSMs do not prevent the agent from
leaving and reentering Xs infinitely many times and thus never stabilizing. In
order to formally ensure stability, the defining conditions of RSMs need to be
strengthened and in the rest of this section we solve this problem.

Our New Certificate – Stabilizing Ranking Supermartingales (sRSMs). We now
define our sRSMs, which certify a.s. asymptotic stability even when the stabiliz-
ing set is not assumed to be closed under system dynamics and thus overcome
the limitation of RSMs of [37] that was discussed above. Recall, we use Δ to
denote the maximal step size of the system.

Definition 3 (Stabilizing ranking supermartingales). Let ε,M, δ > 0. A
Lipschitz continuous function V : X → R is said to be an (ε,M, δ)-stabilizing
ranking supermartingale ((ε,M, δ)-sRSM) for Xs if the following conditions hold:

1. Nonnegativity. V (x) ≥ 0 holds for each x ∈ X .
2. Strict expected decrease if V ≥ M . For each x ∈ X , if V (x) ≥ M then

Eω∼d

[
V

(
f(x, π(x), ω)

)]
≤ V (x) − ε.

3. Lower bound outside Xs. V (x) ≥ M + LV · Δ + δ holds for each x ∈ X\Xs,
where LV is a Lipschitz constant of V .

An example of an sRSM for a 1-dimensional stochastic dynamical system is
shown in Fig. 1. The intuition behind our new conditions is as follows. Condi-
tion 2 in Definition 3 requires that, at each state in which V ≥ M , the value
of V decreases in expectation by ε > 0 upon one-step evolution of the system.
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Fig. 1. Example of a 1-dimensional stochastic dynamical system for which the stabiliz-
ing set Xs is not closed under system dynamics since from every system state any other
state is reachable with positive probability. a) System definition and an sRSM that it
admits. b) Illustration of a single time step evolution of the system. c) Visualization
of the sRSM and the corresponding level set used to bound the probability of leaving
the stabilizing region.

As we show below, this ensures probability 1 convergence to the set of states
S = {x ∈ X | V (x) ≤ M} from any other state of the system. On the other
hand, condition 3 in Definition 3 requires that V ≥ M + LV · Δ + δ outside of
the stabilizing set Xs, thus S ⊆ Xs. Moreover, if the agent is in a state where
V ≤ M , the value of V in the next state has to be ≤ M +LV ·Δ due to Lipschitz
continuity of V and Δ being the maximal step size of the system. Therefore, even
if the agent leaves S, for the agent to actually leave Xs the value of V has to
increase from a value ≤ M +LV ·Δ to a value ≥ M +LV ·Δ+ δ while satisfying
the strict expected decrease condition imposed by condition 2 in Definition 3 at
every intermediate state that is not contained in S. The following theorem is the
main result of this section.

Theorem 1. If there exist ε,M, δ > 0 and an (ε,M, δ)-sRSM for Xs, then Xs

is a.s. asymptotically stable.

Proof sketch, full proof in the extended version [6]. In order to prove Theorem 1,
we need to show that Px0 [limt→∞ d(xt,Xs) = 0] = 1 for every x0 ∈ X . We show
this by proving the following two claims. First, we show that, from each initial
state x0 ∈ X , the agent converges to and reaches S = {x ∈ X | V (x) ≤ M} with
probability 1. The set S is a subset of Xs by condition 3 in Definition 3 of sRSMs.
Second, we show that once the agent is in S it may leave Xs with probability at
most p = M+LV ·Δ

M+LV ·Δ+δ < 1. We then prove that the two claims imply Theorem 1.

Claim 1. For each initial state x0 ∈ X , the agent converges to and reaches
S = {x ∈ X | V (x) ≤ M} with probability 1.

