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We propose a generalized risk measure for expectile-based expected shortfall estimation. The gen-
eralization is designed with a mixture of Gaussian and Laplace densities. Our plug-in estimator is
derived from an analytic relationship between expectiles and expected shortfall. We investigate the
sensitivity and robustness of the expected shortfall to the underlying mixture parameter specification
and the risk level. Empirical results from the US, German and UK stock markets and for selected
NASDAQ blue chip companies indicate that expected shortfall can be successfully estimated using
the proposed method on a monthly, weekly, daily and intra-day basis using a 1-year or 1-day time
horizon across different risk levels.
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1. Introduction

Understanding financial risk plays an important role in risk
management and statistics. Researchers and practitioners aim
to control the risk in changing tail dependence because port-
folios and tail event risk depend upon the tail structure. In our
paper, we rely on expectile-based risk management and focus
on modeling the expected shortfall, which is a tail risk mea-
sure that is defined as the expected value of a random variable
below a given threshold; for example, an expectile or quantile
level.

Expected shortfall is a coherent risk measure that takes
diversification and risk aggregation effects into account, see
Artzner et al. (1998), Acerbi et al. (2001), Delbaen (2002),
and Acerbi (2007) who discuss and quantify expected short-
fall risk exposure. Although the subadditivity of expected
shortfall has academic support, coherent risk measures
have been criticized; see for example Cont et al. (2010),
Wang (2016). From the perspective of coherent risk measures,
expected shortfall is, nevertheless, superior to quantile-based
measures. Researchers and practitioners may find challenges

*Corresponding author. Email: Andrija.Mihoci.Dr@gmail.com

in robust estimation and prediction backtesting, due to the
elicitability property (Ziegel 2016). Therefore, we emphasize
here the clearly advantageous distributional robustness prop-
erty of expected shortfall in the context of Huber (1964).
More specifically, we provide evidence of expected short-
fall robustness superiority relative to the underlying dis-
tributional assumptions by considering an expectile-based
normal–Laplace contaminated mixture in the framework of
the robustness analysis of Huber (1964).

In practice, expected shortfall successfully captures tail
structures; see for example McNeil et al. (2015), Franke
et al. (2019). Its unique combination of desirable properties
(Kusuoka 2001) has been recognized in portfolio selection
(Bassett et al. 2004) and risk management. Recently, expected
shortfall has been recommended by the Basel Committee on
Banking Supervision (2013) for internal use and there is sup-
portive evidence that it allows fund managers to comply with
investor preferences more accurately when compared to value
at risk or variance-based risk measures (Koenker 2005).

This paper proposes a method for estimating expected
shortfall and compares the results with value at risk for gen-
eralized tail events such as expectiles and quantiles. We think
of these two tail events because of the distinct attributes that
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they possess. For instance, quantiles are elicitable and not
coherent, whereas expectiles are both elicitable and coher-
ent. M-quantiles, conceptually analogous to expectiles, can be
considered to be one of the admissible tail events. Breckling
and Chambers (1988) piloted the invention of M-quantiles.
Otto-Sobotka et al. (2019) further generalize them with a
consideration of heteroscedasticity. The resulting risk mea-
sures, when given selected thresholds with known statistical
properties, can change in terms of smoothness or monotonic-
ity. For a given tail distribution, expected shortfall can be
considered in terms of the concept of generalized tail event
(Breckling and Chambers 1988), which helps us to analyze the
expected shortfall variation stemming from a change of the
underlying distributional framework. For example, the effect
of ‘lengthening or shortening the distribution tail’ on expec-
tile driven expected shortfall can be studied by employing a
normal–Laplace mixture. Our approach essentially quantifies
the consequences of potential model misspecifications and
biased risk indicators in risk management which may result
from the lack of tail-relevant observations, see for example
McNeil and Frey (2000).

Concerning expectile-based expected shortfall properties,
we focus on the effects of varying tail structures. A com-
mon argument for the use of value at risk is its low degree
of sensitivity with respect to the tail structure change. Stahl
et al. (2012) advocate the usage of a more appropriate robust-
ness notion and argue that, considering risk management
applications, expected shortfall represents a robust risk mea-
sure. However, a Gaussian framework may only be suitable
as long as the interest is on modeling the distributional cen-
ter of a financial return time series; see for example Hull and
White (1998). Most importantly, for a downside tail risk mea-
sure (Acerbi and Tasche 2002), it is necessary to be aware
of the implications of deviations from the theoretical nor-
mal model on the resulting risk measures. Tail Event Risk
Expectile Shortfall (TERES) makes use of expectiles and the
normal–Laplace contaminated mixture (Huber 1964), to gain
a better understanding of the tail risk sensitivity of expected
shortfall.

The research questions of our study are therefore as fol-
lows: How to utilize expectiles in modeling expected shortfall
based on tail information? What are the key advantages of
employing TERES using expectiles and the normal–Laplace
mixture setup in practice? How sensitive are the results
obtained by the proposed framework relative to quantile-
based approaches?