To prove Claim 1, let x0 ∈ X . If x0 ∈ S, then the claim trivially holds. So
suppose w.l.o.g. that x0 �∈ S. We consider the probability space (Ωx0 ,Fx0 ,Px0)
of all system trajectories that start in x0, and define a stopping time TS : Ωx0 →
N0 ∪{∞} which to each trajectory assigns the first hitting time of the set S and
is equal to ∞ if the trajectory does not reach S. Furthermore, for each i ∈ N0,
we define a random variable Xi in this probability space via

Xi(ρ) =

{
V (xi), if i < TS(ρ)
V (xTS(ρ)), otherwise

(1)
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for each trajectory ρ = (xt,ut, ωt)t∈N0 ∈ Ωx0 . In words, Xi is equal to the
value of V at the i-th state along the trajectory until S is reached, upon which
it becomes constant and equal to the value of V upon first entry into S. We
prove that (Xi)∞

i=0 is an instance of the mathematical notion of ε-ranking super-
martingales (ε-RSMs) [11] for the stopping time TS . Intuitively, an ε-RSM for
TS is a stochastic process which is non-negative, decreases in expected value
upon every one-step evolution of the system and furthermore the decrease is
strict and by ε > 0 until the stopping time TS is exceeded. If ε is allowed to
be 0 as well, then the process is simply said to be a supermartingale [54]. It
is a known result in martingale theory that, if an ε-RSM exists for TS , then
Px0 [TS < ∞] = Px0 [Reach(S)] = 1. Thus, by proving that (Xi)∞

i=0 defined above
is an ε-RSM for TS , we also prove Claim 1. We provide an overview of martingale
theory results used in this proof in the extended version of the paper [6].

Claim 2. Px0 [∃ t ∈ N0 s.t. xt �∈ Xs] = p < 1 where p = M+LV ·Δ
M+LV ·Δ+δ , for each

x0 ∈ S.

To prove Claim 2, recall that S = {x ∈ X | V (x) ≤ M}. Thus, as V is Lipschitz
continuous with Lipschitz constant LV and Δ is the maximal step size of the
system, it follows that the value of V immediately upon the agent leaving the
set S is ≤ M + LV · Δ. Hence, for the agent to leave Xs from x0 ∈ S, it first
has to reach a state x1 with M < V (x1) ≤ M + LV · Δ and then to also reach
a state x2 �∈ Xs from x1 without reentering S. By condition 3 in Definition 3
of sRSMs, we have V (x2) ≥ M + LV · Δ + δ. We claim that this happens with
probability at most p = M+LV ·Δ

M+LV ·Δ+δ . To prove this, we use another result from
martingale theory which says that, if (Zi)∞

i=0 is a nonnegative supermartingale
and λ > 0, then P[supi≥0 Zi ≥ λ] ≤ E[Z0]

λ (see the extended version for full
proof [6]). We apply this theorem to the process (X ′

i)
∞
i=0 defined analogously as

in Eq. 1, but in the probability space of trajectories that start in x1. Then, since
in this probability space we have that X0 is equal to V (x1) ≤ M + LV · Δ, by
plugging in λ = M + LV · Δ + δ we conclude that the probability of the process
ever leaving Xs and thus reaching a state in which V ≥ M + LV · Δ + δ is

Px0 [∃ t ∈ N0 s.t. xt �∈ Xs]
≤Px0 [sup

i≥0
Xi ≥ M + LV · Δ + δ]

≤Px1 [sup
i≥0

X ′
i ≥ M + LV · Δ + δ]

≤ M + LV · Δ

M + LV · Δ + δ
= p < 1,

so Claim 2 follows. The above inequality is formally proved in the extended
version [6].

Claim 1 and Claim 2 Imply Theorem 1. Finally, we show that these two claims
imply the theorem statement. By Claim 1, the agent with probability 1 converges
to and reaches S ⊆ Xs from any initial state. On the other hand, by Claim 2,
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upon reaching a state in S the probability of leaving Xs is at most p < 1.
Furthermore, even if Xs is left, by Claim 1 the agent is guaranteed to again
converge to and reach S. Hence, due to the system dynamics under a fixed policy
satisfying Markov property, the probability of the agent leaving and reentering
S more than N times is bounded from above by pN . By letting N → ∞, we
conclude that the probability of the agent leaving Xs and reentering infinitely
many times is 0, so the agent with probability 1 eventually enters and S and
does not leave Xs after that. This implies that Xs is a.s. asymptotically stable. ��

Bounds on Stabilization Time. We conclude this section by showing that our
sRSMs not only certify a.s. asymptotic stability of Xs, but also provide bounds
on the number of time steps that the agent may spend outside of Xs. This is
particularly relevant for safety-critical applications in which the goal is not only
to ensure stabilization but also to ensure that the agent spends as little time
outside the stabilization set as possible. For each trajectory ρ = (xt,ut, ωt)t∈N0 ,
let OutXs

(ρ) = |{t ∈ N0 | xt �∈ Xs}| ∈ N0 ∪ {∞}.

Theorem 2 (Proof in the extended version [6]). Let ε,M, δ > 0 and sup-
pose that V : X → R is an (ε,M, δ)-sRSM for Xs. Let Γ = supx∈Xs

V (x) be
the supremum of all possible values that V can attain over the stabilizing set Xs.
Then, for each initial state x0 ∈ X , we have that

1. Ex0 [OutXs
] ≤ V (x0)

ε + (M+LV ·Δ)·(Γ+LV ·Δ)
δ·ε .

2. Px0 [OutXs
≥ t] ≤ V (x0)

t·ε + (M+LV ·Δ)·(Γ+LV ·Δ)
δ·ε·t , for any time t ∈ N.

4 Learning Stabilizing Policies and sRSMs on Compact
State Spaces

In this section, we present our method for learning a stabilizing policy together
with an sRSM that formally certifies a.s. asymptotic stability. As stated in Sect. 2,
our method assumes that the state space X ⊆ R

n is compact and that f is
Lipschitz continuous with Lipschitz constant Lf . We prove that, if the method
outputs a policy, then it guarantees a.s. asymptotic stability. After presenting
the method for learning control policies, we show that it can also be adapted
to a formal verification procedure that learns an sRSM for a given Lipschitz
continuous control policy π.

Outline of the Method. We parameterize the policy and the sRSM via two neural
networks πθ : X → U and Vν : X → R, where θ and ν are vectors of neural
network parameters. To enforce condition 1 in Definition 3, which requires the
sRSM to be a nonnegative function, our method applies the softplus activation
function x 
→ log(exp(x) + 1) to the output of Vν . The remaining layers of πθ

and Vν apply ReLU activation functions, therefore πθ and Vν are also Lipschitz
continuous [47]. Our method draws insight from the algorithms of [15,55] for
learning policies together with Lyapunov functions or RSMs and it comprises
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Algorithm 1. Learner-verifier procedure
1: Input Dynamics function f , stochastic disturbance distribution d, stabilizing

region Xs ⊆ X , Lipschitz constant Lf

2: Parameters τ > 0, Ncond 2 ∈ N, Ncond 3 ∈ N, εtrain, δtrain
3: ˜X ← centers of cells of a discretization rectangular grid in X with mesh τ
4: B ← centers of grid cells of a subgrid of ˜X
5: πθ ← policy trained by using PPO [44]
6: M ← 1
7: while timeout not reached do
8: πθ, Vν ← jointly trained by minimizing the loss in (2) on dataset B

9: ˜X≥M ← centers of cells over which Vν(x) ≥ M
10: Lπ, LV ← Lipschitz constants of πθ, Vν

11: K ← LV · (Lf · (Lπ + 1) + 1)

12: ˜Xce ← counterexamples to condition 2 on ˜X≥M

13: if ˜Xce = {} then
14: CellsX\Xs ← grid cells that intersect X\Xs

15: Δθ ← max. step size of the system with policy π
16: if V ν(cell) > M + LV · Δθ for all cell ∈ CellsX\Xs then
17: return πθ, Vν , “Xs is a.s. asymptotically stable under πθ”
18: end if
19: else
20: B ← (B \ {x ∈ B|Vν(x) < M}) ∪ ˜Xce