In our paper, we suggest using expectiles and a normal–
Laplace mixture to integrate tail information in risk modeling.
Furthermore, the statistical properties of tail events can be
transferred to modeling expected shortfall as an analytic func-
tion of expectiles. The key advantages of TERES include the
smoothness of the results, more robust findings compared to
value at risk figures when changing the (extreme) risk level
and advances in the tail risk assessment of data from a rel-
atively short time series. We also demonstrate that TERES
achieves a tailor-made balance between tail sensitivity and
robustness. Finally, the proposed framework is successfully
employed for the risk management of financial time series
on a broader set of data frequencies, such as on a monthly,
weekly, daily and intra-day level.

The paper is structured as follows. After considering tail
event risk examples in section 2, the TERES framework is
introduced in section 3. Empirical results concerning expected
shortfall analysis are provided in section 4. Finally, section 5
concludes. The reader can find the R-codes tailored for this
study in the quantlets platform www.quantlet.de.

2. Tail event risk examples

Financial markets are characterized by time changing risk
structures. Therefore, the uncertainty measurement associated
with extreme tail events has to be carefully treated. In this
section, we briefly describe the data series that will be used
in risk modeling throughout the rest of this paper. We focus
on three examples, namely: equity risk exposure assessment,
high-frequency data risk modeling and portfolio allocation.
For each example, we discuss the tail risk characteristics, dis-
play associated series dynamics and offer recommendations
for risk management. A comprehensive risk assessment for
the introduced time series using our TERES framework is
conducted in the empirical part, see section 4.

Example 1 Equity risk exposure Equity returns exhibit non-
stationarity in the variance and higher order moments.
Figure 1 displays the daily DAX 30 (2540 trading days),
FTSE 100 (2557 trading days) and S&P 500 (2518 trading
days) index return series from 1 January 2007 to 31 December
2016. Even after time-dynamic mean–variance standardiza-
tion using a GARCH(1, 1) model by Engle (1982) and Boller-
slev (1986) heavy tails still prevail. Therefore, for the sake
of brevity, the results are not reported here and are instead
available from the authors upon request.

It is evident that the center, certainly not the tail, of the
data distribution may be well modeled using a conditional
Gaussian setup. Therefore, in practice it is reasonable to
choose to model the risk of the observed return series using
a normal–Laplace mixture.

Example 2 High-frequency finance Intraday return time
series share similar features to those observed on stock
indices. Consider the mid-quote price returns of 16 largest
NASDAQ companies from three sectors, namely: technol-
ogy (eight companies), consumer services (four companies)
and health care (four companies), see table 1. Because the
‘Brexit’ referendum result has had a significant influence on
stock market movements, we correspondingly focus on the
order book activities on 27 June 2016 (when the S&P 500
was at its lowest level after the vote) and 30 June 2016 (the
upward movement of the S&P 500 series). A comprehensive
description and statistical analysis of the limit order book data
is provided by Mihoci (2017).

Similar to the equity example, the time series suggests
a modeling approach that does not solely depend upon a
Gaussian framework or upon a fixed probability level (i.e.
modeling risk using value at risk).

Example 3 Portfolio allocation A successful asset allocation
takes the portfolio tail structure into account. Consider, for
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Figure 1. Time series of daily DAX, FTSE 100 and S&P 500 values and returns from 1 January 2007 to 31 December 2016.

Figure 2. Time series of intra-day mid-quote price returns for selected NASDAQ companies on 27 and 30 June 2016. On each day, we
utilize data at every minute between 9:31 and 16:00 (390 observations).

example, the Tail Event Driven ASset allocation (TEDAS)
framework that was developed by Härdle et al. (2015). Gen-
erally speaking, TEDAS enables us to broaden the classical
portfolio allocation by using quantile regression between the
index series and portfolio constituents at selected fixed tail
levels (e.g. 5%, 15%, 25%, 35% and 50%). Consequently,
TEDAS allows us to construct tail event driven portfolios. The
returns of two TEDAS applications that significantly outper-
form the underlying index series’ performance are displayed
in figure 3:

(i) German equity market: weekly portfolios are formed
out of a pool of 125 selected small and mid cap stocks
for the span from 21 February 2014 to 28 November
2014 (41 trading weeks),

Figure 3. Returns of two TEDAS applications (blue) and their
respective benchmarks (red). Left: Weekly German stock port-
folios vs. DAX 30 index (41 trading weeks), right: monthly
mutual funds portfolio returns vs. S&P 500 index (73 trading
months).

(ii) Worldwide mutual funds market: monthly portfolios
are considered from 1 February 2008 to 31 January
2013 (73 trading months); here 583 mutual funds have
been selected.

Table 1. Selected NASDAQ companies.

Industry: Technology (8) Industry: Consumer Services (4) and Health Care (4)

Apple Inc. AAPL Amazon.com, Inc. AMZN
Alphabet Inc. GOOGL Comcast Corporation CMCSA
Microsoft Corporation MSFT Starbucks Corporation SBUX
Facebook, Inc. FB Costco Wholesale Corporation COST

Intel Corporation INTC Amgen Inc. AMGN
Cisco Systems, Inc. CSCO Gilead Sciences, Inc. GILD
QUALCOMM Incorporated QCOM Walgreens Boots Alliance, Inc. WBA
Texas Instruments Inc. TXN Celgene Corporation CELG
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For further details, we refer to Härdle et al. (2015). As fre-
quently encountered in risk management, both cases result in
relatively short time series due to weekly or monthly rebal-
ancing schemes. However, in practice, a substantial amount of
information about the underlying risk processes is demanded.
This effect is intensified by the risk assessment requirement
to accurately analyze the extreme outer tail. As explained
later on, TERES offers a suitable framework for evaluat-
ing (infrequently re-constructed) tail event driven allocation
strategies.

3. Tail Event Risk Expectile based Shortfall

The expected shortfall of a random variable Y with cumula-
tive distribution function F(·) and probability density function
f (·) is defined as

sη = E [Y | Y < η] , (1)

where η represents a given threshold. Expected shortfall is
a coherent downside risk measure and with the threshold
selected as the τ -th quantile (a common choice in prac-
tice) belongs to the class of spectral risk measures (Over-
beck 2004).

The integration of tail information into expected shortfall
is in our paper conducted through expectiles and a normal–
Laplace mixture. In this section, we first discuss the concept
of generalized tail events that is used to express the expected
shortfall as a function of the expectile and tail information.
Thereafter, we model the expectile risk level τ as a function of
a given underlying distributional specification. Finally, based
on the proposed mixture model, we discuss our tail event
driven risk modeling framework.

3.1. Expected shortfall and expectiles

The expectile and the quantile can be seen as two potentially
different parameters of a location model for a random variable
Y with constant θ and innovation ε; that is Y = θ + ε. Given
the check function

ρτ ,γ (u) = |τ − I {u < 0}| |u|γ (2)

the τ -th quantile and the τ -th expectile, respectively, are
identified as location parameter θ :

qτ = arg min
θ

E
[
ρτ ,1 (Y − θ)

]
(3)

eτ = arg min
θ

E
[
ρτ ,2 (Y − θ)

]
. (4)

In terms of a location model, quantiles take solely the sign of
residuals into account, while expectiles consider their magni-
tude. As evident from risk management practice, expectiles
additionally do not necessarily lead to substantially increased
margin requirements relative to quantile-based approaches.

In risk management practice, expected shortfall estimation
utilizes expectiles and quantiles figures. For this purpose, con-
sider the expectile ewτ

that equals the τ th quantile; that is

qτ = ewτ
. Relating the expectile and the quantile by their cor-

responding levels wτ and τ allows us to recover an indicator
of the average distance of the tail probability mass from the
quantile threshold qτ . Knowledge of the expectile level wτ

then enables us to express the expected shortfall as follows:

sqτ
= sewτ

= ewτ
+ ewτ

− E [Y ]

1 − 2wτ

wτ

τ
(5)

see Taylor (2008). The resulting expected shortfall specifi-
cation sqτ

can be seen as a function of the expectile level,

weighted by the ratio
wτ

τ
(1 − 2wτ )

−1.

Our proposed TERES framework, which is based on a
normal–Laplace mixture, relies on equation (5). In a nonpara-
metric context, the distribution function of the data would
be used in expected shortfall estimation. In a recent study,
Schulze Waltrup et al. (2015) employed a spline-based esti-
mation technique. As an incremental advantage of our frame-
work, beyond the nonparametric case, we confirm whether
‘lengthening the distributional tail’ leads to an increase in
the considered ratio. We additionally employ the TERES
framework as an instrument for comparison of the expected
shortfall and value at risk properties.

3.2. Expectile–quantile transformation and tail structures

The characteristics of wτ in the context of expected shortfall
are rarely studied. If the underlying distribution F(·) is known,
then the expectile–quantile transformation is given by

wτ = LPM (qτ ) − qτ τ

2 {LPM (qτ ) − qτ τ } + qτ − E [Y ]
(6)

where

LPM (u) =
∫ u

−∞
yf (y) dy (7)

denotes the lower partial moment. Expression (6) holds for
any F(·) due to the one-to-one mapping between expectiles

and quantiles (Jones 1994). The mass distance indicator
wτ

τ
quantifies the average distance of the probability mass of f (·)
from the τ th quantile, which in TERES is used in tail focused
inference.

As mentioned previously, the expectile–quantile relation-
ship (6) depends on the underlying distributional specifica-
tion. To illustrate the concept, consider the following four
cases: (a) uniform, (b) standard normal, (c) Laplace and (d)
stable distributions; as noted above, this paper focuses on the
normal–Laplace mixture density.

(a) Let Y denote a standard uniform distributed vari-
able Y ∼ U[0, 1], f (y) = I{0 ≤ y ≤ 1} with qτ = τ . The
expectile-quantile transformation level equals

wτ = τ 2

2
(
τ 2 − τ + 0.5

) (8)

Graphical inspection of (8) reveals that in this case the
τ -expectile is closer to the distributional center than the
τ -quantile.
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Figure 4. Top: Quantile (blue) and expectile (red) values for differ-
ent τ level. Bottom: Difference between quantiles and expectiles.
The three cases include: standard normal, standardized Laplace and
the cdf given in (10).

(b) Risk underestimation in practice often occurs when
a normality assumption is applied in modeling heavy-tailed
data. For a standard normal distribution with probability
density function ϕ(·), the LPM equals −ϕ(·) and therefore

wτ = −ϕ(qτ ) − qτ τ

−2 {ϕ(qτ ) + qτ τ } + qτ − E[Y ]
(9)

A closer look at the expectile and quantile values for a given
level τ shows that the expectile values are closer to the
distributional center as compared to quantiles, see figure 4.