21: end if
22: end while
23: Return Unknown

of a learner and a verifier module that are composed into a loop. In each loop
iteration, the learner module first trains both πθ and Vν on a training objective
in the form of a differentiable approximation of the sRSM conditions 2 and 3 in
Definition 3. Once the training has converged, the verifier module formally checks
whether the learned sRSM candidate satisfies conditions 2 and 3 in Definition
3. If both conditions are fulfilled, our method terminates and returns a policy
together with an sRSM that formally certifies a.s. asymptotic stability. If at least
one sRSM condition is violated, the verifier module enlarges the training set of
the learner by counterexample states that violate the condition in order to guide
the learner towards fixing the policy and the sRSM in the next learner iteration.
This loop is repeated until either the verifier successfully verifies the learned
sRSM and outputs the control policy and the sRSM, or until some specified
timeout is reached in which case no control policy is returned by the method.
The pseudocode of the algorithm is shown in Algorithm 1. In what follows, we
provide details on algorithm initialization (lines 3–6, Algorithm 1) and on the
learner and the verifier modules (lines 7–22, Algorithm 1).
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4.1 Initialization

State Space Discretization. The key challenge in verifying an sRSM candidate is
to check the expected decrease condition imposed by condition 2 in Definition 3.
To check this condition, following the idea of [8] and [37] our method first com-
putes a discretization of the state space X . A discretization X̃ of X with mesh
τ > 0 is a finite subset X̃ ⊆ X such that for every x ∈ X there exists x̃ ∈ X̃ with
||x̃ − x||1 < τ . Our method computes the discretization by considering centers
of cells of a rectangular grid of sufficiently small cell size (line 3, Algorithm 1).
The discretization will later be used by the verifier in order to reduce verification
of condition 2 to checking a slightly stricter condition at discretization vertices,
due to all involved functions being Lipschitz continuous (more details Sect. 4.3).

The algorithm also collects the set B of grid cell centers of a subgrid of X̃
of larger mesh (line 4, Algorithm 1). This set will be used as the initial training
set for the learner, and will then be gradually expanded by counterexamples
computed by the verifier.

Policy Initialization. We initialize parameters of the neural network policy πθ

by running several iterations of the proximal policy optimization (PPO) [44]
RL algorithm (line 5, Algorithm 1). In particular, we induce a Markov decision
process (MDP) from the given system by using the reward function r : X → R

defined via

r(x) =

{
1, if x ∈ Xs

0, otherwise

in order to learn an initial policy that drives the system toward the stabilizing
set. The practical importance of initialization for learning stabilizing policies in
deterministic systems was observed in [15].

Fix the Value M = 1. As the last initialization step, we observe that one may
always rescale the value of an sRSM by a strictly positive constant factor while
preserving all conditions in Definition 3. Therefore, without loss of generality,
we fix the value M = 1 in Definition 3 for our sRSM (line 6, Algorithm 1).

4.2 Learner

The policy and the sRSM candidate are learned by minimizing the loss

L(θ, ν) = Lcond 2(θ, ν) + Lcond 3(θ, ν) (2)

(line 8, Algorithm 1). The two loss terms guide the learner towards an sRSM
candidate that satisfies conditions 2 and 3 in Definition 3.

We define the loss term for condition 2 via

Lcond 2(θ, ν) =
1

|B|
∑
x∈B

(
max

{

∑
ω1,...,ωNcond 2∼d

Vν

(
f(x, πθ(x), ωi)

)
Ncond 2

− Vν(x) + εtrain, 0
})

.
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Intuitively, for each element x ∈ B of the training set, the corresponding term in
the sum incurs a loss whenever condition 2 is violated at x. Since the expected
value of Vν at a successor state of x does not admit a closed form expression
due to Vν being a neural network, we approximate it as the mean of values of
Vν at Ncond 2 independently sampled successor states of x, with Ncond 2 being
an algorithm parameter.

For condition 3, the loss term samples Ncond 3 system states from X\Xs with
Ncond 3 an algorithm parameter and incurs a loss whenever condition 3 is not
satisfied at some sampled state:

Lcond3(θ, ν) = max
{

M + LVν
+ Δθ + δtrain − min

x1,...xNcond 3∼X\Xs

Vν(xi), 0
}

.

Regularization Terms in the Implementation. In our implementation, we also
add two regularization terms to the loss function used by the learner. The first
term favors learning an sRSM candidate whose global minimum is within the
stabilizing set. The second term penalizes large Lipschitz bounds of the networks
πθ and Vν by adding a regularization term. While these two loss terms do not
directly enforce any particular condition in Definition 3, we observe that they
help the learning and the verification process and decrease the number of needed
learner-verifier iterations. See the extended version [6] for details on regulariza-
tion terms.

4.3 Verifier

The verifier formally checks whether the learned sRSM candidate satisfies condi-
tions 2 and 3 in Definition 3. Recall, condition 1 is satisfied due to the softplus
activation function applied to the output of Vν .

Formal Verification of Condition 2. The key challenge in checking the expected
decrease condition in condition 2 is that the expected value of a neural net-
work function does not admit a closed-form expression, so we cannot evaluate it
directly. Instead, we check condition 2 by first showing that it suffices to check a
slightly stricter condition at vertices of the discretization X̃ , due to all involved
functions being Lipschitz continuous. We then show how this stricter condition
is checked at each discretization vertex.

To verify condition 2, the verifier first collects the set X̃≥M of centers of all
grid cells that contain a state x with Vν(x) ≥ M (line 9, Algorithm 1). This
set is computed via interval arithmetic abstract interpretation (IA-AI) [22,27],
which for each grid cell propagates interval bounds across neural network layers
in order to bound from below the minimal value that Vν attains over that cell.
The center of the grid cell is added to X̃≥M whenever this lower bound is smaller
than M . We use the method of [27] to perform IA-AI with respect to a neural
network function Vν so we refer the reader to [27] for details on this step.

Once X̃≥M is computed, the verifier uses the method of [47, Section 4.3]
to compute the Lipschitz constants Lπ and LV of neural networks πθ and Vν ,
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respectively (line 10, Algorithm 1). It then sets K = LV · (Lf · (Lπ + 1) + 1)
(line 11, Algorithm 1). Finally, for each x̃ ∈ X̃≥M the verifier checks the following
stricter inequality

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
< Vν(x̃) − τ · K, (3)

and collects the set X̃ce ⊆ X̃≥M of counterexamples at which this inequality is
violated (line 12, Algorithm 1). The reason behind checking this stronger con-
straint is that, due to Lipschitz continuity of all involved functions and due to
τ being the mesh of the discretization, we can show (formally done in the proof
of Theorem 3) that this condition being satisfied for each x̃ ∈ X̃≥M implies
that the expected decrease condition Eω∼d[Vν(f(x, πθ(x̃), ω))] < Vν(x) is sat-
isfied for all x ∈ X with V (x) ≥ M . Then, due to both sides of the inequal-
ity being continuous functions and {x ∈ X | Vν(x) ≥ M} being a compact
set, their difference admits a strictly positive global minimum ε > 0 so that
Eω∼d[Vν(f(x, πθ(x̃), ω))] ≤ Vν(x) − ε is satisfied for all x ∈ X with V (x) ≥ M .
We show in the paragraph below how our method formally checks whether the
inequality in (3) is satisfied at some x̃ ∈ X̃≥M .

If (3) is satisfied for each x̃ ∈ X̃≥M and so X̃ce = ∅, the verifier concludes
that Vν satisfies condition 2 in Definition 3 and proceeds to checking condition 3
in Definition 3 (lines 14–18, Algorithm 1). Otherwise, any computed counterex-
ample to this constraint is added to B to help the learner fine-tune an sRSM
candidate (line 20, Algorithm 1) and the algorithm proceeds to the start of the
next learner-verifier iteration (line 7, Algorithm 1).

Checking Inequality (3) and Expected Value Computation. To check (3) at some
x̃ ∈ X̃≥M , we need to compute the expected value Eω∼d[Vν(f(x̃, πθ(x̃), ω))].
Note that this expected value does not admit a closed form expression due to
Vν being a neural network function, so we cannot evaluate it directly. Instead,
we use the method of [37] in order to compute an upper bound on this expected
value and use this upper bound to formally check whether (3) is satisfied at
x̃. For completeness of our presentation, we briefly describe this expected value
bound computation below. Recall, in our assumptions in Sect. 2, we said that
our algorithm assumes that the stochastic disturbance space N is bounded or
that d is a product of independent univariate distributions.