(c) For the slightly heavier-tailed standardized Laplace (i.e.
double exponential) distribution the LPM corresponds to

LPM (u) =
{

exp(u)(u − 1), if u < 0
exp(−u)(−u − 1), else

which exhibits lower (larger) values for given level τ in the
left (right) tail as compared to the standard normal case, see

figure 4. On average the mass distance indicator
wτ

τ
increases

as the degree of tail heaviness increases. The conclusion is
less clear in the extreme outer tail. Additionally, we may ask
whether the τ -expectile is generally closer to the distribu-
tional center than the τ -quantile. Given the distribution by
Koenker (1993)

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0.5 − 0.5

(
1 − 4

4 + x2

)0.5

, if x < 0

0.5 + 0.5

(
1 − 4

4 + x2

)0.5

, else

(10)

both coincide; that is eτ = qτ for τ ∈ [0, 1]. In practice, this
distribution exhibits considerably heavier tails than typically
selected distributions. Thus we conclude that for a realistic
degree of tail heaviness, wτ < τ holds for the left distribu-
tional tail and for the normal–Laplace mixture employed in
this paper.

(d) The class of stable distributions (Mandelbrot 1963,
Fama 1965, Cizek et al. 2011) is briefly discussed here. The
class captures a wide array of probability distribution func-
tions (including normal and Cauchy), as reflected by a sta-
bility index α ∈ (0, 2] and a skewness parameter β ∈ [−1, 1].
Location and scale are controlled by parameters μ and σ . A

closed-form solution for the cumulative distribution function
does not exist. Therefore, an approximation of the lower tail
for this class of distributions is given by Nolan (2015)

f (y|α, β, σ) ≈ cασα|β − 1|(−y)−α−1 (11)

cα = α sin
(πα

2

) (α)

π
(12)

For α ∈ [1, 2], the LPM of stable distributions is approxi-
mated by

LPM (u) ≈ cασα|β − 1|
1 − α

(−u)1−α , as u → −∞. (13)

Consider the standardized symmetric case (σ = 1, β = 0).
The stability index α allows the controlled increase of the
degree of tail-heaviness. As α increases the tail becomes
lighter and the mass distance indicator is (again) found to
decrease. Even more interestingly, the example points out the
LPM as the parameter that is most dependent on the selec-
tion of the underlying distribution, especially in the extreme
outer tail. Consider, for example, qτ = −5 where the LPM
lies within the range [6.23e-19, 0.01] and the corresponding
τ in [0.0002, 0.04]. In this situation, the expected shortfall,
which depends on the LPM, is certainly less insensitive than
the value at risk.

3.3. Tail event risk modeling framework

The TERES framework enables us to quantify risk effects
of progressing from value at risk to expected shortfall. We
will now proceed with an analysis of the connection between
the distributional (tail-) information provided by the mass
distance index and the expected shortfall.

The non-normality apparent on many time series renders
a comparison of the robustness properties of the expected
shortfall and the value at risk inside a realistic distributional
neighborhood. Even though our focus here is on financial
applications, this holds true for most statistical studies.

Normal–Laplace mixture
Here, we will model the tail structure by adopting a mix-

ture of distributions. To analyze the robustness properties of
expected shortfall under deviations from a normality assump-
tion, we follow the approach outlined in Huber (1964). The
underlying idea is to emphasize the use of a neighborhood
for robustness analysis. The aim is to find an estimator that
displays good performance and which sticks loosely to an
underlying model assumption (e.g. normality) but does rely
on the theoretical model to be literally and exactly true.

Consider for this purpose the random variable Y with
probability density function

f (y|δ) = (1 − δ)ϕθ1(y) + δhθ2(y) (14)

where ϕ denotes a normal probability density function with
θ1 = (μ1, σ1)

	 and h another continuous symmetric distri-
bution with parameter set θ2. The parameter subset for the
Laplace distribution is re-parametrized as θ2 = (μ2, σ2)

	,
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with

hθ2 (u) = 1

σ2

√
2

exp

{
−

√
2
|u − μ2|

σ2

}
. (15)

Discussion
Now that a suitable distribution h is at hand, we can present

the distributional environment (14) in more detail. The most
light tailed scenario results for δ = 0, where a normal distri-
bution is always employed. For increasing values of δ the
distributional tail is ‘lengthened’ until at δ = 1 the more
heavy tailed Laplace distribution is selected. In the example
of a standard power exponential distribution by Rigby and
Stasinopoulos (2004), the normal and Laplace cases would
correspond to the power parameter equal to 2 and 1, respec-
tively, see section 4. By construction, the normal–Laplace
mixture mechanism characterizes the dominance of each mix-
ture component, in the spirit of Huber (1964). If one is,
for example, interested in understanding slight departures
from the normality assumption, then the focus will be on the
neighborhood resulting from δ values that are close to 0.

Obviously, the expectile, quantile and the corresponding
expected shortfall will vary within the selected neighbor-
hood. Within a δ-contaminated neighborhood, as in (14), wτ

becomes a function of the mixture parameter δ. In settings
with contamination that exhibits heavier tails than under nor-
mality, such as Laplacian, this relationship is monotonically
decreasing in δ for low risk levels (such as τ = 0.05 or τ =
0.10) if the expected shortfall is calculated strictly based only
on the assumed distribution. Our approach, however, makes
use of (5) by combining pre-estimated quantiles or expec-
tiles with the relevant expectile level wτ . This turns out to be
specifically tailored to our needs, because we are interested in
comparing the robustness properties of expected shortfall and
value at risk which originate in the influence of wτ . Thus we
keep the τ -quantile fixed while varying wτ over the selected
distributional neighborhood.

Example
Consider the standardized Laplacian contamination case as

defined in (15) and (14) with parameter set (μ1 = 0, σ1 =
1, μ2 = 0, σ2 = 1)	. The upper left-hand side figure 5 shows
the resulting expected shortfall for levels of contamination δ

ranging from 0 (normal) to 1 (Laplace case). To analyze the
neighborhood around the Laplace scenario in the outer tail,
we provide the expected shortfall for risk level τ = 0.005 in
the top right-hand side of figure 5. We note that the strongest
variation of the expected shortfall (i.e. the absolutely highest
slope) is observed at the normal scenario. This is very reason-
able. For example, Huber (1964) points out that ‘lengthening’
the tail structure while starting from a light tailed case has a
more pronounced influence on the estimator than a ‘shorten-
ing’ of tails. Nevertheless, as (5) shows, that knowledge of
the quantile could potentially provide a significant reduction
in expected shortfall variation. In financial examples, we find
this effect to be very strong; as displayed by the empirical
applications of TERES in section 4.

Expectile–quantile relationship
Here, we will briefly discuss the sensitivity of the

expectile–quantile transformation. Regarding the check
function (2) it becomes apparent that the expectile–quantile
transformation (6) results as a special case for γ = 2 and

Figure 5. Theoretical sqτ
for mixtures of standard Normal and stan-

dardized Laplace (top left). Furthermore, the Laplace, t with 20 df
and Uniform(−3, 3) contaminated normal environments of degree δ
for the fixed (tail) risk level τ = 0.5% are depicted.

the question arises as to how strong the influence of the
norm selection is here. In the given framework, the norm is
controlled by fixing a γ ≥ 1. Note that

w(α, γ ) =
∫ qα

−∞ |y − qα|γ−1 dF(y)∫ ∞
−∞ |y − qα|γ−1 dF(y)

, γ ≥ 1

holds for the special case of quantiles w(α, 1) = α. The anal-
ysis reduces to the consideration of a value γ > 1 (i.e. two
for the expectile case) and we then investigate the conver-
gence rate, with respect to γ of the term |y − qα|γ−1 towards
one. Generally we observe exponential convergence for |y −
qα| > 1 whereas for |y − qα| < 1 root convergence results.
For |y − qα| > 1 ≈ 1, nearly linear convergence towards the
quantile case is observed. Therefore, we conclude that when
using standardized data and modest risk levels the framework
shows a reasonable degree of stability in the selection of the
loss function.

4. Empirical study

In this section, TERES is employed to investigate the prop-
erties of expected shortfall given a time series of empirical
quantile estimates. In estimation, we utilize the expectation–
maximization algorithm (Hartley and Rao 1967, Dempster
et al. 1977). The essential steps of the algorithm in the case of
the normal–Laplace mixture parameter estimation are for con-
venience summarized in table 2. As introduced in section 2,
we employ TERES in the risk assessment of different asset
classes. First, we model the risk dynamics of daily stock
indices, namely the DAX, the FTSE and the S&P 500. There-
after a high-frequency example is presented where we analyze
NASDAQ data over 2 days following the Brexit referendum.



TERES: Tail Event Risk Expectile Shortfall 455

Table 2. Expectation-maximization (EM) algorithm for the estimation of normal-Laplace mixture parameters for a selected time series.

EM: Normal-Laplace Mixture Estimation Algorithm
* Select a (return) time series of n observations, rt, t = 1, . . . , n
* Step a: Estimate parameter vectors θ1 = (μ1, σ1)

	 and θ2 = (μ2, σ2)
	 using maximum-likelihood method

Here, θ̃1 = (μ̃1, σ̃1)
	 and θ̃2 = (μ̃2, σ̃2)

	 with

μ̃1 = n−1
n∑

t=1

rt, σ̃1 = n−1

√√√√ n∑
t=1

(rt − μ̃1)
2, μ̃2 = n−1

n∑
t=1

rt and σ̃2 = n−1
√

2
n∑

t=1

|rt − μ̃2|

* Step b: For each data point, we calculate two density values. The first (second) value represents the density value evaluated at
the data point from the normal (Laplace) distribution given the parameters from Step a, for the latter see expression (15)
p̃(0)

1t = ϕθ̃1
(rt) and p̃(0)

2t = hθ̃2
(rt), t = 1, . . . , n

* Step c.0: E-Step at iteration i = 0: Is it more likely that an observation belongs to the normal
or the Laplace distribution if the mixture parameter equals δ̃(0)?