First, consider the case when N is bounded. We partition the stochastic
disturbance space N ⊆ R

p into finitely many cells cell(N ) = {N1, . . . ,Nk}. We
denote by maxvol = maxNi∈cell(N ) vol(Ni) the maximal volume of any cell in the
partition with respect to the Lebesgue measure over Rp. The expected value can
then be bounded from above via

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
≤

∑
Ni∈cell(N )

maxvol · sup
ω∈Ni

F (ω)

where F (ω) = Vν(f(x̃, πθ(x̃), ω). Each supremum on the right-hand-side is then
bounded from above by using the IA-AI-based method of [27].
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Second, consider the case when N is unbounded but d is a product of inde-
pendent univariate distributions. Note that in this case we cannot directly follow
the above approach since maxvol = maxNi∈cell(N ) vol(Ni) would be infinite. How-
ever, since d is a product of independent univariate distributions, we may first
apply the Probability Integral Transform [39] to each univariate distribution in
d to transform it into a finite support distribution and then proceed as above.

Formal Verification of Condition 3. To formally verify condition 3 in Definition 3,
the verifier collects the set CellsX\Xs

of all grid cells that intersect X\Xs (line
14, Algorithm 1). Then, for each cell ∈ CellsX\Xs

, it uses IA-AI to check

V ν(cell) > M + LV · Δθ, (4)

with V ν(cell) denoting the lower bound on Vν over the cell computed by IA-
AI (lines 15–16, Algorithm 1). If this holds, then the verifier concludes that Vν

satisfies condition 3 in Definition 3 with δ = mincell∈CellsX\Xs
{V ν(cell)−M −LV ·

Δθ}. Hence, as conditions 2 and 3 have both been formally verified to be satisfied,
the method returns the policy πθ and the sRSM Vν which formally proves that
Xs is a.s. asymptotically stable under πθ (line 17, Algorithm 1). Otherwise, the
method proceeds to the next learner-verifier loop iteration (line 7, Algorithm 1).

Algorithm Correctness. The following theorem establishes the correctness of
Algorithm 1. In particular, it shows that if the verifier confirms that conditions 2
and 3 in Definition 3 are satisfied and therefore Algorithm 1 returns a control
policy πθ and an sRSM Vν , then it holds that Vν is indeed an sRSM and that
Xs is a.s. asymptotically stable under πθ.

Theorem 3 (Algorithm correctness, proof in the extended version [6]).
Suppose that the verifier shows that Vν satisfies (3) for each x̃ ∈ X̃≥M and (4)
for each cell ∈ CellsX\Xs

, so Algorithm 1 returns πθ and Vν . Then Vν is an
sRSM and Xs is a.s. asymptotically stable under πθ.

4.4 Adaptation into a Formal Verification Procedure

To conclude this section, we show that Algorithm 1 can be easily adapted into
a formal verification procedure for showing that Xs is a.s. asymptotically stable
under some given control policy π. This adaptation only assumes that π is Lip-
schitz continuous with a given Lipschitz constant Lπ, or alternatively that it is
a neural network policy with Lipschitz continuous activation functions in which
case we use the method of [47] to compute its Lipschitz constant Lπ.

Instead of jointly learning the control policy and the sRSM, the formal veri-
fication procedure now only learns a neural network sRSM Vν . This is done by
executing the analogous learner-verifier loop described in Algorithm 1. The only
difference happens in the learner module, where now only the parameters ν of
the sRSM neural network are learned. Hence, the loss function in (2) that is used
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Fig. 2. Visualization of the sRSM candidate after 1 and 4 iterations of our algorithm
for the inverted pendulum task. The candidate after 1 iteration does not satisfy all
sRSM conditions, while the candidate after 4 iterations is an sRSM.

Fig. 3. Visualization of the learned stabilizing sets in green, in which the system will
remain with probability 1. (Color figure online)

in (line 8, Algorithm 1) has the same form as in Sect. 4.2, but now it only takes
parameters ν as input:

L(ν) = Lcond 2(ν) + Lcond 3(ν).

Additionally, the control policy initialization in (line 5, Algorithm 1) becomes
redundant because the control policy π is given. Apart from these two changes,
the formal verification procedure remains identical to Algorithm 1 and its cor-
rectness follows from Theorem 3.

5 Experimental Results

In this section, we experimentally evaluate the effectiveness of our method1. We
consider the same experimental setting and the two benchmarks studied in [37].
However, in contrast to [37], we do not assume that the stabilization sets are
1 Our implementation is available at https://github.com/mlech26l/

neural_martingales/tree/ATVA2023.
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Table 1. Results of our experimental evaluation. The first column shows benchmark
names. The second column shows the numer of learner-verifier loop iterations needed
to successfully learn and verify a control policy and an sRSM. The third column shows
the mesh of the used discretization grid. The fourth column shows runtime in seconds.

Benchmark Iters. Mesh (τ) Runtime

2D system 5 0.0007 3660 s
Pendulum 4 0.003 2619 s

closed under system dynamics and that the system stabilizes immediately upon
reaching the stabilization set. In our evaluation, we modify both environments
so that this assumption is violated. The goal of our evaluation is to confirm
that our method based on sRSMs can in practice learn policies that formally
guarantee a.s. asymptotic stability even when the stabilization set is not closed
under system dynamics.

We parameterize both πθ and Vν by two fully-connected neural networks
with 2 hidden ReLU layers, each with 128 neurons. Below we describe both
benchmarks considered in our evaluation, and refer the reader to the extended
version of the paper [6] for further details and formal definitions of environment
dynamics.

The first benchmark is a two-dimensional linear dynamical system with non-
linear control bounds and is of the form xt+1 = Axt + Bg(ut) + ω, where ω is a
stochastic disturbance vector sampled from a zero-mean triangular distribution.
The function g clips the action to stay within the interval [1, -1]. The state
space is X = {x | |x1| ≤ 0.7, |x2| ≤ 0.7} and we want to learn a policy for the
stabilizing set

Xs = X\
(
{x | −0.7 ≤ x1 ≤ −0.6,−0.7 ≤ x2 ≤ −0.4}
⋃

{x | 0.6 ≤ x1 ≤ 0.7, 0.4 ≤ x2 ≤ 0.7}
)
.

The second benchmark is a modified version of the inverted pendulum prob-
lem adapted from the OpenAI gym [9]. Note that this benchmark has non-
polynomial dynamics, as its dynamics function involves a sine function (see the
extended version [6]). The system is expressed by two state variables that rep-
resent the angle and the angular velocity of the pendulum. Contrary to the
original task, the problem considered here introduces triangular-shaped ran-
dom noise to the state after each update step. The state space is define as
X = {x | |x1| ≤ 3, |x2| ≤ 3}, and objective of the agent is to stabilize the
pendulum within the stabilizing set

Xs = X\
(
{x | −3 ≤ x1 ≤ −2.9,−3 ≤ x2 ≤ 0}
⋃

{x | 2.9 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3}
)
.
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Fig. 4. Contour lines of the expected stabilization time implied by Theorem 2 for the
2D system task on the left and the inverted pendulum task on the right.

For both tasks, our algorithm could find valid sRSMs and prove stability. The
runtime characteristics, such as the number of iterations and total runtime, is
shown in Table 1. In Fig. 2 we plot the sRSM found by our algorithm for the
inverted pendulum task. We also visualize for both tasks in Fig. 3 in green the
subset of Xs implied by the learned sRSM in which the system stabilizes. Finally,
in Fig. 4 we show the contour lines of the expected stabilization time bounds that
are obtained by applying Theorem 2 to the learned sRSMs.

Limitations. We conclude by discussing limitations of our approach. Verification
of neural networks is inherently a computationally difficult problem [8,30,43].
Our method is subject to this barrier as well. In particular, the complexity of
the grid decomposition routine for checking the expected decrease condition is
exponential in the dimension of the system state space. Consideration of dif-
ferent grid decomposition strategies and in particular non-uniform grids that
incorporate properties of the state space is an interesting direction of future
work towards improving the scalability of our method. However, a key advan-
tage of our approach is that the complexity is only linear in the size of the
neural network policy. Consequently, our approach allows learning and verifying
networks that are of the size of typical networks used in reinforcement learning
[44]. Moreover, our grid decomposition procedure runs entirely on accelerator
devices, including CPUs, GPUs, and TPUs, thus leveraging future advances in
these computing devices. A technical limitation of our learning procedure is that
it is restricted to compact state spaces. Our theoretical results are applicable to
arbitrary (potentially unbounded) state spaces, as shown in Fig. 1.