Calculate weights w̃(0)
1t = p̃(0)

1t (1 − δ̃(0))

p̃(0)
1t (1 − δ̃(0)) + p̃(0)

2t δ̃(0)
and w̃(0)

2t = p̃(0)
2t δ̃(0)

p̃(0)
1t (1 − δ̃(0)) + p̃(0)

2t δ̃(0)
,

w̃(0)
1t + w̃(0)

2t = 1, t = 1, . . . , n
The mixture parameter at next iteration is thereafter found based on these estimated weights
(expressed as a function of the estimated probabilities), namely

δ̃(1) = n−1
n∑

t=1

{1 − w̃(0)
1t } = n−1

n∑
t=1

w̃(0)
2t

* Step d.1: M-Step at iteration i = 1: Estimate parameter vectors of a probability weighted time series
Consider the time series r̃(1)

1t = w̃(1)
1t r(0)

t and r̃(1)
2t = w̃(1)

2t r(0)
t , r(0)

t = rt, t = 1, . . . , n

μ̃
(1)
1 =

n∑
t=1

r̃(1)
1t /

n∑
t=1

w̃(1)
1t , σ̃

(1)
1 =

√√√√ n∑
t=1

(̃r(1)
1t − μ̃

(1)
1 )2/

n∑
t=1

w̃(1)
1t , p̃(1)

1t = ϕ
θ̃

(1)
1

(̃r(1)
1t )

μ̃
(1)
2 =

n∑
t=1

r̃(1)
2t /

n∑
t=1

w̃(1)
2t , σ̃

(1)
2 = √

2
n∑

t=1

|̃r(1)
2t − μ̃

(1)
2 |/

n∑
t=1

w̃(1)
2t , p̃(1)

2t = h
θ̃

(1)
2

(̃r(1)
2t )

* Step c.i: E-Step at iteration i = 1, . . . , m − 1: Calculate weights w̃(i)
1t and w̃(i)

2t , and find
the mixture parameter estimate δ̃(i+1)

* Step d.i: M-Step at iteration i = 2, . . . , m: Find the estimates θ̃
(i)
1 and θ̃

(i)
2

* Step e: Iterate steps c and d until convergence and after m iterations finally provide the estimates
δ̂ = δ̃(m), θ̂1 = θ̃

(m)
1 and θ̂2 = θ̃

(m)
2

The third example utilizes TERES for risk assessment of pre-
selected monthly and weekly rebalanced portfolios with time
changing component weights.

4.1. Equity risk exposure

Consider the selected equity indices between 2007 and 2016
and observe the return time series and the corresponding esti-
mated probabilities, i.e. weights, that the returns follow a
Laplace distribution, see figure 6, and the resulting TERES
estimated density in figure 7. It is evident that during the finan-
cial crisis (2008) and the European debt crisis (2012) in risk

modeling, more importance is given to the Laplace distribu-
tion. Looking at the two sub-periods – 2007 to 2011 and 2012
to 2016 in table 3 – reveals the same finding from the perspec-
tive of the estimated mixture parameter δ (above 0.50 in any
case).

From the considered time series, DAX and S&P 500
returns, at times the FTSE returns are related with relatively
higher estimated mixture parameter readings. This finding
is also reflected by the density plot in figure 7 related to
the DAX series risk assessment. Interestingly, more proba-
bility mass is located in the left tail. This may resemble the
discussed standard power exponential distribution with the

Figure 6. Time series of daily DAX, FTSE 100 and S&P 500 returns and corresponding estimated probabilities, i.e. weights ŵ2t = w̃(m)
2t ,

that the returns follow a Laplace distribution from 2 January 2007 to 31 December 2016.
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Figure 7. Theoretical densities (upper panel): normal, standard power exponential with power parameter 1.38 and Laplace. Estimated
densities in risk management of daily DAX time series between 2007 and 2016 (lower panel): normal, TERES with δ̂ = 0.60 and Laplace.

power parameter equal to 1.38, which was estimated for the
DAX series. Other index series that are modeled by TERES
exhibit similar characteristics.

Our expectile-based normal–Laplace mixture model offers
an economically sound risk quantification while ‘moving’
from the normal to the Laplacian case. Most prominently,
it gives us an opportunity to evaluate the effect that ‘short-
ening’ and ‘lengthening’ of the distribution tail exercises
on the displayed risk measures. Consider correspondingly
a simulation study, with four cases: (a) TERES estimated
expected shortfall for DAX time series for a selected mixture

parameter δ ∈ {1.00, 0.90, . . . , 0.00}, (b) TERES calculated
expected shortfall for a mixture between the standard normal
and standard Laplace (zero mean, unit variance) distributions
given δ ∈ {1.00, 0.90, . . . , 0.00}, (c) expected shortfall based
on the standard power exponential distribution with power
parameter c ∈ {1.00, 1.10, . . . , 2.00} and (d) TERES related
power exponential distribution with matching rule-of-thumb
power parameter c̃δ . Based on the estimated expected shortfall
using TERES in case (b), we report on the power parame-
ter values that would lead to economically equal expected
shortfall estimates. All simulation cases, based on risk level
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Table 3. Estimated parameters of the normal–Laplace mixture for the selected index returns from 2007 to 2016.