6 Related Work

Stability for Deterministic Systems. Most early works on control with stability
constraints rely either on hand-designed certificates or their computation via
sum-of-squares (SOS) programming [28,40]. Automation via SOS programming
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is restricted to problems with polynomial dynamics and does not scale well with
dimension. Learning-based methods present a promising approach to overcome
these limitations [14,29,42]. In particular, the methods of [1,15] also learn a
control policy and a Lyapunov function as neural networks by using a learner-
verifier framework that our method builds on and extends to stochastic systems.

Stability for Stochastic Systems. While the theory behind stochastic system sta-
bility is well studied [33,34], only a few works consider automated controller
synthesis with formal stability guarantees for stochastic systems with continu-
ous dynamics. The methods of [23,51] are numerical and certify weaker notions of
stability. Recently, [37,55] used RSMs and learn a stabilizing policy together with
an RSM that certifies a.s. asymptotic stability. However, this method assumes
closedness under system dynamics and essentially considers the stability prob-
lem as a reachability problem. In contrast, our proof in Sect. 3 introduces a new
type of reasoning about supermartingales which allows us to handle stabilization
without prior knowledge of a set that is closed under the system dynamics.

Reachability and Safety for Stochastic Systems. Comparatively more works
have studied controller synthesis in stochastic systems with formal reachabil-
ity and safety guarantees. A number of methods abstract the system as a
finite-state Markov decision process (MDP) and synthesize a controller for the
MDP to provide formal reachability or safety guarantees over finite time hori-
zon [10,35,45,53]. An abstraction based method for obtaining infinite time hori-
zon PAC-style guarantees on the probability of reach-avoidance in linear stochas-
tic systems was proposed in [7]. A method for formal controller synthesis in
infinite time horizon non-linear stochastic systems with guarantees on the prob-
ability of co-safety properties was proposed in [52]. A learning-based approach
for learning a control policy that provides formal reachability and avoidance
infinite time horizon guarantees was proposed in [56].

Safe Exploration RL. Safe exploration RL restricts exploration of RL algorithms
in a way that a given safety constraint is satisfied. This is typically ensured
by learning the system dynamics’ uncertainty and limiting exploratory actions
within a high probability safe region via Gaussian Processes [32,49], linearized
models [24], deep robust regression [38] and Bayesian neural networks [36].

Probabilistic Program Analysis. Ranking supermartingales were originally pro-
posed for proving a.s. termination in probabilistic programs (PPs) [11]. Since
then, martingale-based methods have been used for termination [2,16,17,19]
safety [18,20,48] and recurrence and persistence [12] analysis in PPs, with the lat-
ter being equivalent to stability. However, the persistence certificate of [12] is sub-
stantially different from ours. In particular, the certificate of [12] requires strict
expected decrease outside the stabilizing set and non-strict expected decrease
within the stabilizing set. In contrast, our sRSMs require strict expected decrease
outside and only within a small part of the stabilizing set (see Definition 3). We
also note that the certificate of [12] cannot be combined with our learner-verifier
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procedure. Indeed, since our verifier module discretizes the state space and veri-
fies a stricter condition at discretization vertices, if we tried to verify an instance
of the certificate of [12] then we would be verifying the strict expected decrease
condition over the whole state space. But this condition is not satisfiable over
compact state spaces, as any continuous function must admit a global minimum.

7 Conclusion

In this work, we developed a method for learning control policies for stochas-
tic systems with formal guarantees about the systems’ a.s. asymptotic stability.
Compared to the existing literature, which assumes that the stabilizing set is
closed under system dynamics and cannot be left once entered, our approach
does not impose this assumption. Our method is based on the novel notion of
stabilizing ranking supermartingales (sRSMs) that serve as a formal certificate of
a.s. asymptotic stability. We experimentally showed that our learning procedure
is able to learn stabilizing policies and stability certificates in practice.
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