2007–2016 2007–2011 2012–2016

DAX 30 FTSE 100 S&P 500 DAX 30 FTSE 100 S&P 500 DAX 30 FTSE 100 S&P 500

μ̂1 0.00337 0.00167 0.00228 0.00237 0.00235 0.00337 0.00444 0.00149 0.00380
σ̂1 0.00872 0.00702 0.00490 0.00970 0.00868 0.00436 0.00870 0.00633 0.00564
μ̂2 −0.00191 −0.00119 −0.00102 −0.00202 −0.00218 −0.00125 −0.00290 −0.00042 −0.00091
σ̂2 0.01730 0.01531 0.01543 0.02073 0.01899 0.01877 0.01389 0.01035 0.00862
δ̂ 0.59735 0.56652 0.63536 0.55751 0.54028 0.75016 0.53635 0.67878 0.70871

Table 4. Estimated value at risk q̂τ and expected shortfall ŝewτ
of the normal-Laplace mixture for the selected index returns from 2007 to

2016. For convinience the measures are reported as positive numbers.

2007–2016 2007–2011 2012–2016

DAX 30 FTSE 100 S&P 500 DAX 30 FTSE 100 S&P 500 DAX 30 FTSE 100 S&P 500

q̂0.01 0.044 0.035 0.041 0.052 0.049 0.051 0.033 0.025 0.023
q̂0.05 0.024 0.020 0.021 0.026 0.025 0.027 0.020 0.015 0.014
ŝew0.01

0.054 0.057 0.044 0.063 0.052 0.055 0.053 0.038 0.027
ŝew0.05

0.036 0.031 0.033 0.044 0.039 0.043 0.028 0.022 0.018

τ = 0.01, are evaluated and summarised in table 5 and graph-
ically illustrated in figure 8, and can be applied in TERES-
based risk management practice.

The simulation experiments display several attractive prop-
erties of the proposed TERES framework. First, a larger value
of the mixture parameter δ indeed ‘lengthens’ the distribu-
tion tail. Both the expected shortfall and expectile figures
become, as expected, quite distant as mixture parameter δ

indicates the presence of heavy-tails. Second, the mass prob-

ability indicator,
wτ

τ
clearly contributes to the tail behavior

of the resulting risk measures. Third, while employing our
TERES framework in a simulation study, we can easily sug-
gest the economically sound parameter constellations of a
benchmark approach. Here we show how the standard power
exponential distribution modeling can be adjusted to attain
the same risk level as proposed by TERES while ‘moving’
in an economically interpretable way from the normal to the
heavy-tailed Laplacian case.

Most notably, related to the TERES equity risk estimation
in practice, a higher change and thereby a large sensitivity

was reported for the value at risk figures relative to expected
shortfall estimates especially at the 1% across all indices; see
table 4. This supports the current findings that value at risk
indeed leads to increasing margin requirements in practice
– here due to the change in the risk level – as compared to
expected shortfall estimates. Expected shortfall estimates are
more robust in the context of model (distribution) misspecifi-
cation, which may be amplified in a quantile-based approach.
In our framework, the potential risk is controllable because of
the presented stability property. Therefore, by using TERES,
decision makers may be able to identify a potential shift in the
tail structure.

4.2. High-frequency finance

While analyzing the high-frequency data of 16 selected NAS-
DAQ companies, one observes that the estimated mixture
parameter changes most notably with the trading day selected;
see figure 9. One observes a relatively large estimated mixture
parameter values during the upward movement of the S&P

Table 5. Expected shortfall sewτ
and the expectile ewτ

in a simulation study. For convenience all measures are reported as positive numbers:
(a) TERES-based normal–Laplace mixture for the selected DAX index returns series from 2007 to 2016 for specified δ, (b) TERES based
standard normal–standard Laplace mixture for given δ, (c) Standard power exponential distribution with power parameter c and (d) TERES

measure related rule-of-thumb power parameter c̃δ .

(a) TERES, DAX (b) TERES, Standard (c) Power exp. (d) TERES, Power

δ sewτ
ewτ

δ sewτ
ewτ

c sewτ
ewτ

c̃δ sewτ
ewτ

1.00 0.0623 0.0497 1.00 3.50 2.76 1.00 3.50 2.76 1.00 3.50 2.76
0.90 0.0610 0.0484 0.90 3.43 2.71 1.10 3.35 2.70 1.07 3.42 2.71
0.80 0.0594 0.0470 0.80 3.36 2.66 1.20 3.24 2.64 1.16 3.34 2.65
0.70 0.0576 0.0454 0.70 3.29 2.61 1.30 3.13 2.59 1.24 3.28 2.60
0.60 0.0558 0.0435 0.60 3.23 2.56 1.40 3.05 2.54 1.33 3.22 2.55
0.50 0.0538 0.0412 0.50 3.12 2.52 1.50 3.00 2.49 1.42 3.13 2.51
0.40 0.0510 0.0385 0.40 3.07 2.47 1.60 2.93 2.45 1.53 3.07 2.46
0.30 0.0474 0.0350 0.30 2.97 2.43 1.70 2.82 2.42 1.65 2.96 2.42
0.20 0.0424 0.0301 0.20 2.89 2.39 1.80 2.80 2.38 1.77 2.88 2.38
0.10 0.0343 0.0230 0.10 2.76 2.36 1.90 2.74 2.35 1.89 2.77 2.35
0.00 0.0200 0.0169 0.00 2.70 2.32 2.00 2.70 2.32 2.00 2.70 2.32
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Figure 8. Expected shortfall sewτ
(red) and the expectile ewτ

(blue) in a simulation study. For convenience all measures are reported as
positive numbers: (a) TERES-based normal–Laplace mixture for the selected DAX index returns series from 2007 to 2016, (b) TERES-based
standard normal–standard Laplace mixture, (c) standard power exponential distribution and (d) TERES-based power exponential selection.

500 index on 30 June 2016, which was induced largely by the
demand factor; see Mihoci (2017).

The prices of the analyzed stocks reacted positively on 30
June 2016, and the risk exposure, as measured by the expected
shortfall using our TERES framework and the value at risk,
see figure 10, indicates a correspondingly smaller risk. During
relatively ‘turbulent’ trading days, a higher risk is implied by
the model.

From the sector perspective, we see that there are
several different risk-scheme transformations between the
companies. Related to the mixture parameter, the con-
sumer services sector exhibits relatively narrow changes
between the analyzed days, whereas the largest devia-
tions are present in the technological sector. While look-
ing at the risk measures, again the consumer services
market shows relatively unchanged (risk) readings (except
AMZN), followed by the health care and the technological
sector.

Related to tail sensitivity, a striking shift of the mixture
parameter and risk quantities in the technological sector draws
our attention. Taking FB and CSCO time series as exam-
ples, one observes a visible soar on the mixture parameter
on 30 June 2016. An increasing expectile-based expected
shortfall reflects a rising tail risk through a detected heav-
ier tail structure. Quantile-based measures, however, remain
constant or even move in the reverse direction. Less tail sen-
sitivity by the quantile-based measures can also be evident in
other sectors; see the risk assessment for AMZN. As evident,

Figure 9. Estimated mixture parameter δ̂ for selected NASDAQ
companies on 27 (blue) and 30 (red) June 2016.

TERES-based risk management successfully captures the risk
structure dynamics.

Referring to the intra-day variation of the time series,
one expects a higher risk during the first day and rela-
tively lower risk afterwards; see figure 2. An employment of
TERES-based expected shortfall in the case of AMZN recon-
ciles our expectation with the evidence. Not surprisingly, the
quantile-based measures seemingly remain unchanged and are
more vulnerable to the presence of outliers, especially during
the market opening. This relatively noisy time period makes
TERES a preferable choice in quantitative practice.

4.3. Portfolio allocation

The tail optimized TEDAS return series that was introduced
in section 2 consist of 41 and 73 observations, respectively.
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Figure 10. Estimated value at risk q̂τ and expected shortfall ŝewτ
of the normal–Laplace mixture for selected NASDAQ companies on 27

(blue) and 30 (red) June 2016. The four displayed cases include: (a) q̂0.01, (b) q̂0.05, (c) ŝew0.01
and (d) ŝew0.05

. For convenience, the measures
are reported as positive numbers.

Figure 11. Estimated expected shorfall for the TEDAS (DAX) port-
folio across different risk levels. Top: Empirical quantiles (black)
and the resulting normal scenario expected shortfall (blue). Bottom:
TERES-based expected shortfall with normal scenario (δ = 0, blue)
and high-tail risk scenario (δ = 1, red).

This sparse availability of data makes it difficult to estimate
the tail risk of the selected portfolio. By using TERES, we
are able to overcome these challenges for small sample selec-
tions; see the risk estimates for the TEDAS portfolio based on
DAX constituents and 41 observations, figure 11. TERES esti-
mates are smoother, they induce monotonicity in the expected
shortfall, and they deliver more suitable results; as shown in
figure 11.

The normal and ‘tail-heavy’ Laplace contamination scenar-
ios show a considerably higher degree of smoothness with
respect to variation in the risk level τ . A comparison of
the quantile and TERES-based expected shortfall realizations
under a normal scenario reveals that our approach better cap-
tures the risk. Note that the empirical quantile employs linear
interpolation, whereas the evidently exponential tail structure
that is present here is more appropriately captured by our
framework.

With inherited properties from expectiles, TERES naturally
forms a smooth curve and ensures monotonicity. Its behavior
is relatively stable and smooth, even with the sparse availabil-
ity of data. As previously, a low variation over the scenarios

is observed at the worldwide mutual funds market (the results
available upon request), which becomes less pronounced as
one considers risk levels τ closer to the distributional center.
Due to these appealing properties, we recommend TERES for
risk assessment practice.

5. Conclusion

The proposed TERES framework utilizes expectiles to esti-
mate expected shortfall. Motivated by quantitative finance
practice, we employ a normal–Laplace mixture in model-
ing expected shortfall. The key advantages of the approach
include a relatively pronounced smoothness of the results,
more robust evidence compared to quantile-based figures and
advances in tail risk assessment of data using small samples.

Our empirical section presented successful TERES applica-
tions over several asset classes. First, during market distress
periods, in normal–Laplace mixture modeling a relatively
higher probability is given to the Laplace distribution. Inter-
estingly, expected shortfall exhibits relatively robust results
compared to value at risk when changing the underlying risk
level. Second, while modeling high-frequency data, a smaller
risk occurs during a trading day with an increasing price
trend. Therefore, we additionally account for tail risk sen-
sitivity for selected blue chip companies. Finally, TERES is
considered advantageous in the case of monthly and weekly
portfolio allocation. This makes TERES a desirable choice
for risk management of selected asset classes on a monthly,
weekly, daily and intra-day basis. Future research regarding
TERES can consider the time-varying nature of the underly-
ing distribution while capturing tail events and associated risk
measures in time.
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